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ABSTRACT

One of the key prerequisites of AI-guided design for manufacturing advanced
materials is the availability of a dynamic, zero-shot and near real-time predic-
tive model for quick and efficient design exploration. Deep Operator Networks
(DeepONet) and their physics-informed variants have shown significant promise in
imparting such generalization and inference power to the models. However, for
highly nonlinear real-world applications like aerospace composites processing, ex-
isting models often fail to capture underlying solutions accurately and are typically
limited to single input functions, constraining rapid process design development.
This paper introduces an advanced physics-informed DeepONet tailored for such
highly nonlinear systems with multiple input functions. Equipped with architec-
tural enhancements like nonlinear decoders and effective training strategies such as
curriculum learning and domain decomposition, the proposed model handles high-
dimensional design spaces with significantly improved accuracy, outperforming
the vanilla physics-informed DeepONet by two orders of magnitude. Its zero-shot
prediction capability across a broad design space makes it a powerful tool for ac-
celerating composites process design and optimization, with potential applications
in other engineering fields characterized by strong nonlinearity.

1 INTRODUCTION

AI and human-guided design of materials in the manufacturing domain rely heavily on the ability to
simulate the underlying phenomena accurately. The simulation and optimization of such engineering
and/or scientific systems involves solving a set of partial differential equations (PDEs) across a range
of system parameters. The design optimization involves obtaining the solution under different input
functions such as initial condition (IC), boundary conditions (BCs), source functions, geometries,
and coefficients. This entails repeated execution of computationally expensive numerical solvers
such as finite element/volume methods (FEM/FVM) (Zauderer, 2011). Recent advancements in deep
learning, specifically in the field of scientific machine learning (SciML) empower the use of ML
models for facilitating scientific discovery and optimization (Cuomo et al., 2022). SciML models
infuse the unparalleled approximation capabilities of ML models with the established governing
physical laws to primarily accomplish one of the following tasks: 1) solve PDEs, 2) discover PDE
parameters, and 3) learn operators. Methods such as physics-informed neural networks (PINNs)
(Raissi et al., 2019) and deep Galerkin method (Sirignano & Spiliopoulos, 2018) have been introduced
to approximate the solution of PDEs, however, they are inherently problem-specific and thus require
retraining/finetuning in order to adapt to new system configurations. Although some enhancements
have been introduced to improve their generalizability (Jagtap & Karniadakis, 2020; Gao et al., 2021;
Ramezankhani & Milani, 2023; Majumdar et al., 2024), they still lack the adaptability required for an
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efficient design optimization. Operator learning on the other hand targets the discovery of an unknown
mathematical operator governing a PDE system (Boullé & Townsend, 2023). It seeks to capture a
nonlinear mapping from one space of functions (inputs) to another space of functions (outputs). For
a physical system described by PDEs, the input functions typically are the initial condition u0(x),
boundary conditions ubc(t, x), and forcing term f(t, x). The solution of PDE u(t, x) is considered
as the output function (Lu et al., 2022).

The operator is typically represented by a neural operator, a generalized form of neural networks,
which can take functions (in a discretized form) as the inputs and outputs (Boullé & Townsend,
2023). Unlike PINNs, neural operators offer real-time prediction capabilities for varying system
configurations without the need for retraining. This makes the neural operator an ideal tool for
performing parametric PDE studies. The training of neural operators, however, is computationally
expensive and can incur poor generalization performance. Hence, several architectures have been
introduced to tackle such shortcomings, including deep neural operator (DeepONet) (Lu et al., 2021),
Fourier neural operator (FNO) (Li et al., 2020a), Graph neural operator (Li et al., 2020b) and Wavelet
Neural Operator (WNO) (Tripura & Chakraborty, 2022), and deep Green network (Gin et al., 2021).

DeepONet, a neural operator method theoretically motivated by the universal operator approximation
theorem (Chen & Chen, 1995), offers a more generalized operator learning framework to discover
nonlinear function mappings. The two-part architecture of DeepONet consists of a branch net
responsible for distilling the operator’s input function into a fixed-size latent vector, and a trunk net,
which decodes the output of the branch net to generate the final output at the specified locations.
While DeepONet is primarily developed as a fully data-driven method, physical governing laws can
also be incorporated to learn the solution operators in a fully physics-informed (i.e., data-agnostic)
manner (Wang et al., 2021). Despite the success of DeepONet and its physics-informed variant
in effectively learning operators for a range of benchmark problems, it has been shown that the
existing architectures may struggle to accurately capture the dynamics of PDE systems in complex
real-life scenarios. In particular, for nonlinear submanifolds in function spaces, the finite-dimensional
linear representation of DeepONet’s decoder might be insufficient to learn the true target functions
(Seidman et al., 2022). They also fall short when trained against multiphysics problems with coupled
PDEs due to interactions between system variables, intricate geometries and lack of sufficient training
data (Rahman et al., 2024). Furthermore, the physics-informed DeepONet (PIDON) also shares the
same shortfalls as PINNs (Wang et al., 2022; Krishnapriyan et al., 2021).

This paper introduces an enhanced PIDON architecture capable of learning the solution operator
mapping multiple input functions (i.e., design variables) to multiple output functions (i.e., decision
variables) in a complex, highly nonlinear, and multi-physics engineering problem with a long temporal
domain. Specifically, we explore the data-agnostic learning of the solution operator associated with
coupled PDEs governing the thermochemical behavior of the aerospace-grade composites curing
process in an autoclave under various input functions (i.e., process and material design configurations).
Our investigation reveals the failure of DeepONets’ original architecture to capture the complex
dynamics inherent in the problem domain. To address this, we introduce a series of architectural
improvements by integrating nonlinear decoders and employing multiple branch networks as well as
leveraging advanced learning techniques such as curriculum learning and domain decomposition. We
show that the proposed enhanced PIDON architecture can successfully learn the solution operator
for this highly nonlinear PDE system and generate accurate predictions across various system
configurations. While previous attempts have explored the application of data-driven neural operators
(Chen et al., 2021; Rashid et al., 2022; Chen et al., 2023) and recently physics-informed FNO (Meng
et al., 2023) in composites processing, their scope has been largely limited to singular design variables.
Our work, on the other hand, broadens the horizon by incorporating multiple design parameters
including but not limited to the cure cycle recipe, heat transfer coefficients (HTCs), and material
thickness. This enhances the generalizability of neural operators, paving the path toward building
scientific foundation models for more comprehensive and full-scale modeling and design optimization
of complex engineering scenarios. Furthermore, we show that our enhanced PIDON outperforms
previous models in terms of predictive performance.

The proposed framework refines the original DeepONet architecture to better tackle the inherent
complexities present in real-world engineering scenarios, thereby enhancing its applicability and
effectiveness. The contributions of this paper can be summarized as follows:
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• Introduce an enhanced PIDON framework, featuring nonlinear decoders and multiple branch
nets, to account for nonlinearity and diverse input functions in complex PDE systems;

• Investigate the effectiveness of a series of remedies, such as curriculum learning and domain
decomposition, typically used for efficient learning of PINNs, on the performance of PIDON;

• Demonstrate a customized, zero-shot and near real-time simulation operator for the ther-
mochemical curing process of composites in autoclave, enabling rapid exploration across a
wider, comprehensive design space.

1.1 APPLICATION TO CURING OF COMPOSITE MATERIALS

Superior mechanical properties, light weight and high durability have made fiber-reinforced polymer
composites a popular choice of materials in high-performance applications where very large unified
structures with intricate geometries are manufactured. Specifically in autoclave processing (Figure 5),
a system of resin-impregnated fibers and a tool is placed in an autoclave and subjected to a predefined
temperature and pressure cycle (i.e., cure cycle) (Strong, 2008). The objective of this process is to
cure the resin system in a way to achieve a uniform resin cure, optimum resin content, and a void-free
product while minimizing any process-induced residual stress and deformation (Hubert et al., 2001).
The through-thickness temperature profiles in the part and tooling as well as the evolution of the
resin degree of cure are the key state variables of the composite system and crucial for foreseeing
the process-induced defects. For any new scenario including modifications in part geometry and
material properties, a process design optimization needs to be carried out via modifying a baseline
cure cycle as well as optimizing the tooling and structure designs to ensure the above criteria are
met. This iterative trial-and-error procedure is very expensive and time-consuming, especially for
large structures, and thus prohibitive for real-world applications. Computational models have been
developed as a more efficient alternative to model various aspects of the curing process such as heat
transfer, resin cure kinetics, and residual stress development (Van Ee & Poursartip, 2009). While
numerical methods such as FEM provide accurate approximations to the solution of PDEs, they can
easily become computationally prohibitive when it comes to the iterative procedure of curing process
optimization. The proposed PIDON model, on the other hand, can generate real-time predictions
for various process configurations, significantly expediting the design optimization procedure. This
enables a much faster exploration of the design space (e.g., processing scenarios, part and tooling
designs) to identify the optimum process configurations for obtaining the desired material properties.
In particular, following the terminology developed in (Fabris, 2018), for a composites manufacturing
system with four main constitutive components (i.e., Process, Tools, Equipment and Parts), the
following design variables can be handled by the proposed PIDON model (Figure 5):

• Process: cure cycle specifications including heating rate (r1 and r2), hold duration (hd1 and
hd2), and hold temperature (ht1 and ht2)

• Tools and consumables: tool thickness (Lt)
• Equipment: convective HTCs in the autoclave (htop and hbot)
• Parts: composite part thickness (Lc)

The parameters concerning Parts are typically predetermined in practice according to the application
requirements. During the design optimization phase, the design engineer can conveniently select
and fix the values of such variables and optimize the remaining design variables accordingly. Since
the part and tool thicknesses are considered among the input functions (design variables) in the
training of the neural operator and vary for each prediction task, it results in inconsistencies in the
system dimensions as well as the composite-tool interface location (key for satisfying the continuity
condition). In order to represent all training and test cases in a unified learning framework, we
introduce two local spatial coordinates that independently describe the length of each material (Figure
1). The details regarding the governing equations of the thermochemical curing process as well as the
implementation of local spatial coordinates are presented in A.1 and A.2.

The rest of the paper is structured as follows. Section 2 presents the proposed framework and
discusses the constituents of the PIDON architecture. Section 3 is dedicated to an in-depth discussion
of the results, investigating the performance of the proposed PIDON against the composites autoclave
processing case study. Finally, the Conclusions section provides a summary and outlines future
research directions.
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Figure 1: Schematic of composite-tool system in an autoclave with local coordinates x1 and x2.

2 METHODOLOGY

2.1 PHYSICS-INFORMED DEEPONET

DeepONet’s architecture is composed of a branch net and a trunk net. The branch net takes the
sensor point evaluations u = [u(x1), u(x2), . . . , u(xm)] as input and produces a finite-dimensional
feature representation b = [b1, b2, . . . , bq]

T ∈ Rq as output. Similarly, the trunk net encodes the
inputs of the PDE system y to a feature embedding t = [t1, t2, . . . , tq]

T ∈ Rq with the same size
as the branch net’s output. The output of the branch and trunk nets is then combined to calculate
DeepONet’s output using an element-wise product operation followed by a summationGθ(u)(y) =∑q

k=1 bktk + b0. In a supervised learning fashion, the DeepONet can be trained by minimizing
the error between the model’s predicted output and the actual operator solution across a range of
training input functions. Appendix B provides a detailed explanation of DeepONet’s architecture
along with a visual representation. Drawing inspiration from PINNs, which learn the solutions of
PDE systems by penalizing the residuals of the governing equations, a parallel approach is adopted in
the development of PIDON framework (Wang et al., 2021). Specifically, the output of DeepONet
is constrained to align with the governing equations through the minimization of the loss function
L(θ) = LIC(θ) +LBC(θ) +Lphysics(θ), where LIC and LBC are the IC and BC losses. Assuming
a constant initial condition and a Robin boundary condition, LIC and LBC become

LIC(θ) =
1

NQic

N∑
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Qic∑
j=1

|Gθ(u
(i))(y

(i)
j ))− s(i)(y

(i)
j )|2 (1)
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where u(i) is the i-th input function, y(i)j is the j-th collocation point in the operator domain and Gθ

is the DeepONet output. s(i)(y(i)j ) is the initial loss represents the PDE solution at y(i)j conditioned
on the i-th input function. For the Robin boundary condition α, β, and γ are non-zero constants
specified based on the physics of the problem. Similarly, LPhysics is defined as:

Lphysics(θ) =
1

NQm

N∑
i=1

Q∑
j=1

∣∣∣N (u(i)(x), Gθ(u
(i))(y

(i)
j ))
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where N is the nonlinear differential operator. In the above equations, N denotes the number of
distinct input function combinations sampled from the design space and Q represents the number of
residual points randomly sampled to enforce the physical constraints.

4



Accepted at the AI for Accelerated Materials Discovery 2024 Workshop

2.2 NONLINEAR DECODER AND MULTI-INPUT FUNCTIONALITY

The original architecture of DeepONet uses a linear decoder to learn the nonlinear operator. This
results in approximating the target functions with a finite-dimensional linear subspace. However, for
cases where the target functional data is concentrated in nonlinear manifolds, the vanilla DeepONet
can easily fail unless a very high-dimensional linear decoder architecture is implemented (Lanthaler
et al., 2022; Lee et al., 2023). Different variants of DeepONet have been introduced to tackle this
limitation (Fang et al., 2024; Haghighat et al., 2024). One way to address this limitation is to integrate
a nonlinear decoder (ND) into the architecture of DeepONet. Seidman et al. (2022) introduced
NOMAD, a novel nonlinear manifold decoder leveraging neural networks to incorporate nonlinearity
in the DeepONet’s decoder. In this approach, the model merges the input function sensor values with
the query points, forming a concatenated input, which is then fed to the decoder’s network to predict
the operator’s output. Lee et al. (2023) proposed HyperDeepONet which substitutes the branch net
with a hypernetwork to reduce the required network size for learning the solution operator. The
hypernetwork is tasked with generating the weights of the trunk net given the input functions. Unlike
the original architecture that distilled input function information into an embedding vector and fed it
to the trunk net only in the final layer, the hypernetwork disperses this information at all layers of the
trunk net. Here, while preserving the original architecture of DeepONet, we incorporate nonlinearity
in the form of a fully-connected neural network immediately after merging the branch and trunk
nets as depicted in Figure 8 in Appendix B. Instead of summing the element-wise product of the
trunk and branch networks’ last layer, we channel the resulting vector to a neural network responsible
for capturing the nonlinearity in the target functions space. We show that replacing the linear layer
with a neural network as the ND not only improves the performance of DeepONet in complex PDE
systems but also allows learning nonlinear operators with low-dimensional feature representations in
the output of branch and trunk nets.

The DeepONet architecture is originally designed to map a single input function to the target output
function. This imposes constraints, particularly in the process design optimization of engineering
systems where there’s a necessity to optimize multiple input functions (i.e., design variables) simulta-
neously with the optimization of engineering systems’ process designs. To overcome this limitation,
the proposed architecture utilizes a multi-input functionality as depicted in Figure 8, which allows
the neural operator to effectively process multiple input functions. In particular, one branch network
is dedicated to processing the time-dependent process parameters (BN2) while the second branch
net is tasked to collectively process all time-invariant design variables (BN1). This is as opposed to
assigning a separate network to each process parameter (Kumar et al., 2023), which significantly
reduces the computational cost during the training of the DeepONet. The output layer size of the
branch nets is the same as that of the trunk net. The branch nets’ outputs b1 and b2 are merged via the
Hadamard product, resulting in a q-dimensional vector b =

∑q
i=1 b

1
i b

2
i . The resulting embedding

which carries information about all input functions is then combined with the output of the trunk
network, similar to vanilla DeepONet.

2.3 DOMAIN DECOMPOSITION

Similar to PINN, PIDON also enforces governing laws by incorporating physical constraints in the
form of additional loss terms and minimizing them using optimization algorithms such as gradient
descent or its variants. Thus, naturally, PIDON would inherit the limitations PINN encountered
when learning highly nonlinear and non-smooth systems (Wang et al., 2022). The presence of
nonlinear time-varying characteristics and sharp transitions (e.g., stiff PDEs) hugely deteriorates
the performance of physics-informed models (Wang et al., 2024). Specifically, the curing process
of composites in the autoclave occurs over a long period of time and involves highly nonlinear
characteristics. To improve the performance of PIDON in such a system, we decompose the PDE
domain into smaller subdomains and learn each subdomain using a separate ND. This is similar to
sequential learning (Mattey & Ghosh, 2022; Wight & Zhao, 2020) and extended PINN approaches
proposed for the training of PINNs (Jagtap & Karniadakis, 2020). As illustrated in Figure 8, we
implement a multi-head decoder architecture where the NDs share the same branch and trunk nets,
with each subnet dedicated to learning a segment of the time domain. The size of the subdomains
depends on the physical characteristics of the problem at hand. By splitting the temporal domain into
smaller intervals, we effectively break down the problem into multiple PDE instances, easier to handle
by the NDs. The time intervals can be spread uniformly across the domain or selected according
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Figure 2: Schematic of proposed multi-input PIDON with nonlinear decoder for thermochemical
analysis of composites curing process.

to the complexity of the problem, e.g., more intervals are concentrated around sharp transitions
and less where the behavior is not as chaotic and nonlinear. Formally, we decompose the domain
of the PDE problem Ω into Nd subdomains as Ω =

⋃Nd

k=1 Ωk. Each subdomain Ωk is associated
with an ND fk(θk) tasked to learn the solution of the PDE within its subdomain. The continuity
between the subdomains is enforced via an additional interface loss term, which is minimized along
with the initial, boundary, and residual loss components during the training. The interface loss is
calculated using the collocation points on the interface of adjacent subdomains ∂Ωp ∩ ∂Ωq where
i, j ∈ 1, 2, ..., Nd. The full solution of the PDE problem in the domain Ω is achieved by combining
all trained NDs.

2.4 DECOUPLED DEEPONETS FOR MULTI-OUTPUT PREDICTION

As elaborated in Section 1.1, the thermochemical analysis of composites during the curing process
requires learning multiple target functions, namely, part temperature, tooling temperature, and part
DoC. One way to achieve this is to devise multiple neurons in the output layer of DeepONet’s ND,
where each neuron is responsible for predicting one of the output functions. However, we observed
that this configuration results in poor performance, mainly due to the significant discrepancies in the
behavior of output functions and the limitation of the shared DeepONet architecture to capture those
fully. Another approach would be to introduce a multi-head functionality where each output function
has its own dedicated ND. The decoders take the branch and trunk networks’ embedding as the shared
input and separately learn the mappings to each target function. However, while more effective than
the first strategy, it is yet unable to accurately learn the system’s solution. We hypothesize that the
presence of distinct thermal behaviors in this bi-material system as well as its multi-scale physics
poses a challenge for a single branch-trunk network to effectively support the learning of the entire
temperature and DoC fields. To address this, we utilize a fully decoupled DeepONet architecture
where each output function has its own dedicated branch net, trunk net, and ND, as shown in Figure
2. This design yields three distinct neural operators denoted as GTc , GTt , and Gα. It is worth noting
that decoupling the output functions automatically imposes a spatial domain decomposition as the
temperature profiles of the part and tooling are learned via 2 separate DeepONets. This essentially
allows some of NDs to concentrate exclusively on understanding the tooling’s thermal characteristics,
while the rest are dedicated to learning the thermochemical behavior of the composite part.

2.5 CURRICULUM LEARNING

It has been shown that the vanilla PINN model has difficulty learning highly nonlinear PDEs with
large coefficients (Krishnapriyan et al., 2021). This can be due to the sensitivity of the PINN’s loss
landscape to the values of these coefficients. Particularly, when coefficients have large values, the
loss landscape tends to become complex and asymmetric, posing significant challenges to the training
process. To mitigate this issue, one effective approach involves utilizing curriculum learning strategies
(Krishnapriyan et al., 2021; Bengio et al., 2009). By initially training the model on PDE solutions
with smaller coefficients (i.e., smoother loss landscape) and gradually increasing the coefficient
values, the model error can be reduced significantly by several orders of magnitude. We also observed
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similar challenges in training the PIDON model. Specifically, in the context of thermochemical
analysis of composite curing processes, the presence of a heat generation term within the heat transfer
governing equation introduces a sharp nonlinearity into the PDE solution (A.1). This nonlinearity
substantially contributes to the poor predictive performance of physics-informed models. Particularly
for large values of the heat generation coefficient (bc), training the PIDON model becomes notably
challenging. To address this issue, we employed the curriculum learning strategy described above.
This involves initiating the training process with no heat generation term (bc = 0) and gradually
introducing internal heat generation to the equation through step-wise increments in the value of bc.

3 RESULTS

This section presents a series of experimental results demonstrating the effectiveness of the nonlinear
decoders, curriculum learning and domain decomposition in the training of PIDON. The performance
of PIDON against the highly nonlinear composites curing process across a high-dimensional design
space is investigated. For model training and evaluation, 500 and 20 random combinations of input
functions were generated from the specified ranges presented in Table 4. All branch, trunk and NDs of
DeepONet models consist of 5 hidden layers with 50 neurons equipped with tanh activation function.
A 50-neuron output layer is selected for both branch and trunk nets. PIDON was trained using Adam
optimizer with an initial learning rate of 1× 10−3 and a decay rate of 0.9 per 1000 steps. A batch
size of 1024 and 200 training epochs was employed. The Jax library (Bradbury et al., 2018) was used
for developing and training the models on a single NVIDIA T4 GPU with 104 GB of memory. For
validation, an in-house Python FE code was developed and used to randomly generate unseen test
cases from the design spaces. AS4/8552 prepreg and Invar tooling are considered as the materials
for this case study. The model’s average performance on these unseen test cases is reported. Details
regarding the training procedure of PIDON models are presented in A.3.

3.1 EVALUATION OF PIDON’S PREDICTIVE PERFORMANCE

We trained the PIDON model on the design space characterized by the design variables outlined
in Section 1.1. Three DeepONets equipped with NDs were trained to predict the output functions,
specifically Tc, Tt, and α. The training of DeepONets was conducted sequentially (Niaki et al., 2021),
where two Adam optimizers sequentially minimize temperature- and DoC-related losses (Figure 2)
for improved stability and convergence. To capture the complex dynamics of the composite part, the
time domain was decomposed into 7 intervals, with smaller intervals centered around the DoC sharp
transition (Figure 6). The parametric coupled PDEs were learned via a curriculum learning strategy
by incrementally increasing the heat generation coefficient bc from 0 (no heat generation) to its real
value in 5 steps.

Figures 3 and 9 illustrates the model’s predictions of the part’s mid-point temperature and DoC across
various design variable combinations. The model achieved an average maximum absolute error of
2.3°C and 0.022 for temperature and DoC across unseen test cases. Figure 10 provides a visual
comparison between PIDON’s predictions and FE simulations, along with the absolute error fields
for part temperature, part DoC, and Tool temperature. The real-time inference capability of PIDON
(less than a second, which is 20 times faster than FE simulations in this case) as well as its accurate
predictions across a high-dimensional design space, makes it an excellent tool for process design
optimization tasks.

3.2 EFFECT OF NONLINEAR DECODER

To showcase the impact of integrating NDs into the architecture of PIDON, two training scenarios
were considered: one with NDs and one without (using the original DeepONet’s linear decoder.)
As depicted in Figure 4, the model lacking the ND struggles to capture the complexities within
the solution, ultimately converging to a relatively high training loss. Despite experimenting with
various sizes of branch and trunk output layers within the vanilla DeepONet architecture, the model’s
performance remains unsatisfactory. In contrast, the PIDON model equipped with ND successfully
learns the underlying physics, resulting in a significantly reduced training loss. Moreover, the
addition of ND enables a more stable training process for learning the solution of the coupled PDEs,
concurrently reducing both temperature and DoC losses to satisfactory levels. Conversely, PIDON’s
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Figure 3: Temperature (a) and DoC (b) prediction performance of PIDON at composite part mid-point
for two curing scenarios: thin tooling (T maximum absolute error = 3.2°C, α maximum error = 0.024)
and thick tooling (T maximum error = 0.9°C, α maximum absolute error = 0.021). An identical
two-hold cure cycle was used for both scenarios (shown in gray.)

Figure 4: Effect of implementing ND in the architecture of DeepONet. The model with ND (dark
red) results in considerably smaller training loss and exhibits a more stable behavior.

linear decoder initially converges to a trivial solution by equating the rate of change of DoC to
zero (hence, a very small DoC loss at the initial stage of training). This, consequently, prevents
the temperature loss from decreasing to small values. Upon exiting the trivial solution, while the
temperature loss is improved, the DoC loss increases significantly and remains at large values. This
observation underscores the inability of the linear decoder in the original architecture of DeepONet
to learn nonlinear operators.

3.3 CURRICULUM LEARNING

While utilizing NDs significantly improves the performance of PIDON, we still observed notable
deviation between the PIDON’s predictions and the FE solutions, particularly around sharp boundary
edges and nonlinear trends during the steep rise of DoC. This discrepancy is exacerbated as the
problem complexity increases with broadening the input function range and expanding the design
space. We hypothesize that one contributing factor is the nonsmooth, asymmetric, and complex loss
landscape of the PIDON, hindering convergence to small loss values (Krishnapriyan et al., 2021).
The presence of multiple loss components, including PDE, ODE, IC, BC, interface, and continuity
losses compounds the optimization challenge. Here, we explored the impact of a curriculum learning
strategy across three different design space sizes. Specifically, PIDONs were trained with and without
curriculum learning on small, medium, and large input function ranges. For curriculum learning,
training commenced with solving a simplified heat transfer problem without heat generation by
setting the heat generation coefficient bc (A.1) to zero. Then, the training gradually progressed to
more complex scenarios by incrementally increasing the value of bc in a step-wise fashion (Figure
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Table 1: Comparison of PIDON’s temperature prediction performance with and without curriculum
learning across different design space sizes. The description of design spaces is provided in A.3. All
models were trained using 7 NDs.

DESIGN SPACE SIZE REGULAR TRAINING CURRICULUM LEARNING
METRIC RELATIVE L2 MAE RELATIVE L2 MAE

SMALL 6.8× 10−3 0.74 2.8× 10−3 0.285

MEDIUM 9.22× 10−3 0.83 3.27× 10−3 0.361

LARGE 1.3× 10−2 1.1 4.35× 10−3 0.447

Table 2: Effect of Domain Decomposition on PIDON’s temperature prediction performance in highly
nonlinear regions.

METRIC NUMBER OF NDS (Nd)
(AVG.) 1 5 7

Relative L2(×10−3) 6.1 3.6 2.8
Max error (°C) 6.1 3.1 2.3
Training time (s/epoch) 40 56 61

11). At each stage, the trained weights from the previous step served as initialization. Table 1 presents
a comparative analysis of PIDON performance with and without curriculum learning across various
design space sizes. While PIDON accuracy diminishes with larger design spaces, those trained with
curriculum learning consistently exhibit strong performance across all design space scales.

3.4 ROLE OF DOMAIN DECOMPOSITION IN CAPTURING NONLINEARITIES

We conducted experiments to evaluate the efficacy of domain decomposition in enhancing the
performance of PIDON for modeling the thermochemical analysis of composites curing process.
Notably, while curriculum learning improved the model’s overal performance, we observed that
it still struggled to fully capture the behavior around sharp nonlinearities, particularly during the
rapid increase in the DoC, responsible for the heat generation phenomena. This directly affects the
model’s performance on the prediction of exotherm (maximum part temperautre), a key factor in
determining the quality of the manufactured part. To address this limitation, we utilized domain
decomposition by partitioning the time domain into smaller intervals centered on the nonlinear
region and allocating NDs to learn the physics within each interval. This approach further improved
the model’s performance around the nonlinearities. Specifically, we tested three architectures with
different number of subnets as shown in Table 2. All models followed an identical training procedure,
including the implementation of the curriculum learning strategy and an equal number of training
epochs. The exotherm prediction error decreased substantially as the number of NDs increased.
These results suggest that despite the effectiveness of curriculum learning in mitigating the adverse
impacts of nonsmooth landscapes associated with large PDE coefficients, achieving more accurate
predictions in highly nonlinear regimes necessitates more expressivity, which can be attained through
the introduction of multiple NDs.

CONCLUSIONS

In this study, we presented an advanced PIDON framework designed to address the challenges posed
by highly nonlinear and complex physical systems, specifically in the context of composites autoclave
processing. Our approach integrates nonlinear decoders, domain decomposition, and curriculum
learning strategies, which together notably improve the model’s ability to capture complex solution
operators and provide accurate predictions and generalizability across a wide range of input functions
and design spaces. The introduced enhancements effectively addressed the shortcomings of vanilla
PIDON architecture, resulting in an accurate predictive performance. The advanced PIDON’s zero-
shot and real time inference capabilities make it highly suitable for AI-guided design exploration.
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This ability to provide swift and precise insights ensures that PIDON can play a pivotal role in
enhancing the efficiency and reliability of composites manufacturing and other related fields. Future
work may include a comparison of the enhanced PIDON with other state-of-the-art methods such
as FNO and WNO to better evaluate its performance within the current landscape. Additionally,
incorporating uncertainty quantification into the model can provide valuable insights, particularly in
a design optimization context (e.g., Bayesian optimization). Moreover, the generalizability of the
proposed model can be assessed across other types of materials and manufacturing processes.
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A COMPOSITES AUTOCLAVE PROCESSING CASE STUDY

A.1 GOVERNING EQUATIONS

The one-dimensional thermochemical behavior of a composite-tool system in an autoclave is gov-
erned by an anisotropic heat conduction equation with an internal heat generation term Q̇ = bc

∂α
∂t

accounting for the exothermic chemical reaction of the resin matrix during the curing process:


∂Tt

∂t
= at

∂2Tt

∂z2
z ∈ [0, L1]

∂Tc

∂t
= ac

∂2Tc

∂z2
+ bc

∂α

∂t
z ∈ [L1, L2]

where a =
k

ρCp
and b =

vrρrHr

ρCp
. (4)

where, T is the temperature α is the DoC, L is the material length, and t and z are the spatiotemporal
coordinates. Subscripts t, c, and r, represent the tool, composite part and resin, respectively. a
denotes the thermal diffusivity, b is the heat generation coefficient, and k, p and Cp are the thermal
conductivity, density and specific heat capacity. v and H represent the volume fraction and heat of
reaction per unit mass. In the curing process of a composite system with thermoset resin, the cure rate
∂α
∂t is determined by the resin’s cure kinetics and is typically described by an ordinary differential
equation. For the 8552 epoxy resin system, used in this study, the cure kinetics have been previously
developed (Hubert et al., 2001), and can be expressed as follows:

∂α

∂t
=

A exp(−∆E
RT ))

1 + exp(C(α− (C0 + CTT )))
αm(1− α)n. (5)

Here, ∆E represents the activation energy, R is the gas constant, and C0, CT , m, n and A are
experimentally determined constants. Table 3 provides a summary of the parameter values used in
the cure kinetics equations for this study.

Table 3: Summary of parameters used in heat transfer and cure kinetics governing equations.

PARAMETER DESCRIPTION VALUE

∆E ACTIVATION ENERGY 66.5 (kJ/gmol)
R GAS CONSTANT 8.314
A PRE-EXPONENTIAL CURE RATE COEFFICIENT 1.53× 105 (1/S)
m FIRST EXPONENTIAL CONSTANT 0.813
n SECOND EXPONENTIAL CONSTANT 2.74
C DIFFUSION CONSTANT 43.1
C0 CRITICAL DEGREE OF CURE AT T = 0 K -1.684
CT CRITICAL RESIN DEGREE OF CURE CONSTANT 5.475× 10−3 (1/K)

The initial conditions of the coupled system described above can be specified as:

Tc |t=0= T0(x)

Tt |t=0= T0(x)

α |t=0= α0(x).

(6)

T0 represents the part’s initial temperature, which is typically considered uniform throughout. In this
study, the initial temperature is assumed to be 20°C. α0 denotes the initial DoC of the resin system,
and for an uncured part, it is assumed to be zero or a very small value; in this study, a value of 0.05
is used. Considering the convective heat transfer between the autoclave air Ta and the composites
system, the boundary conditions are governed by:
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(Ta − Tc |z=L2
) =

kc
htop

∂Tc

∂z
|z=L2

(Tt |z=0 −Ta) =
kt
hbot

∂Tt

∂z
|z=0

(7)

where htop and hbot are the HTCs on the top and bottom surfaces of the composite-tool system.
Furthermore, the solution of the described system must satisfy the following continuity conditions
between the part and the tool:

kt
∂Tt

∂z
|z=L−

1
= kc

∂Tc

∂z
|z=L+

1

Tt |z=L−
1
= Tc |z=L+

1
.

(8)

Figure 5: Schematic of Autoclave pressure vessel and typical two-hold cure cycle recipe for autoclave
air temperature Ta in composites manufacturing.

A.2 SPATIAL LOCAL COORDINATES

Figure 1 illustrates the local coordinates x1 and x2, which are defined to manage inconsistencies
in the total length of the system and the interface location resulting from the varying part and
tool thicknesses. Substituting the local coordinates into the heat conduction, heat convection, and
continuity equations results in the following transformed governing equations:


∂Tt

∂t
=

at
L2
t

∂2Tt

∂x2
1

x1 ∈ [0, 1]

∂Tc

∂t
=

ac
L2
c

∂2Tc

∂x2
2

+ bc
∂α

∂t
x2 ∈ [0, 1]

(9)

∂Tc

∂x2
|x2=1 =

htopLc

kc
(Ta − Tc |x2=1)

∂Tt

∂x1
|x1=0 =

hbotLt

kt
(Tt |x1=0 −Ta)

Tt |x1=1 = Tc |x2=0

kt
Lt

∂Tt

∂x1
|x1=1 =

kc
Lc

∂Tc

∂x2
|x2=0 .

(10)

The use of local coordinates ensures identical coordinate domain size across all bi-material systems
selected for training and testing. The thickness variation is then appropriately accounted for within the
parameters of the differential equations (i.e., via the presence of Lc and Lt in such equations). This
also enables treating the composite part and tool as standalone systems trained on separate networks
with input variables normalized to 0 and 1. Specifically, as discussed in Section 2.4, two DeepONets
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are allocated to capture the thermal behaviors of the part and tooling separately. While the individual
DeepONets are responsible for learning separate systems, they also need to simultaneously satisfy
the continuity conditions at the interface of the two materials. This is accomplished by defining two
additional loss terms:

LCT1
(θt, θc) =

1

NQct

N∑
i=1

Qct∑
j=1

|GTt

θt
(u(i))(y

(i)
j ))−GTc

θc
(u(i))(y

(i)
j ))|2

LCT2
(θt, θc) =

1

NQct

N∑
i=1

Qct∑
j=1

| kt
Lt

∂GTt

θt
(u(i))(y

(i)
j ))

∂x1
− kc

Lc

∂GTc

θc
(u(i))(y

(i)
j ))

∂x2
|2.

(11)

Here θt and θc denote the weights associated with the part DeepONet GTt and tool DeepONet GTc ,
respectively (see Figure 2). Qct is the number of residual points evaluated at the materials’ interface.

A.3 TRAINING PROCEDURE

During the training phase, GTt is responsible for enforcing the tool’s IC, bottom surface BC, and
tool’s PDE. Similarly, GTc ensures the part’s IC, top surface BC, and the part’s PDE are satisfied.
Additionally, the continuity conditions between the tool and part are maintained by jointly updating
the weights of GTt and GTc . Similarly, ODE loss (resin cure kinetics) is minimized by the sequential
co-training of GTc and Gα. Furthermore, Gα is tasked with minimizing the initial condition loss
associated with DoC. We implemented the sequential learning approach (Niaki et al., 2021) to train
the operators. The training began with updating the weights of GTc and GTt through their associated
loss terms for 10 epochs while keeping the Gα’s weights constant. Subsequently, Gα was trained
for 10 epochs while the other two operators remained frozen. The training ends after repeating this
procedure 10 times.

The input of BN2 is the sensory information of the air profile (i.e., cure cycle) surrounding the
composite system during the curing process which enforces the boundary conditions. Various cure
cycles with different numbers of isothermal holds as well as different heat ramp rates and hold
durations are considered. For each cure cycle, the air temperature is recorded at 100 specified time
steps (i.e., sensor locations) and the data is passed to BN2. BN1 on the other hand is fed with the
remaining time-invariant process parameters. In this study, four process parameters including the top
HTC, bottom HTC, tool’s thickness, and composite part’s thickness are considered (Figure 6). Table
4 summarizes the design parameters and their corresponding ranges used for training the PIDON
models in this study.

Figure 6: Proposed PIDON input-output functions mapping. PIDON takes in time-dependent (cure
cycle) and time-independent (Lt, Lc, htop, hbot) functions as input and outputs temperature and DoC
fields. The arrangement of temporal subdomains is also presented.
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Table 4: Design variables (input functions) and their corresponding ranges for three different design
space sizes.

DESIGN DESCRIPTION DESIGN SPACE SIZE
PARAMETER SMALL MEDIUM LARGE

htop (W/m2 K) TOP HTC [90, 120] [80, 120] [70, 120]
hbot (W/m2 K) BOTTOM HTC [60, 90] [50, 90] [50, 100]
r1 (°C/min) RAMP 1 [1.9, 2.8] [1.7, 3] [1.5, 3]
ht1 (°C) HOLD 1 TEMPERATURE [110, 115] [105, 115] [105, 120]
hd1 (min) HOLD 1 DURATION [55, 63] [52, 63] [50, 65]
r2 (°C/min) RAMP 2 [1.9, 2.8] [1.7, 3] [1.5, 3]
ht2 (°C) HOLD 2 TEMPERATURE [178, 183] [175, 185] [170, 185]
hd2 (min) HOLD 2 DURATION [105, 115] [105, 120] [105, 120]
Lt (cm) TOOL THICKNESS [2, 3.5] [2, 4] [2, 5]
Lc (cm) PART THICKNESS [2.5, 3.5] [2.5, 3.5] [2.5, 3.5]

B DEEPONET

Based on the universal approximation theorem for operators, (Chen & Chen, 1995) proposed operator
nets, a neural network architecture that approximates nonlinear operators that map infinite dimensional
Banach spaces. An operator net consists of two shallow neural networks, namely, branch net and
trunk net, which encode the input functions and system coordinates, respectively. The branch and
trunk nets are merged to approximate the underlying operator solution. (Lu et al., 2021) proposed a
more expressive variant of the operator net named DeepONet by replacing shallow networks with
deep neural networks. The architecture of the DeepONet can naturally be decomposed into three
main components: an encoder, an approximator, and a decoder, as illustrated in Figure 7.a (Lanthaler
et al., 2022). The encoder is responsible for mapping the infinite-dimensional input space to a
finite-dimensional space. This is crucial for training the operator as the input functions must be
expressed discretely to implement the network approximations. In other words, the continuous input
functions are mapped to their discretized representation (i.e., finite-dimensional space) by pointwise
evaluations at m fixed sensor points xj . The approximator is parameterized by a deep neural network
that maps the sensor point evaluations u = [u(x1), u(x2), ..., u(xm)] to a finite-dimensional feature
representation b = [b1, b2, ..., bq]

T ∈ Rq. The composition of the encoder and approximator results
in the branch net of DeepONet expressed by β(u) = A ◦ E(u). Similar to the branch net, the trunk
net is parameterized by a deep neural network that encodes the inputs of the PDE system y to a
feature embedding t = [t1, t2, ..., tq]

T ∈ Rq with the same size as the branch net’s output (Figure
7.b). Finally, the decoder takes the output of the branch (q coefficients) and trunk nets (q basis
functions) and calculates the DeepONet’s output using an element-wise product operation followed
by a summation, Gθ(u)(y) =

∑q
k=1 bktk + b0. The bias term b0 is added in practice to improve the

generalization performance of DeepONet G. The decoder can also be seen as a single network (trunk
net) with its weights in the last layer parameterized by another network (branch net). In a supervised
learning fashion, the DeepONet can be trained by minimizing the error between the model’s predicted
output and the actual operator solution across a range of training input functions.

Figure 7: Schematic of DeepONet decomposition into Encoder, Approximator, and Decoder (a);
architecture of vanilla DeepONet with a branch net, a trunk net, and a linear decoder.
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Figure 8: Schematic of proposed multi-input PIDON with NDs. Two branch nets are integrated to
process time-dependent and time-independent input functions. In particular, the inputs to Branch Net
1 are top HTC, bottom HTC, tool thickness, and part thickness. Branch Net 2 on the other hand takes
in air temperature values at 100 fixed sensor locations. NDs are responsible for learning the solution
operators at different subdomains.

C ADDITIONAL RESULTS
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Figure 9: Zero-shot prediction performance of PIDON at composite part mid-point for: a) high HTCs
and thin tool vs. low HTCs and thick tool; b) two different cure cycles (shown in gray.)

Figure 10: Comparison of PIDON prediction and FE simulation for Part temperature (a), tool
temperature (b) and DoC (c) for a test case with the design variables: htop = 75, hbot = 115, r1 =
r2 = 2.2, ht1 = 110, hd1 = 58, ht2 = 180, hd2 = 105, Lt = 0.025, Lc = 0.03.
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Figure 11: The evolution of temperature and DoC training losses during curriculum learning at
various values of heat generation coefficient bc.
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