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Abstract

Infectious disease diagnostics primarily rely on physicians’ clinical expertise and rapid anti-
gen/antibody tests, a subjective approach prone to errors due to various factors including
patient history accuracy and physician experience. To address these challenges, we propose
a biological evidence-based diagnostic tool using deep learning to analyze patient-derived
single-cell RNA sequencing (scRNA-seq) profiles from blood samples. scRNA-seq provides
high-resolution gene expression data at the single-cell level, capturing unique transcriptional
signatures and immunological responses induced by different viral infections. In this work,
we conducted the first-of-its-kind benchmark study to evaluate five computational mod-
els, including four deep learning-based methods (contrastiveVI, scVI, SAVER, scGPT) and
PCA as a baseline - trained and evaluated on patient-derived scRNA-seq datasets carefully
sourced by us. We assess their efficacy in distinguishing scRNA-seq profiles associated with
various viral infections, aiming to identify distinct immunological features representative of
each infection. The results demonstrate that contrastiveVI, outperforms other models in
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all key performance metrics and the visual cluster performance. Furthermore, our research
also underscores the substantial influence of batch effects when analyzing scRNA-seq data
from multiple sources. Overall, our study successfully demonstrates that deep learning
models can accurately identify the type of infection from patient plasma samples based on
scRNA-seq profiles, and improve the accuracy and specificity in the diagnosis of infectious
diseases. This research contributes to the development of more objective, evidence-based
diagnostic methods in the infectious disease domain, potentially reducing diagnostic errors
and improving patient outcomes.

1 Introduction

Infectious diseases continue to pose significant challenges to global health, with their di-
agnosis and management often relying on a combination of clinical expertise and rapid
diagnostic tests Caliendo et al. (2013). Traditional approaches to infectious disease diag-
nostics primarily depend on physicians’ subjective assessments based on patient symptoms
and medical history, followed by confirmatory tests such as rapid antigen or antibody assays
Croskerry et al. (2013). While this method has been the cornerstone of clinical practice,
it is inherently prone to errors due to various factors Singh et al. (2017), including the
accuracy of patient-reported symptoms, the comprehensiveness of medical histories, and
the variability in physicians’ experience.

The limitations of this subjective diagnostic approach are particularly evident in the
context of emerging infectious diseases or during epidemic outbreaks, where rapid and ac-
curate identification of pathogens is crucial for both individual patient care and public
health responses. Misdiagnoses or delayed diagnoses can lead to inappropriate treatments,
prolonged illness, and in severe cases, increased mortality rates. Moreover, from a pub-
lic health perspective, inaccurate diagnoses can hamper efforts to control disease spread,
potentially exacerbating outbreaks Balogh et al. (2015). These challenges underscore the
need for more objective, evidence-based diagnostic tools that can actively identify the type
of pathogen infecting a patient using a universal clinical sample.

Recent advancements in next-generation sequencing technologies, particularly single-
cell RNA sequencing (scRNA-seq), have opened new avenues for understanding the molec-
ular signatures of various diseases at unprecedented resolution. scRNA-seq provides a
high-resolution view of gene expression at the single-cell level, capturing the unique tran-
scriptional signatures and immunological responses induced by different pathogens Papalexi
and Satija (2018); Proserpio and Mahata (2016); Gaublomme et al. (2015); Avraham et al.
(2015). This technology offers the potential to revolutionize infectious disease diagnostics
by providing a more objective, molecular-level assessment of a patient’s condition. For
example, scRNA-seq has become a powerful tool in computational biology for analyzing
complex genetic and molecular mechanisms at the resolution of individual cells Wang et al.
(2023). By measuring the expression levels of each gene in every single cell within a sample,
scRNA-seq provides detailed gene expression profiles, or transcriptomes, of a host. This
comprehensive data effectively captures the cellular events occurring within the host, allow-
ing for the study of complex coordinated responses, such as those of the immune system to
infections. Importantly, different types of viral infections induce unique immune responses,
which are reflected in the gene expression patterns of specific immune cells, as revealed by
scRNA-seq Triana et al. (2021).

Despite the promise of scRNA-seq, several challenges have hindered its widespread
adoption in clinical diagnostics. Firstly, the complexity of scRNA-seq data, which en-
compasses vast amounts of high-dimensional information, makes interpretation challenging
without sophisticated analytical tools. Additionally, there is a lack of standardized ana-
lytical frameworks capable of effectively distinguishing between different infectious agents
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Figure 1: Schematic representation of the deep learning-based infectious disease diagnosis
model. (a) Graphical overview of the training process for the deep learning model
using patient-derived scRNA-seq data. (b) Graphical depiction of the application
of the trained model in real-world clinical settings for diagnosing infectious dis-
eases.

based on scRNA-seq profiles; also missing is a common data ground for comprehensively
benchmarking any recent method. Moreover, the integration of scRNA-seq data from mul-
tiple sources introduces technical variations, known as batch effects, which can obscure
biological signals Hicks et al. (2018); Tung et al. (2017). Furthermore, the potential of
scRNA-seq for active pathogen identification in clinical settings remains largely unexplored.

To address these challenges and leverage the full potential of scRNA-seq in infectious
disease diagnostics, we aim to develop a biological evidence-based diagnostic tool capable
of identifying specific viral infections from patient blood samples with high accuracy and
objectivity (as depicted in Figure 1 (b)), through combining advanced deep learning tech-
niques with carefully curated scRNA-seq datasets. By analyzing the immune patterns from
scRNA-seq profiles of infected patients’ blood samples, we can establish a reference for each
type of viral infection. Comparing a new patient’s scRNA-seq profile against these estab-
lished references allows us to accurately identify the viral pathogen causing the infection
(as depicted in Figure 1 (a)).

Our approach involves several key components, beginning with meticulous data cura-
tion and preprocessing. We have sourced scRNA-seq datasets from patients with various
viral infections, including COVID-19, influenza, and dengue. Our meticulous data prepa-
ration process involved rigorous filtering to include only high-quality cells, removing those
with unusually high or low RNA counts, high mitochondrial gene expression, and excessive
erythrocytic gene signatures. We applied normalization techniques, including count depth
scaling and negative binomial regression, to correct for technical variations across cells.
The resulting datasets comprised 20,351 high-quality cells for the Zhu dataset Zhu et al.
(2020), 12,839 for the Waickman dataset Waickman et al. (2021), and 174,753 for the Blish
dataset Wilk et al. (2020), representing the largest and most comprehensive of its kind
to date. We provide visualizations to understand the underlying cellular heterogeneity.

To analyze this complex data, we evaluated the performance of latest deep learning
models in distinguishing the unique gene expression patterns exhibited by scRNA-seq pro-
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files from blood samples of patients infected with different viral pathogens. The mod-
els we examined include contrastiveVI Weinberger et al. (2023), scVILopez et al. (2018),
SAVERHuang et al. (2018), scGPT,Cui et al. (2024) and PCA Baron et al. (2016) (as a
sanity-check basline). These models were trained on scRNA-seq data obtained from pa-
tients at least one week post-infection. We then assessed the accuracy of these trained
models in diagnosing the same diseases using scRNA-seq data, aiming to determine their
effectiveness in identifying specific viral infections based on gene expression profiles. Our
study involved a comprehensive evaluation of these models, assessing their efficacy in dis-
tinguishing scRNA-seq profiles associated with various viral infections, under a range of key
quantitative and qualitative metrics. This approach aims to identify distinct immunologi-
cal features representative of each viral infection, facilitating an evidence-based diagnostic
method that improves accuracy and specificity in the infectious disease domain.

A significant challenge we have to address was the impact of batch effects when in-
tegrating datasets from various sources. These systematic, non-biological variations can
obscure the biological variations of interest during data integration Benito et al. (2004);
Johnson et al. (2007); Luo et al. (2010). To mitigate this issue, we employed both tradi-
tional and deep learning-based batch correction methods. We also conducted additional
experiments using a different set of healthy controls collected by another group to assess
whether diseased cell groups could still be distinguished from healthy cells collected from
an independent source.

Our research consists of several significant contributions:

e Novel Application Scenario: This study is the first to leverage scRNA-seq data for the
proactive identification of specific viral pathogens infecting a patient.

e Data Curation and Preprocessing Framework: We designed a tailored data curation
and preprocessing framework to ensure consistency and minimize technical variation. This
approach mitigated batch effects and preserved biologically meaningful signals, enabling robust
evaluation of disease-specific immune responses.

e Comprehensive Model Evaluation: We evaluated various computational models, includ-
ing contrastiveVI, scVI, SAVER, PCA, and scGPT, to assess their effectiveness, strengths,
and limitations in distinguishing viral infections based on scRNA-seq profiles.

e Addressing Batch Effects: Our findings highlight the significant impact of batch effects in
multi-source scRNA-seq data analysis, and the need for robust mitigations.

By addressing these aspects, our work not only advances the field of computational
biology but also has potential implications for improving the accuracy and objectivity of
infectious disease diagnostics. The integration of scRNA-seq data with advanced Al tech-
niques represents a promising avenue for developing more precise and personalized diagnos-
tic tools in clinical settings, potentially reducing diagnostic errors and improving patient
outcomes. Our study demonstrates that deep learning models can accurately identify the
type of infection from patient plasma samples based on scRNA-seq profiles, paving the way
for more objective, evidence-based diagnostic methods in the infectious disease domain.

2 scRNA-seq for Viral Infections Diagnosis: Dataset Curation and
Analysis

2.1 scRNA-seq for Infectious Disease Diagnosis

While scRNA-seq has revolutionized our understanding of cellular heterogeneity and gene
expression dynamics Moignard et al. (2013, 2015); Nestorowa et al. (2016), its potential



BENCHMARKING DEEP LEARNING FOR VIRAL DIAGNOSIS VIA SCRNA-SEQ

for diagnosing infectious diseases remains largely unexplored. Previous studies have pri-
marily focused on characterizing immune responses to diseases Li et al. (2022); Jagadeesh
et al. (2022); Liu et al. (2024) but the application of scRNA-seq for proactive pathogen
identification has been limited. Our work addresses this gap by providing the first com-
prehensive dataset and benchmark study on scRNA-seq data for identifying
viral pathogens in patient samples.

The challenge in infectious disease diagnostics lies in developing a method that can
accurately identify pathogens from a universal patient sample, moving beyond the cur-
rent paradigm of symptom-based diagnosis followed by pathogen-specific tests. scRNA-seq
offers a unique opportunity to capture the host’s immune response at unprecedented reso-
lution, potentially allowing for pathogen identification based on the distinct transcriptional
signatures induced by different infections.

We aim to demonstrate that the unique patterns of immune cell activation, as re-
vealed by scRNA-seq profiles of infected patients, can serve as robust identifiers of specific
pathogens. To serve our goal, we will next describe our careful curation of diverse datasets,
rigorous preprocessing pipeline, and comprehensive analysis of batch effects, that altogether
provide a robust foundation for benchmarking computational models in the task of viral
infection identification.

2.2 Multi-Source Data Collection

To ensure a robust evaluation, we carefully curated datasets representing three distinct viral
infections: COVID-19, influenza, and dengue. Although both COVID-19 and flu belong
to RNA viruses that cause respiratory tract infections, COVID-19 exhibits distinct clinical
characteristics from flu, such as higher morbidity and mortality rates. By including dengue
virus infections alongside respiratory viruses, we aimed to test the method’s ability to
distinguish between infections with potentially similar and disparate clinical presentations.
Our data collection strategy was designed to address two key challenges: minimizing
batch effects and representing diverse pathogens.

Our dataset comprises sScRNA-seq data from multiple sources. The Zhu dataset pro-
vided 20,351 high-quality cells, including samples from three healthy individuals, five
COVID-19 patients, and two influenza A virus (IAV)-infected patients. The COVID-19
patients were within five to ten days post symptom onset and confirmed positive through
nucleic acid testing. For dengue infections, we utilized the Waickman dataset, which con-
tributed 12,839 cells from four dengue patients. This data was generated using the 10x
Genomics 5’ capture gene expression platform, with an average sequencing depth of 100,000
reads per cell and approximately 5,700 cells per library. To enhance our analysis of healthy
controls, we further incorporated the Blish dataset, which added 174,753 cells from 41 in-
dividuals (8 healthy and 33 COVID-19 patients). Table 1 overviews the dataset statistics.

Note the Zhu dataset is a strategic choice, which includes both COVID-19 and influenza
data collected simultaneously by the same research group. This choice helps isolate disease-
specific signals from technical variations (“batch effect”), which will be discussed more later.

Further details regarding the datasets used in this study, including dataset links and
additional supporting information, can be found at this page Supporting Information.

2.3 Preprocessing and Quality Control

Our preprocessing pipeline was designed to address the unique challenges arising from work-
ing with multi-source scRNA-seq data for diagnostic purposes. We implemented rigorous
filtering criteria to ensure high-quality data representative of the immune response.
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Table 1: Dataset Statistics.

Dataset Disease Individual # cells
Blish Wilk et al. (2020) COVID 8 Healthy + 33 COVID 174,753
Zhu Zhu et al. (2020) COVID + Flu 3 Healthy + 4 COVID + 2 Flu 20,351
Waickman Waickman et al. (2021) Dengue 4 Dengue 12,839

Cells with unusually high or low total RNA counts, high mitochondrial gene expression
(indicative of cell stress or apoptosis), and other outliers were excluded. Specifically, we
retained only cells with 300-6,500 unique features and less than 10% mitochondrial RNA
content. To eliminate erythrocyte contamination, cells with more than 5% erythrocytic
gene signatures (defined by the expression of HBB, HBA1, and HBA2) were also excluded.

To enable meaningful comparisons across samples and datasets, we applied normaliza-
tion techniques including count depth scaling and negative binomial regression for multi-
sample integration. This process corrects for differences in sequencing depth and other
technical variations across cells. Following these preprocessing steps, our final datasets com-
prised 20,351 high-quality cells from the Zhu dataset, 12,839 from the Waickman dataset,
and 174,753 from the Blish dataset: Table 1 provides an overview of our curated data.

Further details regarding the preprocessing and quality control of data used in this
study can be found at this page Supporting Information.

2.4 Data Visualization and Analysis

To visualize and understand the underlying cellular heterogeneity in our data, we em-
ployed Uniform Manifold Approximation and Projection (UMAP).UMAP transforms high-
dimensional gene expression data into a lower-dimensional space Mclnnes et al. (1802);
Yang et al. (2021) allowing us to effectively visualize distinct cell clusters while preserving
both local and global structures within the data.

Through integrated analysis of the combined Zhu and Waickman datasets, we identified
15 statistically significant populations corresponding to all major leukocyte subsets, includ-
ing monocytes and lymphocytes. This comprehensive representation of diverse immune cell
types, as shown in Figure S1, ensures that our subsequent analyses capture a wide range of
immune response signals, thus providing a strong foundation for our benchmarking studies.

Addressing Batch Effects While batch effects are a well-known challenge in scRNA-
seq analysis, their impact on diagnostic applications remains understudied. Figure S2
demonstrated such systematic, non-biological variations in our curated multi-source dataset,
that can obscure true biological differences during data integration.

Our work explicitly addresses this gap through strategic dataset selection and compar-
ative experimental analysis (in Section 4) of batch correction methods. By using the Zhu
dataset for both COVID-19 and influenza, we minimized batch effects between these two
infections, allowing for a more direct comparison of their transcriptional signatures. To in-
vestigate the impact of batch effects, we performed additional experiments using the Blish
dataset as an independent source of healthy controls. This allowed us to assess whether
diseased cell groups could still be distinguished from healthy cells collected under different
technical conditions. We further explored various batch correction methods, including both
traditional approaches and deep learning-based techniques.
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3 Applying scRNA-seq Computational Models to Proactive Pathogen
Identification for Viral Infections Diagnosis

While there have been efforts to analyze scRNA-seq data for single infections or single cell
types, integrating multiple infection types (e.g., COVID-19, dengue, and influenza) and
multiple cell types (e.g., various immune cells in PBMCs) within the same dataset remains
unexplored. Our work addresses this gap by presenting the first comprehensive approach
for disease diagnosis that leverages a holistic understanding of the immune response across
different infections and cell types.

We recognized the challenge of selecting the best model that can comprehensively un-
derstand the unique and potentially subtle transcriptional signatures arising from infec-
tions. The differences between cells are not only due to the infecting pathogen but also
intrinsic factors such as cell type diversity and data source variability. Identifying transcrip-
tional signatures that exclusively arise from unique viral infections is critical. Therefore, we
focused on evaluating each model’s capability to distinguish cells based solely on infection-
induced gene expression differences.

Our contribution lies not in the development of these models themselves, but in the
novel application and comprehensive evaluation of these models for infectious disease di-
agnosis. We aim to demonstrate, for the first time, the strengths and limitations of each
model in distinguishing transcriptional signatures between differentially infected cells and
healthy cells using scRNA-seq data. We evaluated and compared their performance based
on key metrics: adjusted random index (ARI) score, normalized mutual information (NMI)
score, and silhouette score (S-score).

Next, we describe each model we benchmarked and how they are applied in our study.
All models except SAVER extract feature representations for the sRNA-seq data.

Principal Component Analysis (PCA): We utilized PCA as a baseline to check for
sanity. Our approach involved entering a normalized RNA count matrix into PCA, where
rows represented genes, columns represented cells, and each entry denoted the expression
level of a gene in a specific cell. By outputting a set of principal components (which are
essentially linear combinations of the original gene expression data), we can capture the
most significant variations within the dataset.

ContrastiveVI: By leveraging variational autoencoder (VAE) and contrastive learn-
ing, contrastiveVI accounts for uncertainties in observed RNA counts and integrates shared
and treatment-specific factors Weinberger et al. (2023) in distinguishing the unique tran-
scriptional profiles of infected patients. We train the model on our curated data, with an
RNA count matrix and labels indicating cell origins (background or target dataset). con-
trastiveVI robustly differentiates intricate gene expression patterns associated with various
viral infections.

Single-cell Analysis Via Expression Recovery (SAVER): We also leveraged
the SAVER model to recover true gene expression levels in each cell, effectively removing
technical variation while preserving biological variation Huang et al. (2018). SAVER models
the count of each gene in each cell using a Poisson-Gamma mixture. It estimates gamma
prior parameters using an empirical Bayes-like approach, utilizing Poisson-Lasso regression
with the expression levels of other genes as predictors. After that, SAVER outputs the
posterior distribution of the true expression, quantifying uncertainty. We used the posterior
mean as the recovered gene expression value.

scGPT: We also explored scGPT, a generative pre-trained transformer model specif-
ically designed for scRNA-seq data analysis Cui et al. (2024). This model utilizes stacked
transformer layers with multi-head attention to learn embeddings for both cells and genes
simultaneously, and its input is an RNA count matrix derived from scRNA-seq data. scGPT
was pre-trained on extensive scRNA-seq datasets, such as those from the CellXGene portal,
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Figure 2: The UMAP visualizations of clustering outcomes, as demonstrated by various
models indicated above each plot, are presented. These models were trained
on the Zhu dataset (control, COVID-19, and flu) and the Waickman dataset
(dengue). No batch correction was performed.
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using a specially designed attention mask and a generative training pipeline that optimizes
cell and gene representations in a self-supervised manner. Beyond assessing scGPT’s capa-
bility in distinguishing differentially infected cells, we also test the model’s built-in ability
for batch correction by directly processing our data through the model.

Single-Cell Variational Inference (scVI): scVI offers a scalable framework for
the probabilistic representation and analysis of single-cell gene expression data Lopez et al.
(2018). We leveraged its hierarchical Bayesian structure, where conditional distributions are
defined by deep neural networks, to gain insights into complex transcriptional landscapes.
By encoding each cell’s transcriptome through a nonlinear transformation, scVI transforms
the data into a low-dimensional latent vector composed of normal random variables. This
latent representation is then decoded via another nonlinear transformation to generate
posterior estimates of distributional parameters for each gene in every cell. By assuming
a zero-inflated negative binomial distribution, scVI effectively accommodates the observed
over-dispersion and limited sensitivity inherent in scRNA-seq data, allowing us to robustly
model and interpret gene expression patterns across diverse cell types and infection statuses.

4 Result and Analysis

4.1 Evaluation Metrics

Quantitative Metrics: We calculated several metrics, including ARI, NMI, S-score, to
systematically evaluate the performance of each model in clustering cells in UMAP by
disease type. ARI measured the similarity between clustering results and ground truth
classifications, adjusting for chance groupings, which provides a more accurate assessment
of clustering quality. NMI was used to evaluate the amount of information shared between
the predicted and true clusterings, normalized for cluster size, ensuring the metric remains
informative regardless of the number of clusters. S-score was employed to assess both
the cohesion within clusters and the separation between clusters, offering insights into the
compactness and distinctness of the clusters formed. These metrics were chosen because
they are widely used in computational biology to evaluate clustering in single-cell RN A-seq
(scRNA-seq) data, where capturing biologically meaningful cell groupings is more relevant
than classification accuracy alone. Unlike traditional metrics such as AUC, precision, and
recall, which are designed for discrete classification tasks, ARI, NMI, and S-score account
for the high-dimensional, heterogeneous nature of scRNA-seq data. By leveraging these
domain-specific metrics, we ensured that our evaluation focused on preserving biologically
relevant transcriptional patterns, providing a more meaningful assessment of model perfor-
mance.

We also apply k-nearest neighbors onto the extracted feature representations (except
SAVER) to classify the test data by identifying the nearest labeled training points, and
report accuracies with £ = 1 and 5.

Qualitative Metrics: While the above quantitative metrics remain indispensable for
assessing model performance, the visual clustering performance on UMAP plays a vital role
in our benchmarking. Practically, this approach enhances our confidence in the practical
applicability of the models and their potential for translation into clinical settings, by
ensuring the biological relevance and interpretability of our deep learning-based infectious
disease diagnostic models.

Visual representation provides an intuitive understanding of model behavior, offering
a clear illustration of how effectively the model differentiates between disease types. This
approach is particularly valuable as it can reveal nuances that may not be captured by
numerical metrics alone. Although a model might achieve high scores on quantitative
measures such as ARI, NMI, and S-score, visual inspection can reveal whether the cluster-
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ing incorporates cell-specific features that may be irrelevant to our diagnostic goals. By
examining UMAP plots, we can verify that the observed clustering patterns align with
biologically meaningful distinctions between diseases, rather than reflecting arbitrary or
irrelevant cellular characteristics.

This focus on visual representation serves as a crucial additional layer of validation.
It allows us to confirm that the clustering patterns reflect features that are not only sta-
tistically significant but also biologically relevant and practically useful for disease identi-
fication. Such interpretability is essential for diagnosing potential shortcomings in model
performance that may not be apparent from numerical metrics alone — whether the model
is focusing on irrelevant features or failing to distinguish meaningful patterns altogether.

Table 2: Clustering performance on Zhu Zhu et al. (2020) and Waickman Waickman et al.
(2021) datasets. Note: SAVER model nearest-neighbor accuracy is not included
as it does not produce a latent space representation.

Training Dataset Method ARI NMI  S-score Accuracy (K=1) Accuracy (K=5)
contrastiveVI  0.3871 0.5597  0.3594 0.88 0.90
scVI 0.3822 0.5574 0.3594 0.85 0.86
Zhu + Waickman SAVER 0.1884 0.4245 0.0973 N/A N/A
PCA 0.2374 0.3985 -0.0744 0.83 0.87
scGPT 0.1982 0.3789 0.1224 0.86 0.88

4.2 Performance Comparison and Analysis

Our comparative analysis firstly revealed that contrastiveVI and scVI demonstrated the
strongest performance in cell clustering without batch correction (see Table 2 and Figures
2 (c¢) & (d)). More specifically:

e The UMAP plot highlights that contrastiveVI generates the most distinct clustering pattern,
correlating with each infection type. This clear separation of diverse immune cells based on in-
fection type showcases contrastiveVI’s capability to identify unique transcriptional signatures
associated with specific viral infections. We further validated this finding by incorporating a
different set of healthy controls collected by another group (Blish et al., see Table 1). The
disease-specific clustering remained distinct from the healthy cells, even when using an in-
dependent source (see Figure S3). This robustness and reliability of contrastiveVI approach
reinforce its potential as a universal diagnostic tool.

e While scVI delivered strong quantitative metrics, its ability to visually differentiate between
COVID-19 and influenza in the UMAP plot was limited, as evident in Figure 2 (d). The dis-
parity between scVI’s quantitative performance and its UMAP visualization can be attributed
to its intrinsic normalization and batch correction mechanisms. While these built-in processes
effectively optimize clustering metrics, they appear to have unexpected consequences on the
UMAP representation. UMAP’s sensitivity to subtle data transformations may amplify these
corrections, resulting in less distinct visual separation between the two viral infections.

Moreover, scVI’s performance suggests an influence of cell type-specific information, evidenced
by the Dengue cluster’s separation into three distinct groups. This indicates a potential bias
towards cell type features, implying that while scVI excelled in quantitative measures, it
may have been influenced by information not directly relevant to our primary goal of disease
differentiation.

10
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The identification of these nuances through UMAP visualization highlights the critical impor-
tance of combining quantitative metrics with qualitative visual analysis in evaluating model
performance for high-dimensional data tasks. This comprehensive approach provides a more
holistic understanding of model behavior, revealing subtleties that may be obscured by nu-
merical metrics alone. Such insights are crucial for developing robust and clinically relevant
diagnostic tools based on scRNA-seq data.

e SAVER, like scVI, struggled to clearly differentiate between COVID-19 and influenza in the
UMAP visualization. This challenge may stem from the inherent similarities in immune re-
sponses to these respiratory tract infections, making their transcriptional signatures difficult
to distinguish. Furthermore, the SAVER-generated UMAP showed the dengue population
dispersed across multiple clusters rather than forming a cohesive group. This dispersion likely
results from SAVER’s underlying statistical assumptions about data distribution, which may
not accurately reflect the complex reality of viral infection transcriptomics. The model’s in-
ability to capture infection-specific transcriptional signatures effectively could be attributed to
the mismatch between its assumed data distribution and the actual distribution of the scRNA-
seq profiles. This discrepancy appears to have limited SAVER’s capacity to accurately map
the multidimensional relationships between different viral infections in the lower-dimensional
UMAP space.

e scGPT exhibited an intriguing behavior, clustering cells predominantly based on their cellular
identity rather than their infection status. This outcome can be attributed to scGPT’s pre-
training process, which heavily emphasized cell type-specific transcriptional patterns rather
than disease-associated signatures. As a result, when applied to our dataset, scGPT priori-
tized the identification of cell type-associated transcriptional features over those indicative of
different infections. This preference for cell type classification demonstrates both the power
and the limitation of transfer learning in this context. While scGPT’s ability to discern cell
types even in a disease-focused dataset is impressive, it also reveals a crucial limitation in
its current form for infection-specific diagnostics. This finding underscores the importance of
tailoring pre-training strategies and fine-tuning processes to the specific task at hand, partic-
ularly when repurposing general-purpose models for specialized biomedical applications like
infectious disease diagnosis.

e Lastly, PCA demonstrated the least effective performance, struggling to make clear distinc-
tions between various disease states and healthy controls. The complex, non-linear rela-
tionships that characterize immunological responses to different pathogens are not adequately
captured by PCA’s straightforward linear transformations, underscoring the necessity for more
sophisticated, non-linear approaches.

Overall, our experiments have demonstrated the significant potential of deep learning
models in leveraging patient-derived scRNA-seq data for infectious disease diagnostics.
While the visual representations in UMAP plots varied in their clarity of disease-specific
clustering across different models, a remarkable consistency emerged in their quantitative
performance. Each model achieved an accuracy of approximately 85% in distinguishing
between different infectious states (as shown in Table 2). This high level of accuracy,
maintained across diverse computational approaches, strongly validates the robustness and
reliability of our scRNA-seq-based diagnostic strategy.

4.3 Mitigating the Cell Types Bias: Performance on T cell-only Data

To address models’ potential bias of clustering based on cell types rather than disease-
specific variations, we create a subset by focusing exclusively on T cell data from the blood
samples. We aimed to minimize cell type-specific variations, hypothesizing that this would
allow the models to better capture disease-specific transcriptional signatures.

11
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Figure 3: The UMAP visualization of clustering outcomes, as demonstrated by various
models indicated in the figure above each plot, is presented. These models were
trained exclusively on scRNA-seq data from T cells in patient blood samples,
using the Zhu (control, COVID-19, and flu) and Waickman (dengue) datasets.
No batch correction was performed.

This approach yielded intriguing results, especially for scGPT. When trained solely on
T cell data, scGPT generated a more coherent dengue cluster in the UMAP visualization
(Figure 3 (a)). This contrasts sharply with its performance on the complete PBMC dataset
(Figure 2 (a)), where it separated dengue data into five distinct clusters, indicative of its
cell type-specific bias. Similarly, SAVER and PCA (Figures 2 (b) & (e) and Figures 3 (b)
& (d)), when trained on T cell data, observed a similar shift in the dengue clusters to a less
separated state compared to their PBMC-trained counterparts. This shift demonstrates
that limiting the dataset to a single cell type can indeed help models like scGPT, SAVER,
and PCA focus more on disease-specific variations, although it did not fully achieve distinct
disease-specific clustering across all conditions.

However, the impact of this strategy was not uniformly positive across all models.
Notably, contrastiveVI’s performance showed a slight decline when trained on T cell-only
data (Figure 3 (c)), as evidenced by increased overlap between disease-specific clusters in the
UMAP visualization. This observation suggests that the diverse immune cell population
present during an infection contributes to a more robust and distinctive transcriptional
signature, which aids in accurately identifying the infection type. These findings highlight
a crucial trade-off in model development for infectious disease diagnostics. While reducing
cell type-specific variations can help focus on disease-specific patterns, it may also diminish
the overall richness and robustness of the transcriptional signature. The diverse immune cell
response appears to provide important contextual information that enhances the model’s
ability to distinguish between different infections.

Our investigation into the impact of cell type diversity on model performance under-
scores the complexity of developing effective diagnostic tools using scRNA-seq data. It
emphasizes the need for a nuanced approach in data selection and preprocessing, balancing
cell type diversity and disease-specific variations, to develop more robust, comprehensive,
and well-balanced deep models.
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Figure 4: The UMAP visualization of the clustering outcomes demonstrated by con-
trastiveVI is presented. The model was trained on the Zhu (control, COVID-19,
and flu) and Waickman (dengue) datasets. Panels (a)-(c) show the results after
batch correction using the built-in function of scGPT prior to training. Each
point on the UMAP represents an individual cell, color-coded based on its (a)
batch, (b) type of infection, or (c) dataset of origin. Panels (d)-(e) display the
results after batch correction using the built-in function of contrastiveVI prior
to training. Fach point on the UMAP represents an individual cell, color-coded
based on its (d) batch, (e) type of infection, or (f) dataset of origin.

4.4 Attempts to Mitigate the Batch Effect

The integration of datasets from multiple sources introduces significant challenges in the
form of batch effects, which can obscure true biological signals. As illustrated in Figure
S3, while S3 (a) shows cells occupying distinct, disease-specific regions in the UMAP space
when color-coded by disease type, S3 (b) reveals clustering predominantly based on dataset
origin. This stark contrast suggests that observed transcriptional differences may be largely
attributable to technical variations in sample collection or processing methods rather than
genuine disease-specific features.

To address this issue, we explored various batch correction strategies. Initially, we
applied the built-in batch correction function of contrastiveVI to the combined Zhu and
Waickman datasets. However, this approach resulted in a complete loss of distinction
between disease groups (Figure 4 (b)). This outcome likely stems from the algorithm’s in-
discriminate reduction of overall variance, inadvertently normalizing disease-specific tran-
scriptional features alongside batch effects (Figures 4 (a) and 4 (¢) ). The challenge lies
in the algorithm’s inability to distinguish biologically relevant variations from technical
noise without prior knowledge, potentially eliminating crucial disease-specific signals in the
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process. We further investigated batch correction using scGPT prior to training with con-
trastiveVI. While this method preserved more of the disease-specific features compared to
contrastiveVI’s built-in correction (Figure 4 (e)), it still fell short in effectively eliminating
batch effects, as evidenced by persistent batch-specific (Figure 4 (d)) and dataset-specific
(Figure 4 (f)) clustering in the UMAP visualization.

Despite these challenges, we validated our overall approach through strategic dataset
selection. We minimized intrinsic batch effects by utilizing the Zhu dataset, which contains
scRNA-seq data for both COVID-19 and influenza collected by a single research group.
This careful selection allowed us to demonstrate that our benchmarked models can generate
distinct clustering patterns correlating with different infection types and healthy controls,
even without perfect batch correction. Our experience highlights a pragmatic approach
to developing deep learning-based diagnostic tools for infectious diseases using scRNA-seq
data. In the current absence of universally effective batch correction methods, focusing
on single-source, multi-disease datasets can ensure the integrity of the diagnostic process.
This strategy allows for meaningful progress in the field while emphasizing the need for
more advanced batch correction techniques in future research.

5 Conlcusion

This study presents a pioneering exploration of deep learning models for distinguishing be-
tween different viral infections and healthy controls using scRNA-seq profiles. Our work not
only demonstrates the feasibility of using scRNA-seq data for infectious disease diagnosis
but also provides a comprehensive benchmark for future studies in this field. By leveraging
the power of deep learning and high-dimensional genomic data, we pave the way for more
precise, efficient, and personalized approaches to infectious disease management.

As we continue to refine these methods and address the challenges identified, the in-
tegration of scRNA-seq-based diagnostics into clinical practice holds the promise of trans-
forming our ability to rapidly and accurately identify viral pathogens, ultimately improving
patient outcomes and public health responses to infectious diseases. Looking ahead, sev-
eral avenues for future research emerge from our findings. First, expanding the range of
pathogens included in the training data could further validate the generalizability of our
approach. Second, investigating the integration of other omics data, such as proteomics or
metabolomics, could provide complementary information to enhance diagnostic accuracy.
Finally, clinical validation studies will be crucial to translate these computational findings
into practical diagnostic tools.
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Figure S1: UMAP visualization of clustering outcomes generated by scGPT, trained on the
Zhu dataset (control, COVID-19, and flu) and the Waickman dataset (dengue),
comprising a total of 33,190 cells from 13 donors. Each point on the UMAP
represents an individual cell, color-coded based on its cell type. No batch cor-
rection was performed.
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® zhu_flu_covid
® waickman_dengue
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Figure S2: UMAP visualization of clustering outcomes generated by contrastiveVI, trained
on the Zhu dataset (control, COVID-19, and flu) and the Waickman dataset
(dengue). Each point on the UMAP represents an individual cell, color-coded
based on its dataset of origin. No batch correction was performed.
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Figure S3: UMAP visualization of clustering outcomes generated by contrastiveVI, trained
on the Zhu dataset (COVID-19 & flu), the Waickman dataset (dengue), and
the Blish dataset (control). No batch correction was performed. (a) Each point
on the UMAP represents an individual cell, color-coded based on its type of
infection. (a) Each point on the UMAP represents an individual cell, color-
coded based on its dataset of origin.
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