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CONTROLLABLE HUMAN IMAGE ANIMATION
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Figure 1: Our method demonstrates its ability to produce diverse animations and preserve consis-
tency of appearance.

ABSTRACT

Controllable human image animation aims to generate videos from reference im-
ages using driving videos. Due to the limited control signals provided by sparse
guidance (e.g., skeleton pose), recent works have attempted to introduce addi-
tional dense conditions (e.g., depth map) to ensure motion alignment. However,
such strict dense guidance impairs the quality of the generated video when the
body shape of the reference character differs significantly from that of the driving
video. In this paper, we present DisPose to mine more generalizable and effec-
tive control signals without additional dense input, which disentangles the sparse
skeleton pose in human image animation into motion field guidance and keypoint
correspondence. Specifically, we generate a dense motion field from a sparse mo-
tion field and the reference image, which provides region-level dense guidance
while maintaining the generalization of the sparse pose control. We also extract
diffusion features corresponding to pose keypoints from the reference image, and
then these point features are transferred to the target pose to provide distinct iden-
tity information. To seamlessly integrate into existing models, we propose a plug-
and-play hybrid ControlNet that improves the quality and consistency of generated
videos while freezing the existing model parameters. Extensive qualitative and
quantitative experiments demonstrate the superiority of DisPose compared to cur-
rent methods. Project page: https://anonymous.4open.science/r/DisPose-AB1D.

1 INTRODUCTION

Controllable video generation (Zhang et al., 2023b; Yin et al., 2023; Wang et al., 2024c) has gained
increasing attention for its ability to customize videos based on user preferences. In particular,
controllable human image animation (Hu et al., 2023; Wang et al., 2024b) has attracted significant
interest due to its vast potential applications in art creation, social media, and digital humans. It
aims to animate static images into realistic videos based on driving videos. In contrast to other
controllable video generation methods (e.g., camera control (He et al., 2024; Wang et al., 2024c),
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trajectory control (Wu et al., 2024; Wang et al., 2024c; Li et al., 2024)), controllable human image
animation allows for more flexible motion regions, diverse motion paradigms, and complex character
appearances. Introducing precise pose control in existing video generation methods is challenging,
but has significant value in achieving the desired results. There are two challenges: (1) following the
motion of the driving video, and (2) preserving the appearance information of the reference image.

The motion control signal is critical to drive the animation. Controllable human image animation
usually utilizes the skeleton pose (Yang et al., 2023) as the control signal. Besides the fact that the
skeleton pose is easy to obtain, the more important reason is that it is easier to adapt to different body
shapes when the target body shape is significantly different from the reference image. However, the
skeleton pose as a sparse expression provides limited guidance information. To provide more con-
trol signals, recent work (Zhu et al., 2024; Xu et al., 2024) has attempted to express human body
geometry and motion regions by extracting various dense signals from the driving video, includ-
ing DensePose (Güler et al., 2018), SMPL (Loper et al., 2015) and depth map (Yang et al., 2024),
etc. Unfortunately, these dense signals impose strict shape constraints on the generated characters,
they are more difficult to adapt to reference images with different body shapes. Moreover, extract-
ing dense signals accurately in complex motion videos is inherently difficult (Zhang et al., 2024).
These overly dense guidance techniques exacerbate pose estimation errors and thus impair genera-
tion quality. Therefore, the existing methods (Chang et al., 2023; Hu et al., 2023; Zhu et al., 2024;
Wang et al., 2024b) are struggling to trade off generalizability and effectiveness between sparse and
dense controls. It would be beneficial to mine more generalizable and effective control signals from
the skeleton pose map instead of dense control inputs.

On the other side, preserving appearance consistency from complex motion is also extremely chal-
lenging. Image-driven generation methods (Zhang et al., 2023a; Ye et al., 2023; Wang et al., 2024a)
typically employ the CLIP (Radford et al., 2021) image encoder as a substitute for the text encoder
to introduce low-level details of the image. Inspired by dense reference image conditioning, recent
works (Hu et al., 2023; Xu et al., 2024) opt to train an additional reference network that uses the
same initialization as the denoising network. The feature maps from the reference network are in-
jected into the denoising network through the attention mechanism. This dual U-Net architecture
significantly increases the training cost. Moreover, such dense reference image conditioning is in-
effective for actions with body shape changes. Existing works neglect the fact that the keypoints
of the sparse skeleton pose correspond to appearance characteristics. We argue that considering
sparse skeleton pose keypoints as correspondences can provide effective appearance guidance while
relaxing shape constraints.

To this end, we propose DisPose, a plug-and-play guidance module to disentangle pose guidance,
which extracts robust control signals from only the skeleton pose map and reference image without
additional dense inputs. Specifically, we disentangle pose guidance into motion field estimation and
keypoint correspondence. First, we compute the sparse motion field using the skeleton pose. We then
introduce a reference-based dense motion field to provide region-level motion signals through con-
dition motion propagation on the reference image. To enhance appearance consistency, we extract
diffusion features corresponding to key points in the reference image. These point features are trans-
ferred to the target pose by computing multi-scale point correspondences from the motion trajectory.
Architecturally, we implement these disentangled control signals in a ControlNet-like (Zhang et al.,
2023a) manner to integrate them into existing methods. Finally, motion fields and point embedding
are injected into the latent video diffusion model resulting in accurate human image animation as
shown in Figure. 1. The contribution of this paper can be summarized as:

• We propose a plug-and-play module for controllable human animation.
• We innovatively disentangle motion field guidance and keypoint correspondence from pose con-

trol to provide efficient control signals without additional dense inputs.
• Extensive qualitative and quantitative experiments demonstrate the superiority and generality of

the proposed model.

2 RELATED WORK

Latent Image/Video Diffusion Models. Diffusion-based models (Ho et al., 2020; Song et al., 2020;
Rombach et al., 2022; Zhang et al., 2023a) have achieved remarkable success in the fields of image
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generation and video generation. Due to reasons such as computational intensity and information
redundancy, diffusion models directly on the pixel space are hard to scale up. The latent diffusion
model (LDM) (Rombach et al., 2022) introduces a technique for denoising in the latent space, which
reduces the computational requirements while preserving the generation quality. In contrast to image
generation, video generation requires more accurate modeling for temporal motion patterns. Recent
video generation models (Blattmann et al., 2023b; Ge et al., 2023; Guo et al., 2023) utilize pre-
trained image diffusion models to enhance the temporal modeling capability by inserting temporal
mixing layers of various forms.

Diffusion Models for Human Image Animation. Recent advancements in latent diffusion models
have significantly contributed to the development of human image animation. Previous human image
animation models (Wang et al., 2024b; Xu et al., 2024; Chang et al., 2023) followed the same two-
stage training paradigm. In the first stage, the pose-driven image model is trained on individual video
frames and corresponding pose images. In the second stage, the temporal layer is inserted to capture
temporal information while keeping the image generation model frozen. Based on this stage training
paradigm, Animate Anyone (Hu et al., 2023) utilizes ReferenceNet with UNet architecture to extract
appearance features from reference characters. With the development of video diffusion modeling,
recent work (Zhang et al., 2024) has directly fine-tuned Stable Video Diffusion (SVD) (Blattmann
et al., 2023a) to replace two-stage training. To prove the effectiveness of the proposed method, we
integrate DisPose on both paradigms.

Control Guidance in Human Image Animation. Human image animation typically uses the skele-
ton pose (e.g., OpenPose (Cao et al., 2017)) as the control guide. DWpose (Yang et al., 2023) stands
out as an augmented alternative to OpenPose (Cao et al., 2017) since it provides more accurate
and expressive skeletons. Recent work has focused on introducing dense conditions to enhance
the quality of the generated video. MagicAnimate (Xu et al., 2024) uses DensePose (Güler et al.,
2018) instead of skeleton pose, which establishes a dense correspondence between RGB images
and surface-based representations. Champ (Zhu et al., 2024) renders depth maps, normal maps,
and semantic maps from SMPL (Loper et al., 2015) to provide detailed pose information. However,
these overly dense guidance techniques rely too much on the driving video and generate inconsistent
results when the target identity is significantly different from the reference. In this paper, we pro-
pose a reference-based dense motion field that provides dense motion signals while avoiding strict
geometric constraints.

3 PRELIMINARY

We choose Stable Diffusion (SD) as the base diffusion model in this paper since it is the most
popular open-source model and has a well-developed community. SD performs the diffusion process
in the latent space of a pre-trained autoencoder. The input image I is transformed into a latent
representation z0 = E(I) using a frozen encoder E(·). The diffusion process involves applying a
variance preserving Markov process to z0, where noise levels increase monotonically to generate
diverse noisy latent representations:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (1)

where t=1, · · · , T denotes the time steps within the Markov process, where T is commonly con-
figured to 1000, and ᾱt represents the pre-defined noise intensity at each time step. The denoising
network ϵθ(·) learns to reverse this process by predicting the added noise, encouraged by the mean
squared error (MSE) loss:

L = EE(I),y,ϵ∼N (0,I),t

[
∥ϵ− ϵθ (zt, t, ctext)∥22

]
, (2)

where ctext is the text embedding corresponding to I . The denoising network ϵθ(·) is typically
implemented as a U-Net (Ronneberger et al., 2015) consisting of pairs of down/up sample blocks at
four resolution levels, as well as a middle block. Each network block consists of ResNet (He et al.,
2016), spatial self-attention layers, and cross-attention layers that introduce text conditions.

4 DISPOSE

Given a reference image Iref ∈ R3×H×W and a driving video V ∈ RN×3×H×W . The core of our
method is to disentangle efficient control guidance from only skeleton poses and reference images

3
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Figure 2: The overview of proposed DisPose.

as shown in Figure 2, which can be applied to existing human animation methods without additional
dense inputs. We first introduce sparse and dense motion field guides in Sec. 4.1. Then, we introduce
reference-based keypoint correspondence in Sec. 4.2. Finally, we introduce the pipeline of hybrid
ControlNet in Sec 4.3.

4.1 MOTION FIELD GUIDANCE

Sparse Motion Field. We first estimate the skeleton pose by DWpose (Yang et al., 2023) to obtain
each frame’s human key point coordinates. Subsequently, the key points of the reference image are
used as starting points to track the motion displacement of all frames and represented as Ptraj =
{(xk

n, y
k
n) | k = 1 . . .K, n = 0 . . . N}, where Ptraj denotes the trajectory map of the key point

k overall N frames and n = 0 denotes the reference image. We calculate the track matrix Ps as
follows:

Ps = {(xk
n − xk

n−1, y
k
n − ykn−1) | n = 1 . . . N}}, (3)

where K denotes the number of keypoints, N denotes the number of frames, Ps denotes the trajec-
tory map of keypoint k over all N frames, and n = 0 denotes the reference image. To avoid training
instability caused by overly sparse trajectory matrice, we then apply Gaussian filtering to enhance
Ps to obtain the sparse motion field Fs∈R(N−1)×2×H×W .

Dense Motion Field. Considering that sparse control provides limited guidance and dense control
is hard to obtain during inference, we transform dense guidance into the motion propagation from
the reference frame to the target pose, instead of the dense signal of the target pose. Specifically, in
the inference, we reconstruct the trajectory map Ps as the reference-based sparse optical flow Pd

from the reference frame to each target pose as:

Pd = {(xk
n − xk

0 , y
k
n − yk0 ) | n = 1 . . . N}}, (4)

We then predicted the reference-based dense motion filed Fd = CMP(Ptraj ,Pd, Iref ) ∈
R(N−1)×2×H×W by condition motion propagation (CMP) (Zhan et al., 2019) based on the sparse
optical flow Pd and the reference image Iref . CMP (Zhan et al., 2019) is a self-supervised learning-
from-motion model that acquires an image and a sparse motion field and estimates the corresponding
dense motion field. Notably, the dense motion field Fd of each frame starts with the reference image,
which avoids geometric constraints during inference.

To ensure motion estimation accuracy during training, we first extract the forward optical flow from
the driving video using existing optical flow estimation models (Teed & Deng, 2020; Xu et al.,
2023). We then use a watershed-based approach (Zhan et al., 2019) to sample the sparse optical
flow Pd from the forward optical flow. See Appendix. A for details.

4
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Motion Encoder. To leverage motion field as guidance, we introduce a motion encoder specifically
designed for the optional flow, which includes sparse motion encoder Es, dense motion encoder Ed
and feature fusion layer Fe. Ed and Es have the same structure and are multi-scale convolutional
encoders with each stage built by Conv-SiLU-ZeroConv (Zhang et al., 2023a) as the basic block.
The feature fusion layer Fe is a 2D convolution for fusing sparse motion features Es(Fs) and dense
motion features Ed(Fd). Finally, we compute the motion field guidance Fm:

Fm = Fe(Es(Fs) + Ed(Fd)) (5)

4.2 KEYPOINT CORRESPONDENCE

Point Feature Extraction. To maintain a consistent appearance, it is crucial to correspond the con-
tent of the reference image with the motion trajectory. Specifically, we first extract the DIFT (Tang
et al., 2023) features D of the reference image using the pre-trained image diffusion model. Sub-
sequently, the keypoint embedding in the reference is obtained as D(xk

0 , y
k
0 ), where (xk

0 , y
k
0 ) is

retrieved from the reference pose. Next, we initialize the keypoint correspondence map Fp with
zero vectors and assign point embeddings according to the trajectory coordinates as:

f ij
n =

{
D(xk

0 , y
k
0 ), if i = xk

n, j = ykn,
0, otherwise.

(6)

Finally, we obtain the keypoint correspondence map Fp = {fn |n = 1 . . . N}∈RN×Dp×H×W for
all frames, where Dp is the feature dimension of the point embedding.

Point Encoder. To utilize the content correspondence of key points as guidance, we generate multi-
scale correspondences of sparse point feature maps and make them compatible with the U-Net en-
coder of the Hybrid ControlNet (Sec.4.3). We introduce the multi-scale point encoder Ep to main-
tain the key point content Fp from the reference image. The point encoder Ep consists of a series
of learnable MLPs. To seamlessly integrate into existing models, we extract intermediate features
of the encoder of the hybrid Controlnet. The multi-scale intermediate features of the Controlnet
encoder are denoted as El

enc, where l denotes each U-Net block l∈ [1, L]. To match the spatial size
of El

enc, we apply downsampling to the feature map between the encoder layers. We compute the
multi-scale keypoint correspondence as follows:

Fl
c = E l

p(ϕ(Fp, H
l,W l)), (7)

where (H l,W l) are denote the spatial dimension of the l-th U-Net block and ϕ means downsampling
operation. Therefore, Fl

c shares the same size as El
enc. Finally, Fc are added elementwisely to the

intermediate feature El
enc of the U-Net encoder as guidance: El

enc=El
enc + Fl

c.

4.3 PLUG-AND-PLAY HYBRID CONTROLNET

After obtaining motion field guidance and keypoint correspondence, we aim to integrate these con-
trol guidance seamlessly into the U-Net architecture of existing animation models. Inspired by
ControlNet (Zhang et al., 2023a), We design a hybrid ControlNet F to provide additional control
signals for the existing animation model as shown in Figure 2(e). Specifically, given an animation
diffusion model based on the U-Net architecture, we freeze its all modules while allowing the mo-
tion encoder, point encoder and hybrid ControlNet to be updated during training. Subsequently, Fm

is added to the noise latent before being input into the hybrid ControlNet. Considering the high
sparsity of the point feature Fc, we correspondingly add Fc to the input of the convolutional layer.
Notably, the U-Net encoder intermediate feature Eenc in Sec. 4.2 is from hybrid ControlNet rather
than denoising U-Net. Finally, the control condition is computed as:

r = F(zt | Fm,Fc, t) (8)

where r is a set of condition residuals added to the residuals for the middle and upsampling blocks
in the denoising U-Net.

5
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Table 1: Quantitative comparisons on Tiktok dataset.

Method
VBench↑

FID-FVD↓ FVD↓ CD-FVD↓
Temporal Subject Background Motion Dynamic Imaging
Flickering Consistency Consistency Smoothness Degree Quality

Stable Diffusion1.5
MagicPose (Chang et al., 2023) 96.65 95.12 94.55 98.29 22.70 63.87 15.53 1015.04 693.24
Moore (MooreThreads, 2024) 96.86 95.18 95.37 98.01 25.51 69.14 11.58 924.40 687.88
MusePose (Tong et al., 2024) 97.02 95.27 95.16 98.45 27.31 71.56 11.48 866.36 626.59
MusePose+Ours 97.63 95.70 95.64 98.51 31.34 71.89 11.26 764.00 622.64

Stable Video Diffusion
ControlNeXt (Peng et al., 2024) 97.55 94.58 95.60 98.75 27.58 70.40 10.49 496.87 624.51
MimicMotion (Zhang et al., 2024) 97.56 94.95 95.36 98.67 28.42 68.42 10.50 598.41 621.90
MimicMotion+Ours 97.73 95.72 95.90 98.89 29.51 71.33 10.24 466.93 603.27

5 EXPERIMENTS

5.1 IMPLEMENTATIONS

Baseline Models. To demonstrate the effectiveness of DisPose, we integrate proposed modules
into two open source human image animation models: MusePose (Tong et al., 2024) and Mimic-
Motion (Zhang et al., 2024). MusePose (Tong et al., 2024) is a reimplementation of AnimateAny-
one (Hu et al., 2023) by optimizing Moore-AnimateAnyone (MooreThreads, 2024), which imple-
ments most of the details of AnimateAnyone (Hu et al., 2023) and achieves comparable performance.
MimicMotion (Zhang et al., 2024) is the state-of-the-art human animation model based on Stable
Video Diffusion (Blattmann et al., 2023a).

Implementation Details. Following (Hu et al., 2023; Zhang et al., 2024), We employed DW-
Pose (Yang et al., 2023) to extract the pose sequence of characters in the video and ren-
der it as pose skeleton images following OpenPose (Cao et al., 2017). We collected 3k hu-
man videos from the internet to train our model. For MusePose (Tong et al., 2024), we used
stable-diffusion-v1-51 to initialize our hybrid ControlNet. We sampled 16 frames from
each video and center cropped to a resolution of 512×512. Training was conducted for 20,000 steps
with a batch size of 32. The learning rate was set to 1e-5. For MimicMotion (Zhang et al., 2024),
we initialized our hybrid ControlNet using stable-video-diffusion-img2vid-xt2. We
sampled 16 frames from each video and center crop to a resolution of 768×1024. Training was
conducted for 10,000 steps with a batch size of 8. The learning rate was set to 2e-5.

Evaluation metrics. The video quality is evaluated by calculating the Frechet Inception Distance
with Fréchet Video Distance (FID-FVD) (Balaji et al., 2019), Fréchet Video Distance (FVD) (Un-
terthiner et al., 2018) and Content-Debiased Fréchet Video Distance (CD-FVD) (Ge et al., 2024)
between the generated video and the grounded video. Considering that these metrics are incon-
sistent with human judgment (Huang et al., 2024), we introduce metrics in VBench (Huang et al.,
2024) to comprehensively assess the consistency of the generated video with human perception, in-
cluding temporal flickering, aesthetic quality, subject consistency, background consistency, motion
smoothness, dynamic degree, and imaging quality.

5.2 QUANTITATIVE COMPARISON

Evaluation on TikTok dataset. We compare our method to the state-of-the-art human image anima-
tion methods, including MagicPose (Chang et al., 2023), Moore-AnymateAnyone (MooreThreads,
2024), MusePose (Tong et al., 2024), ControlNeXt (Peng et al., 2024) and MimicMotion (Zhang
et al., 2024). Following previous works (Zhang et al., 2024; Wang et al., 2024b), we use sequences
335 to 340 from the TikTok (Jafarian & Park, 2021) dataset for testing. Table 1 presents a quantita-
tive analysis of the various methods evaluated on the TikTok dataset. The proposed methods achieve
significant improvements across different baseline models. Our method achieves higher scores on
VBench (Huang et al., 2024) while reducing FID-FVD and FVD scores, which indicates that the
proposed method generates high-quality videos that align with human perception.

1https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5.
2https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt.
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Table 2: Quantitative comparisons on unseen dataset.

Method Temporal Subject Background Motion Dynamic Imaging Aesthetic
Flickering Consistency Consistency Smoothness Degree Quality Quality

Stable Diffusion1.5
MagicPose (Chang et al., 2023) 92.65 93.71 98.51 25.67 63.78 93.65 46.16
Moore (MooreThreads, 2024) 92.83 92.42 98.12 27.43 65.32 94.61 47.23
MusePose (Tong et al., 2024) 93.12 93.97 98.58 28.72 65.26 96.41 49.34
MusePose+Ours 93.43 94.22 98.76 29.61 65.48 96.63 49.39

Stable Video Diffusion
ControlNeXt (Peng et al., 2024) 93.25 94.27 98.70 28.42 64.36 97.42 49.10
MimicMotion (Zhang et al., 2024) 93.32 94.12 98.50 29.81 64.51 97.45 49.03
MimicMotion+Ours 93.59 94.35 98.75 30.02 65.56 97.80 49.93

MimicMotion
+ Ours

Ground 
Truth

ControlNeXtMoore
AnimateAnyone

MusePose
+ Ours

Reference
Image

MimicMotionMusePose

Figure 3: Qualitative comparisons between our method and the state-of-the-art models on the TikTok
dataset.

Evaluation on unseen dataset. Training videos collected from the Internet may exhibit domain
proximity with the TikTok (Jafarian & Park, 2021) test set. We construct an unseen dataset to further
compare the generalizability of various methods. We collect 30 high-quality human videos and gen-
erate reference images with diverse styles using InstanID (Wang et al., 2024a). Due to the unavail-
ability of the ground truth corresponding to the generated reference images, we use VBench (Huang
et al., 2024) as the quantitative metric as shown in Table 2.

5.3 QUALITATIVE RESULTS

Comparison with state-of-the-art methods. Figure 3 illustrates the qualitative results between the
various models on the TikTok dataset. Thanks to the motion field guidance and keypoint correspon-
dence, our method can produce reasonable results with significant pose variation.

Comparison with dense condition. To compare the proposed method with the existing dense con-
dition, we conduct qualitative experiments in Figure 4. Champ (Zhu et al., 2024) represents human
body geometry and motion features through rendered depth images, normal maps, and semantic
maps obtained from SMPL (Loper et al., 2015) sequences. Since rendering an accurate human body
model for an arbitrary reference character during inference is virtually impossible, Champ achieves
rough shape alignment by the parametric human model. This leads to dense conditional distortions
in some human body regions (e.g., face and hands) thus degrading the video quality. Moreover, para-
metric alignment may fail when there are significant differences in the shape and layout between the
reference image and the driving video resulting in erroneous results as shown in the last case in Fig-
ure 4. In contrast to the previous dense condition, we introduce a reference-based dense motion field
through the motion propagation of the skeleton pose as shown in Figure 5, which provides dense
signals while avoiding the strict constraints of the target pose.

Cross-identity animation. Beyond animating each reference character with the corresponding mo-
tion sequence, we further investigate the cross-identity animation capability of DisPose as shown in

7
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Reference Image Champ OursReference Image Champ Ours

Figure 4: Qualitative comparison of our approach with the dense control-based method.

Table 3: Ablation study on different control guidance. “w/o Motion” denotes the model configura-
tion that disregards motion filed guidance. “w/o Point” indicates the variant model that removes the
keypoint correspondence.

Method
VBench↑

FID-FVD↓ FVD↓
Temporal Subject Background Motion Dynamic Imaging
Flickering Consistency Consistency Smoothness Degree Quality

w/o Motion 97.66 95.04 95.31 98.75 29.42 69.53 10.31 478.91
w/o Point 97.47 95.57 95.43 98.42 29.14 70.14 10.28 498.74
Full Model 97.73 95.72 95.90 98.89 29.51 71.33 10.24 466.93

Figure 6. Our method generates high-quality animations for the reference image that are faithful to
the target motion, proving its robustness. See Appendix. B for more qualitative results.

5.4 ABLATION STUDY

Quantitative results. As shown in Table 3, the full configuration of the proposed method out-
performs the other variants in all metrics. The motion field guidance provides region-level control
signals that enhance video consistency, resulting in lower FID-FVD and FVD. The keypoint corre-
spondence creates the feature map of the target pose by localizing the semantic point features of the
reference image, which makes the generated video more consistent with human perception.

Semantic correspondence. To better understand the performance of keypoint correspondences, we
visualize the semantic correspondences of the variant models in Figure 7. Specifically, we select a
human region (e.g., hand) from the source image and query the target image using the corresponding
DIFT features. The keypoint correspondence can localize the correct semantic region from the
various characters.

6 CONCLUSION

In this paper, we present DisPose, a plug-and-play module for improving human image animation,
which aims to provide efficient conditional control without additional dense inputs. To achieve this,
we disentangle pose control into motion field guidance and keypoint correspondence. To obtain
the motion field guidance, we first construct the tracking matrix from the skeleton pose, and then
obtain the sparse and dense motion fields by Gaussian filtering and conditional motion diffusion,
respectively. Moreover, we introduce the keypoint correspondence of diffusion features to explore
the semantic correspondence in image animation. Finally, we integrate the extracted guidance fea-
tures into a hybrid control network. Once trained, our model can be integrated into existing human

8
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Driving VideoReference Image

Dense Condition 
(Champ)

Motion Field
(Ours)

Driving VideoReference Image

Dense Condition 
(Champ)

Motion Field
(Ours)

Figure 5: Comparison of our reference-based dense motion field and existing dense conditions.

Driving Video

Reference Image Generated Video

Reference Image Generated Video

Driving Video

Reference Image Generated Video

Reference Image Generated Video

Figure 6: The demonstration of cross ID animation from the proposed method.

image animation models. Extensive evaluation of various models also validates the effectiveness
and generalizability of our DisPose.

7 LIMITATIONS AND FUTURE WORKS

Despite our DisPose enhances motion guidance and appearance alignment, the ability to synthesize
unseen parts for characters is still limited. As shown in Figure 8, we attempt to generate multi-view
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Source Image Target Image

w/o Point  

Ours

Figure 7: Qualitative analysis of semantic correspondence. Given a red source point in an image
(far left), we use its diffusion feature to retrieve the corresponding point in the image on the right.

Reference Image Generated Video Reference Image Generated Video

Figure 8: Qualitative results of our method for multi-view video generation.

videos for the single-view reference image. In the future, we will explore camera control or multi-
view synthesis models for capturing multi-view reference information. Moreover, introducing the
3D sparse pose as a control condition can also address this issue.

8 ETHICS STATEMENT

We clarify that all characters in this paper are fictional except for the TikTok (Jafarian & Park, 2021)
dataset. We strongly condemn the misuse of generative artificial intelligence to create content that
harms individuals or spreads misinformation. However, we acknowledge the potential for misuse
of our approach. This is because it focuses on human-centered animation generation. We uphold
the highest ethical standards in our research, including adherence to legal frameworks, respect for
privacy, and encouragement to generate positive content.
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Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. Densepose: Dense human pose estimation
in the wild. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 7297–7306, 2018.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
sion models without specific tuning. arXiv preprint arXiv:2307.04725, 2023.

Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan
Yang. Cameractrl: Enabling camera control for text-to-video generation. arXiv preprint
arXiv:2404.02101, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Li Hu, Xin Gao, Peng Zhang, Ke Sun, Bang Zhang, and Liefeng Bo. Animate anyone:
Consistent and controllable image-to-video synthesis for character animation. arXiv preprint
arXiv:2311.17117, 2023.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
video generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21807–21818, 2024.

Yasamin Jafarian and Hyun Soo Park. Learning high fidelity depths of dressed humans by watching
social media dance videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12753–12762, 2021.

Yaowei Li, Xintao Wang, Zhaoyang Zhang, Zhouxia Wang, Ziyang Yuan, Liangbin Xie, Yuexian
Zou, and Ying Shan. Image conductor: Precision control for interactive video synthesis. arXiv
preprint arXiv:2406.15339, 2024.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.
SMPL: A skinned multi-person linear model. ACM Transactions on Graphics, (Proc. SIGGRAPH
Asia), 34(6):248:1–248:16, October 2015.

MooreThreads. Moorethreads/moore-animateanyone, 2024. URL https://github.com/
MooreThreads/Moore-AnimateAnyone.

Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, and Jiaya Jia. Controlnext:
Powerful and efficient control for image and video generation. arXiv preprint arXiv:2408.06070,
2024.

11

https://github.com/MooreThreads/Moore-AnimateAnyone
https://github.com/MooreThreads/Moore-AnimateAnyone


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, and Bharath Hariharan. Emergent
correspondence from image diffusion. Advances in Neural Information Processing Systems, 36:
1363–1389, 2023.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part II 16, pp. 402–419. Springer, 2020.

Zhengyan Tong, Chao Li, Zhaokang Chen, Bin Wu, and Wenjiang Zhou. Musepose: a pose-driven
image-to-video framework for virtual human generation, 2024. URL https://github.com/
TMElyralab/MusePose.

Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges.
arXiv preprint arXiv:1812.01717, 2018.

Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, and Anthony Chen. Instantid: Zero-shot identity-
preserving generation in seconds. arXiv preprint arXiv:2401.07519, 2024a.

Tan Wang, Linjie Li, Kevin Lin, Yuanhao Zhai, Chung-Ching Lin, Zhengyuan Yang, Hanwang
Zhang, Zicheng Liu, and Lijuan Wang. Disco: Disentangled control for realistic human dance
generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 9326–9336, 2024b.

Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In
ACM SIGGRAPH 2024 Conference Papers, pp. 1–11, 2024c.

Wejia Wu, Zhuang Li, Yuchao Gu, Rui Zhao, Yefei He, David Junhao Zhang, Mike Zheng Shou,
Yan Li, Tingting Gao, and Di Zhang. Draganything: Motion control for anything using entity
representation. arXiv preprint arXiv:2403.07420, 2024.

Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Fisher Yu, Dacheng Tao, and Andreas
Geiger. Unifying flow, stereo and depth estimation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023.

Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, Jia-Wei Liu, Chenxu Zhang, Jiashi
Feng, and Mike Zheng Shou. Magicanimate: Temporally consistent human image animation
using diffusion model. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1481–1490, 2024.

Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth
anything: Unleashing the power of large-scale unlabeled data. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10371–10381, 2024.

12

https://github.com/TMElyralab/MusePose
https://github.com/TMElyralab/MusePose


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhendong Yang, Ailing Zeng, Chun Yuan, and Yu Li. Effective whole-body pose estimation with
two-stages distillation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 4210–4220, 2023.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721, 2023.

Shengming Yin, Chenfei Wu, Jian Liang, Jie Shi, Houqiang Li, Gong Ming, and Nan Duan. Drag-
nuwa: Fine-grained control in video generation by integrating text, image, and trajectory. arXiv
preprint arXiv:2308.08089, 2023.

Xiaohang Zhan, Xingang Pan, Ziwei Liu, Dahua Lin, and Chen Change Loy. Self-supervised learn-
ing via conditional motion propagation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 1881–1889, 2019.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3836–3847, 2023a.

Yabo Zhang, Yuxiang Wei, Dongsheng Jiang, Xiaopeng Zhang, Wangmeng Zuo, and Qi Tian. Con-
trolvideo: Training-free controllable text-to-video generation. arXiv preprint arXiv:2305.13077,
2023b.

Yuang Zhang, Jiaxi Gu, Li-Wen Wang, Han Wang, Junqi Cheng, Yuefeng Zhu, and Fangyuan Zou.
Mimicmotion: High-quality human motion video generation with confidence-aware pose guid-
ance. arXiv preprint arXiv:2406.19680, 2024.

Shenhao Zhu, Junming Leo Chen, Zuozhuo Dai, Yinghui Xu, Xun Cao, Yao Yao, Hao Zhu, and Siyu
Zhu. Champ: Controllable and consistent human image animation with 3d parametric guidance.
In European Conference on Computer Vision (ECCV), 2024.

A SAMPLING FROM WATERSHED

During training, the sparse optical flow Pd is sampled from the target optical flow. For effective
propagation, those guidance vectors should be placed at some keypoints where the motions are
representative. We adopt a watershed-based (Zhan et al., 2019) method to sample such keypoints.
Given the optical flow of an image, we first extract motion edges using a Sobel filter. Then we
assign each pixel a value to be the distance to its nearest edge, resulting in the topological-distance
watershed map. Finally, we apply Non-maximum Suppression (NMS) with kernel size Kf on the
watershed map to obtain the keypoints. We can adjust Kf to control the average number of sampled
points. A larger Kf results in sparser samples. Points on image borders are removed. With the
watershed sampling strategy, all the keypoints are roughly distributed on the moving objects.

B MORE QUANTITATIVE RESULTS

Figures 9 and Figure 10 illustrate more qualitative results.

C MORE ABLATION ANALYSES

As shown in Figure 11, the region-level guidance provided by our motion field guidance facilitates
the enhancement of consistency across body regions. The proposed keypoints correspondence im-
proves generation quality by aligning DIFT features of the skeleton pose, e.g., facial consistency.
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Figure 9: More Qualitative Comparisons.

Figure 10: More Qualitative Comparisons.

D MORE DETAILS OF MOTION FIELD GUIDANCE

There is a gap between the inference and the training optical flow. (1) During inference, we do not
propose extracting the forward optical flow directly from the driving video, as it ignores the gap
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Figure 11: Qualitative results about motion field guidance and keypoints correspondence.

Table 4: The impact of hybrid
ControlNet.

Methods FID-FVD↓ FVD↓
Exp1 10.43 514.83
Exp2 10.94 551.32
Full Model 10.24 466.93

Table 5: The impact of CMP.
Methods subject consistency↑ background consistency↑
Full Model w/o CMP 93.94 97.83
Full Model 94.35 98.75

between the reference character and the driving video. As shown in Figure 13(a)and Figure 14(a),
directly using the forward optical flow as motion guidance is clearly inconsistent with the reference
image. (2) When there is a large difference between the reference image and the driving video, it is
impossible to get the corresponding motion field by the existing optical flow estimation model, as
shown in Figure 14(b). Therefore, we have to compute Pd differently during inference. Although
the dense motion field we proposed in Section 4.1 can adapt to different body variations during
inference. However, there are two limitations of this dense motion field: (1) there is a gap with the
motion field extracted from real videos, and (2) the low computational efficiency is not suitable for
use during training. Considering that pairs of training data have no body changes, to utilize accurate
control signals during training and to improve computational efficiency, we approximate the optical
flow during inference by sampling sparse optical flow before prediction as shown in Figure 13(c).

E MORE ABLATION STUDY

E.1 THE IMPACT OF HYBRID CONTROLNET ARCHITECTURE

We show the impact of hybrid ControlNet architecture in Table 4. Specifically, we design two variant
architectures, (1) Exp1: inserting the motion field into the denoising network instead of the hybrid
controller as shown in Figure 12(a), and (2) Exp2: removing the hybrid ControlNet and inserting
the motion field guidance and keypoint correspondence into the denoising network as shown in
Figure 12(b). Exp1 shows that the motion field needs to be jointly optimized with U-Net to provide
the correct representation. Exp2 shows that complex motion information and appearance features
cannot be modeled with only two shallow encoders.

E.2 THE IMPACT OF CMP.

We provide the ablation analysis of CMP in Table 5, which shows that CMP can improve the con-
sistency of the generated video.
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Table 6: Performance comparisons for image-level metrics.
Methods SSIM ↓ PSNR↓ LPIPS↑ L1↑
MusePose 0.788 19.14 0.263 2.46E-05
MusePose+Ours 0.811 19.36 0.238 2.26E-05

MimicMotion 0.749 18.32 0.272 2.71E-05
MimicMotion+Ours 0.781 19.58 0.242 2.42E-05

Table 7: Performance comparisons for image-level metrics.
Methods trainable parameters(MB) infer time (sec/frame)

MusePose 2072.64 3.37
MimicMotion 1454.19 1.61
MimicMotion+Ours 653.4 2.36

Figure 12: Different hybrid ControlNet architectures.

F MORE PERFORMANCE COMPARISONS.

To further evaluate the generated results, we provide performance comparisons for image-level met-
rics in Table 6. Compared to the baseline model, our method achieves significant improvements in
all metrics.

G TRAINABLE PARAMETERS AND INFERENCE TIME

We compare the trainable parameters and inference time of the different models in Table 7. For a fair
comparison, the size of the generated video is set to 576x1024. Our method requires fewer trainable
parameters based on the baseline model. During inference, our method estimates the motion field
for the reference image, which increases inference time a little.

H ANALYSIS OF BACKGROUND NOISE.

Since our motion fields are not extracted directly from the driving video, some noise due to esti-
mation errors may be introduced. As shown in Figure 15, the motion field of the reference image
without the background is more accurate than the complex background.
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Figure 13: Body matched motion field visualization.
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Figure 14: Body mismatched motion field visualization.
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Figure 15: Analysis of background noise.
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