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ABSTRACT

User interface understanding with vision-language models has received much atten-
tion due to its potential for enabling next-generation software automation. However,
existing UI datasets either only provide large-scale context-free element annota-
tions or contextualized functional descriptions for elements at a much smaller scale.
In this work, we propose the AutoGUI pipeline for automatically annotating UI
elements with detailed functionality descriptions at scale. Specifically, we lever-
age large language models (LLMs) to infer element functionality by comparing
the UI content changes before and after simulated interactions with specific UI
elements. To improve annotation quality, we propose LLM-aided rejection and
verification, eliminating invalid and incorrect annotations without human labor.
We construct an AutoGUI-704k dataset using the proposed pipeline, featuring
multi-resolution, multi-device screenshots, diverse data domains, and detailed
functionality annotations that have never been provided by previous datasets. Hu-
man evaluation shows that the AutoGUI pipeline achieves annotation correctness
comparable to trained human annotators. Extensive experimental results show that
our AutoGUI-704k dataset remarkably enhances VLM’s UI grounding capabilities,
exhibits significant scaling effects, and outperforms existing web pre-training data
types. We envision AutoGUI as a scalable pipeline for generating massive data
to build GUI-oriented VLMs. AutoGUI dataset can be viewed at this anonymous
URL: https://huggingface.co/AutoGUI.

1 INTRODUCTION

User interface understanding with visual language models(VLMs) (Hong et al., 2023; Cheng et al.,
2024; You et al., 2024a; Lee et al., 2023; Baechler et al., 2024) has received wide attention due to
its potential in fundamentally transforming how we interact with software as well as unleashing
unseen flexibility for existing apps (Fig. 1). Functionality prediction, which aims to understand the
semantic purpose and interactive affordance of individual UI elements, is a crucial task that goes
beyond previous UI understanding tasks focusing on structural mapping between UI code and visual
layout, such as UI REG/REC (Hong et al., 2023; Li et al., 2020a) and diagram to code (Xia et al.,
2024; Liu et al., 2023a).

To enhance the UI understanding capability of VLMs, large-scale high-quality training data is
indispensable. However, the scale of existing open-source datasets (Li et al., 2020a; Deka et al.,
2017a; Li et al., 2020b; Kapoor et al., 2024; Wang et al., 2021) for UI understanding remains on the
order of millions, significantly fewer than natural image datasets such as LAION-5B (Schuhmann
et al., 2022). Additionally, the prevailing methods (Deka et al., 2017a; Li et al., 2020a) for collecting
UI annotation are labor-intensive, leading to prohibitive costs that hinder scalability. Moreover,
existing UI understanding datasets predominantly focus on describing either the visual appearance (Li
et al., 2020a;b) (e.g., a button beside the navigation bar), element categories (Cheng et al., 2024) (e.g.,
“menu button”), or brief functions weakly related to the UI context (Bai et al., 2021) (e.g., “show
more information”) shown in Fig. 2. These datasets lack contextual functional descriptions of UI
elements, which poses a challenge for VLMs in comprehending the roles these elements serve within
specific UI contexts, such as distinguishing between two visually similar magnifying glass icons that
may represent distinct functionalities like searching and zooming.
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Go to the London City Airport.

Here are several ways:

30 minutes (Apple 
Map, Google Map), toll 
charges along the 
route and speed cameras.

 4 min arrive your 
location (Uber).

42min Public Transport
2 hr 31 min Walking

(Google Map).

Figure 1: UI understanding VLMs could plan a trip to the airport by integrating information across
different apps and modes of transportation.

To address the challenge. we propose AutoGUI, a scalable and automatic UI data annotation pipeline
that provides unlimited UI element functionality annotations. Our annotation pipeline automatically
collects UI interaction trajectories and leverages large language models (LLMs) to infer element
functionalities based on UI content changes, eliminating the need for manual annotation by human
experts. Initially, the proposed pipeline crawls a multitude of interaction trajectories on either a web
browser or an Android emulator and captures screenshots at various aspect ratios. Subsequently, we
use open-source LLMs (AI@Meta, 2024) to annotate the functionalities of elements on collected
GUIs based on changes to UI contents when interacting with these elements. To ensure data quality,
LLM-aided rejection is utilized to eliminate invalid samples, such as incompletely rendered UIs.
Additionally, inspired by recent works on LLM verification (Weng et al., 2022; Lightman et al.,
2023), multiple LLMs are prompted as verifiers to identify false functionality predictions. With
both the rejection and verification processes, our pipeline removes unclear and invalid samples.
We curate the AutoGUI-704k dataset with the proposed pipeline. AutoGUI-704k contains 704k
high-quality functionality grounding and referring tasks used to finetune and evaluate open-source
VLMs. With the vast knowledge embedded within LLMs (e.g., Llama-3-70B (AI@Meta, 2024))
and fast inference infrastructure (Kwon et al., 2023; Gugger et al., 2022), our pipeline can efficiently
annotate high-quality samples at a large scale and substantially reduced cost compared to traditional
methods. Moreover, pioneer experiments find that our pipeline achieves annotation accuracy of
96.7% comparable to a trained human annotator.

Based on the collected AutoGUI-704k dataset, we finetune open-source VLMs that own little UI
grounding capabilities. Experimental results demonstrate that data collected through our AutoGUI
pipeline significantly enhances the VLMs’ UI grounding accuracy and exhibits remarkable scaling
effects. The results also show that our functionality annotation type is superior to the data type
directly derived from web HTML code (Hong et al., 2023; Cheng et al., 2024), serving as a promising
data source for building VLMs capable of UI grounding.

2 RELATED WORKS

2.1 RECENT ADVANCEMENT OF VLMS

Recently, a new wave of research has started to enhance LLMs with the capability of processing both
visual and textual information (Alayrac et al., 2022; Chen et al., 2023a; Li et al., 2023; Lin et al.,
2023a; Liu et al., 2023b; Lin et al., 2023b; Chen et al., 2023b; Lu et al., 2024; Bai et al., 2023; Wang
et al., 2024a; Zhu et al., 2024; Wang et al., 2024b; Li et al., 2024; Zhang et al., 2024a; You et al.,
2024a; Laurençon et al., 2024; Peng et al., 2024; Driess et al., 2023), opening the new field of Vision
Language Model (VLM). Pioneering efforts Flamingo (Alayrac et al., 2022) uses interleaved visual
and language inputs as prompts and shows remarkable few-shot visual question-answering capability.
Fueled by GPT-4 (Team, 2024), both academia and industry have endeavored to democratize its
amazing multimodal reasoning capability. LLaVA (Liu et al., 2023b) and LLaMA-Adapter (Zhang
et al., 2024a) have attempted to align vision encoders (Dosovitskiy et al., 2021) with LLMs to
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This element triggers a zoom-in mode,
allowing users to adjust the size of the
content displayed on the screen.

More
information

ICON_THREE_BARS:MENU

(a) Visual appearance and category (b) Brief function

(c) Html code annotation

<div>
<div>

<h2>
<!---->

<a>Snowmobiling
Daytime – Excl. Transport</a>

</h2>
<a><!----></a>
…

(d) Functionality annotation (Ours)

This element triggers an input field for
users to enter search queries, allowing
them to search for specific tools or
settings within the menus of the google
slides.

This element activates a side panel,
displaying additional Google apps such
as Calendar, Keep, Tasks, and Maps.

This element hides the filmstrip,
removing the thumbnail previews of
slides located on the side of the Google
Slides interface.

similar look,
different 

functionality

similar look,
different 

functionality

Figure 2: Our functionality annotations vs. the annotations provided by existing UI datasets. The
proposed AutoGUI (right) can generate element annotations rich in functional semantics.

enable visual instruction following. Models such as VisionLLM (Wang et al., 2024b), Ferret (You
et al., 2024a), and Qwen-VL (Bai et al., 2023) further enhance these capabilities with robust visual
grounding. Additionally, Research is also expanding into VLM applications in scenarios rich in textual
imagery (Tang et al., 2022; Ye et al., 2023b;a; Liu et al., 2024c) and embodied interactions (Driess
et al., 2023; Mu et al., 2023), offering new possibilities in multimodal reasoning. Despite these
advancements, the domain of UI understanding remains under-explored due to data scarcity. This
paper proposes an autonomous UI annotation pipeline to tackle this challenge, aiming to expand the
data available for training VLMs in this crucial area.

2.2 EXISTING UI DATASETS AND BENCHMARKS

Unlike mature natural image datasets (Russakovsky et al., 2014; Schuhmann et al., 2022), UI
understanding datasets have received less attention in computer vision. Several efforts have been
made to develop mobile UI modeling datasets (Wang et al., 2021; Li et al., 2020a;b; Bai et al., 2021;
Burns et al., 2022), primarily annotating the RICO dataset (Deka et al., 2017b), which includes
72K screenshots from Android apps. Examples include Widget Captioning (Li et al., 2020a), which
analyzes captions and linguistic features of UI elements, and RICOSCA (Li et al., 2020b), which maps
single-step instructions to UI locations. Recently, MoTIF (Burns et al., 2022) and AITW (Rawles et al.,
2023) have been proposed to focus on interpreting high-level instructions in Android environments.
However, these manually curated and crowd-annotated datasets are limited in size and costly to
update, presenting challenges in adapting to new UI types.

The web scenario has also gained much attention. WebShop (Yao et al., 2022), as an early at-
tempt, introduces a simplified simulator for web navigation tasks. More recent projects, such as
Mind2Web (Deng et al., 2024) and WebArena (Zhou et al., 2023), have developed realistic and repro-
ducible web environments to improve web agent capabilities. VisualWebBench (Liu et al., 2024b) has
established a comprehensive evaluation framework for VLMs, focusing on UI grounding. To tackle
data insufficiency issues, recent studies like SeeClick (Cheng et al., 2024) and CogAgent (Hong et al.,
2023) have utilized the latest Common Crawl data to create large-scale datasets. However, these data
are derived from HTML code snippets which contain plenty of noise.

This paper aims to address the aforementioned limitations of existing UI datasets by introducing
an automatic LLM-based annotation pipeline. By focusing on contextual functional descriptions of
elements, our pipeline aims to enhance VLM’s capability of understanding users’ functional intents.
The advantages of our AutoGUI dataset over existing datasets are summarized in Tab. 1.

3 AUTOGUI: AUTOMATIC FUNCTIONALITY ANNOTATION PIPELINE

This section introduces AutoGUI, an annotation pipeline (Fig. 3) that automatically produces contex-
tual element functionality annotations used to enhance VLMs’ GUI grounding capabilities.

3
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Table 1: Comparing our AutoGUI dataset with existing large-scale UI datasets. Multi-Res means
the samples are collected on devices with various resolutions. Auto Anno. means the samples are
collected autonomously. #Anno. means the number of annotated samples provided by the datasets.

Dataset UI Type Multi
Res.

Real-world
Scenario

Auto
Anno.

Contextual
Functionality

Semantics
#Anno. Task

WebShop (Yao et al., 2022) Web ✗ ✗ ✗ ✗ 12k Web Navigation
Mind2Web (Deng et al., 2024) Web ✗ ✓ ✗ ✗ 2.4k Web Navigation
WebArena (Zhou et al., 2023) Web ✗ ✓ ✗ ✗ 812 Web Navigation

S2W (Wang et al., 2021) Mobile ✗ ✓ ✗ ✗ 112k Screen Summarization
Wid. Cap. (Li et al., 2020a) Mobile ✗ ✓ ✗ ✗ 163k Element Captioning
PixelHelp (Li et al., 2020b) Mobile ✗ ✓ ✗ ✗ 187 Element Grounding
RICOSCA (Li et al., 2020b) Mobile ✗ ✓ ✗ ✗ 295k Action Grounding
MoTIF (Burns et al., 2022) Mobile ✗ ✓ ✗ ✗ 6k Mobile Navigation
AITW (Rawles et al., 2023) Mobile ✗ ✓ ✗ ✗ 715k Mobile Navigation

RefExp (Bai et al., 2021) Mobile ✗ ✓ ✗ ✗ 20.8k Element Grounding
VWB (Liu et al., 2024b) Web ✗ ✓ ✗ ✗ 1.5k Elem. Ground & Ref.

SeeClick Web (Cheng et al., 2024) Web ✗ ✓ ✓ ✗ 271k Element Grounding
UI REC/REG (Hong et al., 2023) Web ✓ ✓ ✓ ✗ 400k Box2DOM, DOM2Box

Ferret-UI (You et al., 2024b) Mobile ✓ ✓ ✓ ✗ 250k Elem. Ground & Ref.
AutoGUI (ours) Web, Mobile ✓ ✓ ✓ ✓ 704k Functionality Ground & Ref.

• Unchanged TabTitle 'Tock - Reservations -
Restaurants, Bars, and Wineries'

• Unchangedbutton 'Book a reservation’
• Added link 'Reservations’
• Added link 'Delivery’
• Added link 'Pickup’
• …

Comparing

GUI content changes

Prediction: Serve as a trigger for
displaying additional options related
to reservations.

Rejector

Verifier

Reason: The addition of the links is
consistent with restaurant
reservation conventions, thus being
predictable based on the user's
expectations.
Score: 3/3

Reason: The button's ability to reveal
more granular options make it an
appropriate choice for facilitating the
user's desired functionality.
Score: 3/3

√

√

√

(Screenshot, Element, Functionality) 
triplets

Formatting

Click a <button> element named "Offers Delivery"

Click an <input> element named “Document"

Reason: The removal and addition
do not follow common
conventions. It is unpredictable to
assume the outcome of clicking
the button based on the provided
changes.
Score: 0

X

Prediction: This element, when
selected, adds Documentary to
the user’s favorite list.

X

Reason: This checkbox appears
within a filtering dialog,
indicating it's designed to filter
items rather than manage
favorites.
Score: 0

√

Annotator

2. Autonomous Functionality Annotation1. GUI trajectory collecting

3. GUI training data generation

Q: Which element can I click to select another date? 
A: (85, 77)

Q: Describe the functionality of this element at (85, 77)?
A: This element allows the user to select another date.

Functionality grounding

Functionality captioning

Annotator

Verifier

A rejected case

Rejector

A case failing Verification

(85, 77)

Web UIs

Mobile UIs

Desktop
viewport

Mobile phone viewport

Crawler

Android Emulator

Mobile phone Tablet

iPad viewport

Figure 3: The proposed pipeline for automatic UI functionality annotation. An LLM is utilized
to predict element functionality based on the UI content changes observed during the interaction.
LLM-aided rejection and verification are introduced to improve data quality. Finally, the high-quality
functionality annotations will be converted to instruction-following data by applying task templates.

3.1 COLLECTING UI INTERACTION TRAJECTORIES

Our pipeline initiates by collecting interaction trajectories, which are sequences of UI contents
captured by interacting with UI elements. Each trajectory step captures all interactable elements and
the accessibility tree (AXTree) that briefly outlines the UI structure, which will be used to generate
functionality annotations. To amass these trajectories, we utilize the latest Common Crawl repository
as the data source for web UIs and Android Emulator for mobile UIs. Note that illegal websites
and Apps are excluded manually from the sources to ensure no pornographic or violent content is
included in our dataset. Please refer to Sec. A.2 for collecting details and data license.
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3.2 FUNCTIONALITY ANNOTATION BASED ON UI DYNAMICS

Subsequently, the pipeline generates functionality annotations for elements in the collected trajectories.
Interacting with an element e, by clicking or hovering over it, triggers content changes in the UI. In
turn, these changes can be used to predict the functionality f of the interacted element. For instance,
if clicking an element causes new buttons to appear in a column, we can predict that the element
likely functions as a dropdown menu activator (an example in Fig. D). With this observation, we
utilize a capable LLM (i.e., Llama-3-70B (AI@Meta, 2024)) as a surrogate for humans to summarize
an element’s functionality based on the UI content changes resulting from interaction. Concretely, we
generate compact content differences for AXTrees before (st) and after (st+1) the interaction using a
file-comparing library1. Then, we prompt the LLM to thoroughly analyze the UI content changes
(addition, deletion, and unchanged lines), present a detailed Chain-of-Thoughts (Wei et al., 2022)
reasoning process explaining how the element affects the UI, and finally summarize the element’s
functionality.

In cases where element interactions significantly transform the UI and cause lengthy differ-
ences—such as navigating to a new screen—we adjust our approach by using UI description changes
instead of the AXTree differences. Specifically, we prompt the same LLM to discern the UI hierarchy,
describe UI regions, and finally describe the entire UI functionality. After describing the UIs before
and after the interaction, the LLM analyzes the description differences, presents reasoning, and
summarizes the element’s functionality. This annotation process is formulated as:

f = LLM(panno, st, st+1) (1)

where f is the predicted functionality, panno is the annotation prompt (Tab. A and Tab. B). Examples
of annotated elements are depicted in Fig. 4 and more annotation details are explained in Sec. A.4.

3.3 REMOVING INVALID SAMPLES VIA LLM-AIDED REJECTION

The collected trajectories may contain invalid samples due to broken UIs, such as incomplete UI
loading. These samples are meaningless as they contain corrupted UI content and can mislead the
models trained with them.

To filter out these invalid samples, we introduce an LLM-aided rejection approach. Initially, hand-
written rules are used to detect obvious broken cases, such as blank UI contents, UIs containing
elements indicating content loading, and interaction targets outside of UIs. While these obvious cases
constitute a large portion of the invalid samples, there are a few types that are difficult to detect with
hand-written rules. For instance, interacting with a “view more” button might unexpectedly redirect
the user to a login page instead of the desired information page due to website login restrictions.
To identify these challenging samples, we prompt the annotating LLM to also act as a rejector.
Specifically, the LLM takes the UI content changes, generated using a file-comparing library, as
input, provides detailed reasoning on whether the changes are meaningful for predicting the element’s
functionality, and finally outputs predictability scores ranging from 0 to 3. This process is formulated
as follows:

score = LLM(preject, e, st, st+1) (2)

where preject is the rejection prompt (Tab. C).

This approach ensures that clear and predictable samples receive higher scores, while those that are
ambiguous or unpredictable receive lower scores. For instance, if a button labeled "Show More", upon
interaction, clearly adds new content, this sample will considered to provide sufficient changes that
can anticipate the content expansion functionality and will get a score of 3. Conversely, if clicking on
a "View Profile" link fails to display the profile possibly due to web browser issues, this unpredictable
sample will get a score less than 3.

After implementing empirical experiments, we deploy this LLM-based rejector to discard the bottom
30% of samples based on their scores to strike a balance between the elimination of invalid samples
and the preservation of valid ones (More details in Sec. A.6). The samples that pass the hand-written
rules and the LLM rejector are subsequently submitted for functionality annotation. Please see
representative rejection examples in Fig. H.

1https://docs.python.org/3/library/difflib.html
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Q: From this webpage image, I will describe a specific element. Please predict their exact locations (with 
point). This element enables users to share content with others.
A: (66, 35)

This element provides access to a user's
account, enabling personalized experiences
and features on the platform.

This element provides access to a specific
category or topic within the website,
allowing users to explore related content.

This element enables users to
share content with others.

This element allows users to
save content for later
reference or use.

This element enables users to
subscribe to a content
creator's updates or profile.

This element enables users to
create an account, allowing
them to access exclusive
features, save content, and
engage with the community.

This element triggers a
dropdown menu for users to
access additional content
interaction options,  probably 
including features like
reporting, copying, or
embedding the content.

This element triggers a dropdown
menu for users to select different
methods of sorting comments
within the thread, with the
initial option being "Best", which
likely orders the comments based
on their popularity or score.

This element initiates the process of joining the community or 
forum, providing users with an opportunity to engage with other 
archivists and participate in discussions about the challenges 
related to working with archival materials.

This element triggers an action
that allows users to see the
number of awards a particular
comment has received within the
discussion forum.

This element triggers a vote for
the associated comment,
indicating agreement or
appreciation from the user
interacting with it.

Format Template

Q: Describe the function of the element at (66, 35) on the screen.
A: This element enables users to share content with others.

Functionality grounding

Functionality captioning

(66, 35)

Web

Mobile

Figure 4: Element functionality annotations generated by the proposed AutoGUI pipeline for both
web and mobile viewpoints.

3.4 IMPROVING ANNOTATION QUALITY VIA LLM-BASED VERIFICATION

The functionality annotations produced by the LLM probably contain incorrect, ambiguous, and
hallucinated samples (See a case in Fig. 3), which probably misleads the trained VLMs and compro-
mises evaluation accuracy. To improve dataset quality, we prompt LLMs to verify the annotations
by checking whether the targeted element e fulfills the intent of the annotated functionality f . This
process presents the LLMs with the interacted element, its UI context, the UI changes induced by
this element, and the functionality generated in the previous annotation process. The LLMs are
then tasked with analyzing the UI content changes before predicting whether the interacted element
aligns with the given functionality. If the LLMs determine that the interacted element fulfills the
functionality given its UI context, the LLMs will grant a full score (An example in Fig. I). If the
interacted element is considered to mismatch the functionality, this functionality can be seen as
incorrect as this mismatch indicates that it may not accurately reflect the element’s actual role within
the UI context.

To mitigate the potential biases in LLMs (Panickssery et al., 2024; Zheng et al., 2023; Bai et al.,
2024), two different LLMs (i.e., Llama-3-70B (AI@Meta, 2024) and Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023)) are employed as verifiers and prompted to output 0-3 scores. The scoring process is
formulated as follows:

score = LLM(pverify, e, f, st, st+1) (3)

where pverify denotes the verification prompt (Tab. D). Only if the two scores are both 3s do we
consider the functionality label correct (More details in Sec. A.7). Although this filtering approach
seems stringent, we can make up the number of annotations through scaling.

3.5 FUNCTIONALITY GROUNDING AND REFERRING TASK GENERATION

After rejecting, annotating, and verifying, we obtain a high-quality UI functionality dataset contain-
ing triplets of {UI screenshot, Interacted element, Functionality}. To convert this dataset into an
instruction-following dataset for training and evaluation, we generate functionality grounding and
referring tasks using diverse prompt templates (see Tab. E). To mitigate the difficulty of predicting
absolute values for various resolutions, the coordinates of element bounding boxes are all normalized
within the range [0, 99] (see Fig. 4 for examples).

3.6 EXPLORE THE AUTOGUI DATASET

The AutoGUI pipeline finally collects 22.4k trajectories, from which we select 2k grounding samples
(evenly divided between web and smartphone views) as the test set and remove the trajectories to
which these samples belong. Subsequently, 702k samples are randomly selected from the remaining
instances to constitute the training set. The statistics of our dataset in Tab. 2 and Sec. A.1 show
that our dataset covers diverse UIs and exhibits variety in lengths and functional semantics of the
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Table 2: The statistics of the AutoGUI datasets. The Anno. Tokens and Avg. Words columns show
the total number of tokens and the average number of words for the functionality annotations regard-
less of task templates. The Domains/Apps column shows the number of unique web domains/mobile
Apps involved in each split.

Split #Tasks Anno. Tokens Avg. Words Domains/Apps Device Ratio

Train 702k 17.9M 23.1 916 Web: 54.6%, Mobile: 45.4%

Test 2k 53.4k 22.5 299 Web: 50%, Mobile: 50%

(a) AutoGUI (c) Widget Captioning(b) SeeClick Web

Figure 5: Diversity of the AutoGUI dataset. Left: The word cloud illustrates the ratios of the verbs
representing the main intents in the functionality annotations. Right: Comparing the distributions of
the annotation token numbers for our AutoGUI training split, SeeClick Web training data (Cheng
et al., 2024), and Widget Captioning (Li et al., 2020a). The comparison demonstrates that our dataset
covers significantly more diverse task lengths.

annotations. Moreover, our dataset presents a unique ensemble of research challenges for developing
generalist web agents in real-world settings. As shown in Tab. 1 and Fig. 2, our dataset distinguishes
itself from existing literature by providing functionality-rich data as well as tasks that require VLMs
to discern the contextual functionalities of elements to achieve high grounding accuracy.

4 ANALYSIS OF DATA QUALITY

This section analyzes the reliability of the proposed annotation pipeline and data quality.

Comparison with Human Annotation To demonstrate the superiority of the proposed automatic
annotation pipeline based on open-source LLMs, N = 145 samples (99 valid and 46 invalid) are
randomly selected as a testbed for comparing the annotation correctness of a trained human annotator
and the pipeline. Here, correctness is defined as Correctness = C/(N − R), where C and R
denote the numbers of correctly annotated and rejected samples, respectively. The denominator
subtracts the number of rejected samples as we are more interested in the percentage of correct
samples after rejecting the samples considered invalid by the annotator. The authors thoroughly check
the annotation results according to the three criteria in Fig. 6: 1. Context-specificity. The functionality
annotations must include context-specific descriptions to ensure one-to-one mapping between the
element and its annotation. 2. Appropriate details. Avoid detailing unnecessary aspects of the UIs to
keep the description focused on functionality. 3. No hallucination. The annotations must not include
information not grounded in the visual context of the UIs. See more details in Sec. B.1.

After experimenting with three runs, Tab. 3 shows that the proposed AutoGUI pipeline achieves
high correctness comparable to the trained human annotator (r6 vs. r1). Without rejection and
verification (r2), AutoGUI is inferior as it cannot recognize invalid samples. Notably, simply using
the rules written by the authors can improve the correctness, which is further enhanced with the
LLM-aided rejector (r4 vs. r3). Moreover, utilizing the annotating LLM itself to self-verify its
annotations helps AutoGUI surpass the trained annotator (r5 vs. r1). Introducing another LLM
verifier (i.e., Mistral-7B-Instruct-v0.2) brings a slight increase which results from Mistral recognizing
Llama-3-70B’s incorrect descriptions of how dropdown menu options work. Overall, these results
justify the efficacy of the AutoGUI annotation pipeline.

Qualitatively comparing the annotation patterns of the human and AutoGUI (Fig. O), we find that
AutoGUI employs the strong LLM to generate more detailed and clear annotations which would take

7
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This element opens a date-picker to select a check-in 
date.

This element reveals a calendar.

• Criterium 1: Context-specificity

• Criterium 2: Appropriate details

This element triggers a date picker for users to
select their check-in date

Context-related description

This element switches the focus from the 'Destination' 
input field to the 'Check-in Date' field, providing a date 
picker.

Unnecessary details

• Criterium 3: No hallucination

This element checks an item shown in a filter dialog. This element immediately filters and reorganizes the 
content of the UI.

Hallucinated functionality

√

√

√

X

X

X

Figure 6: The checking criteria used for comparing AutoGUI pipeline and the human annotator.

Table 3: Comparing the AutoGUI and human annotator. AutoGUI with the proposed rejection
and verification achieves annotation correctness comparable to trained human annotators. One LLM
means Llama-3-70B and Two LLMs include Mistral-7B-Instruct-v0.2 as well.

No. Annotator Rejector Verifier Correctness

r1 Human - - 95.5%
r2 Llama-3-70B - - 64.5%
r3 Llama-3-70B Rules - 83.1%
r4 Llama-3-70B Rules+LLM - 94.4%
r5 Llama-3-70B Rules+LLM One LLM 96.0%
r6 Llama-3-70B Rules+LLM Two LLMs 96.7%

significantly more time for the human annotator. This result suggests that the AutoGUI pipeline can
lessen the burden of collecting data for training UI-VLMs.

Impact of LLM Output Uncertainty The uncertainty of LLM outputs manifests in annotation,
rejection, and verification, possibly impacting the quality of the AutoGUI dataset. To evaluate this
impact, we first sample 100 valid samples to test the AutoGUI pipeline for three runs. The consistency
rate is 94.5%, indicating that 94.5% of the samples possess consistent annotation outcomes (i.e.
correct or incorrect) across the runs. We also test the LLM-aided rejector with 46 invalid samples
and find that the rejection consistency over three runs is 79.3%. This indicates that LLM uncertainty
impacts this rejection process. Nevertheless, this impact is minor due to the low prevalence of invalid
samples (4% of all samples) that fail the hand-written rules.

In summary, AutoGUI exhibits annotation correctness comparable to that of human annotators and
LLM output uncertainty poses a minor impact on the AutoGUI annotation process.

5 FINE-TUNING EXPERIMENTS

This section validates that our dataset can enhance the GUI grounding capabilities of VLMs and that
the proposed functionality grounding and referring are effective fine-tuning tasks.

5.1 EXPERIMENTAL SETTINGS

Evaluation Benchmarks We base our evaluation on the UI grounding benchmarks for various
scenarios: FuncPred is the test split from our collected functionality dataset. This benchmark
requires a model to locate the element specified by its functionality description. ScreenSpot (Cheng
et al., 2024) is a benchmark comprising test samples on mobile, desktop, and web platforms. It
requires the model to locate elements based on short instructions. RefExp (Bai et al., 2021) is to
locate elements given crowd-sourced referring expressions. VisualWebBench (VWB) (Liu et al.,
2024b) is a comprehensive multi-modal benchmark assessing the understanding capabilities of VLMs
in web scenarios. We select the element and action grounding tasks from this benchmark. To better
align with high-level semantic instructions for potential agent requirements and avoid redundancy
evaluation with ScreenSpot, we use ChatGPT to expand the OCR text descriptions in the original task
instructions, such as Abu Garcia College Fishing into functionality descriptions like This element is
used to register for the Abu Garcia College Fishing event. MOTIF (Burns et al., 2022) requires an
agent to complete a natural language command in mobile Apps. For all of these benchmarks, we
report the grounding accuracy (%): Acc =

∑N
i=1 1 (predi inside GT bboxi) /N × 100 where 1 is

8
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Table 4: Element grounding accuracy on the used benchmarks. We compare the base models
fine-tuned with our AutoGUI data and representative open-source VLMs. The results show that
the two base models (i.e. Qwen-VL and SliME-8B) obtain significant performance gains over the
benchmarks after being fine-tuned with AutoGUI data. Moreover, increasing the AutoGUI data size
consistently improves grounding accuracy, demonstrating notable scaling effects. † means the metric
value is borrowed from the benchmark paper. ∗ means using additional SeeClick training data.

Type Model Size FuncPred VWB EG VWB AG MoTIF RefExp ScreenSpot

General

LLaVA-1.5 (Liu et al., 2023b) 7B 3.2 12.1† 13.6† 7.2 4.2 5.0
LLaVA-1.5 (Liu et al., 2023b) 13B 5.8 16.7 9.7 12.3 20.3 11.2
LLaVA-1.6 (Liu et al., 2024a) 34B 4.4 19.9 17.0 7.0 29.1 10.3
SliME (Zhang et al., 2024b) 8B 3.2 6.1 4.9 7.0 8.3 13.0
Qwen-VL (Bai et al., 2023) 10B 3.0 1.7 3.9 7.8 8.0 5.2†

UI-VLM
Qwen2-VL (Bai et al., 2023) 7B 7.8 3.9 3.9 16.7 32.4 26.1
CogAgent (Hong et al., 2023) 18B 29.3 55.7 59.2 24.7 35.0 47.4†

SeeClick (Cheng et al., 2024) 10B 19.8 39.2 27.2 11.1 58.1 53.4†

Finetuned

Qwen-VL-AutoGUI25k 10B 14.2 12.8 12.6 10.8 12.0 19.0
Qwen-VL-AutoGUI125k 10B 25.5 23.2 29.1 11.5 14.9 32.0
Qwen-VL-AutoGUI702k 10B 43.1 38.0 32.0 15.5 23.9 38.4

Qwen-VL-AutoGUI702k∗ 10B 50.0 56.2 45.6 21.0 51.5 54.2

Finetuned
SliME-AutoGUI25k 8B 28.0 14.0 10.6 14.3 18.4 27.2

SliME-AutoGUI125k 8B 39.9 22.0 12.0 17.8 22.1 35.0
SliME-AutoGUI702k 8B 62.6 25.4 13.6 20.6 26.7 44.0

an indicator function and N is the number of test samples. This formula denotes the percentage of
samples with the predicted points lying within the bounding boxes of the target elements.

Training Details We select Qwen-VL-10B (Bai et al., 2023) and SliME-8B (Zhang et al., 2024b)
as the base models and fine-tune them on 25k, 125k, and 702k samples of the AutoGUI training
data to investigate how the AutoGUI data enhances the UI grounding capabilities of the VLMs. The
models are fine-tuned on 8 A100 GPUs for one epoch. We follow SeeClick (Cheng et al., 2024) to
fine-tune Qwen-VL with LoRA (Hu et al., 2022) and follow the recipe of SliME (Zhang et al., 2024b)
to fine-tune it with only the visual encoder frozen (More details in Sec. B.2).

Compared VLMs We compare with both general-purpose VLMs (i.e., LLaVA series (Liu et al.,
2023b; 2024a), SliME (Zhang et al., 2024b), and Qwen-VL (Bai et al., 2023)) and UI-oriented
ones (i.e., Qwen2-VL (Wang et al., 2024a), SeeClick (Cheng et al., 2024), CogAgent (Hong et al.,
2023)). SeeClick finetunes Qwen-VL with around 1 million data combining various data sources,
including a large proportion of human-annotated UI grounding/referring samples. CogAgent is
trained with a huge amount of text recognition, visual grounding, UI understanding, and publicly
available text-image datasets, such as LAION-2B (Schuhmann et al., 2022). During the evaluation,
we manually craft grounding prompts suitable for these VLMs.

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

A) AutoGUI functionality annotations effectively enhance VLMs’ UI grounding capabilities
and achieve scaling effects. We endeavor to show that the element functionality data autonomously
collected by AutoGUI contributes to high grounding accuracy. The results in Tab. 4 demonstrate
that on all benchmarks the two base models achieve progressively rising grounding accuracy as the
functionality data size scales from 25k to 702k, with SliME-8B’s accuracy increasing from merely
3.2 and 13.0 to 62.6 and 44.0 on FuncPred and ScreenSpot, respectively. This increase is visualized in
Fig. K showing that increasing AutoGUI data amount leads to more precise localization performance.

After fine-tuning with AutoGUI 702k data, the two base models surpass SeeClick, the strong UI-
oriented VLM on FuncPred and MOTIF. We notice that the base models lag behind SeeClick and
CogAgent on ScreenSpot and RefExp, as the two benchmarks contain test samples whose UIs cannot
be easily recorded (e.g., Apple devices and Desktop software) as training data, causing a domain
gap. Nevertheless, SliME-8B still exhibits noticeable performance improvements on ScreenSpot
and RefExp when scaling up the AutoGUI data, suggesting that the AutoGUI data helps to enhance
grounding accuracy on the out-of-domain tasks.

9
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Table 5: Comparing the AutoGUI functionality annotation type with existing types. Qwen-VL
is fine-tuned with the three annotation types. The results show that our functionality data leads
to superior grounding accuracy compared with the naive element-HTML data and the condensed
functionality annotations.

Data Size Variant FuncPred RefExp ScreenSpot

25k
w/ Elem-HTML data 5.3 4.5 5.7

w/ Condensed Func. Anno. 3.8 3.0 4.8
w/ Func. Anno. (Ours full) 21.1 10.0 16.4

125k
w/ Elem-HTML data 15.5 7.8 17.0

w/ Condensed Func. Anno. 14.1 11.7 23.8
w/ Func. Anno. (Ours full) 24.6 12.7 27.0

To further unleash the potential of the AutoGUI data, the base model, Qwen-VL, is finetuned with
the combination of the AutoGUI and SeeClick UI-grounding data. This model becomes the new
state-of-the-art on FuncPred, ScreenSpot, and VWB EG, surpassing SeeClick and CogAgent. This
result suggests that our AutoGUI data can be mixed with existing UI grounding training data to foster
better UI grounding capabilities.

In summary, our functionality data can endow a general VLM with stronger UI grounding ability and
exhibit clear scaling effects as the data size increases.

B) Our functionality annotations are effective for enhancing UI grounding capabilities. To
assess the effectiveness of functionality annotations, we compare this annotation type with two
existing types: 1) Naive element-HTML pairs, which are directly obtained from the UI source
code (Hong et al., 2023) and associate HTML code with elements in specified areas of a screenshot.
Examples are shown in Fig. 2. To create these pairs, we replace the functionality annotations with the
corresponding HTML code snippets recorded during trajectory collection. 2) Brief functionality
descriptions that are generated by prompting GPT-4o-mini2 to condense the AutoGUI functionality
annotations. For example, a full description such as ‘This element provides access to a documentation
category, allowing users to explore relevant information and guides’ is shortened to ‘Documentation
category access’.

After experimenting with Qwen-VL (Bai et al., 2023) at the 25k and 125k scales, the results in
Tab. 5 show that fine-tuning with the complete functionality annotations is superior to the other two
types. Notably, our functionality annotation type yields the largest gain on the challenging FuncPred
benchmark that emphasizes contextual functionality grounding. In contrast, the Elem-HTML type
performs poorly due to the noise inherent in HTML code (e.g., numerous redundant tags), which
reduces fine-tuning efficiency. The condensed functionality annotations are inferior, as the consensing
loses details necessary for fine-grained UI understanding. In summary, the AutoGUI functionality
annotations provide a clear advantage in enhancing UI grounding capabilities.

5.3 FAILURE CASE ANALYSIS

After analyzing the grounding failure cases, we identified several failure patterns in the fine-tuned
models: a) difficulty in accurately locating small elements; b) challenges in distinguishing between
similar but incorrect elements; and c) issues with recognizing icons that have uncommon shapes.
Please refer to Sec. C.2 for details.

6 CONCLUSION

We propose AutoGUI, a scalable and automatic annotation pipeline aimed to produce massive UI
element functionality annotations used to enhance UI understanding capabilities of open-source
VLMs. The pipeline prompts an open-source LLM to generate element functionalities based on the
UI content changes induced by interacting with the elements. To guarantee high quality, LLM-aided
rejection and verification are introduced to remove invalid samples. Fine-tuned with the data collected
by AutoGUI, the base models obtain strong UI grounding ability and exhibit data scaling effects. We
hope that AutoGUI will open up possibilities for advancing the field of general UI agents.

2https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
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REPRODUCIBILITY STATEMENT

The AutoGUI annotation pipeline is fully reproducible. The prompts used for annotating, LLM-aided
rejection, and verification are listed in Tab. A, Tab. C, and Tab.D, respectively. The fine-tuning
experiments are also reproducible, as we employ the training code repositories of open-source VLMs,
i.e., SeeClick and SliME. Readers can download our data and use these training code repos to
reproduce our models.
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Figure A: Diversity of the verb-noun phrases of the AutoGUI dataset. The top 10 verbs and their
top 5 following nouns are displayed. This diagram shows that our dataset contains diverse tasks that
involve various UI functions.

The appendix comprises the following sections:

Section A: Details for implementation details for the autonomous annotation pipeline, including
dataset statistics, visualized annotation pipeline, and LLM prompts.

Section B: Details for model implementation and training.

Section C: Additional experimental analysis including analysis of successful and failure cases on two
benchmarks.

Section D and E: Limitations and Potential Societal Impact.

A DETAILS OF THE AUTOGUI PIPELINE

A.1 EXTRA STATISTICS OF THE AUTOGUI DATASET

Fig. A visualizes the verb-noun statistics of the AutoGUI dataset, highlighting its extensive coverage
of diverse UI functionalities. Fig. B lists the top 50 most frequent top-level domains in the AutoGUI
dataset, showing that the AutoGUI dataset involves a broad spectrum of real-world scenarios, includ-
ing technology (e.g., apple.com), entertainment (e.g., tiktok.com), office (e.g., outlook.com), news
(e.g., medium.org), and finance (e.g., paypal.com).

A.2 RECORDING INTERACTION TRAJECTORIES ON WEB

Interactive Crawler for Common Crawl We design an in-house web crawler that interacts with
most elements rendered on the web page. In contrast with existing methods which contain information
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Figure B: The top-50 most frequent top-level domains in the AutoGUI dataset.

for elements on the initial static web page for a given URL, our crawler randomly interacts with
a rendered web page for multiple steps within a given action horizon Tact to collect UI data with
abundant functional semantics. Fig. C compares the proposed AutoGUI and the existing annotation
methods. We empirically set Tact = 10 in all our recordings. Therefore, our interactive crawler could
collect functionality of elements that are not visible to static pages, including nested drop-down
menus, date and location selectors, and secondary menus.

Data Source and Data Format To incorporate a wide basis of web pages, we first obtain a list of
the top-200 most visited domains 3 and manually remove content delivery network (CDN) and not
safe for work (NSFW) sites. We use URLs in this curated list as seeds to query the Common Crawl
index 4 to find additional URLs with maximum sub-domain and path diversity. Querying URLs from
the Common Crawl index ensures that our crawler respects each site’s robots.txt file, making the
dataset collection process legally safe. By obeying the directives in robots.txt, we avoid potential
legal issues associated with unauthorized web scraping. For each web page, we collect the following
data:

• Screenshot image of the rendered page

• Accessible Tree (AXTree) text representing the page’s accessibility structure

• HTML source code of the page

• Accessible Node (AXNode) text for the specific element our crawler interacted with at each
step

A.3 RECORDING INTERACTION TRAJECTORIES ON ANDROID DEVICES

We also implement an in-house crawler that interacts with multiple emulated Google Pixel phones.
The phones are reset to different starting UIs before a script randomly interacts with these phones to
record trajectories. To improve data diversity, the starting UIs include the home page, drop-down
panel, settings page, and Apps drawer.

Similar to webpage HTML, mobile phone UIs are rendered with XML code, which is cleaned and
converted to AXTree-like content before being used to annotate functionalities.

3https://tranco-list.eu/
4https://index.commoncrawl.org/
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…

UI Transition:

Trajectories Collected by the AutoGUI Pipeline

Static UI Data Collected by SeeClick Static UI Data Collected by CogAgent

Box1 <a href="/au/shop/accessories/all" data-

feature-name="local nav" data-display-

name="Accessories" data-autom="localNavTitle" 

class="localnav-title">Accessories</a>

Collected Element-HTML pairs:

Collected Element-Text pairs:

Box1  Previous image

Box2  ENQUIRE NOW

Box2  <button type="button" class="rf-dude-

quote-overlay-trigger as-buttonlink icon icon-after 

icon-pluscircle">Get delivery dates</button>

Box1  pyautogui.click("book_1") 

Box2  pyautogui.press("enter")

Static UI Data Collected by OmniAct

Collected Element-script pairs:

Box Functionality: This element triggers the display of a date picker 

for users to select a check-in date.

Box  Functionality: This element allows users to select a specific date on the 

calendar, updating the webpage content to reflect the new selection.

Collected Element-Functionality pairs:

LLM 

annotation

Box  pyautogui.click(398,167); 

pyautogui.write(“Seattle, WA”); 

pyautogui.press(“enter”)

Click a <button> named 
“Check in”

Click a <td> named “2”

Click a <svg> named “”

LLM 

annotation

LLM 

annotation

Box Functionality: This element triggers a dropdown menu that bundles 

together profile management tools for users to choose from.

Figure C: Comparing the proposed AutoGUI annotation pipeline with existing methods. Au-
toGUI is able to manipulate real UIs and interact with elements hidden beneath deeper levels (e.g.,
the buttons hidden in collapsed dropdown menus), thereby collecting considerably rich element-
functionality annotations from the immense UI resources on the Internet. In contrast, SeeClick Cheng
et al. (2024) only uses static webpages and collects static element-text pairs. Likewise, CogAgent
collects static element-HTML pairs while OmniAct generates Python scripts only for visible elements.
These three existing methods can only annotate visible static UI elements and ignore the rich UI
functional semantics entailed in interaction trajectories which are provided by our AutoGUI pipeline
in abundance.

A.4 FUNCTIONALITY ANNOTATION DETAILS

The AutoGUI pipeline utilizes UI content changes to predict the functionalities of the interacted
elements. For interactions that manipulate the existing UI, the pipeline analyzes differences in the
AXTrees to annotate functionalities. Conversely, when interactions result in navigation to a new UI,
the pipeline examines changes in UI descriptions to guide the annotation process. Details on these
methodologies are outlined below:

UI manipulation case We use a file-comparison library, DiffLib, to generate line-by-line differences
of the AXtrees before and after interactions. To balance efficiency with annotation integrity, we
limit the differences to 250 lines. In addition to the standard markings by DiffLib—addition,
deletion, and unchanged status—we incorporate two additional change markers: ‘Repositioning’ and

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table A: The functionality annotation prompt used in the AutoGUI pipeline in UI manipulation cases.

(Requirements for annotation)
Objective: As an Internet expert, your task is to describe the usage and functionality of a webpage element based on the changes observed in the
webpage contents before and after interacting with the element.
Instructions:
1. You will be shown line-by-line differences between the webpage content before and after interacting with the element. Here’s what each prefix
indicates:
Unchanged: Lines that are identical before and after the interaction.
Added: New lines that appear after the interaction.
Deleted: Lines that were present before the interaction but removed afterward.
Renaming: Lines indicating elements that were renamed due to the interaction.
Attribute Update: Lines showing elements whose attributes were updated during the interaction.
Repositioned: Elements that were moved to a different part of the webpage.
2. You MUST thoroughly analyze the changes in webpage content (Added, Deleted, Unchanged lines) caused by interacting with the element, present a
detailed reasoning process elucidating how the element affects the webpage, and finally summarize the element’s overall purpose based on your analysis
3. Avoid detailing every specific functionality of the webpage element. Instead, focus on describing its broader impact on the webpage experience. For
example, if interacting with a “Products” button reveals a dropdown menu, do not catalog the subsequent webpage changes in exhaustive detail.
4. Your output MUST follow this format:
Reasoning: (Examine the webpage variation carefully to figure out how the interacted element changes the webpage)
Summary: This element ... (Provide a concise high-level description of the element’s function. This description should contain the meaningful feature
of the element in its context.)
5. Avoid mentioning specific elements from the webpage before interaction in the Summary. Instead, focus directly on the outcome of the interaction.
For instance, rather than detailing a transition from one element to another, like “This element switches the focus from the ‘Destination’ input field to
the ‘Check-in Date’ field, providing a date picker,” simplify it to “This element triggers a date picker for users to select their check-in date.” This
approach keeps the description concise and focused on functionality, eliminating unnecessary details.
6. For simplicity, you MUST not mention the text of the element in the summary.
Now it’s your turn.

Element interaction: After clicking a <link> element named “Community submenu” (an example of the interaction target), the webpage exhibits the
following variations:

(UI content changes)
Unchanged button ‘Extend submenu’ expanded: False
Unchanged StaticText ‘Extend’
Unchanged button ‘Learn submenu’ expanded: False
Unchanged StaticText ‘Learn’
Before Attribute Update button ‘Community submenu’ expanded: False
After Attribute Update button ‘Community submenu’ focused: True expanded: True
Unchanged StaticText ‘Community’
Added link ‘Make WordPress’
Added link ‘Photo Directory’
Added link ‘Five for the Future’
Added link ‘Events’
Added link ‘Job Board’
Unchanged button ‘About submenu’ expanded: False
Unchanged StaticText ‘About’
Unchanged button ‘Open Search’ hasPopup: dialog
Unchanged link ‘Get WordPress’

Now please think step-by-step, examine the content variation in detail, and finally summarize the high-level usage of the interacted element. Do follow
the output format “Reasoning: ... Summary: This element ...”.

(LLM response)
Reasoning: After interacting with the “Community submenu” button, the webpage content changes significantly. The button’s “expanded” attribute
is updated to “True”, indicating that the button is now expanded. Additionally, the button gains focus, as indicated by the “focused: True” attribute.
The most notable change, however, is the appearance of new. These new elements suggest that the button has triggered the display of a submenu or
dropdown list related to the “Community” theme.
Summary: This element reveals a submenu of community-related links and resources.

‘Attribute Update’. These markers provide detailed information about UI content changes, essential
for representing realistic structural variations. For example, without the attribute update marker, a
clicked menu icon would erroneously appear as both deleted and added in the difference output,
despite the menu element remaining in place. An example of this case is shown in Fig. D. The used
prompt is shown in Tab. A.

UI navigation case When an interacted element causes navigation to a new UI, the resultant changes
are often extensive, potentially exceeding the context limit of an LLM and complicating the analysis
of these changes. To handle this situation, UI description changes are used to predict functionalities.
Concretely, the LLM is initially prompted to describe the UIs before and after interaction given UI
AXTrees as input. Subsequently, the LLM then uses these descriptions to analyze content changes
and predict the functionality of the interacted element. The description length of the AXTree is
limited to 150 lines. An illustration of this process is shown in Fig. E. The corresponding prompt is
detailed in Tab. B.

A.5 DETAILS OF REJECTING INVALID SAMPLES VIA HAND-WRITTEN RULES

To clarify the hand-written rules used in the process of removing invalid samples: (1) Removing
blank GUIs. We remove blank GUIs by verifying whether the accessibility tree contains more than
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Table B: The functionality annotation prompt used in the AutoGUI pipeline in UI navigation cases.
This example shows how the LLM

(Requirements for annotation)
Objective: Your mission, as a digital navigation specialist, is to deduce and articulate the function and usage of a specific webpage element. This
deduction should be based on your analysis of the differences in webpage content before and after interacting with said element.
Instructions:
1. You will be given descriptions of a webpage before and after interaction with an element. Your primary task is to meticulously analyze the differences
in content resulting from this interaction to understand what the functionality of the element is in the webpage context.
2. You must present a detailed reasoning process before finally summarizing the element’s overall purpose based on your analysis.
3. Prioritize examining changes in the webpage’s regional content over individual element variations. This approach will provide a more holistic view
of the element’s impact on the webpage.
4. You should emphasize on the main content changes and pay less attention to less meaningful regions, such as headers, navigation bars, and footers.
5. Your output MUST follow this format:
Reasoning: (Examine the webpage variation carefully to figure out how the interacted element changes the webpage)
Summary: This element ... (Provide a high-level description of the element’s functionality. This description should contain the meaningful feature of
the element in its context.)
6. Avoid mentioning specific elements from the webpage prior to interaction in the Summary. Instead, focus directly on the outcome of the interaction.
For instance, rather than detailing element changes, like “This element triggers the disappearance of the header and language selector elements and the
emergence of a login form”, simplify it to “This element triggers the display of a login page.” This approach keeps the summary concise and focused on
functionality, eliminating unnecessary details.
7. The final summary must emphasize the distinctive functionality of the element and not be too vague. For example, “This element redirects the user to
a specific website, allowing them to access its content and services” is too broad and lacks meaningful detail. Instead, it should precisely describe how
the element provides users with unique value
Now it’s your turn.
The description of the initial webpage:

(An example description of the UI before the interaction)
Region 1 (Header): Navigation and login functionality
Region 2 (Main Content): Announcing updates to Instagram Direct Message, providing a blog post with a title, date, and content
Region 3 (Footer): Additional links and buttons (less meaningful region, summarized in a single sentence)
Overall Functionality: A blog post webpage announcing updates to Instagram Direct Message, providing a title, date, and content, with navigation and
login functionality at the top.
After clicking a <link> element named “” (an example of the interaction target), we jump to a new webpage.
The description of the new webpage is:

(An example description of the UI after the interaction)
Region 1 (Header): Displays the webpage title and heading.
Region 2 (Login Form): Allows users to log in to their Facebook account by providing their email address or phone number and password.
Region 3 (Forgot Password): Provides a link to recover a forgotten account password.
Region 4 (Create New Account): Offers an option to create a new Facebook account.
Overall Functionality: Enables users to access their existing Facebook account or create a new one, providing a gateway to the social media platform.

Now please think step-by-step, examine the content variation in detail, and finally summarize the high-level usage of the interacted element. Do follow
the output format “Reasoning: ... Summary: This element ...”.

(LLM response)
Reasoning: Upon examining the webpage variations, I notice that the initial webpage is a blog post announcing updates to Instagram Direct Message,
with navigation and login functionality at the top. After clicking the ‘<link>‘ element named “”, the webpage transitions to a new page with a Facebook
title and heading. The main content of the new webpage is a login form, allowing users to log in to their Facebook account. Additionally, there are
options to recover a forgotten password and create a new Facebook account.
Summary: This element redirects the user to a Facebook login page, allowing them to access their existing account or create a new one.
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one node. If no nodes are present, the GUI is considered blank. (2) Removing UIs containing
elements indicating content loading. GUIs containing elements indicative of content loading (e.g.,
keywords such as "loading", "please wait", or "refreshing") are excluded. These keywords typically
suggest that the content has not fully loaded and may affect the validity of the sample. (3) Removing
interaction targets outside of screens. Occasionally, part of the UI, including the interacted element,
may fail to be captured. We filter out GUIs where interaction targets appear outside of the visible
screen area. This is determined by checking whether the interacted element exists within the bounds
of the recorded accessibility tree. Note that these rules are designed mainly for the domains from
which we collected GUI metadata. Nevertheless, one can extend the rules flexibly according to the
noise characteristics of new domains.

A.6 DETAILS OF REJECTING INVALID SAMPLES VIA LLMS

To eliminate invalid samples before functionality annotation, the AutoGUI pipeline prompts the
annotating LLM to also determine the validity of samples by analyzing the predictability of the UI
content changes. The LLM evaluates each sample against three criteria: 1) Explicitness of Changes:
This measures how clearly the changes indicate the element’s functionality. Changes that directly
suggest functionality receive higher scores, while vague or irrelevant changes are not scored. 2)
Relevance of Changes: This criterion assesses the significance of the modifications in relation to
the element’s intended function. Highly related modifications obtain a high score. No scores for
irrelevant or unrelated content changes. 3) Predictability of Outcome: This involves determining how
anticipated the interaction outcome is based on the changes, considering common web conventions
and user experience principles. Highly predictable changes obtain a high score, whereas moderate,
unexpected, or counter-intuitive outcomes receive no score.

Given the UI content changes as the input, the LLM first presents detailed reasoning processes about
the three criteria and then outputs an overall score summing the individual scores for each criterion,
with each contributing 0 to 3 points for a maximum of 9 points. The LLM presents three rejection
results with temperature = 1.0 for each sample. Samples falling in the bottom 30% of average scores
are considered invalid and discarded. This method ensures a balance between high recall of actual
invalid samples and retention of valid samples. The prompt is shown in Tab. C, the rejection process
is illustrated in Fig. G, and several representative rejection examples are shown in Fig. H. Note
that UI content changes are represented as line-by-line differences in UI manipulation cases, and as
descriptive changes in navigation scenarios.

To validate the effectiveness of the chosen score range 0-3, we test the ranges 0-2, 0-3, and 0-4
to select a range that helps to reduce false positives (valid but rejected) and increase true positives
(invalid and rejected). We used 216 tasks, including 147 valid and 69 invalid samples as the test bed.
We then drew a line chart illustrating the rejection ratios (Y-axis) for both valid and invalid samples
against various threshold settings (X-axis) (Note that a sample whose score ranks below the threshold
will be discarded). The selection criteria: the area under the curve (AUC) for the valid samples should
be as small as possible, while the AUC for invalid samples should be large, ensuring valid samples
rank higher. The results in Fig. F show that when using the score range 0-3, the AUC for invalid
samples is the largest while the value for valid ones is small, which suggests that this range achieves
a better tradeoff between retaining valid samples and rejecting as many invalid samples as possible.

A.7 DETAILS OF LLM-BASED VERIFICATION

To improve the quality of functionality annotations, the AutoGUI pipeline prompts two LLMs (i.e.g,
Llama-3-70B and Mistral-7B-Instruct-v0.2) as verifiers to assign scores to samples based on how
well the target elements adhere to their functionality annotations. The LLMs receive as the input
a) the target element along with its surrounding UI content (up to 20 lines), b) the functionality
annotation of this element, and c) the outcome of interacting with the element, either being the UI
line-by-line differences (at most 250 lines) in manipulation cases or the UI description after the
interaction in navigation cases. Given these inputs, the two LLMs generate two responses containing
a score. Samples that do not achieve two full scores are discarded for higher quality of the AutoGUI
dataset. The used prompt is shown in Tab. D and an example is illustrated in Fig. I.
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Table C: The rejection prompt used in the AutoGUI pipeline in UI manipulation cases. This example
shows how the LLM assigns a low score to a sample that exhibits meaningless and unpredictable UI
content changes.

(Requirements for rejection)
Your primary objective is to determine whether the changes in the webpage’s content are sufficient for predicting the functionality of the webpage
element causing these changes after being interacted with.
Instructions:
1. You will be shown the outcome (webpage changes) resulting from interacting with the element. The outcome can take one of two forms: changes to
the webpage description, or line-by-line differences. For the latter form, here’s what each prefix indicates:
Unchanged: Lines that are identical before and after the interaction.
Added: New lines that appear after the interaction.
Deleted: Lines that were present before the interaction but removed afterward.
Renaming: Lines indicating elements that were renamed due to the interaction.
Attribute Update: Lines showing elements whose attributes were updated during the interaction.
Repositioned: Elements that were moved to a different part of the webpage.
2. Analyze the provided outcome and provide detailed reasoning for whether this outcome helps to predict the element’s functionality, considering the
following stringent criteria:
1) Explicitness of Changes: Rate how directly the changes suggest the element’s functionality. Score 1-3 for clear, unambiguous changes. Clearer
changes obtain a higher score. No scores for vague, meaningless, or non-specific changes.
Positive Example: A button labeled “Show More” that, upon interaction, clearly adds new content below it. The direct addition of content clearly
indicates a content expansion functionality. Score: 3
Negative Example: After clicking a “Details” button, the page layout changes subtly without adding relevant information or altering content in a
meaningful way. The changes do not clearly relate to the button’s presumed functionality. Score: 0
2) Relevance of Changes: Evaluate the significance of the modifications in relation to the element’s intended function. Score 1-3 for changes that
enhance understanding of the element’s role. Highly related modifications obtain a high score. No scores for irrelevant or unrelated content changes.
Positive Example: Clicking on a “Contact Us” button opens a form to fill out, which is highly relevant to the button’s intended functionality. Score: 3
Negative Example: Clicking on a “View Profile” link leads to a page refresh without displaying the profile or any related information, making the
change irrelevant to the link’s intended purpose. Score: 0
3) Predictability of Outcome: Assess how anticipated the interaction outcome is based on the changes, considering common web conventions and user
experience principles. Score 1-3 for highly predictable outcomes. Highly predictable changes obtain a high score. No scores for outcomes that are
moderate, unexpected, or counterintuitive.
Positive Example: Clicking or hovering over a “Help” icon reveals a tooltip with information, an outcome that users can easily predict given the icon’s
universal symbol for help. Score: 3
Negative Example: Hovering over a “Settings” icon changes its color but does not display any settings options, tooltips, or lead to a settings page,
making the outcome unpredictable and the icon’s purpose unclear. Score: 0
Provide a detailed analysis based on these criteria, ending with an overall score between 0-9.
4. Your output MUST follow this format:
Reasoning:
- Explicitness of Changes: [Detailed reasoning and score]
- Relevance of Changes: [Detailed reasoning and score]
- Predictability of Outcome: [Detailed reasoning and score]
Overall score: <score>[criterium 1 score] + [criterium 2 score] + [criterium 3 score] = [total score]</score> (output an additive equation enclosed with a
pair of <score></score>)
Now it’s your turn.
The interacted element is a <button> element named “Cancel” (interaction target)
Outcome:

(An example of interaction outcome)
After clicking a <button> element named “Cancel”, the webpage exhibits the following variations:
Unchanged StaticText ‘Email Address’
Unchanged textbox ‘Email Address’ required: True
Unchanged button ‘Submit’
Unchanged StaticText ‘Submit’
Before Attribute Update button ‘Cancel’
After Attribute Update button ‘Cancel’ focused: True
Unchanged StaticText ‘Cancel’
Unchanged contentinfo ‘’
Unchanged StaticText ‘Your contact information is used to deliver requested updates or to access your subscriber preferences.’

Now please think step-by-step, examine the content variation in detail, and finally calculate scores according to the criteria. Do follow the output format
“Reasoning: ... Overall score: <score>...</score>”.

(LLM response)
Reasoning:
- Explicitness of Changes: The changes resulting from interacting with the “Cancel” button are mostly unchanged elements, except for the “Cancel”
button itself, which now has a “focused: True” attribute. This change is not directly related to the button’s functionality, as it does not provide clear
insight into what the button does when clicked. Score: 1
- Relevance of Changes: The changes do not provide any significant information about the button’s intended function. The button’s name “Cancel”
suggests that it might cancel some action or process, but the changes do not reveal what exactly is being canceled or how the button’s functionality
relates to the surrounding elements. Score: 1
- Predictability of Outcome: Given the name “Cancel” and the context of a form with an “Email Address” field and a “Submit” button, a user might
expect the “Cancel” button to reset the form, clear the input field, or abort a submission process. However, the outcome does not provide any clear
indication of what happens when the button is clicked. The changes are not predictable based on common web conventions and user experience
principles. Score: 1
Overall score: <score>1 + 1 + 1 = 3</score>
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Table D: The self-verification prompt used in the AutoGUI pipeline in UI manipulation cases. This
example shows how the LLM assigns a low score to the incorrect functionality.

(Requirements for self-verification)
Given the following inputs:
1) Webpage content: This input represents the hierarchical structure of a webpage’s elements, emphasizing semantic information and relationships.
Each node in the tree includes details such as the element’s role (e.g., button, link, heading), relevant attributes (e.g., expanded), and hierarchical
relationships with other elements.
2) Task Description: This describes the action a user intends to perform (such as submitting a form, navigating to a particular section, or adjusting
settings) or the information they seek (such as a specific content piece or form field). It also introduces a candidate element for evaluation and then
presents the webpage changes caused by interacting with this element. Your task is to assess whether this element effectively facilitates the specified
user action.
Your job is to:
1) Analyze the provided webpage content to understand the structure and semantics of the webpage’s elements.
2) Evaluate the Candidate Element: Determine the suitability of the specified candidate element for the described action. Consider the element’s role,
attributes, and position within the hierarchy. Your evaluation should be grounded in how well these aspects align with the required functionality for the
user’s intended action.
3) Score the Element: Assign a score ranging from 0 to 3, enclosed within <score></score> tags. This score should reflect the degree to which the
candidate element meets the action’s requirements:
0: The element does not support the action in any capacity.
1: The element provides minimal support for the action.
2: The element supports the action but with limitations.
3: The element fully supports the action without significant limitations.
4) Provide Reasoning: Before presenting your score, offer a detailed explanation of your reasoning. This should cover your analysis of the webpage
content, the relationship between the candidate element and the specified action, and how these factors informed your scoring decision.
5) Format for Your Answer:
Reasoning: (Provide a comprehensive analysis covering the webpage’s insights, the relationship between the specified action and the candidate element,
and the rationale behind your scoring decision.)
Score: <score>[Y ourScoreHere]</score>
(An in-context exemplar)
Example:
Webpage content:
[0] RootWebArea ‘Rental Cars at Low, Affordable Rates’
[1] dialog ‘Vehicle Class’ modal: True
[2] radiogroup ‘Vans’
[3] radio ‘Minivans’ checked: false
[4] radio ‘Passenger Vans’ checked: false
[5] radio ‘Cargo Vans’ checked: false
[6] button ‘Cancel’
[7] button ‘Apply Filter’
Task Description: Please identify the target element. The element helps users narrow down their vehicle choices to minivans specifically
Candidate element: [3] radio ‘Minivans’
After interacting with the candidate element, the webpage exhibits these changes:
Upon clicking the “Minivans” <input> element, a new “Remove Filter” button is added to the dialog modal. The radio buttons for different vehicle
classes remain unchanged, but the “Minivans” radio button is checked after the interaction.
Reference response:
Reasoning: The provided webpage content outlines a clear hierarchical structure for selecting vehicle types on a car rental webpage, categorized into
sections like Cars, Vans, and Trucks, each with its own set of options represented as radio buttons.
The task involves narrowing vehicle choices to minivans. The candidate element is part of the ‘Vans’ radiogroup on a car rental webpage. This directly
supports the user’s action of narrowing choices to minivans. The element’s interaction leads to its checking and introduces a “Remove Filter” button. Its
role, position, and functionality support the user’s intent.
Score: <score>3</score>
(The self-verification task)
Now it’s your turn.
Current webpage content: (A UI content example)
[0] RootWebArea ‘X for Business | X tips, tools, and best practices’ focused: True
[2] link ‘Get started in your ads account’
[4] link ‘Campaign setup’
[6] link ‘Editing and optimization’
[8] link ‘Measurement’
[9] heading “Be what’s happening”
[10] StaticText ‘Spread your message, grow your audience, and get more traffic with Twitter Ads.’
=> [11] link ‘Learn more’ (The interaction target)
[13] heading ‘Twitter is where people come to discover what’s happening.’
[14] StaticText ‘With over 500 million Tweets being sent each day, ...’
[15] StaticText ‘Whether you’re a CEO strengthening their personal brand...’
[16] link ‘Get started with Twitter for Business’
[17] button ‘Get started with Twitter for Business’
[18] heading “What’s new on Twitter Business Outlook”
[20] link ‘Google’
Task Description: Please identify the target element. This element redirects users to a non-existent page, providing a custom error message and
alternative content instead of the expected information. (The functionality annotation of the element)
Candidate element: [11] link ‘Learn more’ (The interaction target)

(The interaction outcome)
After interacting with the candidate element, we navigate to a new webpage that contains these contents:
Region 1 (Header): Contains the website’s logo and navigation links.
Region 2 (Error Message): Displays an error message indicating that the page does not exist, accompanied by a humorous image and a link to potentially
related content.
Region 3 (Footer): Provides links to various policy and information pages, as well as copyright information.
Overall Functionality: This webpage serves as a custom 404 error page, providing a lighthearted and engaging way to notify users that the requested
page is not available.

Now please do your job. Your answer:

(LLM response)
Reasoning: The candidate element, a link labeled ‘Learn more’, is part of the webpage’s main content, surrounded by descriptions and headings related
to Twitter for Business. However, upon interacting with this element, the webpage exhibits significant changes, redirecting users to a custom 404 error
page with a humorous image and a link to potentially related content. In fact, the element’s interaction leads to a completely different webpage with an
error message and alternative content, which is unrelated to the initial webpage’s purpose. The element’s role, position, and functionality do not align
with the user’s intended action.
Score: <score>0</score>
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Table E: Examples of the task templates used by the AutoGUI pipeline to convert element-
functionality pairs to functionality grounding/referring tasks. {functionality} and {point} are place-
holders to be replaced with the real functionalities and target points.

Task Type Examples

Grounding
For the element I describe in this page capture, can you predict their positions (with point)? {functionality}

In this web page image, please locate the element as I describe it (with point). {functionality}
Given a screenshot, I will describe a specific element; your task is to predict their locations (with point). {functionality}

Referring
Describe the function of the element at {point} on the screen.

Detail the functionality of the UI element positioned at {point}.
What kind of input or interaction is expected at the point marked {point}?

A.8 DETAILS OF GROUNDING/CAPTIONING TASK GENERATION

After collecting the element-functionality pairs, the AutoGUI pipeline converts these pairs into
functionality grounding and captioning tasks by formatting a multitude of task templates (several
examples are shown in Tab. E). A functionality grounding task requires a VLM to output point
coordinates of the element fulfilling the given functionality, while a captioning task demands that the
VLM articulate a functionality description for an element, given its coordinates. It is important to
note that each element-functionality pair is utilized to generate both a grounding task and a captioning
task.

To optimize training efficiency and minimize token expenditure, all point coordinates are normalized
within the range [0, 100). For tokenization, we employ the tokenizer from Qwen-VL-Chat without
incorporating special tokens for the numerical range 0-99.

B IMPLEMENTATION DETAILS

B.1 HUMAN EVALUATION DETAILS

To justify the efficacy of the AutoGUI pipeline, we conducted a comparative evaluation of annotation
correctness between a trained human annotator and the AutoGUI system. The human annotator was a
student proficient in using digital devices, ensuring familiarity with diverse user interfaces.

We selected a set of 30 invalid samples, each showcasing a variety of element functionalities, to
prepare the annotator for the annotation process. These functionalities included drop-down menu
expansions, menu item selections, date-pickers, filtering options, pop-up modals, webpage navigation,
and zooming in/out buttons. The purpose of this selection was to expose the annotator to a broad
spectrum of potential UI interactions, enhancing their ability to accurately assess element functionality
based on UI content changes.

During the training phase, we provided the annotator with detailed guidelines, including three specific
criteria outlined in Fig 6, to ensure the clarity and correctness of their annotations. Additionally, we
incorporated 15 invalid samples to instruct the human annotator on how to identify and exclude these
cases during the evaluation process. These invalid samples encompassed scenarios such as incom-
pletely loaded UIs, network failure incidents, login restrictions, and UIs displaying inappropriate
content.

Following the training stage, the human annotator evaluated a total of 146 samples. Remarkably, the
annotator successfully identified all invalid samples, achieving an overall annotation correctness rate
of 95.5%. The few incorrect annotations were categorized as such due to vagueness or instances of
hallucination, where the descriptions did not accurately reflect the UI elements.

B.2 FINE-TUNING DETAILS

Qwen-VL-Chat Bai et al. (2023) and SliME Zhang et al. (2024b) are selected as the base models in
the experiments. To investigate the scaling effects of our dataset, 25k, 125k, and the entirety of the
702k samples in the training split are used as training data in the three scaling experiments. For the
first two smaller-scale experiments, a subset of the 702k data is randomly sampled.
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Table F: The training hyper-parameters used for fine-tuning Qwen-VL in the experiments.

Hyper-Parameter Value

Epoch 1
Global batch size 128

#GPUs 8
Learning rate 3e-5
weight decay 0.1
ADAM Beta2 0.95
Warm-up ratio 0.01
LR scheduler Cosine

Model max length 768
LoRA ViT + LLM

DeepSpeed ZeRO-2

#Parameters
Trainable params: 234,500,864

All params: 9,891,436,032
Trainable%: 2.3707

Data type BFloat16

Table G: The training hyper-parameters used for fine-tuning SliME in the experiments.

Hyper-Parameter Value

Epoch 1
Global batch size 128

#GPUs 8
Learning rate 3e-5
weight decay 0.0
ADAM Beta2 0.95
Warm-up ratio 0.03
LR scheduler Cosine

Model max length 2048
Frozen module ViT

DeepSpeed ZeRO-2

#Parameters
Trainable params: 7535796224

All params: 8364644352
Trainable%: 90.09

Data type BFloat16

Pilot experiments find that the non-UI training data (i.e., LLaVA-instruct-150k and the Cauldron)
significantly outnumber the 25k and 125k UI training data, resulting in data imbalance that biases
the trained UI-VLM towards the general Q&A tasks in the non-UI data and leads to inferior UI
grounding performance. To tackle this issue, the 25k/125k samples are resampled to the same number
of the non-UI training data to enable the UI-VLM to acquire more supervising signals from the UI
data. This resampling approach is not employed in the 702k experiment as this experiment does not
encounter the imbalance issue.

We train our UI-VLM based on the HuggingFace Transformers5 and the PEFT library6. The training
configuration is shown in Tab. F and Tab. G.

C ADDITIONAL EXPERIMENTAL ANALYSIS

C.1 GROWING GROUNDING PERFORMANCE BROUGHT BY SCALING DATA SIZE

To further investigate the benefit of scaling the AutoGUI functionality data, the histogram of dis-
tance from a predicted point to the ground truth box center is plotted for the 25k, 125k, and 702k
experiments. The results in Fig. J demonstrate that the distance distributions become denser at

5https://huggingface.co/docs/transformers/index
6https://huggingface.co/docs/peft/index
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lower ranges, suggesting that increasing the AutoGUI training data leads to consistently improved
grounding performances.

C.2 CASE ANALYSIS ON FUNCPRED TEST SPLIT

Successful cases Fig. K demonstrates several examples of the grounding results from Qwen-VL
trained with the 25k, 125k, and 702k AutoGUI data. The model trained with the 702k data (ours-702k)
exhibits more accurate functionality grounding performance. For instance, Fig. K (a) shows that
ours-702k predicts the point right on the target (The ‘Get an account’ button) while the other two
models slightly miss the target. Case (c) shows that ours-702k correctly understands the functional
intent to locate the WordPress logo, in contrast to the other models, which incorrectly focus on
the text ‘Get WordPress’. Additionally, case (f) illustrates that ours-702k successfully locates the
three-dot menu icon, aligning with the intent to expand a dropdown menu. These results suggest that
increasing the AutoGUI training data enhances the model’s ability to understand complex functional
intents and to recognize diverse iconic elements accurately.

Failure cases To explore the limitations of our model, we analyze several failure cases across
the scaling experiments, as shown in Fig. L. The primary failure cases comprise (1) Difficulty in
accurately locating very small target elements, as illustrated by the tiny ‘Policy’ button in case (a);
(2) Misunderstanding functional intents, as shown in case (b) where the three models fail to locate
the element for account creation and case (g) where ours-702k mistakenly focuses on navigating
to previous content instead of subsequent content; (3) Challenges in recognizing abstract iconic
elements, as seen with the map style icon in case (d) and the compass icon in case (f).

Despite these challenges, the enhanced performance observed with ours-702k supports the potential
of the AutoGUI pipeline to further improve functionality grounding. The successful cases underscore
that increasing the size of the training dataset not only boosts the model’s ability to interpret functional
intents but also its capability to process a variety of textual and iconic elements effectively.

C.3 CASE ANALYSIS ON MOTIF TEST SPLIT

We evaluate the instruction following ability on MoTIF dataset. Our analysis focuses on two aspects:
(1) what improvements our model can achieve with the scaling of our functionality dataset (Fig. M);
and (2) in which scenarios our model still fails to achieve correct grounding (Fig. N).

Fig. M shows that the model can more accurately understand the action instruction and make
meaningful localization as scaling improves from 125k to 702k. For instance, when the objective
is to click sleep noise recording and click enable, the model can comprehend the semantics of this
global objective and identify turn on. Additionally, the model can mitigate localization errors, such
as the 702k being more accurately positioned on the target element (e.g., the icon of reservation)
than the 125k. However, MoTIF still struggles with certain tasks. For example, as shown Fig. N, it
has difficulty with localization in fine-grained steps for the instruction search for Kingston Drive
and show me the route to it. It can be seen that the model does not effectively understand situations
involving widget pop-ups (e.g., protocol and advertisement). This may be attributed to the weak
semantic connection between pop-ups and the instruction. Furthermore, the model still falls short in
precise localization. Enriching the dataset further could alleviate this issue.

D LIMITATIONS

AutoGUI is dedicated to providing an autonomous way to collect scalable UI grounding/captioning
data for training capable UI-VLMs. However, AutoGUI still encounters several limitations:

Lack of Diverse Mobile App Data. As many Apps implement anti-emulator code, it is extremely
difficult to navigate through popular Apps, such as TikTok and WeChat, on Android emulators.
To circumvent this issue, AutoGUI renders webpages at various resolutions, including smartphone
resolution, to mimic diverse device types. Although mainstream websites, such as YouTube and
Reddit, provide delicately designed webpage responsiveness for various resolutions, a number of less
common websites do not possess such flexible responsiveness and distort severely when rendered at
smartphone resolutions. Therefore, collecting UI data at a smartphone resolution probably leads to
domain gaps between the collected data and real smartphone Apps that are not rendered with HTML.
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AutoGUI is Not Indented to Record Task-Oriented Interaction Trajectories. AutoGUI randomly
interacts with UIs to record transition trajectories and utilize the UI content changes to predict the
functionalities of the interacted elements. Hence, the collected trajectories do not provide high-level
task semantics. In other words, the AutoGUI dataset does not contain tasks that combine multiple
low-level steps, such as selecting a check-in date and then a check-out date. These long-horizon
tasks are usually generated by human annotators in the existing works Deng et al. (2024); Rawles
et al. (2023). In future work, we can also utilize capable LLMs to generate high-level tasks and then
prompt the LLMs to interact with UIs according to the tasks.

AutoGUI Cannot Annotate UI Elements That Modify Content on the Internet To avoid causing
potential contamination on the Internet and bearing unexpected responsibilities, we try our best to
eliminate interaction samples that manipulate sensitive elements that probably modify contents on
the Internet. For example, elements used to post comments, make purchases, and enter account
information are discarded. Consequently, the AutoGUI pipeline mainly annotates elements that only
support read-only functionalities.

E POTENTIAL SOCIETAL IMPACT

The potential societal impacts of the proposed AutoGUI can be considered across various dimensions:

Accessibility Enhancements VLMs trained with the AutoGUI data obtain stronger UI grounding
capabilities, thereby possessing the potential to act as UI agents. By enabling context-aware under-
standing of UI functionalities, the VLMs can help users locate elements on complex UIs, significantly
improving accessibility features in software. This could lead to the development of applications that
are more intuitive for users with disabilities, such as those requiring screen readers or other assistive
technologies.

Research Impact: By reducing the labor and time required for annotating UI data via the AutoGUI,
the industry and academia could lower costs to easily build UI agents. This could also shift labor
demands towards more creative and strategic roles rather than repetitive annotation tasks.

Privacy and Security Concerns: Although we employ precautions of eliminating samples related
to sensitive UI elements (e.g., avoid interacting with elements modifying the Internet and use only
popular public websites without exposing privacy), corner cases still exist on the vast Internet. UI
data involving either content modification or personal information are hard to discern as UI designs
are distinct and no universal detection rules exist. Therefore, it is essential for cyber-security research
to consider the potential leakage of personal information in the collected data and devise preemptive
protective approaches.

Potential for Bias and Fairness: The bias of the LLMs used in the AutoGUI annotation pipeline is
probably reflected in the collected data, leading to a trained UI-VLM that inherits the bias. Therefore,
mitigating bias in the LLM’s annotations will be important for developing fair VLM agents that align
with the values of users from diverse cultures.
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AXTree</>AXTree</>

UI Differences

RootWebArea 'Download – WordPress.org'

  link 'Skip to content'

  figure ''

 link 'WordPress.org'

   image 'WordPress.org'

  link 'News'

  link 'Showcase'

  link 'Hosting'

  button 'Extend submenu' expanded: False

 StaticText 'Extend'

  button 'Learn submenu' expanded: False

 StaticText 'Learn’

> button 'Community submenu' focused: True expanded: True

> StaticText 'Community’

> link 'Make WordPress’

> link 'Photo Directory’

> link 'Five for the Future’

> link 'Events’

> link 'Job Board '

button 'About submenu' expanded: False

 StaticText 'About'

  button 'Open Search' hasPopup: dialog

  link 'Get WordPress'

  main ''

 heading 'Get WordPress'

 StaticText 'Everything you …'

 StaticText 'For anyone…'

 link 'Download WordPress..'

 link 'Installation guide'

 heading 'Set up with a hosting provider’

RootWebArea 'Download – WordPress.org'

  link 'Skip to content'

  figure ''

 link 'WordPress.org'

   image 'WordPress.org'

  link 'News'

  link 'Showcase'

  link 'Hosting'

  button 'Extend submenu' expanded: False

 StaticText 'Extend'

  button 'Learn submenu' expanded: False

 StaticText 'Learn’

> button 'Community submenu' focused: True expanded: False

button 'About submenu' expanded: False

 StaticText 'About'

  button 'Open Search' hasPopup: dialog

  link 'Get WordPress'

  main ''

 heading 'Get WordPress'

 StaticText 'Everything you …'

 StaticText 'For anyone…'

 link 'Download WordPress..'

 link 'Installation guide'

 heading 'Set up with a hosting provider’

…

Unchanged button 'Extend submenu' expanded: False

Unchanged StaticText 'Extend'

Unchanged button 'Learn submenu' expanded: False

Unchanged StaticText 'Learn'

Before Attribute Update button 'Community submenu' expanded: False

After Attribute Update button 'Community submenu' focused: True expanded: True

Added link 'Make WordPress'

Added link 'Photo Directory'

Added link 'Five for the Future'

Added link 'Events'

Added link 'Job Board '

Unchanged button 'About submenu' expanded: False

Unchanged StaticText 'About'

Unchanged button 'Open Search' hasPopup: dialog

Unchanged link 'Get WordPress'

Prompt: Now please think step-by-step, examine the content variation in detail, and finally 

summarize the high-level usage of the interacted element.

AutoGUI

Reasoning: After interacting with the "Community submenu" button, the 

webpage content changes significantly. The button's "expanded" attribute is 

updated to "True", indicating that the button is now expanded. 

Additionally, the button gains focus, as indicated by the "focused: True" 

attribute. The most notable change, however, is the appearance of new. 

These new elements suggest that the button has triggered the display of a 

submenu or dropdown list related to the "Community" theme.

Summary: This element reveals a submenu of community-related links and 

resources.

Figure D: An example of the AutoGUI functionality annotation using UI AXTree differences.
AutoGUI records the AXTrees before and after interaction and then generates line-by-line differences
with our custom change markers. Subsequently, the LLM takes the differences as input to predict the
element functionality.
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DescriptionDescription

Here is the description of the webpage regions and 

overall functionality:

Region 1 (Header): Displays the webpage title and 

heading.

Region 2 (Login Form): Allows users to log in to 

their Facebook account by providing their email 

address or phone number and password.

Region 3 (Forgot Password): Provides a link to 

recover a forgotten account password.

Region 4 (Create New Account): Offers an option to 

create a new Facebook account.

Overall Functionality: Enables users to access 

their existing Facebook account or create a new 

one, providing a gateway to the social media 

platform.

Here is the description of the webpage regions and 

overall functionality:

Region 1 (Header): Navigation and login 

functionality

Region 2 (Main Content): Announcing updates to 

Instagram Direct Message, providing a blog post 

with a title, date, and content

Region 3 (Footer): Additional links and buttons 

(less meaningful region, summarized in a single 

sentence)

Overall Functionality: A blog post webpage 

announcing updates to Instagram Direct Message, 

providing a title, date, and content, with 

navigation and login functionality at the top.

Prompt: Now please think step-by-step, examine the content variation in detail, and finally 

summarize the high-level usage of the interacted element.

AutoGUI

Reasoning: Upon examining the webpage variations, I notice that the initial 

webpage is a blog post announcing updates to Instagram Direct Message, with 

navigation and login functionality at the top. After clicking the `<link>` 

element named "", the webpage transitions to a new page with a Facebook title 

and heading. The main content of the new webpage is a login form, allowing 

users to log in to their Facebook account. Additionally, there are options to 

recover a forgotten password and create a new Facebook account.

Summary: This element redirects the user to a Facebook login page, allowing 

them to access their existing account or create a new one.

Describing UIs with the LLM

RootWebArea 'Facebook' focused: True

  heading 'Facebook’

  StaticText 'Log in to your Facebook account to 

share.’

  StaticText 'Email address or phone number:’

  textbox ‘’ 

  StaticText 'Password:’

  textbox ‘’ 

  button 'Log in’

  link 'Forgotten account?’

  button 'Create New Account’

StaticText 'Create New Account'

RootWebArea 'New: Updates to Instagram Direct 

Message | Instagram Blog' focused: True

  navigation 'Main’

button 'Site Navigation menu' expanded: False 

controls: menu-list

StaticText 'Site’

StaticText 'Navigation menu’

image ‘’

link 'Log in’

button 'Navigate to the home page’

StaticText 'Navigate to the home page’

  heading 'New: Updates to Instagram Direct 

Message’

StaticText 'April 11, 2017’

> link ‘’

link ‘’

link ‘’

link ‘’

link ''

AXTree</> AXTree</>

Figure E: An example of the AutoGUI functionality annotation using UI descriptions. AutoGUI
records the AXTrees before and after interaction and then prompts the LLM to describe the AXTrees in
detail. Subsequently, the LLM takes the two descriptions as input to predict the element functionality.
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Figure F: Rejection outcomes of the three score ranges used by the LLM-based rejector. We plot
the ratios of rejected valid and invalid samples when setting the rejection threshold to different values
from 0.0 to 1.0. As the rejection threshold increases, more invalid and valid samples will be rejected.
We expect the area under the curve (AUC) for rejecting invalid samples to be as large as possible
while the AUC for rejecting valid ones to be as small as possible. The figure shows that using a score
range of 0-3 leads to the largest AUC for invalid samples and a small AUC for valid ones.
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Prompt: Before the interaction, the current webpage description is {before_description}

After clicking a <link> element named "Inbox", we navigate to a new webpage whose description is: 

{after_description}

Now please think step-by-step, examine the content variation in detail, and finally calculate 

scores according to the criteria. Do follow the output format "Reasoning: ... Overall score: 

<score>...</score>"

AutoGUI

Reasoning:

- Explicitness of Changes: The changes are quite explicit, as clicking on the

"Inbox" link navigates to a new webpage with a distinct layout and

functionality. The new page is clearly a login page, with regions for signing

in, recovering forgotten usernames, and creating new accounts. The changes

directly suggest that the "Inbox" link is related to accessing a Yahoo Mail 

account. Score: 3

- Relevance of Changes: The modifications are highly relevant to the 

element's intended function. The "Inbox" link is expected to lead to a page 

related to accessing mail accounts, and the new page meets this expectation 

by providing a login form and options for account management. Score: 3

- Predictability of Outcome: Based on common web conventions and user

experience principles, the outcome is highly predictable. Users would

typically expect an "Inbox" link to lead to a page related to accessing their

email account, and the new page's functionality aligns with this expectation.

Score: 3

Overall score: <score>3 + 3 + 3 = 9</score>

DescriptionDescription

Region 1 (Header): Branding and navigation 

(contains the Yahoo logo and link)

Region 2 (Login Form): Allows users to sign in to 

their Yahoo account by entering their username, 

email, or mobile number and proceeding to the next 

step

Region 3 (Forgot Username Link): Provides an 

option to recover forgotten usernames

Region 4 (Create Account Button): Enables users to 

create a new Yahoo account

Overall Functionality: A login page that 

facilitates access to Yahoo Mail accounts, 

offering options for forgotten usernames and new 

account creation.

Region 1 (Header): Navigation and branding region 

with links to various Yahoo services and a search 

button.

Region 2 (Main Content): News article listing 

region displaying a collection of news articles 

with images, headlines, and timestamps.

Overall Functionality: A news aggregator webpage 

providing access to various news articles and 

categories, allowing users to browse and read news 

content.

Describing UIs with the LLM

Filling in the rejection prompt

Figure G: An example of AutoGUI prompting the LLM as a rejector to determine whether a sample
shows meaningful UI content changes sufficient for predicting the functionality of the interacted
element. The sample shown is a navigation case in which AutoGUI uses UI descriptions, instead of
line-by-line differences, to make decisions.
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Interaction: clicking a <label> element named "1 to 4 hours"

Expected outcome: Content is filtered successfully
Rejection reason: UI is not loaded completely

Expected outcome: A pop-up window for booking appears
Rejection reason: UI no response

Interaction: clicking a <a> element named "Book Now"

Interaction: clicking a <button> element named “Add a Comment"

Expected outcome: A modal shows up for inputting a comment
Rejection reason: Log-in restriction

Figure H: Examples of samples rejected by the AutoGUI pipeline. The first sample encounters
incompletely loaded content that interferes LLM annotation. The second encounters a no-response
issue where the pop-up window fails to appear. The third shows a case where an unexpected log-in
page pops up to interrupt the functionality of the “Add a Comment” element.
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AutoGUI

Reasoning: The task involves identifying an element that hides promotional content and 

simplifies the webpage layout. The candidate element, an empty button labeled '', is 

located within the 'Office is now Microsoft 365' region.

Upon interacting with the candidate element, the webpage undergoes significant changes, 

removing several elements, including images, static texts, and links, which are likely 

promotional content. This alteration simplifies the webpage layout, aligning with the 

task description. The element's functionality fully supports the user's intent without 

any identified limitations.

Score:

<score>3</score>

RootWebArea 'Login | Microsoft 365' focused: True

  button 'All Microsoft expand to see list of 

Microsoft products and services' expanded: False

  link 'Microsoft'

  button 'Microsoft 365' expanded: False

  link 'Sign in to your account’

  main ''

region 'Office is now Microsoft 365’

StaticText 'Introducing Microsoft Copilot…'

link 'Learn more’

image 'Microsoft 365 Logo’

heading 'Office is now Microsoft 365'

…

RootWebArea 'Login | Microsoft 365' focused: True

  button 'All Microsoft expand to see list of Microsoft 

products and services' expanded: False

  link 'Microsoft'

  button 'Microsoft 365' expanded: False

  link 'Sign in to your account’

  main ''

 region 'Office is now Microsoft 365’

> button ''

image 'Microsoft 365 Logo’

StaticText 'Microsoft 365'

StaticText 'Microsoft Corporation'

link 'Download on the App Store®'

  StaticText 'Get the mobile app'

   StaticText 'Introducing Microsoft Copilot…'

   link 'Learn more’

   image 'Microsoft 365 Logo’

   heading 'Office is now Microsoft 365'

   …

AXTree</> AXTree</>

UI Differences

Unchanged StaticText 'Microsoft 365 '

Unchanged link 'Sign in to your account'

Unchanged main ''

Unchanged region 'Office is now Microsoft 365'

Deleted button ''

Deleted image 'Microsoft 365 Logo'

Deleted StaticText 'Microsoft 365'

Deleted StaticText 'Microsoft Corporation'

Deleted link 'Download on the App Store®'

Deleted StaticText 'Get the mobile app'

Unchanged StaticText 'Introducing Microsoft Copilot: Meet your everyday AI 

companion for work and life. '

Unchanged link 'Learn more'

Unchanged image 'Microsoft 365 Logo'

Unchanged heading 'Office is now Microsoft 365'

Prompt: Please identify the target element. This element hides promotional content and simplifies the webpage 

layout.

Candidate element:

[0] RootWebArea 'Login | Microsoft 365' focused: True

[1] button 'All Microsoft expand to see list of Microsoft products and services' expanded: False

[2] link 'Microsoft'

[3] button 'Microsoft 365' expanded: False

[4] StaticText 'Microsoft 365 '

[5] link 'Sign in to your account'

[6] main ''

[7] region 'Office is now Microsoft 365'

=> [8] button ''

[10] image 'Microsoft 365 Logo'

[11] StaticText 'Microsoft 365’

…

After interacting with the candidate element, the webpage exhibits these changes: {UI differences}

Filling in the prompt

Figure I: An example of AutoGUI prompting the LLM as a self-verifier to determine whether an
element supports its functionality annotation. The sample shown is a manipulation case in which
AutoGUI uses UI line-by-line differences to make decisions about whether a button fulfills the intent
of hiding promotional content.
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Figure J: Histograms of distances from predicted points to ground truth box centers. The
distance from the normalized coordinate of a predicted point to its corresponding GT box center is
calculated for all samples. Then, the histograms of these distances are illustrated to demonstrate the
growing grounding performances brought by scaling the AutoGUI data size. The averaged distance
for each experiment is displayed on the subplot title.
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(b) Functionality: This element allows users to reorder the topic list by

view count, making it easier to find popular or frequently viewed topics.

(a) Functionality: This element navigates to a page for creating or

obtaining an account.

(c) Functionality: This element represents the primary brand or logo of

the webpage, providing users with a direct access point to the 

homepage of the 'WordPress.org' website.

(d) Functionality: This element enables users to share content on

Twitter.

(e) Functionality: This element

triggers the expansion of the

search functionality on the

webpage, allowing users to access

more extensive search options.

(f) Functionality: This element

triggers additional functionality or

navigation within the webpage,

such as revealing a dropdown

menu.

(g) Functionality: This element

serves as a login gateway for the

Pinterest app, allowing users to

authenticate their accounts using

Facebook.

(h) Functionality: This element is a

password input field, allowing users

to securely enter their account

password for authentication during

the login process on the CNN

website.

Figure K: Visualization of the successful functionality grounding examples for ours-625k. The
ground truth bounding boxes, ours-625k predictions, ours-125k predictions, and ours-25k predictions
are drawn in green, pink, blue, and orange, respectively.
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(a) Functionality: This element provides access to the privacy policy of

GitHub, giving users important information about how their data is

managed and handled.

(b) Functionality: This element initiates the account creation process for

new users.

(c) Functionality: This element provides access to basic information and

resources about the Commons system.
(d) Functionality: This element allows users to customize the map's visual

style.

(e) Functionality: This element allows

users to navigate back to the previous

menu or page within the SONOACE

R3 | Samsung Support Bangladesh

webpage.

(f) Functionality: This element allows

users to discover and explore the

platform's trending and popular

content, providing a gateway to

various sections and categories of

the video-sharing platform.

(g) Functionality: This element advances

the user to the subsequent slide within

the slideshow of featured products and

announcements, providing a means for

users to browse through the displayed

content.

(h) Functionality: This element is an

upvote button for users to express

their approval of an article.

Figure L: Visualization of failure examples in the scaling experiments. The ground truth bounding
boxes, ours-625k predictions, ours-125k predictions, and ours-25k predictions are drawn in green,
pink, blue, and orange, respectively.
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Click Sleep noise recording 
and click enable

Set an alarm for a nap 
that is 30 minutes long

Click Reservations TabOpen sebngs and open push 
nocficacons and turn off 

deals and announcements

Figure M: Evaluation results of the model trained on 625k (blue dot) and 125k (red dot).

Search for Kingston Drive and show me the route to it

Figure N: Bad cases on MoTIF.
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Interaction: clicking a <link> element named "C#"

Human: This element navigates users to a forum related to C# questions.

AutoGUI: This element filters the webpage content to display questions related to a specific 
programming language, in this case, C#.

Human: This element redirects users to a page displaying creative content and providing 
search and filter functions.

Interaction: clicking a <link> element named "Creative"

AutoGUI: This element filters the showcase of WordPress-built websites by a specific 
category, allowing users to focus on a particular type of website.

Interaction: clicking a <SvgRoot> element

Human: This element triggers the expansion of the current user's profile menu.

AutoGUI: This element triggers a dropdown menu for account management, providing access 
to personal and business account-related features.

Figure O: Comparing the annotations generated by a trained human annotator and the proposed
AutoGUI pipeline. We can see that AutoGUI annotations are more detailed and clear than those by
the human annotator.
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