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Abstract

Efficiently deriving structured workflows from001
unannotated dialogs remains an underexplored002
and formidable challenge in computational lin-003
guistics. Automating this process could signif-004
icantly accelerate the manual design of work-005
flows in new domains and enable the grounding006
of large language models in domain-specific007
flowcharts, enhancing transparency and con-008
trollability. In this paper, we introduce Di-009
alog2Flow (D2F) embeddings, which differ010
from conventional sentence embeddings by011
mapping utterances to a latent space where012
they are grouped according to their commu-013
nicative and informative functions (i.e., the ac-014
tions they represent). D2F allows for modeling015
dialogs as continuous trajectories in a latent016
space with distinct action-related regions. By017
clustering D2F embeddings, the latent space is018
quantized, and dialogs can be converted into019
sequences of region/action IDs, facilitating the020
extraction of the underlying workflow. To pre-021
train D2F, we build a comprehensive dataset by022
unifying twenty task-oriented dialog datasets023
with normalized per-turn action annotations.024
We also introduce a novel soft contrastive loss025
that leverages the semantic information of these026
actions to guide the representation learning pro-027
cess, showing superior performance compared028
to standard supervised contrastive loss. Evalua-029
tion against various sentence embeddings, in-030
cluding dialog-specific ones, demonstrates that031
D2F yields superior qualitative and quantitative032
results across diverse domains.1033

1 Introduction034

Conversational AI has seen significant advance-035

ments, especially with the rise of Large Language036

Models (LLMs) (Bubeck et al., 2023; Lu et al.,037

2022; Hendrycks et al., 2021a,b; Cobbe et al.,038

2021). Dialog modeling can be divided into open-039

domain dialogs and task-oriented dialogs (TOD),040

1(Github and HuggingFace links removed for review).

User: i’m looking for the transplant unit department please
Action: INFORM DEPARTMENT

System: okay the transfer unit department give me a second
let me look okay yes i found the transplant unit department
can i help

Action: REQMORE

User: may you please provide me with the phone number
please

Action: REQUEST PHONE

System: get no problem okay so the number is 1223217711
Action: INFORM PHONE

User: okay um just repeat it it’s 1 2 2 3 2 1 7 1 1
Action: CONFIRM PHONE

System: okay thank you very much
Action: THANK_YOU

Figure 1: Example segment of the dialog SNG1533 from
the hospital domain of the SpokenWOZ dataset. Ac-
tions are defined by concatenating the dialog act label
(in bold) with the slot label(s) associated to each utter-
ance.

with the latter focusing on helping users achieve 041

specific tasks (Jurafsky, 2006). In TOD, struc- 042

tured workflows guide agents in assisting users 043

effectively. This paper explores the underexplored 044

terrain of automatically extracting such workflow 045

from a collection of conversations. 046

Extracting workflows automatically is crucial for 047

enhancing dialog system design, discourse analysis, 048

data augmentation (Qiu et al., 2022), and training 049

human agents (Sohn et al., 2023). Additionally, it 050

can ground LLMs in domain-specific workflows, 051

improving transparency and control (Raghu et al., 052

2021; Chen et al., 2024). Recent works have at- 053

tempted to induce structural representations from 054

dialogs using either ground truth annotation or ad 055

hoc methods (Hattami et al., 2023; Qiu et al., 2022, 056

2020), we believe that models specifically pre- 057

trained for this purpose could significantly advance 058

the field. Instead of pre-training dialog state en- 059

coders, we focus on pre-training utterance encoders 060

in a workflow-related manner. By focusing on ut- 061
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Figure 2: Directed graph representing the hospital do-
main workflow obtained from all the hospital dialogs
in the SpokenWOZ dataset. Nodes correspond to indi-
vidual actions. The width of edges and the underline
thickness of nodes indicate their frequency. User actions
are colored to distinguish them from system actions.

terances, we focus on how to convert sequences062

of utterances into “meaningful” trajectories in a063

latent space, disentangling them from how they064

are effectively condensed to task-dependent dialog065

states.066

In TOD, dialog acts and slots are key con-067

cepts (Jurafsky, 2006). Dialog acts denote the068

communicative intent, while slots are pieces of069

task-specific information. A dialog action includes070

both the dialog act and slots. Actions allow us to071

transform dialogs into sequences of canonical steps072

carrying both their communicative and informative073

functions (Figure 1). Thus, aggregating sequences074

from multiple dialogs can reveal a common work-075

flow (Figure 2). The main contributions of this076

work can be summarized as follows: (a) consolidat-077

ing twenty task-oriented dialog datasets to create078

the largest dataset with standardized action annota-079

tions; (b) introducing a soft contrastive loss lever-080

aging the semantic information of actions to guide 081

the representation learning process, showing supe- 082

rior performance compared to standard supervised 083

contrastive loss; and (c) introducing and releasing 084

Dialog2Flow (D2F), to the best of our knowledge, 085

the first utterance embedding encoder pre-trained 086

specifically for dialog flow extraction. 087

2 Related Work 088

Sentence Embeddings Transformer-based en- 089

coders like Universal Sentence Encoder (Cer et al., 090

2018) and Sentence-BERT (Reimers and Gurevych, 091

2019) outperformed RNN-based ones such as Skip- 092

Thought (Kiros et al., 2015) and InferSent (Con- 093

neau et al., 2017). These models use a pooling 094

strategy (e.g., mean pooling, [CLS] token) to ob- 095

tain a single sentence embedding optimized for 096

semantic similarity. However, specific domains re- 097

quire different similarity notions. For task-oriented 098

dialogs, TOD-BERT (Wu et al., 2020) and Dialog 099

Sentence Embedding (DSE) (Zhou et al., 2022) 100

show that conversation-based similarity outper- 101

forms semantic similarity across TOD tasks. Like- 102

wise, we hypothesize that action-based similarity 103

can yield meaningful workflow-related sentence 104

embeddings. 105

Contrastive Learning Contrastive learning has 106

achieved success in representation learning for both 107

images (Chen et al., 2020; He et al., 2020; Henaff, 108

2020; Tian et al., 2020; Chen et al., 2020; Hjelm 109

et al., 2019) and text (Zhou et al., 2022; Zhang 110

et al., 2022, 2021; Gao et al., 2021; Wu et al., 111

2020). It learns a representation space where sim- 112

ilar instances cluster together and dissimilar in- 113

stances are separated. More precisely, given an 114

anchor with positive and negative counterparts, the 115

goal is to minimize the distance between anchor- 116

positive pairs while maximizing the distance be- 117

tween anchor-negative pairs. Negatives are typi- 118

cally obtained through in-batch negative sampling, 119

where positives from different anchors in the mini- 120

batch are used as negatives. 121

3 Method 122

3.1 Representation Learning Framework 123

Following common practices (Zhou et al., 2022; 124

Chen et al., 2020; Tian et al., 2020; Khosla et al., 125

2020), the main components of our framework are: 126

• Encoder, f(·) ∈ Rn, which maps x to a 127

representation vector, x = f(x). Following 128

Sentence-BERT (Reimers and Gurevych, 2019) 129
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and DSE (Reimers and Gurevych, 2019), f(·) con-130

sists of a BERT-based encoder with mean pooling131

strategy trained as a bi-encoder with shared weights132

(siamese network).133

• Contrastive head, g(·) ∈ Rd, used during134

training to map representations x to the space135

where contrastive loss is applied. Following Chen136

et al. (2020) and DSE, we instantiate g(·) as the137

multi-layer perceptron with a single hidden layer138

z = g(x) = ReLU(x ·W1)W2 where W1 ∈ Rn×n139

and W2 ∈ Rn×d.140

• Similarity measure, sim(u,v), used to learn the141

representation is cosine similarity. Thus, similarity142

is then measured only by the angle between u and143

v, making our latent space geometrically a unit hy-144

persphere. Hence, in this study, we treat similarity145

and alignment interchangeably. Additionally, we146

assume f(·) and g(·) vectors are L2-normalized,147

leading to sim(u,v) = cos(u,v) = u · v.148

3.1.1 Supervised Contrastive Loss149

For a batch of N randomly sampled anchor, posi-150

tive, and label triples, B = {(xi, x+i , yi)}Ni=1, the151

supervised contrastive loss (Khosla et al., 2020),152

for each i-th triplet (xi, x+i , yi) is defined as:153

ℓsupi = −
∑
j∈Pi

1

|Pi|
log

ezi·z
+
j /τ∑N

k=1 e
zi·z+k /τ

(1)154

where Pi = {j | yi = yj} is the set of indexes of155

all the samples with the same label as the i-th sam-156

ple in the batch, and τ is the softmax temperature157

parameter that controls how soft/strongly positive158

pairs are pulled together and negative pairs pushed159

apart in the embedding space.2 The final loss is160

computed across all the N pairs in the mini-batch161

as Lsup = 1
N

∑N
i=1 ℓ

sup
i .162

3.1.2 Supervised Soft Contrastive Loss163

Let δ(yi, yj) be a semantic similarity measure be-164

tween both yi, yj labels, we define our soft con-165

trastive loss as follows:166

ℓsofti =−
N∑
j=1

eδ(yi,yj)/τ
′∑N

k=1 e
δ(yi,yk)

τ ′
log

ezi·z
+
j /τ∑N

k=1 e
zi·z

+
k

τ

167

where τ ′ is the temperature parameter to control168

the “softness” of the negative labels (impact anal-169

ysis in Appendix E). Unlike Equation 3, this loss170

encourages the encoder to separate anchors and171

2The lower τ , the sharper the softmax output distribution
and the stronger the push/pull factor.

Dataset #U #D #DA #S

ABCD (Chen et al., 2021) 20.4K 10 0 10
BiTOD (Lin et al., 2021) 72.5K 6 13 33
Disambiguation (Qian et al., 2022) 114.3K 8 9 28
DSTC2-Clean (Mrkšić et al., 2017) 25K 1 2 8
FRAMES (El Asri et al., 2017) 20K 1 21 46
GECOR (Quan et al., 2019) 2.5K 1 2 10
HDSA-Dialog (Chen et al., 2019) 91.9K 8 6 24
KETOD (Chen et al., 2022) 107.7K 20 15 182
MS-DC (Li et al., 2018) 71.9K 3 11 56
MulDoGO (Peskov et al., 2019) 74.8K 6 0 63
MultiWOZ2.1 (Eric et al., 2020) 108.3K 8 9 27
MultiWOZ2.2 (Zang et al., 2020) 55.9K 8 2 26
SGD (Rastogi et al., 2020) 479.5K 20 15 184
Taskmaster1 (Byrne et al., 2019) 30.7K 6 1 59
Taskmaster2 (Byrne et al., 2019) 147K 11 1 117
Taskmaster3 (Byrne et al., 2019) 589.7K 1 1 21
WOZ2.0 (Mrkšić et al., 2017) 4.4K 1 2 10
SimJointMovie (Shah et al., 2018) 7.2K 1 14 5
SimJointRestaurant (Shah et al., 2018) 20K 1 15 9
SimJointGEN (Zhang et al., 2024) 1.3M 1 16 5

Total 3.4M 52 44 524

Table 1: Details of used TOD datasets, including the
number of utterances (#U), unique domains (#D), dialog
act labels (#DA), and slot labels (#S).

negatives in proportion to the semantic similarity 172

of their labels (details in Appendix D). Finally, the 173

mini-batch loss Lsoft is computed as in Lsup. 174

3.2 Training Targets 175

We experiment with four types of training targets, 176

which differ in whether the dialog action label is 177

used as-is or decomposed into dialog act and slot 178

labels, and the type of contrastive loss used. Specif- 179

ically, we have the following two targets using the 180

proposed soft contrastive loss: 181

• D2Fsingle: L = Lsoft
act+slots 182

• D2Fjoint: L = Lsoft
act + Lsoft

slots 183

and the two corresponding targets using the default 184

supervised contrastive loss: 185

• D2F-Hardsingle: L = Lsup
act+slots 186

• D2F-Hardjoint: L = Lsup
act + Lsup

slots 187

The subscript in bold indicates the type of label 188

used to compute the loss, either the dialog action as 189

a single label (act+slots), or the dialog act and slots 190

separately. In the case of the joint loss, separate 191

contrastive heads g(·) are employed. 192

4 Training Corpus 193

We identified and collected 20 TOD datasets from 194

which we could extract dialog act and/or slot anno- 195

tations, as summarized in Table 1. We then man- 196

ually inspected each dataset to locate and extract 197

the necessary annotations, manually standardizing 198
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domain names and dialog act labels across datasets.199

Finally, we unified all datasets under a consistent200

format, incorporating per-turn dialog act and slot201

annotations. The resulting unified TOD dataset202

comprises 3.4 million utterances annotated with203

18 standardized dialog acts, 524 unique slot labels,204

and 3,982 unique action labels (dialog act + slots)205

spanning across 52 different domains (details in206

Appendix A).207

5 Experimental Setup208

For training D2F we mostly follow the experimen-209

tal setup of DSE (Zhou et al., 2022) and TOD-210

BERT (Wu et al., 2020), using BERTbase as the211

backbone model for the encoder to report results212

in the main text. Additional configurations are re-213

ported in the ablation study (Appendix C) while214

implementation details are given in Appendix B.215

5.1 Baselines216

General sentence embeddings. • GloVe: the217

average of GloVe embeddings (Pennington et al.,218

2014). • BERT: the vanilla BERTbase model with219

mean pooling strategy, corresponding to our un-220

trained encoder. • Sentence-BERT: the model with221

the best average performance reported among all222

Sentence-BERT pre-trained models, namely the223

all-mpnet-base-v2 model pre-trained using MP-224

Net (Song et al., 2020) and further fine-tuned on a 1225

billion sentence pairs dataset. • GTR-T5: the Gener-226

alizable T5-based dense Retriever (Ni et al., 2022)227

pre-trained on a 2 billion web question-answer228

pairs dataset, outperforming previous sparse and229

dense retrievers on the BEIR benchmark (Thakur230

et al., 2021).231

Dialog sentence embeddings. • TOD-BERT: the232

TOD-BERT-jnt model reported in Wu et al. (2020)233

pre-trained to optimize a contrastive response se-234

lection objective by treating utterances and their235

dialog context as positive pairs. The pre-training236

data is the combination of 9 publicly available237

task-oriented datasets around 1.4 million total ut-238

terances across 60 domains. • DSE: pre-trained on239

the same dataset as TOD-BERT, DSE learns ut-240

terance embeddings by simply taking consecutive241

utterances of the same dialog as positive pairs for242

contrastive learning. DSE has shown to achieve243

better representation capability than the other di-244

alog and general sentence embeddings on TOD245

downstream tasks (Gung et al., 2023; Zhou et al.,246

2022). • SBD-BERT: the TOD-BERT-SBDMWOZ247

model reported in Qiu et al. (2022) in which ut- 248

terances are represented as the mean pooling of 249

the tokens that are part of the slots of the utter- 250

ance, as identified by a Slot Boundary Detection 251

(SBD) model trained on the original MultiWOZ 252

dataset (Budzianowski et al., 2018). • DialogGPT: 253

following TOD-BERT and DSE, we also report re- 254

sults with DialogGPT (Zhang et al., 2020) using the 255

mean pooling of its hidden states as the sentence 256

representation. 257

5.2 Evaluation Data 258

Most of the TOD datasets are constructed solely 259

based on written texts, which may not accurately 260

reflect the nuances of real-world spoken conver- 261

sations, potentially leading to a gap between aca- 262

demic research and real-world spoken TOD sce- 263

narios. Therefore, we evaluate our performance 264

not only on a subset of our unified TOD dataset 265

but also on SpokenWOZ (Si et al., 2023), the first 266

large-scale human-to-human speech-text dataset 267

for TOD designed to address this limitation. More 268

precisely, we use the following two evaluation sets: 269

• Unified TOD evaluation set: 26,910 utterances 270

with 1,794 unique action labels (dialog act + slots) 271

extracted from the training data. These utterances 272

were extracted by sampling and removing 15 ut- 273

terances for each action label with more than 100 274

utterances in the training data. 275

• SpokenWOZ: 31,303 utterances with 427 unique 276

action labels corresponding to all the 1,710 single 277

domain conversations in SpokenWOZ. We are only 278

using complete single-domain conversations so that 279

we can also use them later to induce the domain- 280

specific workflow for each of the 7 domains in 281

SpokenWOZ.3 282

6 Similarity-based Evaluation 283

Before the dialog flow-based evaluation, we assess 284

the quality of the representation space geometry 285

through the similarity of the embeddings represent- 286

ing different actions. We use the following methods 287

as quality proxies: 288

• Anisotropy. Following Jiang et al. (2022); Etha- 289

yarajh (2019), we measure the anisotropy of a set 290

of embeddings as the average cosine (absolute) sim- 291

ilarity among all embeddings in the set.4 Ideally, 292

3There are no single-domain calls for the profile domain
so it is not included.

4 1
n2−n

∣∣∣∑i

∑
j ̸=i cos(xi,xj)

∣∣∣ for given {x1, · · · ,xn}

4
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embeddings of the same action should be simi-293

lar (high intra-action anisotropy) while being dis-294

similar to those of other actions (low inter-action295

anisotropy). We report the average intra- and inter-296

action anisotropy across all actions.297

• Similarity-based few-shot classification. We298

use Prototypical Networks (Snell et al., 2017) to299

perform a similarity-based classification. A pro-300

totype embedding for each action is calculated by301

averaging k of its embeddings (k-shot). All other302

embeddings are then classified based on the closest303

prototype embedding. We report the macro aver-304

aged F1 score and Accuracy for k = 1 and k = 5305

(i.e., 1-shot and 5-shot classification).306

• Ranking. For each action, we randomly select307

one utterance as the query and retrieve the top-k308

closest embeddings, creating a ranking with their309

actions. Ideally, the top-k retrieved embeddings310

should predominantly correspond to the same ac-311

tion as the query, thus ranked first. We report Nor-312

malized Discounted Cumulative Gain (nDCG@10),313

averaged over all actions.314

6.1 Similarity-based Results315

Tables 2 and 3 present the similarity-based classifi-316

cation and anisotropy results on the unified TOD317

evaluation set and SpokenWOZ, respectively. Re-318

sults are averaged over 1,794 and 427 different319

action labels for both datasets, respectively. For320

classification results, we report the mean and stan-321

dard deviation from 10 repetitions, each sampling322

different embeddings for the 1-shot and 5-shot pro-323

totypes. All D2F variants outperform baselines in324

all metrics, indicating a representation space where325

embeddings are clustered by their actions. How-326

ever, baseline results provide a proxy for the qual-327

ity of their representation spaces for our end goal.328

For instance, general embeddings, which cluster329

by semantic similarity, are outperformed by DSE,330

which clusters by utterance context in TOD dialogs.331

Notably, D2F embeddings trained with the pro-332

posed soft contrastive loss outperform D2F-Hard333

embeddings trained with the vanilla supervised con-334

trastive loss, especially in the 1-shot setting. In Ta-335

ble 3, the difference among the various embeddings336

narrows, and standard deviations increase signif-337

icantly compared to Table 2. This indicates that338

results vary considerably depending on the sam-339

pled prototypes, suggesting that the SpokenWOZ340

data is noisier than the unified TOD evaluation341

set. This is expected as SpokenWOZ utterances342

were obtained by an ASR model from real-world343

human-to-human spoken TOD conversations, thus 344

affected by ASR noise and various linguistic phe- 345

nomena such as back-channels, disfluencies, and 346

incomplete utterances.5 347

Classification results provide a local view of the 348

representation space quality around the different 349

sampled prototypes. Actions spread into multiple 350

sub-clusters could still yield good classification re- 351

sults. Thus, we also consider anisotropy results 352

for a more global view of the representation space 353

quality. Among the baselines, TOD-BERT has the 354

highest intra-action anisotropy but also the highest 355

inter-action value, meaning different actions are 356

more similar than embeddings of the same action 357

on average (negative ∆ values!). Sentence-BERT 358

has the lowest inter-action anisotropy, indicating 359

different actions are the most dissimilar, although 360

embeddings of the same action are less similar 361

(∆ = 0.094) compared to DSE (∆ = 0.108) in Ta- 362

ble 2. D2F embeddings exhibit the best anisotropy 363

values, with a similarity difference between intra- 364

and inter-action embeddings of 0.597 and 0.451, 365

or 0.193 and 0.103 on SpokenWOZ, for single and 366

joint targets, respectively, roughly doubling their 367

D2F-Hard counterparts. This improvement could 368

be attributed to a better overall arrangement of the 369

embeddings, guided by the semantics of the ac- 370

tions during the representation learning process. 371

For instance, Figure 3 shows the projection of the 372

embeddings onto the unit sphere for a subset of six 373

related actions.6 Sentence-BERT clusters embed- 374

dings into roughly two main semantic groups, with 375

price-related actions on top and others at the bot- 376

tom. D2F-Hard correctly clusters embeddings of 377

the same action together while maintaining separa- 378

tion among centroids of different actions. However, 379

the arrangement among different clusters is better 380

in D2F, guided by action semantics –namely, all 381

clusters are adjacent, with •[request price] next 382

to •[inform price]; •[inform name price] be- 383

tween •[inform name] and •[inform price]; and 384

•[inform name price area] between •[inform 385

name price] and •[inform name area]. 386

Finally, Table 4 presents the ranking-based re- 387

sults on both evaluation sets. We report the mean 388

and standard deviation from 10 repetitions, each 389

5SpokenWOZ authors conducted experiments using newly
proposed LLMs and dual-modal models, showing that current
models still have substantial room for improvement on this
realistic spoken dataset (Si et al., 2023).

6The original n-1 manifold in which utterances are embed-
ded correspond to the unit hyper-sphere, thus, the unit sphere
provides a more truthful visualization than a 2D plane.
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F1 score Accuracy Anisotropy
Embeddings 1-shot 5-shot 1-shot 5-shot intra(↑) inter(↓) ∆ (↑)

GloVe 23.24 ± 0.87 24.45 ± 0.94 26.04 ± 0.81 30.01 ± 0.86 0.674 0.633 0.041
BERT 23.85 ± 0.47 28.22 ± 0.60 26.32 ± 0.62 32.92 ± 0.38 0.737 0.781 -0.044
Sentence-BERT 27.86 ± 0.93 33.30 ± 0.68 30.55 ± 0.82 38.22 ± 0.46 0.527 0.433 0.094
GTR-T5 30.86 ± 0.39 38.38 ± 0.64 33.34 ± 0.29 42.96 ± 0.60 0.694 0.706 -0.012
DSE 35.43 ± 0.96 42.21 ± 0.90 38.12 ± 0.77 46.85 ± 0.79 0.649 0.541 0.108
TOD-BERT 27.58 ± 0.92 33.35 ± 0.58 29.63 ± 1.06 36.88 ± 0.87 0.840 0.864 -0.024
DialoGPT 25.86 ± 0.34 31.34 ± 0.73 28.24 ± 0.53 36.15 ± 0.83 0.734 0.758 -0.024
SBD-BERT 24.31 ± 0.95 27.71 ± 0.38 26.40 ± 0.96 31.53 ± 0.44 0.687 0.604 0.083

D2F-Hardsingle 58.84 ± 0.62 67.82 ± 0.52 61.52 ± 0.54 70.69 ± 0.43 0.646 0.313 0.332
D2F-Hardjoint 56.25 ± 1.16 66.22 ± 0.62 58.98 ± 1.08 69.23 ± 0.48 0.629 0.399 0.230

D2Fsingle 65.36 ± 0.91 70.89 ± 0.30 68.06 ± 0.87 74.15 ± 0.40 0.782 0.186 0.597
D2Fjoint 63.70 ± 1.35 70.94 ± 0.41 66.53 ± 1.15 74.03 ± 0.31 0.741 0.289 0.451

Table 2: Similarity-based few-shot classification results on our unified TOD evaluation set. The intra- and inter-
action anisotropy are also provided along their difference (∆). Bold indicates the best values in each group while
underlined the global best.

(a) Sentence-BERT (b) D2F-Hardjoint (c) D2Fjoint

Figure 3: Spherical Voronoi diagram of embeddings projected onto the unit sphere using UMAP with cosine
distance as the metric. The embeddings represent system utterances from the police domain of the MultiWOZ2.1
dataset. Legends indicate the ground-truth action associated to each embedding and the centroids used to generate
the partitions for all the actions in this domain.

F1 score Accuracy Anisotropy
Embeddings 1-shot 5-shot 1-shot 5-shot intra(↑) inter(↓) ∆ (↑)

GloVe 19.47 ± 2.47 24.54 ± 2.45 26.07 ± 4.52 33.30 ± 4.19 0.653 0.642 0.010
BERT 21.93 ± 2.40 31.11 ± 2.56 28.33 ± 3.76 39.98 ± 3.56 0.711 0.761 -0.049
Sentence-BERT 23.48 ± 2.62 35.71 ± 2.94 33.03 ± 4.70 47.47 ± 3.60 0.440 0.404 0.036
GTR-T5 26.53 ± 2.29 41.10 ± 2.37 35.76 ± 4.00 52.73 ± 3.16 0.681 0.714 -0.033
DSE 27.53 ± 2.70 39.90 ± 3.08 35.93 ± 4.54 51.73 ± 3.41 0.633 0.608 0.026
TOD-BERT 21.23 ± 2.03 32.28 ± 2.33 29.26 ± 3.99 41.71 ± 3.68 0.848 0.885 -0.038
DialoGPT 21.74 ± 2.10 32.01 ± 2.38 27.65 ± 3.47 41.05 ± 3.64 0.700 0.726 -0.026
SBD-BERT 19.09 ± 2.10 23.83 ± 2.22 25.80 ± 3.56 32.14 ± 3.62 0.651 0.596 0.055

D2F-Hardsingle 34.64 ± 2.90 49.63 ± 2.87 42.77 ± 4.61 58.63 ± 3.27 0.526 0.424 0.103
D2F-Hardjoint 31.46 ± 2.61 46.89 ± 2.50 39.45 ± 4.22 56.43 ± 2.98 0.514 0.481 0.033

D2Fsingle 35.55 ± 3.51 49.75 ± 2.48 43.15 ± 5.24 59.93 ± 3.06 0.516 0.321 0.195
D2Fjoint 33.19 ± 2.95 46.90 ± 2.66 41.22 ± 4.40 57.07 ± 2.92 0.545 0.429 0.116

Table 3: Similarity-based few-shot classification results on SpokenWOZ. The intra- and inter-action anisotropy are
also provided along their difference (∆).

using different query utterances for all actions. We390

observe a similar pattern across both datasets: an391

increase in variability and a drop in performance392

for all embedding types in SpokenWOZ. How-393

ever, D2F embeddings still outperform all base-394

lines and their D2F-Hard counterparts. For a more395

qualitative analysis, Table 5 provides an exam-396

ple of the rankings obtained for the query "your 397

phone please" with the target action [request 398

phone_number] on SpokenWOZ. As seen, DSE 399

errors arise due to embeddings being closer if they 400

correspond to consecutive utterances (inform and 401

request utterances). Sentence-BERT errors occur 402

due to the retrieval of utterances semantically re- 403
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Embeddings NDCG@10♣ NDCG@10⋆

GloVe 26.55 ± 0.57 25.09 ± 2.28
BERT 26.98 ± 0.80 27.74 ± 2.00
Sentence-BERT 30.88 ± 0.70 30.07 ± 2.23
GTR-T5 33.21 ± 0.60 32.74 ± 2.44
DSE 38.09 ± 0.71 33.94 ± 2.47
TOD-BERT 30.55 ± 0.74 25.63 ± 1.88
DialoGPT 28.86 ± 0.71 27.92 ± 2.01
SBD-BERT 27.20 ± 0.83 22.24 ± 1.93

D2F-Hardsingle 60.87 ± 0.47 42.48 ± 2.77
D2F-Hardjoint 58.38 ± 0.72 40.03 ± 2.52

D2Fsingle 67.31 ± 0.42 43.12 ± 2.92
D2Fjoint 66.50 ± 0.49 40.97 ± 2.61

Table 4: Ranking-based results on the unified TOD
evaluation set (♣) and SpokenWOZ (⋆).

lated to "number" and "phone." In contrast, all D2F-404

retrieved utterances correctly represent different405

ways to request a phone number, even though half406

were considered incorrect due to the lack of slot407

label standardization across different domains (e.g.,408

phone_number and phone).7 Nonetheless, for clus-409

tering utterances by similarity to extract a dialog410

flow without annotation, D2F would successfully411

cluster these 10 utterances together as they corre-412

spond to semantically equivalent actions ([request413

phone_number] and [request phone]).414

7 Dialog Flow Extraction Evaluation415

Dialog flow extraction is an underexplored hard-416

to-quantify and challenging task with nuances in417

definition. However, to evaluate embedding qual-418

ity, we formally define the problem as follows:419

Let U and A denote sets of TOD utterances and420

actions, respectively. Let U and A be sets of421

TOD utterances and actions, respectively. Let422

α : U 7→ A be a (usually unknown) function423

mapping an utterance to its corresponding action.424

Let di = (u1, · · · , uk) be a dialog with uj ∈ U ,425

and ti = (α(u1), · · · , α(uk)) = (a1, · · · , ak)426

its conversion to a sequence of actions, referred427

to as a trajectory. Given a set of m dialogs,428

D = {d1, · · · , dm}, and after conversion to a429

set of action trajectories, Dt = {t1, · · · , tm}, the430

goal is to extract the common dialog flow by com-431

bining all the trajectories in Dt. This common432

flow is represented as a weighted actions transi-433

tion graph GD = ⟨A,E,wA, wE⟩ where A is the434

set of actions, E represents edges between actions,435

the edge weight wE(ai, aj) ∈ [0, 1] indicates how436

7This lack of slot standardization also affects results in
Tables 3 and 4.

often ai is followed by aj , and the action weight 437

wA(ai) ∈ [0, 1] is its normalized frequency.8 438

7.1 Evaluation Details 439

For each domain in SpokenWOZ, we build and 440

compare its reference graph GD against the in- 441

duced graph ĜD using different embeddings. The 442

reference graph GD is built from the trajectories 443

Dt generated using the ground truth action labels 444

—e.g. Figure 2 is indeed Ghospital. In contrast, the 445

induced graph ĜD is built without any annotation 446

by clustering all the utterance embeddings in D 447

and using the cluster ids as action labels to gener- 448

ate the trajectories D̂t. That is, for GD, we have 449

α(ui) = ai, while for ĜD, we have α(ui) = ci 450

where ci is the cluster id assigned to ui. To com- 451

pare the induced and reference graphs, we report 452

the difference in the number of nodes between them 453

as the evaluation metric.9 Despite its simplicity, 454

this metric allows us to compare the complexity of 455

the induced vs. reference graph in terms of their 456

sizes (induced actions). Furthermore, to avoid the 457

influence of infrequently occurring utterances/ac- 458

tions on graph size, we prune them by removing all 459

nodes a with wA(a) < ϵ = 0.02 (noise threshold). 460

In practice, the total number of actions to cluster 461

is unknown in advance. For instance, a hierarchical 462

clustering algorithm can be used to approximate 463

this number (see Appendix F). However, for eval- 464

uation purposes, we set the number of clusters in 465

each domain to be equal to the ground truth num- 466

ber so that all the embeddings are evaluated under 467

the same best-case scenario in which this number 468

is known in advance. Therefore, all the induced 469

graphs are built and processed equally, making the 470

input embeddings the only factor influencing the 471

final graph. 472

7.2 Dialog Flow Extraction Results 473

Table 6 shows the results obtained when compar- 474

ing the different induced graphs. We can see that 475

graphs obtained with baseline embeddings tend 476

to underestimate the complexity of each domain, 477

producing less meaningful graphs with fewer states 478

than their references.10 Among the baseline embed- 479

8Even though having states as individual actions makes
them non-Markovian, this graph is easy to interpret and di-
rectly links the quality of individual actions to the overall
flow’s quality.

9One cluster id ci can correspond to multiple ais and vice
versa, preventing a direct comparison between ĜD and GD .

10For instance, Figure A1 and A2 in Appendix show the
induced Ĝhospital for Sentence-BERT and DSE containing
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Rank DSE Sentence-BERT D2Fsingle

1. -uh my phone number is 7 4■ -okay may i have your phone number please□ -please get their phone number□

2. -okay okay now please get your number -may i get your phone number -okay may i have your phone number please□

3. -okay may i have your phone number please□ -okay may i know your telephone number please -okay may i know your telephone number please
4. -thank you on the phone number□ -okay can i please get your id number♣ -may i get your phone number
5. -okay may i know your telephone number please -okay may i have your phone name in case for cooking

the table⋆
-um can i please have their phone number□

6. -okay great emma please have your contact number -okay and may i have your number please -okay so may i have the phone number with me
7. -my number is 2 10■ -okay and may i have your number please -okay i’m i also need phone number□

8. -the number is you see♠ -okay and may i have your number please -no problem um but for the information can i have
your phone number

9. -okay and may i have your number please -okay and your car number♡ -thank you on the phone number□

10. -okay and may i have your number please -this product uh may i have your phone number please -okay can i get your phone number please to make that
booking

Table 5: Top-10 retrieved utterances on SpokenWOZ for the query "your phone please" with action label [request
phone_number]. Errors are highlighted in red with wrong action marked as: ■[inform phone_number]; ♠[inform
plate_number]; ♣[request id_number]; ⋆[request name]; ♡[request plate_number]; □[request phone].

Embeddings Taxi (31) Police (23) Hospital (18) Train (49) Restaurant (59) Attraction (45) AVG.

D2Fsingle 9.68% (+3) 4.35% (-1) 11.11% (-2) 2.04% (+1) 5.08% (-3) 8.89% (+4) 6.86%
D2Fjoint 3.23% (+1) 8.70% (-2) 5.56% (-1) 10.20% (-5) 23.73% (-14) 0.00% (0) 8.57%
D2F-Hardsingle 12.90% (-4) 26.09% (-6) 16.67% (-3) 10.20% (-5) 10.17% (-6) 15.56% (+7) 15.26%
D2F-Hardjoint 0.00% (0) 8.70% (-2) 33.33% (-6) 20.41% (-10) 25.42% (-15) 13.33% (-6) 16.87%

DSE 32.26% (-10) 17.39% (-4) 33.33% (-6) 30.61% (-15) 27.12% (-16) 26.67% (-12) 27.90%
DialoGPT 32.26% (-10) 34.78% (-8) 22.22% (-4) 44.90% (-22) 64.41% (-38) 51.11% (-23) 41.61%
BERT 54.84% (-17) 30.43% (-7) 22.22% (-4) 46.94% (-23) 59.32% (-35) 42.22% (-19) 42.66%
Sentence-BERT 48.39% (-15) 43.48% (-10) 55.56% (-10) 57.14% (-28) 50.85% (-30) 55.56% (-25) 51.83%
GTR-T5 41.94% (-13) 43.48% (-10) 66.67% (-12) 51.02% (-25) 61.02% (-36) 53.33% (-24) 52.91%
SBD-BERT 77.42% (-24) 43.48% (-10) 38.89% (-7) 71.43% (-35) 86.44% (-51) 86.67% (-39) 67.39%
TOD-BERT 74.19% (-23) 78.26% (-18) 55.56% (-10) 85.71% (-42) 83.05% (-49) 82.22% (-37) 76.50%

Table 6: Comparison of induced graph size vs. reference graph size for each single-domain in SpokenWOZ,
measured by the number of nodes (actions). The table shows the normalized absolute difference (%) and raw
difference in parentheses. Column headers indicate the size of each reference graph (GD). Lower differences
suggest a better match in graph complexity.

dings, DSE stands out (27.90% average difference480

across domains), suggesting that dialogue-related481

embeddings are better at capturing the communica-482

tive and informative functions of dialog utterances483

than semantically meaningful embeddings. No-484

tably, D2F embeddings trained with the proposed485

soft contrastive loss induce graphs closest in com-486

plexity to the references across domains (6.86%487

and 8.57% average difference for D2Fsingle and488

D2Fjoint, respectively) compared to both D2F-489

Hard embeddings trained with the vanilla super-490

vised contrastive loss and baselines.11 Finally, it491

is also worth noting that the D2F graphs are rel-492

atively consistent across different domains, even493

though some domains had only a small amount494

of in-domain data during training. For instance,495

the hospital and police domains make up only496

0.11% and 0.07% of the training set (Table A1).497

10 and 6 less nodes than the reference graph, respectively.
11Figure A3 shows Ĝhospital for D2Fjoint with only 1

fewer node than the reference. Source code is provided to gen-
erate graphs for any given dialogue collection and embedding,
allowing manual assessment of superior D2F graph quality.

8 Conclusions 498

This paper introduced Dialog2Flow (D2F), embed- 499

dings pre-trained for dialog flow extraction group- 500

ing utterances by their communicative and informa- 501

tive functions in a latent space. D2F embeddings 502

were trained on a comprehensive dataset of twenty 503

task-oriented dialog datasets with standardized ac- 504

tion annotations, released along with this work. 505

Future work will enhance D2F embeddings by 506

exploring larger backbone models and advanced 507

methods for sentence embeddings (Jiang et al., 508

2023, 2022). We will also investigate more sophis- 509

ticated techniques for extracting and representing 510

dialog flows, such as using subtask graphs (Sohn 511

et al., 2023) or adapting dependency parsing for 512

complex dialog structures (Qiu et al., 2020). Addi- 513

tionally, potential applications include using D2F 514

embeddings to ground LLMs in domain-specific 515

flows for improved transparency and controllabil- 516

ity (Raghu et al., 2021), and integrating D2F em- 517

beddings into various TOD downstream tasks like 518

dialog state tracking and policy learning. 519
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9 Ethical Considerations520

We are committed to ensuring the ethical use of our521

research outcomes. To promote transparency and522

reproducibility, we will release the source code and523

pre-trained model weights under the MIT license.524

This allows for wide usage and adaptation while525

maintaining open-source principles.526

However, to prevent potential license incompat-527

ibilities among the various task-oriented dialogue528

(TOD) datasets we have utilized, we will not re-529

lease our unified TOD dataset directly. Instead, we530

will provide a script that can generate the unified531

dataset introduced in this paper. This approach532

allows users to select the specific TOD datasets533

they wish to include, ensuring compliance with534

individual dataset licenses.535

We acknowledge that gender bias present in the536

original data could be partially encoded in the em-537

beddings. This may manifest as assumptions about538

the agent’s gender, such as the agent being male539

or female. We advise users to be aware of this540

potential bias and encourage further research to541

mitigate such issues. Continuous efforts to audit542

and address biases in data and models are essential543

to ensure fair and equitable AI systems.544

10 Limitations545

Our work represents a preliminary exploration with546

a focus on task-oriented dialogues (TODs) using a547

relatively simple encoder model. While this work548

aims to draw attention to this underexplored area,549

there are a number of limitations that must be ac-550

knowledged:551

1. Scope of Dialogues: Our study is restricted552

to task-oriented dialogues. Consequently, the find-553

ings and methods may not generalize well to more554

complex and diverse types of dialogues, particu-555

larly those of a non-task-oriented nature. Future556

research should explore these methods in a broader557

range of dialogue types to assess their generaliz-558

ability.559

2. Domain Specificity: The model has been560

trained on a specific collection of domains, dia-561

logue acts, and slots. This limits its ability to gen-562

eralize to unseen domains or dialogues that involve563

more complex and varied interactions. Expanding564

the range of training data to include a wider vari-565

ety of domains and dialogue types is necessary to566

improve the model’s robustness and applicability.567

3. Model Complexity: The encoder model used568

in this work is relatively standard. There is poten-569

tial for improvement by employing larger and more 570

advanced models to obtained the final sentence em- 571

beddings. 572

4. Data Size: Despite being the largest dataset 573

with standardized utterance annotations and the 574

largest spoken TOD dataset, the datasets used in 575

this study are limited in size. Larger datasets are 576

necessary to fully explore and validate the proposed 577

methods. We encourage the research community 578

to build upon this work by utilizing more extensive 579

datasets to enhance the reliability and validity of 580

the results. For instance, perhaps named entity tags 581

may be used as slots to expand annotation beyond 582

pure task-oriented dialogues. 583

5. Evaluation Metrics: The evaluation met- 584

rics employed in this study, while standard, may 585

not capture all aspects of performance relevant to 586

real-world applications. Developing and utilizing a 587

broader set of evaluation metrics would provide a 588

more comprehensive assessment of model perfor- 589

mance. Specifically for dialogue flow evaluation, 590

since there is not a standard metric yet, we encour- 591

age the research community to explore better ways 592

to represent and quantify the quality of dialogue 593

flows. 594

By highlighting these limitations, we hope to 595

inspire further research that addresses these chal- 596

lenges, leading to more robust and generalizable 597

solutions building on top of this work. 598
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A Unified TOD Dataset966

Dialog acts: inform(64.66%) request(12.62%) offer(6.62%)
inform_success(3.07%) good_bye(2.67%) agreement(2.45%)
thank_you(2.25%) confirm(2.10%) disagreement(1.60%) request_more(1.06%)
request_alternative(0.90%) recommendation(0.70%) inform_failure(0.64%)
greeting(0.31%) confirm_answer(0.18%) confirm_question(0.17%)
request_update(0.02%) request_compare(0.01%)

Domains: movie(32.98%) restaurant(13.48%) hotel(10.15%) train(4.52%)
flight(4.30%) event(3.56%) attraction(3.50%) service(2.44%) bus(2.28%)
taxi(2.21%) rentalcars(2.20%) travel(2.16%) music(1.81%) medium(1.66%)
ridesharing(1.30%) booking(1.21%) home(1.01%) finance(0.79%)
airline(0.69%) calendar(0.69%) fastfood(0.68%) insurance(0.61%)
weather(0.58%) bank(0.47%) hkmtr(0.36%) mlb(0.35%) ml(0.31%) food(0.30%)
epl(0.30%) pizza(0.25%) coffee(0.24%) uber(0.24%) software(0.23%)
auto(0.21%) nba(0.20%) product_defect(0.17%) shipping_issue(0.16%)
alarm(0.13%) order_issue(0.13%) messaging(0.13%) hospital(0.11%)
subscription_inquiry(0.11%) account_access(0.11%) payment(0.10%)
purchase_dispute(0.10%) nfl(0.09%) chat(0.08%) police(0.07%)
single_item_query(0.06%) storewide_query(0.06%) troubleshoot_site(0.06%)
manage_account(0.06%)

Table A1: Standardized dialog act and domain labels in
our unified TOD datasets, ordered by their proportion
of utterances.

Our training data is sourced from a diverse range967

of TOD datasets meticulously curated in DialogStu-968

dio (Zhang et al., 2024). DialogStudio comprises969

over 80 dialog datasets, with 30 focusing on task-970

oriented conversations. We conducted a compre-971

hensive manual analysis of these 30 TOD datasets972

to identify those from which we could extract dia-973

log act and/or slot annotations. From this analysis,974

we identified 20 datasets that met our criteria, as975

summarized in Table 1. The datasets in DialogStu-976

dio are unified under a consistent format while977

retaining their original information. However, this978

format only unifies the access to the conversations979

per se, omitting annotations and components of980

task-oriented dialogs. We then manually inspected981

each dataset to locate and extract the necessary an-982

notations. This process involved identifying where983

and how annotations were stored originally in each984

dataset, extracting dialog act and/or slot annota-985

tions for each turn, either explicitly or implicitly986

by keeping track of the changes in the dialog state987

annotation from one turn to the next, and standard-988

izing domain names and dialog act labels across989

datasets.990

To standardize dialog act labels, we mapped the991

44 unique labels found across datasets to 18 nor-992

malized dialog act labels, informed by the semantic993

meaning described in the original dataset papers994

(mapping detailed in Table A3). After this process,995

we unified all datasets under a consistent format,996

detailed in the next subsection, incorporating per-997

turn dialog act and slot annotations. The resulting998

unified TOD dataset comprises 3.4 million utter-999

ances annotated with 18 standardized dialog acts,1000

Figure A1: Ĝhospital graph obtained with Sentence-
BERT (8 induced actions in total). Node labels corre-
spond to the cluster ID along a representative utterance
(the closest to the cluster centroid).

Figure A2: Ĝhospital graph obtained with DSE (12 in-
duced actions in total). Node labels correspond to the
cluster ID along a representative utterance (the closest
to the cluster centroid).

524 unique slot labels, and 3,982 unique action 1001

labels (dialog act + slots). These annotations span 1002

across 52 different domains, as detailed in Table 1. 1003

Our unified TOD dataset is a valuable resource 1004

providing a comprehensive and standardized collec- 1005

tion of annotated utterances across diverse domains 1006

under a common format. 1007

A.1 Dataset Format 1008

Our unified dataset standardizes the TOD datasets 1009

into the following common JSON format with per- 1010

utterance annotations: 1011
1012

{ 1013
" s t a t s " : { " domains " : { . . . } , 1014

" l a b e l s " : { . . }} , 1015
" d i a l o g s " : { 1016

"<DIALOGUE_ID0 >" : [ 1017
{ 1018

" s p e a k e r " : <SPEAKER> , 1019
" t e x t " : <RAW_UTTERANCE> , 1020

13



" domains " : [ . . . ] ,1021
" l a b e l s " : {1022

" d i a l o g _ a c t s " : {1023
" a c t s " : [ . . . ] ,1024
" m a i n _ a c t s " : [ . . . ] ,1025
" o r i g i n a l _ a c t s " : [ . . . ] ,1026

} ,1027
" s l o t s " : [ . . . ] ,1028
" i n t e n t s " : [ . . . ]1029

}1030
} ,1031
. . .1032

] ,1033
"<DIALOGUE_ID1 >" : [ . . . ] ,1034
. . .1035

}1036
}10371038

The JSON structure has two main parts: a1039

"stats" header and a "dialogs" body. The1040

"stats" field provides statistics about the labels1041

and domains in the dataset. The "dialogs"1042

field contains dialog IDs, each linked to a list1043

of annotated utterance objects. Each utterance1044

object includes its speaker, text, domains, and1045

associated labels for dialog acts, slots, and in-1046

tents. Dialog act labels contain the original labels1047

("original_acts") as well as their standardized1048

values ("acts") and parent values ("main_acts")1049

as mapped in Table A3.1050

B Training Details1051

Following the experimental setup of DSE (Zhou1052

et al., 2022) and TOD-BERT (Wu et al., 2020),1053

we set the contrastive head dimension to d = 1281054

and use BERTbase as the backbone model for the1055

encoder12. Additional configurations reported in1056

Appendix C.1057

For the soft contrastive loss, the semantic1058

similarity measure δ(yi, yj) = yi · yj was1059

computed using label embeddings y obtained1060

with the best-performing pre-trained Sentence-1061

BERT model on semantic search, namely the1062

multi-qa-mpnet-base-dot-v1 model. As shown1063

in Appendix C, we also experimented with the1064

all-mpnet-base-v2 model, which has the best av-1065

erage performance among all pre-trained Sentence-1066

BERT models. The soft label temperature parame-1067

ter was set to τ ′ = 0.35 after a preliminary study1068

determined it to be a reasonable threshold for both1069

joint and single training targets (Appendix E).1070

In line with the settings of DSE and TOD-BERT,1071

the learning rates for the contrastive head and the1072

encoder model were set to 3e-4 and 3e-6, respec-1073

tively. The contrastive temperature parameter τ1074

12Thus, the embedding size is n = 768.

Figure A3: Ĝhospital graph obtained with D2Fjoint

containing only one node less than the reference graph
in Figure 2. Node labels correspond to the cluster ID
along a representative utterance (the closest to the clus-
ter centroid). Although not the exact same graph as the
reference, this graph still allows us to understand the
common flow of the conversations with a similar degree
of detail: first, the user and system greet each other
(U0 and S6), then the user inform the reason of the call
requesting the phone number of a department (U4), the
agent may confirm the department (S7) or request more
information (S4) before providing the phone number
(S2). The user may then either confirm the number (U3)
or thank the system (U5). Finally, the system asks if
anything else is required (S5), to which the user may
either finish the conversation (U6) or, more likely, thank
the system (U2) before the system says goodbye (S0).

was set to 0.05. Models were trained for 15 epochs 1075

and then saved for evaluation. The maximum se- 1076

quence length for the Transformer encoder was 1077

empirically set to 64 to accommodate at least 99% 1078

of the samples, as most TOD utterances are short. 1079

Finally, the batch size was set to 64 since we found 1080

that, contrary to typical self-supervised contrastive 1081

learning, larger batch sizes resulted in lower perfor- 1082
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DF2 Variation F1 score ∆ Anisotropy (↑)

D2F-Hardsingle 67.82 0.332

* DSE Backbone +2.66 +0.011
+ Self-Supervision -7.41 -0.002

D2F-Hardjoint 66.22 0.230

* DSE Backbone +1.97 +0.010
+ Self-Supervision -6.01 -0.064

D2Fsingle 70.89 0.597

* DSE Backbone +0.97 +0.012
* all-mpnet-base-v2 Label -0.60 -0.038
+ Self-Supervision -6.65 -0.189
– Contrastive Head -1.13 -0.047

D2Fjoint 70.94 0.451

* DSE Backbone +0.65 +0.011
* all-mpnet-base-v2 Label -0.34 -0.038
+ Self-Supervision -8.06 -0.126
– Contrastive Head -3.78 -0.073

Table A2: Ablation study results for various D2F con-
figurations. Additions, subtractions, and replacements
of components are marked with +, –, and * symbols,
respectively. Values show the impact on 5-shot classifi-
cation F1 score and anisotropy as reported in Table 2.

mance.131083

C Ablation study1084

We conducted an ablation study to evaluate the ef-1085

fects of different configurations on the performance1086

of our D2F models. The following variations were1087

tested:1088

• DSE Backbone: Replacing the original BERT1089

encoder with the pre-trained DSE model.1090

• Label Encoder: Using the Sentence-BERT1091

model all-mpnet-base-v2, which has the1092

best reported average performance for seman-1093

tic similarity.1094

• Self-Supervision: Adding the self-supervised1095

loss from DSE (Lself ) trained jointly with our1096

targets (L+ Lself ) on the same data as DSE.1097

This was done to evaluate whether jointly1098

training as DSE would yield better perfor-1099

mance than using the pre-trained DSE encoder1100

directly as the backbone.1101

13A grid search with batch sizes 64, 128, 256, and 512
was performed, training models for one epoch and evaluating
the similarity-based 5-shot F1 score on our evaluation set.
Larger batch sizes consistently yielded lower scores across
all models (both standard and soft supervised contrastive loss
models). For instance, DFDjoint scored 63.23, 61.64, 58.77,
and 56.30 for batch sizes 64, 128, 256, and 512, respectively.

Figure A4: Change in F1 score (top) and ∆ Anisotropy
(bottom) with respect to the label temperature τ ′ (x-
axis). The blue and orange curves represent D2Fsingle

and D2Fjoint, respectively. Horizontal lines indicate
the performance of their D2F-Hard counterparts using
the standard hard supervised contrastive loss.

• Contrastive Head Removal: Removing the 1102

contrastive head used during training. 1103

The results of these variations are summarized in 1104

Table A2. The only configuration that consistently 1105

improved performance was the replacement of the 1106

backbone model with the pre-trained DSE model, 1107

increasing the F1 score and anisotropy across all 1108

variations. 1109

In contrast, adding self-supervision generally de- 1110

graded performance, indicating that the additional 1111

DSE self-supervised loss Lself may not comple- 1112

ment our targets effectively when trained jointly. 1113

Similarly, removing the contrastive head during 1114

training resulted in a notable performance drop, 1115

highlighting its importance.14 1116

D Supervised Soft Contrastive Loss 1117

Explanation 1118

Let p(pos=j |xi) be the probability of j-th sample 1119

in the batch being positive given the i-th anchor. 1120

Then, the loss in Equation 1 is equivalent to the 1121

categorical cross-entropy of correctly classifying 1122

the positions in the batch with positive samples for 1123

the given xi anchor: 1124

−
N∑
j=1

p(pos=j |xi)log p̂(pos=j |xi) (2) 1125

14Each different configuration required re-training the
model for 15 epochs, a process that takes approximately 5
days on a single GeForce RTX 3090 GPU.
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(a) Sentence-BERT (b) D2Fjoint

Figure A5: Dendrograms obtained by hierarchically clustering all user utterances in the hospital domain using
Sentence-BERT embeddings (left) and D2Fjoint embeddings (right). The clustering and the plots were obtained
using the AgglomerativeClustering class from scikit-learn, with the number of clusters set to 4 (indicated by
different colors).

where the true/target distribution p is defined as1126

p(pos=j |xi) =

{
1

|Pi| , if yi = yj

0, if yi ̸= yj
(3)1127

and the predicted distribution p̂ is an N -way1128

softmax-based distribution proportional to the1129

alignment/similarity between (the vectors of) the1130

given xi anchor and each x+j sample:1131

p̂(pos=j |xi) =
ezi·z

+
j /τ∑N

k=1 e
zi·z+k /τ

1132

Note that the target distribution in Equation 3 treats1133

all samples with different labels as equally negative,1134

independently of the semantics of the labels. How-1135

ever, we hypothesize that better representations can1136

be obtained by taking advantage of the semantics1137

of the labels to model more nuanced relationships.1138

More precisely, let δ(yi, yj) be a semantic similar-1139

ity measure between both labels, we define a new1140

target distribution p(pos=j |xi) ∝ δ(yi, yj) as:1141

p(pos=j |xi) =
eδ(yi,yj)/τ

′∑N
k=1 e

δ(yi,yk)/τ ′
(4)1142

where τ ′ is the temperature parameter to con-1143

trol how soft/hard the negative labels are (Ap-1144

pendix E).15 Note that unlike Equation 3,16 this1145

equation allows searching for an encoder that tries1146

15On both extremes, sufficiently small τ ′ will resemble the
original distribution in Equation 3 while sufficiently large τ ′

will resemble a uniform distribution leading to no contrast
between positive and negative samples.

16Equation 3 encourages the encoder to separate all nega-
tives 180◦ away from their anchors: if yi ̸= yj , p̂(pos= j |
xi) → 0 ⇒ e(·) → 0 ⇒ zi · z+j → −1.

to separate anchors and negatives by degrees pro- 1147

portional to how semantically similar their labels 1148

are. Therefore, by replacing Equation 4 in Equa- 1149

tion 2, our soft contrastive loss is finally defines 1150

as: 1151

ℓsofti =−
N∑
j=1

eδ(yi,yj)/τ
′∑N

k=1 e
δ(yi,yk)

τ ′
log

ezi·z
+
j /τ∑N

k=1 e
zi·z

+
k

τ

1152

E Soft Contrastive Loss Temperature 1153

To understand the benefits of the "softness" intro- 1154

duced by our proposed contrastive loss compared 1155

to the conventional hard supervised contrastive loss, 1156

we conducted a preliminary study examining the 1157

impact of the label temperature parameter τ ′. We 1158

trained models over three epochs, varying the tem- 1159

perature τ ′ across a range of values from 0.05 to 1160

1.0 in increments of 0.05. This resulted in 42 dif- 1161

ferent model variants: 20 each for D2Fsingle and 1162

D2Fjoint, and one for each D2F-Hard counterpart. 1163

For each τ ′ value, we recorded the 5-shot classifi- 1164

cation F1 score and ∆ anisotropy values as outlined 1165

in Section 6. The results are depicted in Figure A4. 1166

The plots reveal that as the temperature τ ′ in- 1167

creases from 0, indicating a transition from hard 1168

to softer negative labels, both F1 scores and ∆ 1169

anisotropy values improve beyond those obtained 1170

with the standard supervised contrastive loss. For 1171

both D2Fsingle and D2Fjoint models, increasing 1172

the temperature leads to greater separation between 1173

intra-class and inter-class embeddings, as indicated 1174

by higher ∆ anisotropy values. 1175

The performance metrics exhibit a steady rise 1176

up to a temperature around between 0.35 and 0.4, 1177
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beyond which ∆ anisotropy values begin to plateau1178

and F1 scores become less stable. The advantage1179

of using softer contrast is more pronounced for the1180

joint target (D2Fjoint, represented by the orange1181

line), as evidenced by the larger gap between the1182

orange curve and its corresponding horizontal line1183

(D2F-Hardjoint).1184

However, it’s important to note that these1185

improvements diminish with additional training1186

epochs. The final difference in performance met-1187

rics between soft and hard labels narrows after1188

extended training, as reflected in the results re-1189

ported in Table 2, where models were trained for1190

15 epochs.1191

F How Many Actions to Cluster?1192

In practice, determining the optimal number of clus-1193

ters (actions) in dialog flow extraction is challeng-1194

ing because it directly affects the granularity of the1195

extracted flows. Hierarchical clustering algorithms,1196

such as agglomerative clustering, are preferred over1197

centroid-based methods like k-means because they1198

provide a visual representation of the data’s hierar-1199

chical structure, which can be examined to decide1200

the number of clusters or set a distance threshold.1201

Figure A5 illustrates dendrograms obtained1202

by hierarchically clustering user utterances in1203

the hospital domain using Sentence-BERT1204

embeddings and D2Fjoint embeddings. The1205

clustering and plotting were performed us-1206

ing the AgglomerativeClustering class from1207

scikit-learn, with the number of clusters set to1208

4, represented by different colors.1209

The dendrograms reveal notable differences be-1210

tween the embeddings. The Sentence-BERT den-1211

drogram (left) shows a structure with two main1212

(semantic) groups with low variability in the dis-1213

tances between child and parent nodes, resulting1214

in a more stretched plot. In contrast, the D2Fjoint1215

dendrogram (right) displays a clearer separation1216

into four main groups, with larger gaps between1217

child and parent nodes at a certain level of the1218

hierarchy, indicating distinct clusters. D2Fjoint1219

embeddings were trained to minimize intra-action1220

distances (pushing them towards the bottom of the1221

dendrogram) and maximize inter-action distances1222

(pushing parent nodes towards the top) facilitating1223

easier identification of clusters. For instance, in1224

the D2Fjoint dendrogram, the number of actions1225

could be estimated to be between 4 and 7, or a dis-1226

tance threshold around 0.4 could be used to form1227

the clusters. 1228

In our experiments (Section 6), we used the 1229

ground truth number of clusters from annotations 1230

to ensure consistency in evaluation across the dif- 1231

ferent embeddings. However, agglomerative clus- 1232

tering was employed to mimic closer a realistic 1233

scenario where the number of actions is not prede- 1234

fined. 1235

Thus, hierarchical clustering methods provide a 1236

practical approach for approximating the number of 1237

actions in practice when such number is unknown. 1238
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Original Standardized Parent

inform inform (slots)

inform

notify_fail

inform_failure

notify_failure
no_result
nobook
nooffer
sorry
cant_understand
canthelp
reject

book
inform_successofferbooked

notify_success

request request (slots)

request

request_alt request_alternative
request_compare request_compare
request_update request_update

req_more

request_more
request_more
moreinfo
hearmore

confirm confirm (slots)
confirmationconfirm_answer confirm_answer

confirm_question confirm_question

affirm
agreement agreement

affirm_intent

negate
disagreement disagreementnegate_intent

deny

offer

offer offer
select
multiple_choice
offerbook

suggest
recommendation recommendation

recommend

greeting
greeting greeting

welcome

thank_you
thank_you thank_youthanks

thankyou

good_bye
good_bye good_byegoodbye

closing

Table A3: The original 44 dialog acts with their respective 18 standardized names used to unify all the datasets,
along with a parent category grouping them further into 10 parent acts.
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