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Abstract

Temporal graph representation learning (TGRL) is essential for modeling dy-
namic systems in real-world networks. However, traditional TGRL methods,
despite their effectiveness, often face significant computational challenges and
inference delays due to the inefficient sampling of temporal neighbors. Conven-
tional sampling methods typically involve backtracking through the interaction
history of each node. In this paper, we propose a novel TGRL framework,
No-Looking-Back (NLB), which overcomes these challenges by introducing a
forward recent sampling strategy. This strategy eliminates the need to backtrack
through historical interactions by utilizing a GPU-executable, size-constrained
hash table for each node. The hash table records a down-sampled set of recent
interactions, enabling rapid query responses with minimal inference latency. The
maintenance of this hash table is highly efficient, operating with O(1) complex-
ity. Fully compatible with GPU processing, NLB maximizes programmability,
parallelism, and power efficiency. Empirical evaluations demonstrate that NLB
not only matches or surpasses state-of-the-art methods in accuracy for tasks like
link prediction and node classification across six real-world datasets but also
achieves 1.32-4.40x faster training, 1.2-7.94x greater energy efficiency, and
1.63-12.95 x lower inference latency compared to competitive baselines.

The link to the code: https://github.com/Graph-COM/NLB.

1 Introduction

Temporal networks are extensively employed to model real-world complex systems. Such networks
dynamically evolve as interactions occur or states change within their nodes. Learning node rep-
resentations in these networks is pivotal, as they can be used in many downstream tasks such as
monitoring or predicting changes in the temporal networks. Representative applications include
forecasting interactions between node pairs for the tasks such as anomalous transaction detection in
financial networks [1-3], recommendations in social networks [4] and in e-commerce systems [5].
Node representations can also be used to predict individual nodes’ properties such as community
detection [6—8] and fraudsters detection [9—12].

The interaction patterns surrounding a node often provide key indicators of its present state. Inspired
by Graph Neural Networks (GNNs) [13, 14] that may effectively encode the neighborhood of a
node in static graphs, researchers have developed models for temporal networks to incorporate both
the structural and temporal aspects of a node’s historical neighborhood. These methods can be
collectively named as temporal graph representation learning (TGRL) [15-21].

Despite their effectiveness, previous TGRL methods generally require much more computational
resources compared to their static graph counterparts. This is particularly challenging for large-scale
applications that demand real-time inference. In such scenarios, reducing inference latency — the
time from query arrival to prediction response — becomes critical to avoid performance bottlenecks.

We identify that for most state-of-the-art (SOTA) TGRL methods, the online collection of the
information around a node’s neighborhood is a major computational bottleneck. As a query comes
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in, current methods have to backtrack in time, sample a subset of historical interactions around the
node of interest, and aggregate the information from these down-sampled neighboring interactions
for prediction. Sampling neighboring nodes is a common strategy in representation learning for large
static graphs [14, 22-24]. However, this strategy faces challenges when applied to temporal networks,
as they do not incorporate temporal information and may encounter high latency due to the enlarged
sample space created by neighbors across various timestamps.

To address this, a strategy termed recent sam- e snting_vecont swpling G smpling_noderor o ks
pling has been proposed [16, 17], where more camn el . 5 x %
recent interactions are given higher weights in A 7 M ’ %

v v v v

sampling, such as through a probability propor- B (thiswor)
tional to exp(—cAt), with ¢ > 0 and At reflect- Table 1: Comparisons between several TGRL methods.
ing the time difference, indicating the recency of

an interaction. While recent sampling can improve prediction performance, the process of calculating
sampling weights and executing non-uniform sampling has high computational complexity O(|\?|)
where |V | denotes the size of the historical neighbors of node w till time ¢. This significantly slows
down the system. Consequently, most TGRL methods [15, 21, 25] opt for either simple uniform
sampling or a strategy named fruncation, where only a fixed number of most recent neighbors are
considered, to reduce the complexity. Even with such simplification, the inference latency may still
be high because backtracking and sampling of these historical interactions are performed within
CPUs instead of GPUs due to the inherent irregularity. A recent framework called TGL [25] reduced
the issue via leveraging powerful multi-core CPUs complemented by meticulously crafted C++ paral-
lelizable programming for fine-grained memory and thread management. However, multi-threading
in CPUs is less power-efficient and may still suffer from longer latency than parallelism in GPUs.

In this paper, we propose No-Looking-Back (NLB), an efficient and scalable framework for TGRL
that aims to improve training and inference latency, and power efficiency without compromising on
prediction accuracy. It adopts a novel sampling strategy called forward recent sampling that allows
getting around backtracking historical interactions while achieving the benefits of recent sampling.
We compare NLB with existing methods in Table 1. Our key idea is to maintain a GPU-executable
size-constrained hash table for each node that records a set of down-sampled recent interactions.
These down-sampled interactions can be directly used to track neighbors and to generate response for
upcoming queries with extremely low inference latency. Moreover, the maintenance of this table only
requires O(1) complexity to deal with the new link. Specifically, we leverage hash collision to insert
the new link into this table randomly to simulate the strategy of recent sampling. Importantly, all of
these operations are implementable with PyTorch and are fully compatible with GPU processing. This
ensures not only maximized programmability and parallelism but also improved power efficiency.

NLB supports two variants NLB-edge and NLB-node, which differ in the used hash keys being
either link ID or node ID. NLB-edge and NLB-node provably achieve recent sampling of links and
recent sampling of nodes respectively while both support node-level and link-level applications.
Empirically, NLB is comparable or improves SOTA link prediction and node classification accuracy
in 6 real-world datasets while being 1.32-4.40x faster in training and 1.2-7.94 x more energy efficient
than the three most competitive baselines, and 1.63-12.95x more efficient in inference latency than
the fastest baseline that leverages powerful multi-thread CPUs to perform backward sampling.

2 More Related Works

There are two streams of work on representation learning for temporal networks. Earlier work
proposed aggregating the sequence of links into network snapshots and processing a sequence of
static network snapshots [26-31], but they may suffer from low prediction accuracy as they cannot
capture time-sensitive information within static snapshots. More recent temporal graph learning
methods process link streams directly [19, 20, 32-35]. Most of these methods learn representation
for a node using the historical information from the neighboring nodes it previously interacted
with [15-18, 25, 36-38].

There are many works for graph learning that consider improvement on scalability and inference
efficiency. For GNNs on static graphs, a stream of work focuses on efficient neighbor sampling [14, 22—
24] which speeds up both training and inference, while some other works studies the acceleration
for inference via knowledge distillation [39—41] or channel pruning [42]. However, these techniques
cannot be easily generalized to improve the scalability for temporal networks. First, as temporal links
come in as a sequence, it is non-scalable to construct and maintain the whole graph for every new
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Figure 1: A toy example comparing the sampling done in current TGRL methods v.s. in NLB. Left: Given
the toy historical temporal network, the task is either (1) to classify nodes u and v at time ¢4, or (2) to predict
whether u will connect with v at t4. Middle: As a new link (u, v, t4) arrives, traditional methods require looking
backward and sampling a subset of historical temporal neighbors (via CPU). The generated embeddings of the
temporal neighbors are aggregated to generate the final representations Z%* and Z!* for making predictions.
Right: NLB abandons the backward sampling in traditional methods and adopts forward sampling. For inference,
it directly looks up the down-sampled temporal neighbors from GPU hash tables for aggregation and prediction
without being slowed down by the sampling operations. The new interaction can replace older temporal neighbors
in the hash tables leveraging hash collision with complexity O(1). The updated hash tables capture the new
down-sampled temporal neighbors for use later on.

link. Furthermore, these methods do not resolve the bottleneck of historical neighbor sampling on
temporal graphs, but neighborhood information is crucial for graph representation learning.

For temporal graphs, due to the more significant computation overhead of TGRLs as reviewed in
Sec. 1, several recent works focusing on acceleration and efficiency inference are proposed [18, 21,
25, 43]. APAN [21] proposed asynchronous graph propagation which passes information to the
most recent temporal neighbors and works with a sampling property similar to truncation without
sampling. It improves inference latency but requires significant memory for buffering messages
and the recent truncation strategy may hurt prediction accuracy. A recent work NAT [18] aims to
improve link prediction performance and scalability by learning neighborhood-aware representations,
which elegantly avoids backward sampling. However, its sampling property is not mathematically
explained, and it relies on constructing joint neighborhood structural features of node pairs, which
cannot be generalized to node-level tasks. In experiment (Sec. 5), we find that by removing the joint
neighborhood features from NAT, it can be applied to node-level tasks. But its node-level prediction
performance is worse than NLB and it is still slow compared to NLB.

Finally, temporal graph benchmark (TGB) [44] is proposed to standardize the evaluation pipelines
for TGRL. We build a separate evaluation pipeline outside of TGB because our focus involves
computational evaluations on billion-scale datasets which has not been supported by TGB. We
provide supplementary evaluation of NLB on TGB in Appendix F.

3 Notations and Problem Formulation

Next, we introduce some notations and the problem formulation. We consider temporal network as a
sequence of timestamped interactions between pairs of nodes.

Definition 3.1 (Temporal network). A temporal network &£ can be represented as & =
{(u1,v1,t1), (ug,v2,t2), -}, t1 < ta < --- where u; and v; denote interacting node IDs of
the ith link, ¢; denotes the timestamp. Each temporal link (u, v, t) may have link features efw. We
also denote the entire node set as ). Without loss of generality, we use integers as node IDs, i.e.,
V = {1,2,...}. For simplicity of the notations, we assume the links are undirected.

The dynamics of a node’s neighborhood provide crucial information about a node current state. We
define the temporal neighbors of a node as follows.

Definition 3.2 (Temporal neighbors of a node). We denote the temporal neighbors of node v at time
t as all neighbors interacted in the past. They are represented by tuples of opposing node IDs, link
features and timestamps:

’

Ny = {(v €l ) | (u,0,t) € E,¢" <t} (1)

Finally, we formulate our problem as follows.
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Definition 3.3 (Problem formulation). Our problem is to learn a model that uses the historical
information including the temporal neighbors about a node (e.g., u) before a timestamp (e.g., t)
to efficiently generate a node representation that is predictive for downstream tasks including link
prediction and node classification. We denote the representation at timestamp ¢ for each node u € V
as Z!. We define the link prediction and node classification problems as follows.

Link prediction: given any pair of representations, (Z:, Z!), a link prediction task predicts whether
there will be a temporal link between the two nodes at time ¢, i.e., (u, v, t) € £. Node classification: a
node u can be dynamically labeled, Let 3!, denote the label of u at timestamp ¢. A node classification
task predicts y!, given the representation Z.

4 Methodology

In this section, we first review the sampling strategies of previous approaches. We then introduce
forward recent sampling, the sampling strategy of NLB and show that it provably achieves recent
sampling. Lastly, we present the efficient aggregation of temporal neighbors and the generation of
node presentations for inference.

4.1 The sampling strategies of existing works

While different approaches have different implementations, a common computational bottleneck for
generating node representations during both training and inference is the online sampling of temporal
neighbors. Existing sampling strategies consist of two steps: (1) Backtrack and collect the historical
interactions of a node from the current timestamp; (2) Sample a subset of temporal neighbors from
those interactions. Traditional methods [15-17, 25] perform these operations within CPUs, causing
inefficiency in both time and power consumption for both training and inference.

To give an example, to learn the representations for node u and v at ¢4 for downstream predictions
(Fig. 1 Left), traditional methods perform backtracking and sampling within the CPUs (Fig. 1 Middle).
These blocking operations not only slow down the training and inference processes, but also introduce
costly energy consumption from both CPU computation and CPU-GPU communication. Previous
methods commonly adopted the following sampling strategies.

Definition 4.1 (Truncation). Truncation of a fixed number of most recent neighbors, or simply named
truncation, is a common strategy used by TGN [15], APAN [21] and TGL [25]. It does not sample
with randomness but truncates the most recent s temporal neighbors that appear in the history instead.
Truncation is effective when the most recent neighbors provide sufficient information about the
current state of a node’s neighborhood. However, as it does not allow randomness, it may fail to
capture information that appears earlier in the history. In an extreme, if all most recent interactions
are from the same neighbor, truncation neglects information from all other early neighbors.
Definition 4.2 (Uniform sampling). Uniform sampling is also commonly supported by TGN, TGL,
TGAT [17], etc. It samples among all temporal neighbors in the past with equal probabilities. It
is effective in capturing early-day neighbors which may benefit prediction. However, for many
real-world applications, more recent events typically play a more important role. Moreover, uniform
sampling, albeit straightforward, still requires the access to all of the historical temporal interactions.
Since different nodes have different numbers of historical interactions, uniform sampling can hardly
be implemented in the GPUs for parallelism, and thus is slower than truncation.

4.2 Our approach: Forward recent sampling

In this section, we will introduce recent sampling, then propose forward sampling that implements
recent sampling efficiently in O(1) and provide theorectical analysis in Sec. 4.3.

Definition 4.3 (Recent sampling). Recent sampling assigns larger sampling weights to more recent
temporal neighbors. The probability a temporal neighbor of node u, e.g., (v, eg’w t') is sampled
for learning Z!, is proportional to exp(c(t’ — t)) where ¢ > 0 is a constant. This sampling strategy
is previously considered in Xu et al. [17] and Wang et al. [16]. Recent sampling has shown to be
effective for many scenarios as both recent and some early-day neighbors could provide information.
By tuning c, recent sampling may approximate uniform sampling (for a small ¢) and truncation (for
a large c). However, it is hard to implement efficiently via the traditional backward sampling. Not
only the existing way to implement recent sampling needs to access all the timestamps of historical
interactions to compute those non-uniform sampling probabilities, but also performing non-uniform
sampling is rather irregular, which could be much slower than truncation and uniform sampling.

Forward Recent Sampling. For both uniform sampling and recent sampling, if they are achieved
through backward sampling as practiced by current methods, the time complexity is at least O(|N!|)
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as they need to access the entire historical neighbors. We now introduce forward sampling that
implements recent sampling in O(1). An overview of the algorithm is demonstrated in Fig. 1 Right.

Intuitively, to abandon the expensive backtracking and sampling procedures, we adopt a dictionary-
type table that keeps track of a list of down-sampled temporal neighbors for each node. The storage
tables are updated after the model has responded to the previous query but before the next query
comes in. So, the update will not introduce inference latency, although the update itself is cheap (of
O(1) complexity) and parallelizable on GPUs.

Formally, we denote S, to be the down-sampled temporal neighbors of node u stored within a GPU
hash table. For efficient lookup and update in batches, we allocate fixed-size GPU memory for these
tables, where the size s, as a user-specified parameter, is the maximum number of temporal neighbors
to be sampled. The current snapshot of table S, at a timestamp ¢ is denoted as S¥. S,, consists of
key-value pairs with unique keys. Each key-value pair corresponds to one of the temporal neighbors
of u, e.g., (v, egﬁv, t') € Ni'. While we store the edge features ef;v as the values, the choice of the
keys is flexible: It can either be the pair of the neighbor ID and timestamp, i.e., (v,t'), or just the
neighbor ID v. We name the method using (v,t') as NLB-edge and the one using v as NLB-node.
Different choices of the keys have different sampling properties which we will discuss in Sec. 4.3.

To achieve recent sampling, the tables get updated overtime when new links come in. Specifically, the
new temporal neighbor indicated by the new link is inserted into the table through random hashing
using the keys. When there is a hash collision, the older temporal neighbor will be replaced by
the new one with a probability o € (0, 1], where « is a hyperparameter. In order for more recent
neighbors to be sampled, we set « to be closer to 1.

Example. In Fig. 1, when link (u, v, t4) arrives, we initialize an update to S, and S,, creating new
snapshots S+ and S%+. Specifically, for NLB-edge which uses tuples of neighbor ID and timestamp
as keys, the new temporal neighbor (v, ef4, . t4) of u will be assigned to position

hash(v,ty) = (q1 * v+ ¢2 * t4) (mod s) )

for fixed large prime numbers ¢; and g». For NLB-node which uses neighbor IDs as keys, the
temporal neighbor will be assigned to position

hash(v) = (q1 *v) (mod s). 3)

Let a denote the assigned position for (u,v,t4). Then, (v, elt,, t4) will be inserted into S,,, if there

is no hash collision, i.e., S, [a] being empty. Otherwise, the temporal neighbor will be inserted with a
probability a.

This completes the procedure for forward sampling. At future timestamp ¢ > ¢4, S%* and S’* can
be used as the down-sampled temporal neighbors for learning node representations Z! and Z! until
new snapshots of S, and S,, are generated. How NLB encodes these temporal neighbors into node
representations will be discussed in Sec. 4.4.

4.3 The properties of forward recent sampling

The sampling properties for different choices of the keys are different. Intuitively, a key with both
neighbor IDs and timestamps allows NLB-edge to keep track of more dynamic information about
each neighboring node, while hashing with only neighbor IDs allows NLB-node to learn more static
information. In the following Theorem 4.4, we show that NLB-edge essentially implements recent
sampling (Def. 4.3) with O(1) complexity. The proof can be found in Appendix A. NLB-node
actually implements a node-wise recent sampling rather than the standard recent sampling with O(1)
complexity, which will be elaborated in Appendix B.

Theorem 4.4 (NLB-edge achieves recent sampling). Suppose links come in for any node (e.g. u) by
following a Poisson point process with a constant intensity (e.g. ), and suppose a temporal neighbor
(v, €l ., t;) is inserted into S, at time t;, then Pr((v,eli ,,t;) € SL) = exp(®2(t; —t)).!

This result matches the definition of recent sampling (Def. 4.3) where the probability a temporal
neighbor gets sampled is proportional to exp(c(t; — ¢)). If we instead suppose that each unique
neighboring node (e.g. v) of u connects with u following a different Poisson point process (e.g. \,),
we recover the sampling probabilities of NLB-node.

"Poisson point process is a commonly used assumption to model communication networks Lavenberg [45],
and is also an assumption used by CAWN [16].
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4.4 Node representation generation and NLB prediction

When a prediction query comes, NLB generates the node representations based on the sets of down-
sampled temporal neighbors of relevant nodes, as introduced in Sec. 4.2, for such prediction. We first
denote the status of node u at time ¢ as 7, which can be viewed as a self feature vector aggregated
over time via RNN and will be elaborated later. Node status can be viewed as to collect local
information, while the node representation Z!, also leverages the status of the temporal neighbors
(decided by S%), which can be viewed as to provide more global information. Empirically, we observe
that combining both yields the best performance.

Prediction. Given the down-sampled neighbors S? of u, we first retrieve the status of the temporal
neighbors {7} }. We then use attention to aggregate the collected status {7} and the self status 7.
The timestamps and edge features for temporal neighbors will also be encoded together. Specifically,
let MLP denote a multi-layer perceptron. We adopt

> aMLP(r el t’)) 7 )

Z! = MLP (rf“
t')est,

(v,et’

u,v?

where {;} = softmax({wTMLP(r?, ef;u,t’)|(v, egm,t') € S!}), where w is a learnable vector
parameter. A pair of node representations Z! and Z! can be combined and plugged in to classifiers
to make link predictions; and a single node representation Z?, can be used for node classification. ¢
is encoded via T-encoding (see Def. C.1 in Appendix C) which has been proved to be effective in

previous works [16, 17, 46, 47].

Note that a node status 7!, is updated via r’+1 < RNN([rl 7! t el ]) after an event (u,v,t) arrives.

uwr vy ¥ By

Also, NLB naturally supports efficient aggregation of second-hop temporal neighbors because to
get representation for node w, if v is stored in S!, i.e., one of the first-hop temporal neighbors, S?
provides the down-sampled second-hop neighbors of u, which can be efficiently accessed. However,
in experiment, we use the first hop only as it already provides decent prediction performance.
Involving the second hop, albeit bringing more information, will increase the inference latency.

S Experiments
In this section, we evaluate NLB in its prediction performance and scalability on real-world temporal
networks, and further conduct hyperparameter analysis.

5.1 Experimental setup

Datasets. We use six publicly available real-world datasets whose statistics are listed in Appendix
Table 6 for experiments. There are datasets with billion-scale temporal links and million-scale nodes.
Further details of these datasets can be found in Appendix D. We split the datasets into training,
validation and testing data according to the ratio of 70/15/15 while preserving the chronological order.

Downstream tasks and models. We conduct experiments on link prediction with transductive and
inductive settings for all datasets. For datasets where node labels are available, we also conduct node
classification. For inductive link prediction, we follow previous work and sample the unique nodes
in validation and testing data with probability 0.1 and remove them and their associated edges from
the networks during the training stage. Following previous work, the temporal graph representation
models are trained with self-supervised link prediction task. The models are then directly used to
generate node representations for node classification. For fair comparison, the architectures for all
downstream models are single-layer perceptrons with ReLU activation. The detailed procedures for
inductive evaluation and node classification for NLB are documented in Appendix E.

Baselines. We select four representative baselines, each with two variants. Among the baselines,
TGAT [17] proposed aggregating temporal neighborhood information with attention, TGN [15]
proposed keeping a memory state for each node that gets update with new interactions, APAN [21]
proposed asynchronous graph propagation instead of graph aggregation, and NAT [18] improves link
prediction with their joint neighborhood structural features. For TGAT, TGN and APAN, we evaluate
their performance and scalability with two sampling strategies: uniform sampling (denoted as unif)
and truncation of the most recent neighbors (denoted as trunc). We evaluate these baselines (excluding
NAT) using the implementation in TGL [25] that relies on low-level C++ programming and multi-
thread CPU, as it is currently the most efficient framework for them and the original implementation
has shown to be significantly slower. For NAT, we adapt it for node classification (named NAT-node)
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Task Method

Wikipedia

Reddit

GDELT

MAG

Ubuntu

Wiki-talk

TGN-trunc
TGN-unif
TGAT-trunc
TGAT-unif
APAN-trunc
APAN-unif
NAT
NAT-node
NLB-edge
NLB-node

Transductive

99.48 £+ 0.07
99.44 £ 0.03
97.47 £+ 0.06
9535 £0.18
99.20 £+ 0.03
97.90 £ 0.40
99.72 £ 0.03
99.29 £ 0.07
99.42 £ 0.08
99.03 £ 0.07

99.65 £ 0.07
99.66 £ 0.05
97.84 £ 0.03
98.15+0.15
96.46 +2.98
97.65 £+ 0.20
99.90 £ 0.01

99.76 £ 0.02

99.73 £ 0.02
99.67 £ 0.02

98.63 £+ 0.05

99.32 £ 0.06

97.85 £ 0.02
98.31 +£0.02
97.76 £ 0.01
97.89 £ 0.16
97.56 £ 0.74
GPU OOM
GPU OOM
98.94 + 0.28
98.80 + 0.16

99.24 £0.03
99.09 £ 0.03
99.02 £ 0.05
90.61 £ 1.24
CPU OOM
GPU OOM
GPU OOM
99.39 + 0.02
99.15 £ 0.02

76.09 £0.17
78.99 £ 1.69
76.71 £ 0.33
78.59 £0.23
69.90 + 3.28
77.62 £2.71
89.65 + 0.17
87.48 + 0.49

84.73 £3.57
83.61 £0.10
81.23 £0.06
80.48 £0.01
82.10 £5.67
84.32 £7.28
94.66 + 0.03
93.03 £+ 0.52

87.48 + 0.64

91.72 + 0.62
91.95 £0.17

TGN-trunc
TGN-unif
TGAT-trunc
TGAT-unif
APAN-trunc
APAN-unif
NAT
NAT-node
NLB-edge
NLB-node

Inductive

98.55 +0.08

99.44 £ 0.06

98.62 £+ 0.01

98.33 £0.08
96.57 + 0.04
93.80 £0.15
96.65 £ 0.07
97.23 £0.31
99.52 £ 0.03
98.47 £0.25

99.30 £ 0.01
95.224+0.21
96.12 £ 0.07
95.93 +£243
96.56 £ 0.32
99.78 + 0.03
99.53 £0.21

98.43 £+ 0.26

99.43 £+ 0.07

98.314+0.30

99.36 £ 0.09

98.77 + 0.08
94.36 + 0.01
94.05 £ 0.02
98.48 +0.01
97.64 £0.14
GPU OOM

GPU OOM

98.16 +0.32
97.14 £0.42

96.05 £ 0.12
96.45 £ 0.26
98.80 £ 0.01
98.77 £ 0.01
CPU OOM
CPU OOM
GPU OOM
GPU OOM
98.85 + 0.02
98.79 £ 0.11

80.70 £+ 1.64
85.23 + 1.66
77.22 £ 0.07
78.07 £ 0.04
65.19 £+ 5.50
78.39 £2.87
8471 £1.01
81.51 +1.36
86.88 + 0.62
85474+ 0.73

87.65 £ 1.01
87.11 £0.30
79.97 £+ 0.04
77.03 £0.03
78.90 + 1.11
87.86 £0.11
92.23 +1.16
79.12 £ 5.14
9091 £+ 1.14
91.22 +1.39

Table 2: Link prediction performance in AUC (mean in percentage + 95% confidence level). Bold font and

underline highlight the best performance and the second best performance on average.

100
_ : Method _Wikipedia (AUC) _Reddit (AUC) _GDELT (FI) _ MAG (F)
g™ . - TGN-trunc | 86.85 £ 0.56 6345 £ 1.21 1839+ 137 2.33+0.00
: TGN-unif | 8599 +0.62 6438+ 1.60 21.38+0.04 233 +0.00
g o0 TGAT-trunc | 7827+ 112 60.54+£0.97 22.91+0.03 233 +0.00
$ MRS TGAT-unif |  84.08 & 0.41 63.44 £272 24.34+0.02 233 +0.00
g, — APAN-trunc | 8650 £0.60 5674 +0.62 9.14+043  3.11+0.00
3 APAN-unif | 8727+1.02 6068+ 142 9904001 CPUOOM
= ~—— NLB-edge —— TGN-unif NAT - - - -
> 96 NLB-node TGAT-trunc
— v — TeATunit NAT-node |  86.65 + 0.55 60.44 £236 GPUOOM  GPU OOM
/ e e NLB-edge | 89.92 =+ 0.20 6273 £2.27 23.90+0.05 30.93 + 0.02
S Fee T NLB-node | 89.524+0.06  62.93+0.56 2346+ 0.08 29.69 + 0.02

Training time (s)
Figure 2: The transductive link predic-
tion validation performance v.s. training
time on Reddit. Each dot on the curves
gets collected at the end of an epoch.

Table 3: Performance of node classification (mean in percentage
+ 95% confidence level). Bold font and underline highlight the
best performance and the second best performance on average.

by removing their joint structural features and directly aggregating their neighborhood representations
to generate node representations. Additional details about these baselines can be found in Appendix E.

Hyperparameters. For fair comparison, we fix the maximum number of neighbors to be sampled for
each dataset across all methods as specified in Appendix Table 9. When evaluating scalability, we (1)
limit the maximum number of CPU threads to be at most 32, (2) use one GPU for all methods and (3)
fix the batch sizes across different methods as specified in Appendix Table 10. For the rest of the
hyperparameters, if a dataset has been tested previously, we use the set of hyperparameters that are
provided by the baseline models. Otherwise, we tune the parameters with grid search and make sure
the sizes of different modules such as the node representation and time feature, have dimensions of the
same scale for all methods. More detailed hyperparameters are provided in Appendix E. Hardwares.
We run all experiments using the same Linux device that is equipped with 256 AMD EPYC 7763
64-Core Processor @ 2.44GHz with 2038GiB RAM and one GPU (NVIDIA RTX A6000).

Performance Metrics. For link prediction performance, we evaluation all models with Area Under
the ROC curve (AUC), Average Precision (AP) and Mean Reciprocal Rank (MRR) with a large
number of negative samples per positive sample (50 for GDELT, and 500 for other datasets, excluding
the MAG dataset due to the time and memory constraints). In the main text, the prediction performance
in all tables is evaluated in AUC. For node classification, we evaluate with AUC for Wikipedia and
Reddit which have two node classes, and we use F1 for GDELT and MAG which have more than two
classes. All results are summarized based on 5 time independent experiments with different random
seeds and initializations.

Scalability Metrics. To evaluate scalability, we consider both time and energy efficiency. We include
(a) average training time (Train), testing time (Test) and inference latency (Inf. Lat.) per epoch in
seconds, (b) the total energy consumption from CPUs and GPUs (in Joules) denoted as CPU and
GPU. We ensure that there are no other applications running during our evaluations.
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Method Train _Test Inf.Lat. CPUMJ) GPUMJ) Train  Test Inf. Lat. CPU(MJ) GPU MJ) Train  Test Inf Lat. CPU(MJ) GPU MJ)
TGN-trunc 13.06 1.65 1.20 2,237 1.04 1595 2.05 1.37 3,332 1.75 1977 406 302 431,567 174.6
TGN-unif 1325 167 1.23 2,194 1.02 1555 211 1.42 3,326 1.78 4791 1013 777 797,311 389.4
TGAT-trunc 10.68 1.35 0.87 1,882 0.82 1237 1.70 1.20 3,028 1.30 1123 248 183 306,860 92.7
TGAT-unif | .2 1070 1.34 0.90 1,779 0.76 o 1364 193 1.27 3,254 1.37 .. 1493 383 301 251,452 83.8
APAN-trunc —é 10.67 148 0.57 2,034 0.90 g 1296 194 0.61 2,802 1.36 j 1530 338 200 485,818 2112
APAN-unif | 2 10.67 1.51 0.58 1,853 0.84 2 1301 207 0.62 2,894 1.34 a 1839 347 187 512,061 188.4
NAT | Z 1481 172 111 2,900 1.29 S 1752 196 1.22 2,853 1.27 o = = = = >
NAT-node 1228 1.32 0.82 2,621 1.02 15.60  1.60 1.30 2,824 1.23 - - - - -
NLB-edge 8.28 0.86 0.43 1,609 0.85 11.06  1.30 0.57 2,764 224 1323 139 63 252,267 307.6
NLB-node 795 086 0.43 1,547 0.80 10.74  1.35 0.59 2,748 2.17 1089 118 60 215,820 258.5
Method Train _Test Inf.Lat. CPU(MJ) GPU (MJ]) Train  Test Inf.Lat. CPU(MJ) GPU MJ) Train  Test Inf.Lat. CPU(GJ) GPU (GJ)
TGN-trunc 51.24 725 474 9,218 4.45 74.63 1176 7.61 16,715 9.57 6845 1266 795 15,041 1.59
TGN-unif 5197 7.38 4.82 8,853 4.64 8596 13.77 8.19 18,925 11.2 5704 1224 741 21,334 2.02
TGAT-trunc 38.64 5.46 3.86 7,108 324 5837 874 5.88 14,787 5.90 3465 754 518 10,427 1.06
TGAT-unif | _ 4040 5.64 4.00 7,221 325 2 6332 9.14 6.35 16,553 6.75 3520 774 541 13,236 1.35
APAN-trunc | 5§ 41.32 642 244 7,732 343 2 6068 1034 2.98 13,898 6.94 2 12347 1600 809 22,262 245
APAN-unif E 4175  6.55 248 7,779 347 2 6406 1061 2.88 14,463 7.04 s - - - - -
NAT 54.08 743 4.82 11,517 5.59 Z 8132 10.03 6.08 14,736 7.13
NAT-node 46.85  6.02 3.63 10,686 4.97 67.28 879 4.88 14,492 6.82 - - - - -
NLB-edge 3855 3.68 1.88 6,474 3.86 59.18  7.30 3.03 12,277 15.0 3073 593 296 2,684 1.73
NLB-node 3452 3.68 1.84 6,443 3.70 5636 7.01 2.99 11,519 13.6 2729 571 279 2,870 1.69

Table 4: Scalability evaluation on all datasets. Note that MJ = 10° Joules, and GJ = 10° Joules. Note that TGL
is adopted to implement baselines including TGN, TGAT, and APAN.

5.2 Results and Discussion

Prediction performance. The node classification performance is given in Table 3 and the link
prediction performance in AUC is given in Table 2. The link prediction results in AP and in MRR are
given in Appendix Table 7 and Table 8 respectively.

For link prediction, NLB-edge achieves either the best or the second best performances in 10 out
of 12 settings (6 datasets with inductive and transductive tasks), while NLB-node closely follows or
sometimes marginally surpasses NLB-edge. NAT is the best performing baseline for link prediction
because it leverages the joint neighborhood structural features [16, 48] designed for node-pairs.
However, NAT cannot be applied to node classification, and it consumes significant GPU memory.
We discuss NAT-node in detail later in this section. TGN-trunc and TGN-unif are the second most
competitive baselines. They achieve similar performance to NLB-edge and NLB-node sometimes but
significantly fall behind on the datasets Ubuntu and Wiki-talk, and 3 of the 4 node classification tasks.
One aspect that differentiate Ubuntu and Wiki-talk to the rest of the dataset is that they do not have
node or edge features (Table 6). We hypothesize that the benefit of recent sampling is more obvious
with the absence of additional features because NLB can gather effective historical information from
diverse and recent temporal neighbors. The other baselines usually perform far behind NLB.

For node classification, both NLB-edge and NLB-node achieve similar or better results than the
baselines. In MAG, all baselines fail to perform well and we cannot reproduce the scores reported
in Zhou et al. [25] (more discussion in Appendix G).

NLB-edge often outperforms NLB-node because NLB-edge tends to encode more temporal neighbors
(node IDs plus timestamps) while NLB-node only encodes neighbors with unique node IDs.

Time and energy efficiency. The details of the scalability metrics are shown in Table 4.

NLB-node always have faster training, testing and lower energy consumption than all baselines while
NLB-edge closely follows. NLB-node trains 1.63-2.04 x faster than NAT and 1.32-4.40x faster than
TGN-unif and TGN-trunc.

On inference latency, except for APAN on the Wiki-talk dataset, both NLB-node and NLB-edge
shows significant improvements over all settings. APAN aims to improve inference latency but
consumes massive CPU memory. On large-scale datasets such as GDELT and MAG, APAN requires
significant latency for transfering messages from CPU to GPU and no longer has advantages. Apart
from APAN, NLB-node gives 1.63-12.95 x speedup on inference latency over all datasets.

Although NLB’s GPU energy consumption is slightly larger, it is negligible compared to the CPU
energy consumption. Compared to NLB-edge, NAT consumes up to 1.8 x more energy while TGN-
trunc and TGN-unif consumes 1.2-5.6x and 1.2-7.94 x more energy over all datasets respectively.
On billion-scale datasets MAG, NLB-edge is 3.88-8.29x more energy efficient than all methods.
The large difference between the energy consumed by the CPU v.s. the GPU can be attributed to (1)
the default energy costs by CPU when no application is running, and (2) the intensive CPU-GPU
communications which is counted toward the CPU cost as it controls the communication (more
details in Appendix H).

Over all baselines, truncation is usually more time and energy efficient than uniform sampling. The
advantage can be seen more obviously in inference latency. However, since APAN can perform the
sampling asynchronously, its inference latency is similar across these two sampling strategies.
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s [T i Tnductive __ Node Class. _Train__Test _Inf.Lat.__CPU__GPU
0 [9959=0.11 9842+0.07 6215049 3426 413 187 5699 2388
5 19968003 99.24+004 6053053 3997 490 222 6600 357
10 [ 99.69 4 0.04 9944 +0.03 60334132 4008 487 221 6600 3.82
15| 99.65+£0.10 99324004 6234+194 3949 486 220 6576 4.01
20 | 9974003 9943+007 6273+227 3910 487 219 6678 4.10
25]9972+£007 9947+£021 60.87+0.14 39.67 494 224 6666 4.42
30 | 99.67£0.04 9925+009 6130 +£0.95 4132 489 223 6930 468
0 [9959=0.11 9842£0.17 6215049 3426 413 187 5699 2388
5 199.60=004 9920+002 61.64=4.03 3903 487 218 6460 330
10 [ 99.59£0.04 99.16+£0.17 59.16+227 39.09 485 218 6432 3.56
15| 99.66£0.07 99.23+008 61.96+3.15 3932 486 222 6447 372
20 | 9967002 9936009 6293+056 39.09 486 218 6541 379
G 0 0 25| 99.66£0.07 99.37+007 6230+ 111 3933 491 221 6563 388
Probability a 30 | 99.65£0.01 9938005 6630+ 1.62 40.07 488 219 6739 408

Reddit Ubuntu
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Figure 3: The changes in transductive link prediction Table 5: The performance and scalability of NLB-
test performance on Reddit (Left) and in inductive link ~ ¢dge and NLB-node on the Reddit dataset given differ-

prediction test performance on Ubuntu (Right) with ~ent down-sampled neighbor hash table sizes s. s = 20
respect to a’s. is the setting used for comparison with baselines. CPU

and GPU energies are measured in MJ.

We further compare the efficiency of different sampling approaches in Appendix I, which shows that
forward sampling is significantly faster. We also plot the model convergence curves in Fig. 2 on the
link prediction validation performance v.s. CPU/GPU wall-clock training time on Reddit. NLB-edge
and NLB-node are among the fastest to converge to a high performance.

Comparisons between NLB and NAT-node. Overall, NAT-node shows improvement over NAT
on all of the scalability metrics. However, it does not outperform NLB in either computational
efficiency or prediction performance. As shown by Table 4, over all datasets, NAT-node is still slower
than NLB-edge (1.14-1.48 x slower in training and 1.61-1.91x slower in inference). It still causes
GPU out-of-memory error for large-scale datasets (GDELT and MAG). We think the computational
inefficiency may be caused by the storage and maintenance of their neighborhood representations
which are primarily used for structural features construction. Furthermore, NAT-node does not
perform as well as NLB-edge on link prediction (Table 2) and node classification (Table 3).

5.3 Additional analysis

The effect of different o.’s and the optimality of recent sampling. We study how changes in the
replacement probability « affects the link prediction performance. We show the transductive task on
Reddit in Fig. 3 Left (with inductive task in Appendix Fig. 4) and the inductive task on Ubuntu in
Fig. 3 Right (with transductive task in Appendix Fig. 5). We observe a general trend for both NLB-
edge and NLB-node that increasing « from 0.2 to 0.8 or 0.9 improves the performance. However,
when o = 1, the performance drops significantly. When o« = 1, new interactions will always replace
the existing down-sampled temporal neighbors, which is similar to the strategy of truncation. This
demonstrates the sub-optimality of truncation and the necessity of randomness in neighbor sampling.
For smaller «, less recent neighboring nodes will be kept in the hash table, which performs more
like uniform sampling. The performance decay for small « indicates the sub-optimality of uniform
sampling. Therefore, recent sampling is important for prediction performance.

The effect of the hash table size s. In Table 5, we show how changes in s affect the performance and
scalability of NLB-edge and NLB-node respectively using the Reddit Dataset. While s = 0 is usually
the worst-performing in both transductive and inductive link prediction, it has similar performance in
node classification and it is more time and energy-efficient as expected. In contrast, when s = 5, 10,
the performance on node classification achieves the worst for both NLB-edge and NLB-node. Then,
both performance and scalability metrics have an increasing trend as s gets larger. However, the
performance for NLB-node is still increasing at s = 30, while NLB-edge shows decreases. The link
prediction performance of NLB-edge is better than NLB-node but the node classification performance
of NLB-node is better. We hypothesize that NLB-edge can more easily overfit data as s becomes
large. Finally, NLB-node is always slightly more time and energy-efficient than NLB-edge.

We give the evaluation of MRR for various a’s and s’ in Appendix Table 13 and Table 14 respectively.

6 Limitations and Future Work

We are aware of the limitation of NLB and highlight some future research directions. For industry-
level graphs, it may not be possible to maintain the down-sampled temporal neighbors of all nodes in
a single GPU. In the future, we plan to adopt distributed GPUs by partitioning the down-sampled
neighbors of different nodes into different GPUs. We will guarantee that the memory used for each
node is contained within the same GPU so that the maintenance can still be fast.
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7 Conclusion

In this work, we introduced NLB which abandons the traditional time-consuming temporal neighbor
backtracking and sampling while adopting the newly proposed forward recent sampling. We proved
that NLB-edge achieves recent sampling of links and NLB-node achieves recent sampling of nodes.
Our extensive experiments demonstrate that NLB is effective in both prediction performance and
scalability while significantly improving inference latency and energy efficiency.
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A The proof of Theorem 4.4 (NLB-edge achieves recent sampling)

Theorem A.1 (NLB-edge achieves recent sampling (Theorem 4.4 Restated)). Suppose links come
in for any node (e.g. u) by following a Poisson point process with a constant intensity (e.g. A), and
suppose a temporal neighbor (v, eli . t;) is inserted into S, at time t;, then Pr((v, el ,,t;) € S,) =

U,
exp(22 (t; — ).

Proof. Let N; = (v;, efj,vi ,t;) and N; € N be one of the historical temporal neighbors of u, where
1€ [1, INVE||. By construction, N; is hashed to the position hash(v;, t;) (Eq. 2). The probability that

any other temporal neighbors is inserted to .S, is « as we define in Sec. 4.2. Since we suppose V;
is already inserted to .S,,, we only need to evaluate the probability that it does not get replaced by
another temporal neighbor. We know from the Poisson process that

E {# links of v arrive since tl} = At —t;). )
On average, each link has probability < of replacing N;. Then,
At —t;
E [# links replace S, [hash(v;, t;)] since ti] = M. (6)
s
aX

Thus, the intensity of links being inserted to the same position as NV; is

? .
By the property of a Poisson process, the probability that none of the links get inserted to the same
position as N; from ¢; to t is exp(22(¢; — t)). Overall,

A
Pr(N; € §7) = exp(Z (t — 1)), %)
completing the proof.

We have shown that Pr((v,el;,,t;) € S;) is proportional to exp(c(t; — t)) for ¢ > 0. Thus,
NLB-edge achieves recent sampling.

B The sample properties of NLB-node

In this section, we first propose a new sampling strategy called recent node-wise sampling, we then
show that NLB-node essentially achieves recent node-wise sampling in O(1).

Recent node-wise sampling. Instead of sampling temporal neighbors, recent node-wise sampling
considers sampling unique neighboring nodes: Given a center node v and its neighboring node v,
only the latest interactions till time ¢ between u and v can be sampled and the down-sampled neighbor
nodes do not contain duplicates. This strategy can speed up the aggregation of a node’s neighborhood
as it reduces the number of sampled candidates.

We now prove that NLB-node achieves recent node-wise sampling.
Theorem B.1 (NLB-node achieves recent node-wise sampling). Suppose each unique node (e.g. v; €
V) interacts with a center node (e.g. u) by following a different Poisson point process with a constant
intensity (e.g. \y,;), and suppose the latest interaction between a center node and a neighboring node,
(e.g. (vi,€li ., ti)) is inserted into S, at time t;, then Pr((vi, elf ;) € S},) = ije W\ {vi} <51 +

Lexp(aty, (t; — t))>

Proof. The probability that any other temporal neighbors is inserted to S,, is « as we define in Sec. 4.2.
Similar to the argument in Theorem 4.4, since we suppose the latest link with between node v; and w,
ie., (v, efjm, t;), is already inserted to S,,, we only need to evaluate the probability that it does not
get replaced by another node in V. NLB-node computes the hash values based on neighbor node IDs
without timestamps. Thus, the probability a different node v; has the same hash value as v; is the
following,

Pr(hash(v;) = hash(v;)) = 1 (8)

S
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Measurement | Wikipedia Reddit GDELT MAG Ubuntu Wiki-talk
nodes 9K 11K 17K 122M 159K 1.IM
temporal links 157K 672K 191M 1.3B 964K 7.8M
node classes 2 2 81 152 0 0
labels 217 366 42M 1.4M 0 0
node features 0 0 413 768 0 0
edge features 172 172 186 0 0 0

Table 6: Summary of dataset statistics.

‘We also have

-1
Pr(hash(v;) # hash(v;)) = S )

For an arbitrary v; € V where hash(v;) = hash(v;), during (¢;,t),
E [# links between u and v; arrive since tl} = Ay, (t —t3). (10)

Notice that if v; never interacts with u, then A,;, = 0. Suppose there are interactions between u

and v;, then each link between v and v; has probability « to collide with (v;, eff,qu ,t;) stored in S,.
Then,

E [# links between u and v, replace S, [hash(v;)] since ti] = aXy, (t —t;). (11)

Thus, the intensity of links between u and v; being inserted to S, [hash(v;)] is a),,;. The probability
none of the links associated with node v; is inserted during (%;, ) is then exp(a\,, (t; —t)), according
to the property of a Poisson process.

For the event (v, eijvi ,t;) € S! to happen, it has to be true that for all node v, that v; # v;, either
hash(v;) # hash(v;) or none of the links associated with node v; is inserted to .S, during (;,t).
Overall,

. pti . ty s—1 1 -
Pr((v“eu’vi,tl) €S, = H ( + s exp(al,, (t; t))), (12)

S
v;€ V\{vi}
completing the proof.

This achieves recent node-wise sampling because as the difference between the current times-
tamp ¢ and the timestamp ¢; of the lastest interaction with a unique neighboring node gets larger,
Pr((vs,€eli . t;) € St) decays exponentially. The decay factor is controllable by c, which is similar
to the constant ¢ in recent sampling of edges (Def. 4.3). As o approaches 0, the probability for each
node of being sampled is approaching a constant regardless of recency, which is similar to uniform
sampling. As « approaches 1, as long as there is collision, older nodes in S,, will always be replaced
by more recent nodes, which is similar to truncation.

C T-encoding

Our temporal features are encoded via a T-encoding technique with the definition below.
Definition C.1 (T-encoding). For any input timestamps ¢;, we adopt Fourier features to encode them
before using them as features, i.e., with learnable parameter w;’s, 1 < i < d,

T-encoding(t) = [cos(wit), sin(wit), ..., cos(wgt), sin(wgt)]. (13)

It has shown to be effective for TGRL [15-17, 46, 47, 49].

D Dataset Description

The following are the detailed descriptions of the six datasets we tested.

[leftmargin=*]Wikipedia® [19, 50] records edit events on wiki pages. It is a bipartite graph where
a set of nodes represents the editors and another set represents the wiki pages. The stamped link

http://snap.stanford.edu/jodie/wikipedia.csv
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Task | Method Wikipedia Reddit GDELT MAG Ubuntu ‘Wiki-talk
TGN-trunc | 99.44 +£0.08 99.59 £0.09 9834+0.10 99.30£0.06 81.61+£020 87.03£247
TGN-unif 99.36 +£0.04 99.60 £0.05 96.96+0.05 99.21+£0.04 83274096 87.24+0.16

o | TGAT-trunc | 97.65+0.04 97.98+£0.03 98.124+0.01 99.08+0.03 80.62+0.39 84.81=+0.06
2 | TGAT-unif | 94.61 £0.23 98.124+0.15 97.54 £0.01 99.01 £0.05 81.82+£0.12 84.944+0.01
2 | APAN-trunc | 99.04 £0.03 95734+2.96 96.79+£0.32 87.85+1.68 7220+3.94 84.13+4.44
'Z APAN-unif | 97.14 £0.67 96.57 £0.24 9621+ 135 CPUOOM 7861 £ 1.61 85.68 £ 6.00
& | NAT 99.72 £ 0.02 99.89 £0.01 GPUOOM GPUOOM  90.88 + 0.19  95.18 & 0.03
& | NAT-node 99.13£0.12  99.72 £0.02 GPU OOM GPUOOM  87.75 £0.55 93.34 £ 0.55
NLB-edge 99.30 £ 0.11  99.69 £0.02 98.79 +0.39 99.38 +£0.02 87.52+0.48 92.05 +0.62
NLB-node | 98.77 £0.09 99.60 +0.04 98.62+0.19 99.10+0.02 87.61 £0.69 92.11 £ 0.08
TGN-trunc | 98.42 +£0.08 99.38 £0.07 98.38 +0.04 9699 +0.08 8227 £1.17 88.46+0.64
TGN-unif 97.99 +£0.13  99.21 £0.03 9848 +0.15 97.21 £0.14 8570 +1.58 88.10 £0.13
TGAT-trunc | 96.75 £ 0.02 9577 £021 94.64+0.01 9878 +0.01 81.53+0.14 84.10+0.05
o | TGAT-unif | 92.94£0.15 9633+0.09 933240.02 98.75+£001 82.17+0.08 8221 +0.05
bt APAN-trunc | 95.18 2091 96.02 £2.06 97.994+0.03 CPUOOM  68.60 +2.41 80.47 £0.35
2 | APAN-unif | 9573 £0.77 96.03 4+ 1.31 96.55 +0.31 CPUOOM  78.64 +2.66 88.82+0.28
= | NAT 99.48 +0.02 99.76 +£ 0.03 GPU OOM GPUOOM  86.69 +1.03 93.27 + 0.88
NAT-node 97.78 £ 042 99.36 £ 0.44 GPU OOM GPUOOM  82.68 £0.88 84.12+2.75
NLB-edge 98.204+0.32 9930 £0.07 97954041 98.86+0.03 86.16+0.76 90.54 + 1.05
NLB-node | 98.00+ 047 99.18 £0.10 96.81 +0.56 98.78 £0.13 8441+ 0.83 90.82+ 140

Table 7: Link prediction performance in average precision (AP) (mean in percentage + 95% confidence level).
Bold font and underline highlight the best performance and the second best performance on average.

Task | Method Wikipedia Reddit GDELT Ubuntu Wiki-talk
TGN-trunc 60.28 £4.09 7438 £172 7578 +£8.67 2094+672 31.00+5.02
TGN-unif 52.05+465 6536+449 71.78+0.16 21.87£3.60 2272 £+ 6.55

» | TGAT-trunc | 4591 £ 1.15  60.19+£1.05  79.1140.04 22.37+£097 30.01+0.84
2 | TGAT-unif 23.17+£046  4590+047  74.89 +0.05 16.61 £0.44 18.01 £0.43
2 | APAN-trunc | 26.51 £ 1.46  43.68 2549 7449 +4.14 5.79 £ 1.81 18.91 £9.17
E APAN-unif 30.59 £3.51 362941012  72534+0.22  11.60 = 4.22 9.99 + 1.77
£ | NAT 77.51 £22.83  90.40 £ 4.63 GPU OOM 46.38 = 9.14  74.17 + 28.67
& | NAT-node 39.58 £6.21 39.89 £8.27 GPU OOM 1893 £3.10 21.324+3.59
NLB-edge 61.90 £ 2.31 7540+£185 8445+0.84 2434+189 32574149
NLB-node 5442 £3.08 67.65£531 7660843 2543+097 31.9542.64
TGN-trunc 5429+3.13 5820+£735 7437+£126 1958 £2.99 27.93+2.94
TGN-unif 44.26 £232  53.02+£204 81.69£373 18.14+£9.87 2584 +0.68
TGAT-trunc | 4518+ 1.56  50.674+5.39 5990 £0.59 2241 +£0.58  26.15+ 1.50
¢ | TGAT-unif 15.60 +1.39  21.14+6.09 51.72 4 1.06 12.02+1.03  20.51 £ 1.01
‘2 | APAN-trunc | 18.92+0.28 34.85+438  77.60 4+ 0.23 7.16 + 1.01 15.56 £ 3.52
£ | APAN-unif 1983 £1.77 38.15+£445 4987+£395 11.63 +£9.75 17.46 +5.45
= | NAT 75.02 £22.01 89.53 +4.08 GPUOOM  37.81 £12.40 39.02 £ 24.29
NAT-node 3456 £4.18  50.58 +9.29 GPU OOM 19.64 +4.43 19.60 £6.73
NLB-edge 4994 +2.12 61.74+£185 81.60 £4.17 21.13+2.44 2426+ 4.60
NLB-node 4459 £636 5343 £8.03 71584+ 14.65 2146297 25394+ 1.87

Table 8: Link prediction performance in Mean Reciprocal Rank (MRR) with large number of negative samples
per positive sample (mean in percentage = 95% confidence level). For the largest-scale datasets GDELT and
MAG, we use 50 negative samples while for other datasets we use 500. MAG is not evaluated because it takes
a significantly long time to run all models with a large number of negative samples. Bold font and underline
highlight the best performance and the second best performance on average.

represents the edit events. The edge features are extracted from the contents of wiki pages. The
node labels are binary which indicates whether a user is banned from posting. The original data
dump is under the Creative Commons Attribution-Share-Alike 3.0 License and the Terms of
Use is on the website (https://dumps.wikimedia.org/legal.html). The derived dataset
by Kumar et al. [19] is open-sourced here. Reddit® [19, 51] is a dataset of the post events by users
on subreddits. It is also an attributed bipartite graph between users and subreddits. The node
labels are also binary values that indicate whether a user is banned from posting to a subreddit.
The original dataset has the Terms of Use in the website (https://pushshift.io/signup).
The derived dataset by Kumar et al. [19] is open-sourced here. GDELT* [25] is a Temporal
Knowledge Graph (TKG) originated from the GDELT Event Database [52] and adapted by TGL
for richer node and edge features. It is a large-scale dataset with more than 100M links. It records
events from news and articles in over 100 languages every 15 minutes. The nodes represents
actors and the edges represent events that happen between a pair of actors. The node features
represent the CAMEOQ codes of the actors and the link features represent the CAMEO codes of
the events. The labels are the countries where the actors were located when the events happen.
According to the Terms of Use in the website (https://www.gdeltproject.org/), itis an
open platform for research and analysis of global society and thus all datasets released by the
GDELT Project are available for unlimited and unrestricted use for any academic, commercial,
or governmental use of any kind without fee. The derived dataset by Zhou et al. [25] is

*http://snap.stanford.edu/jodie/reddit.csv
*https://github. com/tedzhouhk/TGL
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Params \ Wikipedia Reddit GDELT MAG Ubuntu Wiki-talk
s \ 20 20 10 2 20 20

Table 9: Number of sampled temporal neighbors for each dataset for all methods. GDELT and MAG use
smaller s because of CPU and GPU size limits.

Params | Wikipedia Reddit GDELT MAG Ubuntu Wiki-talk
Batch size | 100 100 5000 5000 600 1000

Table 10: The batch sizes used for scalability evaluation for each dataset for all methods.

open-sourced here. MAG?® Zhou et al. [25] is a homogeneous sub-graph of the heterogeneous
MAG240M graph in OGB-LSC [53] extracted by TGL. It is another large-scale dataset with
more than 100 million nodes and 1.3 billion links. It is a paper-paper citation network where
each node in MAG represents one academic paper. The temporal edges represent citation of
one paper to another with timestamp representing the year when the paper is published. The
node features are the embeddings of the abstract of the paper generated with ROBERTa [54].
The node labels are the arXiv subject areas. The original dataset is licensed ODC-BY License.
The derived dataset by Zhou et al. [25] is open-sourced here. Ubuntu® [55, 56] is a dataset that
records the events on a stack exchange web site called Ask Ubuntu.” The nodes represent users
and there are three different types of edges, (1) user u answering user v’s question, (2) user u
commenting on user v’s question, and (3) user w commenting on user u’s answer. The original
data dump is cc-by-sa 4.0 licensed. The derived dataset by Paranjape et al. [56] is open-sourced
here. Wiki-talk® [56, 57] is a dataset that represents the edit events on Wikipedia user talk pages.
The dataset spans approximately 5 years so it accumulates a large number of nodes and edges.
This is a large-scale dataset with more than 1M nodes. The original data dump is under the
Creative Commons Attribution-Share-Alike 3.0 License. The derived dataset by Paranjape et al.
[56] is open-sourced here.

E Baselines, hyperparameters and the experiment setup

TGAT [17] adapts GAT [58] for static graphs to dynamic graphs. It aggregates messages from
dynamic neighbors via an attention mechanism. While it proposed recent sampling, its implementation
is significantly inefficient because it has to calculate the recency weights online before sampling.
Thus, we only consider uniform sampling and truncation. We use 2 attention heads and 100 hidden
dimensions. We only consider aggregation from the first-hop neighbors because aggregating second-
hop neighbors introduces even more severe latency for sampling. We also do not observe significant
improvement in prediction performance using second-hop neighbors. We do not find an official
licensed original implementation for this work and we adopt the implementation by TGL [25].

TGN [15] is a recently proposed SOTA temporal graph representation learning approach. It keeps
track of a memory state for each node and update with new interactions. We train TGN with 100
dimensions for each of memory module, time feature and node embedding. We also only consider
sampling the first-hop neighbors because of computational efficiency. Their source code’ is licensed
under the Apache-2.0 License but we adopt the implementation by TGL.

APAN [21] is a recent approach designed for low inference latency. It prepares the neighborhood
information forward with graph propagation instead of aggregation. While it inspires our approach,
it does not support recent sampling and has shown to consume significant CPU memory while
performing subpar to SOTA methods. The reason is it stores the messages for each node in CPU which
consumes massive CPU memory. We train APAN with 100 dimensions for the node embeddings and
10 dimensions for the mailbox. Their original implementation'® is licensed under the MIT License
but we adopt the implementation by TGL.

Shttps://github.com/tedzhouhk/TGL
https://snap.stanford.edu/data/sx-askubuntu.html
"http://askubuntu. com/
Shttps://snap.stanford.edu/data/wiki-talk-temporal.html
‘https://github.com/twitter-research/tgn
""https://github.com/WangXuhongCN/APAN
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TGL [25] is a very recent framework that support efficient and scalable temporal graph representation
learning. It proposes temporal neighbor sampling with multi-core CPUs in parallel. Overall, it is
shown to achieve on average 13 x speedup for training and 173 x speedup on neighbor sampling. For
all of the baselines above, we evaluate them using the implementation by TGL. For the GDELT and
the MAG datasets, since the node and edge features do not fit in our GPU, we set the all_on_gpu
flag to false. For all other datasets, we set it to true. This work is licensed under the Creative
Commons BY-NC-ND 4.0 International License. The source code licensed under the Apache-2.0
License is provided here.'!

NAT [18] is also a very recent work that achieves SOTA link prediction performance for dynamic
graphs. It proposed dictionary-type node representations to replace the traditional single-vector node
representations which keep track of historical neighborhood information and avoid the expensive
backward neighbor sampling. However, it relies on the construction of joint neighborhood features
which only work with node pairs and cannot be easily generalized to node classification. Therefore,
we evaluate it on link prediction only. We adapted NAT for node classification (called NAT-node)
by removing the joint structural features and only aggregating their neighborhood representations
to generate node representations. We also only use the first-hop neighborhood. Other than that, we
follow the hyperparameter settings documented in their paper. Their implementation'? is licensed
under the MIT License.

NLB (our work). For both NLB-node and NLB-edge, we tune the node representation and the node
status dimensions between 50 to 100. We use two attention heads and we tune « and dropout between
0 to 1 with grid search.

Lastly, we note that the Adam optimizer [59] is used for all baselines.

E.1 Inductive evaluation of NLB

Our evaluation pipeline for inductive learning is similar to NAT [18] and different from other
baselines. For backward sampling methods such as TGN [15] and TGAT [17], when they do inductive
evaluations, they can access the entire training and evaluation data for aggregation, including events
that are masked for inductive test. However, NLB’s forward sampling prepares the down-sampled
neighbors forward for future use and ignores the masked events during the training phase. Thus,
by the end of the training, even all historical events become accessible, NLB cannot leverage them.
Therefore, to ensure a fair comparison, after training, NLB processes the full train and validation
data with all nodes unmasked to gather the down-sampled temporal neighbors from the complete set,
and then processes the test data. Note that in this last pass over the full train and validation data, we
only perform the forward sampling and do not perform training anymore.

E.2 Node classification preprocessing

For node classification, we pre-process and combine the node labels to links so that each link can
have a source label, a target label or both. For each label yﬁ, we assign the label to the first link
of u that appears since time . If u is a source node, the label is assigned to source label and vice
versa. While processing the link stream, if a link has source or target labels, we record the node
representations of the source or target node at that time and generate a prediction for the node classes.

F Evaluation on TGB

TGB [44] is adopted by a lot of TGRL methods for standardizing the evaluation. Our main evaluation
does not use TGB because it is insufficient for computational evaluation which involves billion-scale
graphs. We provide some additional experiments for NLB using TGB here in Table 11. It verifies
that NLB can match or outperform TGN in link prediction.

G TGL Node Classification for MAG

We fail to reproduce the node classification scores for MAG over all of the baselines implemented
in TGL [25]. Our hypothesis is as follows. TGL has reported the scores for MAG based on an

"https://github.com/tedzhouhk/TGL
https://github.com/Graph-COM/Neighborhood- Aware-Temporal-Network
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Method  tgbl-review tgbl-coin tgbl-comment
TGN [ 3490 £2.00 58.60 £3.70 37.90 +2.10

DyRep | 22.00 £3.00 4520 £4.60 28.90 %+ 3.30
EdgeBank(tw) 2.50 58.00 14.90

NLB-edge | 35.08 +2.20 6192+ 143 3884 +2.17

NLB-node | 37.13 £ 040 58.66 +2.14 3691 +0.71

Table 11: Link prediction performance in Mean Reciprocal Rank (MRR) evaluated on TGB.
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Figure 4: The changes in inductive link prediction test performance with respect to different o on the Reddit
dataset.

implementation with an issue. For the backtracking and sampling of temporal neighbors to learn
representation at time ¢, TGL considers temporal neighbors of the same timestamp ¢ which may cause
information leakage. We noticed this issue in their multiple-gpu training script. We evaluate TGL
using their single-gpu training script which does not have the issue and results in the worse prediction
for MAG as shown in Table 3.

H The large difference between CPU and GPU energy consumption

While we directly obtained the numbers from the PyJoules'® output, we observe a large difference
between CPU and GPU energy consumption. We find that it can be attributed to the following factors:

(1) Both the CPU and GPU have default energy costs even when no applications are running, as there
may be background applications that constantly require energy. Within 1 minute, the default energy
cost for the CPU is roughly 9,000 MJ, while the GPU cost is 0.8MJ.

(2) The training process is notably more energy-intensive on the CPU compared to the GPU, as there
can be a considerable amount of CPU-GPU communication that is also counted on the CPU cost side
as CPU controls the communication. This difference can be even more significant for applications
that sample on the CPU side. For the NLB, we observed an additional 2,500MJ CPU energy and
12MJ GPU energy for training on the Wikitalk dataset. For TGN-uniform, it requires 10,000MJ CPU
energy and 10MJ GPU energy in extra.

I The efficiency evaluation of different sampling methods

In this section, we give additional details to show that forward sampling is indeed more efficient than
samplings used by the conventional TGRL methods in practice. During the inference phase, both the
proposed forward sampling and truncation methods can retrieve the down-sampled neighbors of a
node in O(1) time, while uniform sampling takes O(N}) time, where N!. is the number of neighbors
of node u at time t. Since we typically need to infer a batch of nodes at a time, we prefer the sampling
for the entire batch to be conducted in parallel. Both truncation and uniform sampling require storing
and sampling from historical interactions. Due to the uneven distribution of degrees among different
nodes, these operations can only be carried out within the CPUs, even when performed in parallel.
On the contrary, our method can directly retrieve the already sampled neighbors within the GPU in
constant time.

Phttps://pyjoules.readthedocs.io/en/latest/

18


https://pyjoules.readthedocs.io/en/latest/

Scalable and Efficient Temporal Graph Representation Learning via Forward Recent Sampling

88.0 1

®
N
[

Transductive AUC
=3
3
[=)

©
o
wn

86.0 1

—— transductive NLB-node
85.5 4 — transductive NLB-edge

T T T T T T

T T T
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Probability a
Figure 5: The changes in transductive link prediction test performance with respect to different a on the
Ubuntu dataset.
dataset proposed sampling trunc. 1-thread trunc. 32-thread unif. I-thread unif. 32-thread
Wiki-talk 0.19 6.06 5.47 8.90 6.53
Reddit 0.10 0.96 0.68 1.02 0.82
GDELT 0.55 119.19 93.46 390.24 181.47

Table 12: The accumulated sampling time for inference during the training process over one epoch in seconds.

We have conducted an experiment that measures only the accumulated sampling time during inference
for one epoch in seconds for three datasets (Table 12). The results show that our method can retrieve
the samples instantaneously, while both truncation and uniform sampling are significantly slower
in comparison. Uniform sampling is even slower than truncation, and multi-thread (32 threads)
sampling is faster than single-thread sampling, especially for large datasets, as expected.

19



Scalable and Efficient Temporal Graph Representation Learning via Forward Recent Sampling

task dataset 0.2 0.4 0.6 0.8 09 1.0
NLB-edge trans Reddit 72.39+2.15 72.86+2.06 73.13+£3.44 73.47+248 75.40+1.85 72.77+2.69
NLB-node > 66.21 £2.95 64.85+3.83 67.27+2.00 68.15+1.45 67.65+5.31 67.85+2.72
NLB-edge induc. | Ubuntu 21.59+4.83 21.74+2.84 2272+335 23.84+227 21.13+244 21.494+4.49
NLB-node : 22.734+3.07 21.08 +3.01 20.60 £4.22 20.54+348 21.46+2.97 21.3044.92

Table 13: The performance measured in MRR with 500 negative samples of NLB-edge and NLB-node given
different ’s. o = 0.9 is the setting used for comparison with baselines.

task 0 5 10 5 20 25 30
NLB-edge [ . "[6235+ 130 70.62+£3.16 69.93+406 7313108 7540+ 185 7352+1.34 72.30£338
NLB-node S 162354130 66.14+474 68.96+£1.67 69.17+£1.82 6765531 67.10=4.42 66.78+1.94
NLB-edge | . 3650 £349 54.65 436 5962 L1.03 5600 L545 61.74E185 6187 £2.03 61.33 £2.65
NLB-node | %" | 3650 £3.49 47.69+£6.44 51.15+536 54.50+4.76 53.43+£8.03 57.06£7.02 58.09=+0.93

Table 14: The performance measured in MRR with 500 negative samples of NLB-edge and NLB-node on
the Reddit dataset given different down-sampled neighbor hash table sizes s. s = 20 is the setting used for
comparison with baselines.
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