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Abstract
Many reinforcement learning (RL) applications
have combinatorial action spaces, where each
action is a composition of sub-actions. A stan-
dard RL approach ignores this inherent factor-
ization structure, resulting in a potential failure
to make meaningful inferences about rarely ob-
served sub-action combinations; this is particu-
larly problematic for offline settings, where data
may be limited. In this work, we propose a form
of linear Q-function decomposition induced by
factored action spaces. We study the theoretical
properties of our approach, identifying scenar-
ios where it is guaranteed to lead to zero bias
when used to approximate the Q-function. Out-
side the regimes with theoretical guarantees, we
show that our approach can still be useful because
it leads to better sample efficiency without neces-
sarily sacrificing policy optimality, allowing us to
achieve a better bias-variance trade-off. Across
several offline RL problems using simulators and
real-world datasets motivated by healthcare prob-
lems, we demonstrate that incorporating factored
action spaces into value-based RL can result in
better-performing policies. Our approach can help
an agent make more accurate inferences within
under-explored regions of the state-action space
when applying RL to observational datasets.

1. Introduction
In many real-world decision-making problems, the action
space exhibits an inherent combinatorial structure. For ex-
ample, in healthcare, an action may correspond to a combi-
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Figure 1. Illustration of Q-network architectures, which take the
state s as input and output Q(s, a) for a selected action. In this
example, the action space A consists of D = 3 binary sub-action
spaces {□,■}, {□,■} and {□,■}. (a) Learning with the com-
binatorial action space requires 23 = 8 output heads (exponential
in D), one for each combination of sub-actions. (b) Incorporating
the linear Q decomposition for the factored action space requires
2× 3 = 6 output heads (linear in D).

nation of drugs and treatments (Komorowski et al., 2018;
Ernst et al., 2006; Prasad et al., 2017; Parbhoo et al., 2020).
Past work applying reinforcement learning (RL) typically
considers each combination a distinct action, resulting in
an exponentially large action space (Figure 1a). This is
inefficient as it fails to leverage the potential independence
structure among the dimensions of the action space.

To improve learning efficiency, one may incorporate this fac-
torization structure of the action space when designing the
architecture of function approximators for RL (Figure 1b).
Similar ideas have been used in past work, primarily to
improve exploration (Tavakoli et al., 2018; 2021), or to
handle multiple agents (Sunehag et al., 2018; Rashid et al.,
2018; Zhou et al., 2019) or multiple rewards (Juozapaitis
et al., 2019). However, the applicability of this approach has
not been systematically studied when the MDP presents no
additional structure, such as factorization of the state space.

In this work, we develop an approach for offline RL with
factored action spaces by learning linearly decomposable
Q-functions. First, we study the theoretical properties of



Leveraging Factored Action Spaces for Offline RL in Healthcare

this approach, investigating the sufficient and necessary
conditions for it to lead to an unbiased estimate of the Q-
function (i.e., zero approximation error). When the linear
decomposition is biased, we note that our approach always
leads to a reduction of variance, which in turn leads to an
improvement in sample efficiency. Lastly, we show that
when the sub-actions exhibit certain structures (e.g., when
two sub-actions “reinforce” their independent effects), the
linear approximation, though biased, can still correspond to
the optimal policy. We test our approach in offline RL do-
mains using a simulator (Oberst & Sontag, 2019) and a real
clinical dataset (Komorowski et al., 2018),1 where domain
knowledge about the relationship among actions suggests
our proposed factorization approach applies. Empirically,
our approach outperforms a non-factored baseline when the
sample size is limited, even when the theoretical assump-
tions (around the validity of a linear decomposition) are not
satisfied perfectly. Qualitatively, in the real-data experiment,
our approach learns policies that better capture the effect of
less frequently observed treatment combinations.

Our work provides both theoretical insights and empirical
evidence for RL practitioners to consider this simple linear
decomposition approach. Compatible with any algorithm
that has a Q-function component, we expect our approach
will lead to the greatest gains for problems with combi-
natorial action spaces where data are limited in an offline
setting, and when domain knowledge can be used to check
the validity of theoretical assumptions.

2. Problem Setup
We consider Markov decision processes (MDPs) defined
by a tuple M = (S,A, p, r, µ0, γ), where S and A are
the state and action spaces, p(s′|s, a) and r(s, a) are the
transition and instantaneous reward functions, µ0(s) is
the initial state distribution, and γ ∈ [0, 1] is the dis-
count factor. A probabilistic policy π(a|s) specifies a map-
ping from each state to a probability distribution over ac-
tions. For a deterministic policy, π(s) refers to the ac-
tion with π(a|s) = 1. The state-value function is defined
as V π(s) = EπEM

[∑∞
t=1 γ

t−1rt | s1 = s
]
. The action-

value function, Qπ(s, a), is defined by further restricting
the action taken from the starting state. The goal of RL is to
find a policy π∗ = argmaxπ Es∼µ0

[V π(s)] (or an approxi-
mation) that has the maximum expected performance.

2.1. Factored Action Spaces

While the standard MDP definition abstracts away the un-
derlying structure within the action space A, in this paper,
we explicitly express a factored action space as a Carte-

1The code to reproduce our experiments is available online at
https://github.com/MLD3/OfflineRL FactoredActions.

sian product of D sub-action spaces, A =
⊗D

d=1Ad =
A1 × · · · × AD. We use a vector symbol a ∈ A to denote
each action, which can also be written as a vector of sub-
actions a = [a1, . . . , aD], with each ad ∈ Ad. In general,
a sub-action space can be discrete or continuous, and the
cardinalities of discrete sub-action spaces are not required to
be the same. For clarity of analysis and illustration, we pri-
marily consider discrete sub-action spaces; extensions of the
theory to continuous sub-action spaces are straightforward.

2.2. Linear Decomposition of Q Function

The traditional factored MDP literature almost exclusively
considers state space factorization (Koller & Parr, 1999). In
contrast, here we capitalize on action space factorization.
Specifically, our approach considers a linear decomposition
of the Q function, as illustrated in Figure 1b:

Qπ(s,a) =
∑D

d=1 qd(s, ad). (1)

Each component qd(s, ad) in the summation is allowed to
condition on the full state space s and only one sub-action
ad. While similar forms of decomposition have been used
in past work, there are key differences in how the summa-
tion components are parameterized. In the multi-agent RL
literature, each component qd(sd, ad) can only condition on
the corresponding state space of the d-th agent (e.g., Sune-
hag et al., 2018; Rashid et al., 2018). The decomposition
in Eqn. (1) also differs from a related form of decompo-
sition considered by Juozapaitis et al. (2019) where each
component qd(s,a) can condition on the full action a. To
the best of our knowledge, we are the first to consider this
specific form of Q-function decomposition backed by both
theoretical rigor and empirical evidence; in addition, we are
the first to apply this idea to offline RL. We discuss other
related work in Section 5.

3. Theoretical Analyses
In this section, we study the theoretical properties of the
linear Q-function decomposition induced by factored ac-
tion spaces. We first investigate the sufficient and necessary
conditions for our approach to introduce no bias, and then
analyze settings in which our approach can reduce vari-
ance without sacrificing policy performance even when the
conditions are violated. Finally, we discuss how domain
knowledge may be used to check the validity of these condi-
tions, providing examples in healthcare.

3.1. Sufficient Conditions for Zero Bias

If we consider the total return of D MDPs running in par-
allel, where each MDP is defined by their respective state
space Sd and action space Ad, then the desired linear de-
composition holds for the MDP defined by the joint state
space

⊗D
d=1 Sd and joint action space

⊗D
d=1Ad (formally

https://github.com/MLD3/OfflineRL_FactoredActions
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discussed in Appendix B.1). However, this relies on an
explicit, known state space factorization, limiting its appli-
cability. We now present a generalization that forgoes the
explicit factorization of the state space by making use of
state abstractions. Intuitively, the MDP should have some
implicit factorization, such that it is homomorphic to D
parallel MDPs. It is, however, not a requirement that this
factorization is known, as long as it exists.

Theorem 1. Given an MDP defined by S,A, p, r and a
policy π : S → ∆(A), where A =

⊗D
d=1Ad is a factored

action space with D sub-action spaces, if there exists D
unique corresponding state abstractions ϕ = [ϕ1, · · · , ϕD]
where ϕd : S → Zd, zd = ϕd(s), z′d = ϕd(s

′), such that
for all s, a, s′ the following holds:

∑
s̃∈ϕ−1(ϕ(s′))

p(s̃|s,a) =
D∏

d=1

pd(z
′
d|zd, ad) (2)

r(s,a) =

D∑
d=1

rd(zd, ad) (3)

π(a|s) =
D∏

d=1

πd(ad|zd) (4)

for some pd : Zd × Ad → ∆(Zd), rd : Zd × Ad → R,
and πd : Zd → ∆(Ad), then the Q-function of π can be
expressed as Qπ(s,a) =

∑D
d=1 qd(s, ad).

In Appendix B.2, we present an induction-based proof of
Theorem 1. Since every assumption is used in key steps
of the proof, we conjecture that the sufficient conditions
cannot be relaxed in general. Consequently, if the sufficient
conditions are satisfied, then using Eqn. (1) to parameterize
the Q-function leads to zero approximation error and results
in an unbiased estimator. Note that this does not require
knowledge of ϕ. To highlight the significance of Theorem 1,
we present the following example, in which the state space
cannot be explicitly factored, yet the linear decomposition
exists (additional examples probing the sufficient conditions
can be found in Appendix C).

Example 1 (Two-dimensional chains with abstractions).
The factored action space shown in Figure 2a, A = Ax ×
Ay, is the composition of two binary sub-action spaces:
Ax = {←,→} leading the agent to move left or right, and
Ay = {↓, ↑} leading the agent to move down or up. Thus,
A consists of four actions, where each action a = [ax, ay]
leads the agent to move diagonally.

Consider the MDP shown in Figure 2b with action space A.
There are 5 different states, S = {s0,0, s0,1, s̃0,1, s1,0, s1,1};
we use subscripts to indicate the abstract state vector under
ϕ = [ϕx, ϕy] (e.g., s0,1 and s̃0,1 are two different raw states
but are identical under the abstraction,ϕ(s0,1) = ϕ(s̃0,1) =
[z0,?, z?,1]). There is no explicit state space factorization.

One can verify that Eqn. (2) and (3) are satisfied by compar-
ing the raw transitions and rewards against the abstracted
version (e.g., action↗ from s0,0 moves both→ (under ϕx)
and ↑ (under ϕy) to s1,1 and receives the sum of the two
rewards, 1 + 1 = 2). For Eqn. (4) to hold, the policy must
take the same action from s0,1 and s̃0,1. In Figure 2c, we
show the linear decomposition of the Q-function for one
such policy where Theorem 1 applies, under which the evo-
lution of the MDP can be seen as two chain MDPs running
in parallel (also in Figure 2b). ◁

(a) Ax
Left Right Ay

Down

Up

Ax ×Ay

[Left, Down]

[Left, Up]

[Right, Down]

[Right, Up]

(b)
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Original MDP

Abstract MDP
in y-direction

Abstract MDP
in x-direction

(c) a = [ax, ay] qx(s0,0, ax) + qy(s0,0, ay) =Qπ(s0,0,a)

↙= [←, ↓] 0.9 0.9 1.8
↖= [←, ↑] 0.9 1 1.9
↘= [→, ↓] 1 0.9 1.9
↗= [→, ↑] 1 1 2

Figure 2. (a) The composition of sub-action spaces Ax and Ay

results in A = Ax ×Ay depicted by outgoing arrows exiting the
corners of each state (denoted by □). The corner from which
the action exits encodes the direction. (b) An MDP with 5 states
and 4 actions of the factored action space A. For example, action
↗= [→, ↑] from s0,0 moves the agent both right (→) and up
(↑), to s1,1. Under abstractions ϕ = [ϕx, ϕy], this MDP can be
mapped to two abstract MDPs (with action spaces Ax and Ay,
respectively). The abstract state spaces are Zx = {z0,?, z1,?} and
Zy = {z?,0, z?,1}, respectively, where ? indicates the coordinate
ignored by the abstraction. s1,1 is an absorbing state whose out-
going transition arrows are not shown. Taking action↖= [←, ↑]
from s0,0 leads to s0,1 with probability p and to s̃0,1 with proba-
bility (1− p) (denoted in green). Actions taken by a determinisitic
policy π are denoted by bold blue arrows. π takes the same action
↘= [→, ↓] from s0,1 and s̃0,1. Nonzero rewards are denoted in
red. (c) Linear decomposition of Qπ (with γ = 0.9) for s0,0 with
respect to the factored action space. Similar decompositions for
other states can be found (omitted for space).

3.2. Necessary Conditions for Zero Bias

In Appendix B.5, we derive a necessary condition for the
linear parameterization to be unbiased. Unfortunately, the
condition is not verifiable unless the exact MDP parame-
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ters are known; this highlights the non-trivial nature of the
problem. One may naturally question whether the sufficient
conditions (which are arguably more verifiable in practice)
must hold (i.e., are necessary) for the linear parameterization
to be unbiased. Perhaps surprisingly, none of the conditions
discussed in Theorem 1 are necessary. We state the follow-
ing propositions and provide justifications through a set of
counterexamples below and in Appendix C.
Proposition 2. There exist an MDP M and a policy π
for which Qπ

M decomposes as Eqn. (1) but the transition
function p ofM does not satisfy Eqn. (2).
Proposition 3. There exist an MDPM and a policy π for
which Qπ

M decomposes as Eqn. (1) but the reward function
r ofM does not satisfy Eqn. (3).
Proposition 4. There exist an MDPM and a policy π for
which Qπ

M decomposes as Eqn. (1) but the policy π does
not satisfy Eqn. (4).
Example 2. In Figure 3, all conditions in Theorem 1 are vi-
olated, yet for each state, there exists a linear decomposition
of Q-values (Appendix C). ◁

s0,0

s0,1

s1,0

s1,1

+1

+1

+1 +1

+1

+2

(1− γ)

z0,? z1,?
+1

z?,0

z?,1

+1

φx

φy (c)

(a)

(b)

Figure 3. This MDP is similar to Example 1 (except it does not
have state s̃0,1) and we consider the same abstractions ϕ =
[ϕx, ϕy]. The Q-function and decomposition are exactly the same
as in the previous example. However, none of the conditions in
Theorem 1 are satisfied. (a) The transition function does not satisfy
Eqn. (2) because action↗= [→, ↑] from s0,1 does not move right
(→ under ϕx) to s1,1 and instead moves back to state s0,1. (b) The
reward function does not satisfy Eqn. (3) as the reward of (1− γ)
for action↗= [→, ↑] from s0,1 is not the sum of +1 (→ from
z0,? under ϕx) and 0 (↑ from z?,1 under ϕy). (c) The policy does
not satisfy Eqn. (4) as it takes different sub-actions from z0,? under
ϕx (↖ from s0,0 specifies←, whereas↗ from s0,1 specifies→).

Therefore, while Theorem 1 imposes a rather stringent set
of assumptions on the MDP structure (transitions, rewards)
and the policy, violations of these conditions do not preclude
the linear parameterization of the Q-function from being an
unbiased estimator.

3.3. How Does Bias Affect Policy Learning?

When the sufficient conditions do not hold perfectly, us-
ing the linear parameterization as in Eqn. (1) to fit the

Q-function may incur nonzero approximation error (bias).
This can affect the performance of the learned policy; in
Appendix B.3, we derive error bounds by relaxing the condi-
tions in Theorem 1. Despite this bias, our approach always
leads to variance reduction for the estimator. This presents
an opportunity to achieve a better bias-variance trade-off,
especially given limited historical data in the offline setting.
In addition, as we will demonstrate, biased Q-values does
not always result in suboptimal policy performance, and we
identify the characteristics of problems where this happens
under our proposed linear decomposition.

3.3.1. BIAS-VARIANCE TRADE-OFF

While the amount of bias incurred depends on the problem
structure, the benefit of variance reduction is immediate.
Intuitively, to learn the Q-function of a tabular MDP with
state space S and action spaceA =

⊗D
d=1Ad, the linear pa-

rameterization reduces the number of free parameters from
|S||A| = |S|(∏D

d=1 |Ad|) to |S|(∑D
d=1 |Ad| −D+1) (see

Appendix B.4). This reduces the size of the hypothesis class
from exponential in D to linear in D. To analyze variance
reduction, we compare the bounds on Rademacher complex-
ity (Mohri et al., 2018; Duan et al., 2021; Makar et al., 2022)
of the Q-function approximator using the factored action
space to that of the full combinatorial action space (formally
discussed in Appendix B.6).
Proposition 5. Using the linear Q-function decomposition
for the factored action space in Eqn. (1) has a smaller lower
bound on the empirical Rademacher complexity compared
to learning the Q-function in the combinatorial action space.

Proposition 5 shows that our linear Q-function parameter-
ization leads to a smaller function space, which implies a
lower-variance estimator. Hence, our factored-action ap-
proach can make more efficient use of limited samples, lead-
ing to an interesting bias-variance trade-off that is especially
beneficial for offline settings with limited data.

3.3.2. BIAS ̸⇒ SUBOPTIMAL PERFORMANCE

Even in the presence of bias, an inaccurate Q-function may
still correctly identify the value-maximizing action (Proposi-
tion 6). While this statement is generally true, in this section,
we identify when this occurs specifically given our linear
decomposition based on factored action spaces. To focus
the analysis on the most interesting aspects unique to our
approach, we consider a bandit setting; extensions to the se-
quential setting are possible under additional technicalities
(Chen & Jiang, 2019; Liu et al., 2020; Duan et al., 2021).
Proposition 6. There exists an MDP with the optimal Q∗

and its approximation Q̂ in Eqn. (1), such that Q̂ ̸= Q∗ and
yet argmaxa Q̂(a) = argmaxa Q∗(a).

Justification. Consider a 1-step bandit problem with a single
state and the same action space as before, A = Ax × Ay.
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Figure 4. (a) A two-dimensional bandit problem with action space
A. Rewards are denoted for each arm. (b) Learning using the
linear Q decomposition approach corresponds to a system of linear
equations that relates the reward of each arm. The parameter
rInteract is dropped in our linear approximation, leading to omitted-
variable bias. (c) Solving the system results in an approximate
value function Q̂, which does not equal to the true value function
Q∗ unless β = 0.
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Figure 5. The approximation error and policy suboptimality of our
approach for the bandit problem in Figure 4a, for different settings
of β when α = 1. The Q-value approximation is unbiased only
when β = 0, but the corresponding approximate policy is optimal
for a wider range of β ≥ −1.

Taking an action a = [ax, ay] leads the agent to move di-
agonally and terminate immediately. Since there are no
transitions, the Q-values of any policy are simply the imme-
diate reward from each action, Q(a) = r(a). We assume
the reward function is defined as in Figure 4a (Appendix B.7
describes a procedure to standardize an arbitrary reward
function). Applying our approach amounts to solving for
the parameters rLeft, rRight, rDown, rUp of the linear system in
Figure 4b, while dropping the interaction term rInteract, result-
ing in a form of omitted-variable bias (Wooldridge, 2015).
Solving the system gives the approximate value function
where the interaction term β appears in the approximation
Q̂ for all arms (Figure 4c, details in Appendix B.8).

Note that Q̂ = Q∗ only when β = 0, i.e., there is no in-
teraction between the two sub-actions. We first consider

the family of problems with α = 1 and β ∈ [−4, 4].
In Figure 5, we measure the value approximation error
RMSE(Q∗, Q̂), as well as the suboptimality V π∗ − V π̂ =
maxa Q∗(a)−Q∗(argmaxa Q̂(a)) of the greedy policy of
Q̂ compared to π∗. As expected, when β = 0, Q̂ is unbiased
and has zero approximation error. When β ̸= 0, Q̂ is biased
and RMSE > 0; however, for β ≥ −1, Q̂ corresponds to a
policy that correctly identifies the optimal action.

We further investigate this phenomenon considering both
α, β ∈ [−4, 4] (to show all regions with interesting trends),
measuring RMSE and suboptimality as above. As shown
in Figure 6-left, the approximation error is zero only when
β = 0, regardless of α. However, in Figure 6-right, for
a wide range of α and β settings, suboptimality is zero;
this suggests that in those regions, even in the presence of
bias (non-zero approximation error), our approach leads
to an approximate value function that correctly identifies
the optimal action. The irregular contour outlines multiple
regions where this happens; one key region is when the
two sub-actions affect the reward in the same direction (i.e.,
α ≥ 0) and their interaction effects also affect the reward in
the same direction (i.e., β ≥ 0).
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Figure 6. The approximation error and policy suboptimality of our
approach for the bandit problem in Figure 4a, for different settings
of α and β. The Q-value approximation is unbiased only when
β = 0, but the corresponding approximate policy is optimal for
a wider range of α and β values. The highlighted region of zero
suboptimality corresponds to α ≥ 0 and β ≥ 0.

3.4. Practical Considerations: Are these Assumptions
too Strong?

Based on our theoretical analysis, strong assumptions (Sec-
tion 3.1) on the problem structure (though not necessary,
Section 3.2) are the only known way to guarantee the un-
biasedness of our proposed linear approximation. It is thus
crucial to understand the applicability (and inapplicabil-
ity) of our approach in real-world scenarios. Exploring to
what extent these assumptions hold in practice is especially
important for safety-critical domains such as healthcare
where incorrect actions (treatments) can have devastating
consequences. Fortunately, RL tasks for healthcare are of-
ten equipped with significant domain knowledge, which
serves as a better guide to inform the algorithm design
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than heuristics-driven reasoning alone (Sharma et al., 2017;
Tavakoli et al., 2018; Rashid et al., 2018).

Oftentimes, when clinicians treat conditions using multiple
medications at the same time (giving rise to the factored
action space), it is because each medication has a different
“mechanism of action,” resulting in negligible or limited in-
teractions. For example, several classes of medications are
used in the management of chronic heart failure, and each
has a unique and incremental benefits on patient outcomes
(Komajda et al., 2018). Problems such as this satisfy the suf-
ficient conditions in Section 3.1 in spite of a non-factorized
state space. Moreover, any small interactions would have
a bounded effect on RL policy performance (according to
Appendix B.3).

Similarly, in the management of sepsis (which we consider
in Section 4.2), fluids and vasopressors affect blood pressure
to correct hypotension via different mechanisms (Gotts &
Matthay, 2016). Fluid infusion increases “preload” by in-
creasing the blood return to the heart to make sure the heart
has enough blood to pump out (Guérin et al., 2015). In con-
trast, common vasopressors (e.g., norepinephrine) increase
“inotropy” by stimulating the heart muscle and increase pe-
ripheral vascular resistance to maintain perfusion to organs
(Hamzaoui et al., 2010; Monnet et al., 2011). Therefore,
while the two treatments may appear to operate on the same
part of the state space (e.g., they both increase blood pres-
sure), in general they are not expected to interfere with each
other. Recently, there has also been evidence suggesting that
their combination can better correct hypotension (Hamza-
oui, 2021), which places this problem approximately in the
regime discussed in Section 3.3.2.

Given limited historical data in the offline setting, the reduc-
tion in variance by our approach can outweigh any potential
small bias incurred in the scenarios above and lead to over-
all performance improvement (Section 3.3.1). However,
our approach is not suitable if the interaction is counter
to the effect of the sub-actions (e.g., two drugs that raise
blood pressure individually, but when combined lead to a
decrease). In such scenarios, the resulting bias will likely
lead to suboptimal performance (Section 3.3.2). However,
many drug-drug interactions are known and/or predictable
(Saari et al., 2008; Smithburger et al., 2012; WebMD; Epic).
In such cases, one can either explicitly encode the interac-
tion terms or resort back to a combinatorial action space.
While we focus on healthcare, there are other domains (e.g.,
education) in which significant domain knowledge regard-
ing the interactions among sub-actions is available. In such
scenarios, this knowledge can and should be leveraged.

4. Experimental Evaluations
We apply our approach to two offline RL problems from
healthcare: a simulated and a real-data problem, both hav-
ing an action space that is composed of several sub-action
spaces. These problems correspond to settings discussed
in Section 3.4 where we expect our proposed approach to
perform well. In the following experiments, we compare our
proposed approach (Figure 1b), which makes a simplifying
assumption regarding the effect of sub-actions in combina-
tion with other sub-actions, against a common baseline that
considers a combinatorial action space (Figure 1a).

4.1. Simulated Domain: Sepsis Simulator

Rationale. First, we apply our approach to a simulated
domain modeled after the physiology of patients with sepsis
(Oberst & Sontag, 2019). Although the policies are learned
“offline,” a simulated setting allows us to evaluate the learned
policies in an “online” fashion without requiring offline
policy evaluation (OPE).

Setup. Following prior work (Tang & Wiens, 2021), a state
is represented by a feature vector x(s) ∈ {0, 1}21 that uses
a one-hot encoding for each underlying variable (diabetes
status, heart rate, blood pressure, oxygen concentration,
glucose: all of which are discrete). The action space is com-
posed of 3 binary treatments: antibiotics, vasopressors, and
mechanical ventilation, such that A = Aabx ×Avaso ×Amv,
with Aabx = Avaso = Amv = {0, 1} and |A| = 23 = 8.
Each treatment affects certain vital signs and may raise or
lower their values with pre-specified probabilities (precise
definition in Tang & Wiens (2021)). A patient is discharged
alive when all vitals are normal and all treatments have
been withdrawn; death occurs if 3 or more vitals are ab-
normal. Rewards are sparse and only assigned at the end
of each episode (+1 for survival and −1 for death), after
which the system transitions into the respective absorbing
state. Episodes are truncated at a maximum length of 20 fol-
lowing Oberst & Sontag (2019) (where no terminal reward
is assigned). Here, the MDP partly satisfies the sufficient
conditions outlined in Section 3. For example, oxygen sat-
uration (which can be seen as a state abstraction) is only
affected by mechanical ventilation, whereas heart rate is
only affected by antibiotics. However, blood pressure is
affected by both antibiotics and vasopressors, meaning the
effects of these two sub-actions are not independent.

Offline learning. First, we generated datasets with different
sample sizes following 5 different behavior policies. We
ran fitted Q-iteration for up to 50 iterations using a neural
network function approximator, selecting the early-stopping
iteration based on ground-truth policy performance. Each
setting of sample size and behavior policy was repeated 10
times with different random seeds. Additional details are
described in Appendix D.1.
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Figure 7. Performance on the sepsis simulator across sample sizes and behavior policies. Plots display the performance over 10 runs,
with the trend lines showing medians and error bars showing interquartile ranges. ρ is the probability of taking the optimal action under
the behavior policies used to generate offline datasets from the simulator. The left two plots show two ϵ-greedy policies (ρ > 0.125;
conversion: ρ = (1− ϵ) + ϵ/|A|); the middle plot shows a uniformly random policy (ρ = 0.125); the right two plots show two policies
that undersample the optimal action, ρ < 0.125; from left to right, ρ decreases. Across different data distributions, our proposed approach
outperforms the baseline at small sample sizes, and closely matches the baseline performance at large sample sizes.

Results. Figure 7 compares median performance of the
proposed approach vs. the baseline over the 10 runs (error
bars are interquartile ranges). We consider behavior policies
that take the optimal action with probability ρ and select
randomly among non-optimal actions with probability 1−ρ.

How does sample size affect performance? We first look at
a uniformly random behavior policy (ρ = 1/|A| = 0.125,
Figure 7 middle). As expected, larger sample sizes lead to
better policy performance for both the baseline and proposed
approaches. For lower sample sizes (< 5000), the proposed
approach consistently outperforms the baseline. As sample
size increases further, the performance gap shrinks and even-
tually the baseline overtakes our proposed approach. This
is because variance decreases with sample size but the bias
incurred by the factored approximation does not change.
Once there are enough samples, reductions in variance are
no longer advantageous and the incurred bias dominates
the performance. Overall, this shows that our approach is
promising especially for datasets with limited sample size.

How does behavior policy affect performance? As we
anneal the behavior policy closer to the optimal policy
(ρ > 0.125, Figure 7 left two), we reduce the randomness
in the behavior policy and limit the amount of exploration
possible at the same sample size. The same overall trend
largely holds. On the other hand, when the probability of
taking the optimal action is lower than random (ρ < 0.125,
Figure 7 right two), the proposed approach achieves better
performance than the baseline with an even larger gap for
limited sample sizes (≤ 103). Without observing the opti-
mal actions (ρ = 0), the baseline performs relatively poorly,
even for large sample sizes. In comparison, our approach
accounts for relationships among actions to some extent and
is able to better generalize to the unobserved/under-explored
optimal actions, thereby outperforming the baseline.

Takeaways. Under a challenging situation where our the-
oretical assumptions do not hold perfectly, our proposed
approach matches or outperforms the baseline, especially
for smaller sample sizes.

4.2. Real Healthcare Data: Sepsis Treatment in
MIMIC-III

Rationale. We apply our method to a real-world example of
learning optimal sepsis treatment policies for patients in the
intensive care unit. Despite the challenging nature of OPE
for quantitative comparisons, here we qualitatively inspect
the learned policies against clinical domain knowledge.

Setup. Originally introduced by Komorowski et al. (2018),
we use the improved formulations of this task following
prior work by Tang et al. (2020) and Killian et al. (2020).
After applying the specified inclusion and exclusion crite-
ria to the de-identified MIMIC-III database (Johnson et al.,
2016), we obtained a cohort of 19,287 patients and per-
formed a 70/15/15 split for training, validation and testing.
For each patient, their data include 10 time-invariant demo-
graphic and contextual features and a 33-dimensional time
series collected at 4h intervals, consisting of measurements
from up to 24h prior until up to 48h after sepsis onset. We
used a recurrent neural network (RNN) with long short-term
memory (LSTM) cells to create an approximate information
state (Subramanian & Mahajan, 2019) to summarize the
history into a dS -dimensional embedding vector. A terminal
reward of 100 is assigned for 48h survival and 0 otherwise.
Intermediate rewards are all 0. γ for learning is 0.99 and
for evaluation is 1. Actions pertain to treatment decisions in
each 4h interval, representing total volume of intravenous
(IV) fluids and amount of vasopressors administered, result-
ing in a 5× 5 factored action space.
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Offline learning. After learning the state representations,
we apply variants of discrete-action batch-constrained Q-
learning (BCQ) (Fujimoto et al., 2019a;b), where the base-
line uses the combinatorial action space and the proposed
approach incorporates the linear decomposition induced by
the factored action space. The Q-networks were trained for
a maximum of 10, 000 iterations, with checkpoints saved
every 100 iterations. We perform model selection (Tang &
Wiens, 2021) over the saved checkpoints (candidate poli-
cies) by evaluating policy performance using the validation
set with OPE. Specifically, we estimated policy value us-
ing weighted importance sampling (WIS) and measured
effective sample size (ESS), where the behavior policy is
estimated using k nearest neighbors in the embedding space.
Following previous work (Liu & Brunskill, 2022), the fi-
nal policies were selected by maximizing validation WIS
with ESS of ≥ 200 (in Appendix D.3 we consider other
thresholds), for which we report results on the test set.

Results. We first visualize the validation performance over
all candidate policies. Figure 8 shows the proposed ap-
proach achieves a better Pareto frontier in terms of WIS and
ESS compared to baseline.

Quantitative comparisons. Evaluating the final selected
policies on the test set (Table 1) shows that the proposed
factored BCQ achieves a higher policy value (estimated
using WIS) than baseline BCQ at the same level of ESS. In
addition, both policies have a similar level of agreement with
the clinician policy, comparable to the average agreement
among clinicians.

Qualitative comparisons. In Figure 9a, we compare the dis-
tributions of recommended actions by the clinician behavior
policy, baseline BCQ and factored BCQ, as evaluated on
the test set. While overall the policies look rather similar, in
that the most frequently recommended action corresponds to
low doses of IV fluids <500mL with no vasopressors, there
are notable differences for key parts of the action space. In
particular, baseline BCQ almost never recommends higher
doses of IV fluids >500 mL, either alone or in combination
with vasopressors, whereas both clinician and factored BCQ
recommend IV fluids >500 mL more frequently. These ac-
tions are typically used for critically ill patients, for whom
the Surviving Sepsis Campaign guidelines recommends up
to >2L of fluids (Evans et al., 2021). We hypothesize that
this difference is due to a higher level of heterogeneity in
the patient states for which actions with high IV fluid doses
were observed, compared to the remaining actions with
lower doses of IV fluids. To further understand this phe-
nomenon, we measure the per-action state heterogeneity in
the test set by computing, for each action, the standard devi-
ation (averaged over the embedding dimensions) of all RNN
state embeddings from which that action is taken according
to the behavior policy. As shown in Figure 9b, actions with

higher IV fluids generally have larger standard deviations,
supporting our hypothesis. The larger heterogeneity com-
bined with lower sample sizes makes it difficult for baseline
BCQ to correctly infer the effects of these actions, as it does
not leverage the relationship among actions. In contrast, our
approach leverages the factored action space and can thus
make better inferences about these actions.

Takeaways. Applied to real clinical data, our proposed ap-
proach outperforms the baseline quantitatively and is able to
recommend treatments that align better with clinical knowl-
edge. While promising, these results are based on OPE that
has many issues (Gottesman et al., 2018). Further investi-
gation and close collaboration with clinicians are essential
before such RL algorithms are deployed in practice.
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Figure 8. Pareto frontiers of validation performance for the candi-
date policies. The proposed approach outperforms the baseline
as it achieves a better Pareto frontiers on the validation set. The
shaded region does not meet the ESS cutoff of ≥ 200. The red
circles indicate the selected models (based on best validation WIS)
for baseline and proposed (both have a BCQ threshold of τ = 0.5).
All points are plotted in Figure 17.

Policy Baseline BCQ Factored BCQ Clinician

Test WIS 90.44 ± 2.44 91.62 ± 2.12 90.29 ± 0.51
Test ESS 178.32 ± 11.42 178.32 ± 11.96 2894

% agreement
with clinician 62.42% 62.37% 57.16%

Table 1. Performance on test set, with standard errors from 100
bootstraps of the test set.

5. Related Work
For many years, the factored RL literature focused exclu-
sively on state space factorization (Koller & Parr, 1999;
Guestrin et al., 2003; Strehl et al., 2007; Delgado et al.,
2011). However, in recent years, action space factorization
has attracted a growing interest as RL is applied in increas-
ingly more complex planning and control tasks. In particu-
lar, researchers have previously considered the model-based
setting with a known MDP factorization in which both state
and action spaces factor (Osband & Van Roy, 2014; Lu
et al., 2021). Within the model-free context, others have
studied methods for factored actions with a policy compo-
nent (i.e., policy-based or actor-critic) (Sallans & Hinton,
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Figure 9. (a) Qualitative comparison of policies. (b) Per-action state heterogeneity, measured as the standard deviation of all state
embeddings from which a particular action is observed in the dataset, averaged over state embedding dimensions. Actions with higher IV
fluid doses exhibited greater heterogeneity in the observed states from which those actions were taken (according to the clinician policy).

2004; Sharma et al., 2017; Van de Wiele et al., 2020; Pierrot
et al., 2021; Spooner et al., 2021). In contrast, our work
considers value-based methods as those have seen the most
success in the offline setting (Levine et al., 2020).

Among prior work with a value-based component (e.g.,
Q-network), the majority pertains to multi-agent or multi-
objective problems that impose known, explicit assumptions
on the state space or the reward function (Matignon et al.,
2012; Tampuu et al., 2017; Sunehag et al., 2018; Rashid
et al., 2018). For single-agent deep online RL, Sharma et al.
(2017) and Tavakoli et al. (2018) incorporated factored ac-
tion spaces into Q-network architecture designs, but did not
provide a formal justification for the linear decomposition.
Others have empirically compared various “mixing” func-
tions to combine the values of sub-actions (Sharma et al.,
2017; Rashid et al., 2018). In contrast, while our work only
considers the linear function, we examine its theoretical
properties and provide clear rationales for the applicability
of our approach in practical problems.

Finally, the sufficient conditions we establish are related
to, but different from, those identified by Van Seijen et al.
(2017) and Juozapaitis et al. (2019) who considered reward
decompositions in the absence of factored actions. Related,
Metz et al. (2018) propose an approach that sequentially
predicts values for discrete dimensions of a transformed
continuous action space, but assume an a priori ordering
of action dimensions, which we do not. Complementary to
our work, Tavakoli et al. (2021) proposed to organize the
sub-actions and interactions as a hypergraph and linearly
combining the values; our theoretical results on the linear
decomposition nonetheless applies to their setting where the
sub-action interactions are explicitly identified and encoded.

6. Conclusion
To better leverage factored action spaces in RL, we devel-
oped an approach to learning policies that incorporates a
simple linear decomposition of the Q-function. As part of
the theoretical analysis, we discuss the sufficient and nec-

essary conditions for this parameterization to be unbiased,
study its effect on variance reduction, and identify scenarios
when this bias does not lead to suboptimal performance. We
also note how domain knowledge may be used to inform
the applicability of our approach in practice, for problems
where any possible bias is negligible or does not affect opti-
mality. Through empirical experiments on two offline RL
problems involving a simulator and real clinical data, we
demonstrate the advantage of our approach especially with
limited sample sizes. We provide a further discussion on
limitations, ethical considerations and societal impacts of
this work in Appendix A. Though motivated by healthcare,
our approach could apply more broadly to scale RL to other
applications (e.g., education) involving combinatorial action
spaces where domain knowledge may be used to verify the
theoretical conditions.
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Data and Code Availability
The code to reproduce all experiments are available at https://github.com/MLD3/OfflineRL FactoredActions. The sepsis
simulator is based on prior work with public implementation at https://github.com/clinicalml/gumbel-max-scm. The
MIMIC-III database used in the real-data experiments of this paper is publicly available through the PhysioNet website:
https://physionet.org/content/mimiciii/1.4/. The cohort definition, extraction and preprocessing code are based on prior work
with publicly available implementation at https://github.com/microsoft/mimic sepsis.

A. Additional Discussion
Limitations. Our theoretical analysis in Section 3 focuses on the “realizability” condition of the linear function class (Chen
& Jiang, 2019), where we are interested in guarantees of zero approximation error, i.e., whether the true Q∗ lies within
the linear function class. In principle, it is possible to find Q∗ given a realizable function class (e.g., by enumerating all
member functions). However, when Q-learning-style iterative algorithms are used in practice, its convergence relies on a
stronger “completeness” condition, as discussed in Chen & Jiang (2019); Xie & Jiang (2021); Zhan et al. (2022). We did not
investigate how our proposed form of parameterization (and the specific shape of bias introduced) interacts with the learning
procedure, and this is an interesting direction for future work.

Ethical Considerations and Societal Impact. In general, policies computationally derived using RL must be carefully
validated before they can be used in high-stakes domains such as healthcare. Our linear parameterization implicitly
makes an independence assumption with respect to the sub-actions, allowing the Q-function to generalize to sub-action
combinations that are under-explored (and even unexplored) in the offline data (as shown in Section 4.1). When the
independence assumptions are valid (according to domain knowledge), this is a case of “free lunch” as we can reduce
variance without introducing any bias. However, inaccurate or incomplete domain knowledge may render the independence
assumptions invalid and cause the agent to incorrectly generalize to dangerous actions (e.g., learned policy recommends
drug combinations with adverse side effects, see Section 3.4). This misuse may be alleviated by incorporating additional
offline RL safeguards to constrain the learned policy (e.g., BCQ was used in Section 4.2 to restrict the learned policy to not
take rarely observed sub-action combinations). Still, to apply RL in safety-critical domains, it is important to consult and
closely collaborate with domain experts to come up with meaningful tasks and informed assumptions, and perform thorough
evaluations involving both the quantitative and qualitative aspects (Gottesman et al., 2018; 2019).

https://github.com/MLD3/OfflineRL_FactoredActions
https://github.com/clinicalml/gumbel-max-scm
https://physionet.org/content/mimiciii/1.4/
https://github.com/microsoft/mimic_sepsis
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B. Detailed Theoretical Analyses
B.1. Sufficient Condition: The Trivial Setting - D Parallel MDPs

To build intuition, we first consider a related setting where D MDPs are running in parallel. If every MDP evolves
independently as controlled by its respective policy, then the total return from all MDPs should naturally be the sum of the
returns from individual MDPs. Formally, we can state the following proposition involving fully factored MDPs and factored
policies. Here, we use the vector notation s = [s1, · · · , sD] to clarify the explicit state space factorization.
Definition 1. Given MDPs M1 · · ·MD where each Md is defined by (Sd,Ad, pd, rd), a fully factored MDP M =⊗D

d=1Md is defined by S,A, p, r such that S =
⊗D

d=1 Sd, A =
⊗D

d=1Ad, p(s′|s,a) =
∏D

d=1 pd(s
′
d|sd, ad), and

r(s,a) =
∑D

d=1 rd(sd, ad).
Definition 2. Given MDPsM1 · · ·MD and policies π1 · · ·πD where each πd : Sd → ∆(Ad), then a factored policy
π =

⊗D
d=1 πd for the MDPM =

⊗D
d=1Md is π : S → ∆(A) such that π(a|s) = ∏D

d=1 πd(ad|sd).
Proposition 7. The Q-function of policy π =

⊗D
d=1 πd for MDPM =

⊗D
d=1Md can be expressed as Qπ

M(s,a) =∑D
d=1 Q

πd

Md
(sd, ad).

To match the form in Eqn. (1), we can set each qd(s, ad) = Qπd

Md
(sd, ad). Importantly, each Qπd

Md
does not depend on any

ad′ where d′ ̸= d. Note that although our definition of qd is allowed to condition on the entire state space s, in this case each
Qπd

Md
only depends on sd. Proposition 7 can be seen as a special case of and a corollary to Theorem 1 where the abstractions

are defined using the sub-state spaces, such that ϕd : S → Sd.

Proof of Proposition 7. Without loss of generality, we consider the setting with D = 2 so A = A1 × A2; extension to
D > 2 is straightforward. The proof is based on mathematical induction on a sequence of h-step Q-function of π defined as
Q

π,(h)
M (s,a) = E[

∑h
t=1 γ

t−1rt|s1 = s,a1 = a,at ∼ π].

Base case. For h = 1, the one-step Q-function is simply the reward, which by assumption r(s,a) = r1(s1, a1) +

r2(s2, a2). Therefore, Qπ,(1)
M (s,a) = Q

π1,(1)
M1

(s1, a1) +Q
π2,(1)
M2

(s2, a2).

Inductive step. Suppose Q
π,(h)
M (s,a) = Q

π1,(h)
M1

(s1, a1) +Q
π2,(h)
M2 (s2, a2) holds. We can express Qπ,(h+1)

M in terms of

Q
π,(h)
M using the Bellman equation:

Q
π,(h+1)
M (s,a) = r(s,a)︸ ︷︷ ︸

1

+γ
∑
s′

p(s′|s,a)V π,(h)
M (s′)︸ ︷︷ ︸

2

where V
π,(h)
M (s′) =

∑
a′

π(a′|s′)Qπ,h
M (s′,a′).

By Definition 1, 1 can be written as a sum r(s,a) = r1(s1, a1) + r2(s2, a2) where each summand depends on only
either a1 or a2 but not both. Next we show 2 also decomposes in a similar manner.

For a given s we have:

V
π,(h)
M (s) =

∑
a

π(a|s)Qπ,(h)
M (s,a)

=
∑
a1,a2

π1(a1|s1)π2(a2|s2)
(
Q

π1,(h)
M1

(s1, a1) +Q
π2,(h)
M2

(s2, a2)
)

=
(
�������: 1∑

a2
π2(a2|s2)

)∑
a1

π1(a1|s1)Qπ1,(h)
M1

(s1, a1) +
(
�������: 1∑

a1
π1(a1|s1)

)∑
a2

π2(a2|s2)Qπ2,(h)
M2

(s2, a2)

=
(∑

a1

π1(a1|s1)Qπ1,(h)
M1

(s1, a1)
)
+
(∑

a2

π2(a2|s2)Qπ2,(h)
M2

(s2, a2)
)
,

where we used the fact that π1(a1|s1)Qπ1,(h)
M1

(s1, a1) is independent of π2(a2|s2) (and vice versa), and that πd(·|sd) is a

probability simplex. Letting V
πd,(h)
Md

(sd) =
∑

ad
πd(ad|sd)Qπd,h

Md
(sd, ad), then V

π,(h)
M (s′) = V

π1,(h)
M1

(s′1) + V
π2,(h)
M2

(s′2).
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Substituting into 2 , we have:∑
s′

p(s′|s,a)V π,(h)
M (s′)

=
∑
s′1,s

′
2

p1(s
′
1|s1, a1)p2(s′2|s2, a2)

(
V

π1,(h)
M1

(s′1) + V
π2,(h)
M2

(s′2)
)

=
(
��������: 1∑

s′2
p2(s

′
2|s2, a2)

)∑
s′1
p1(s

′
1|s1, a1)V π1,(h)

M1
(s′1) +

(
��������: 1∑

s′1
p1(s

′
1|s1, a1)

)∑
s′2
p2(s

′
2|s2, a2)V π2,(h)

M2
(s′2)

=
(∑

s′1

p1(s
′
1|s1, a1)V π1,(h)

M1
(s′1)

)
+
(∑

s′2

p2(s
′
2|s2, a2)V π2,(h)

M2
(s′2)

)

where we used the same independence-like property as above and that pd(·|sd, ad) is a probability simplex.

Therefore, we have Q
π,(h+1)
M (s,a) = Q

π1,(h+1)
M1

(s1, a1) + Q
π2,(h+1)
M2

(s2, a2) as desired, where Q
πd,(h+1)
Md

(sd, ad) =

rd(sd, ad) + γ
∑

s′d
pd(s

′
d|sd, ad)

∑
a′
d
πd(a

′
d|s′d)Q

πd,(h)
Md

(s′d, a
′
d).

By mathematical induction, this decomposition holds for any h-step Q-function. Letting h→∞ shows that this holds for
the full Q-function.

B.2. Sufficient Condition: The Abstraction Setting

We first review important background knowledge on state abstractions. Using the properties of state abstractions, we
can prove the main sufficient condition in Theorem 1. This proof follows largely from the techniques used in proving
Proposition 7, with the exception of how marginalization over the state space is handled.

Background on State Abstractions. A state abstraction (also known as state aggregation) (Li et al., 2006), is a mapping
ϕ : S → Z that converts each element of the primitive state space S to an element of the abstract state space Z . Intuitively, if
two states s1 and s2 are mapped to the same element under ϕ, i.e., ϕ(s1) = ϕ(s2), then they are treated as the same (abstract)
state under the abstraction. Therefore, we can view an abstraction as a partitioning of the primitive state space into non-
overlapping subsets. Since a state abstraction is a many-to-one mapping, we define its inverse as ϕ−1(z) = {s̃ : ϕ(s̃) = z},
a set containing all primitive states that are mapped to the abstract state z.

We have the following property of summations involving state abstractions (Jiang, 2018): for any function f : S → R,∑
s∈S

f(s) =
∑
z∈Z

∑
s̃∈ϕ−1(z)

f(s̃)

In other words, the sum of f(s) for all states in S can be obtained in two different ways: i) directly iterate through the
elements of S , ii) first iterate through the partitions of S (induced by the abstraction), and then iterate through the elements
in each partition, giving rise to the double summation. This property allows us to change the index of summation from
primitive states to abstract states. For multiple abstractions ϕ = [ϕ1, · · · , ϕD] where ϕd ̸= ϕd′ if d ̸= d′, denoting
z = ϕ(s) = [z1, . . . , zD], we can similarly define the inverse abstraction ϕ−1(z) = {s̃ : ϕ(s̃) = z}, and the summation
property similarly applies.

Proof of Theorem 1. Without loss of generality, we consider the setting with D = 2 so A = A1 ×A2; extension to D > 2
is straightforward. The proof is based on mathematical induction on a sequence of h-step Q-function of π denoted by
Q(h)(s,a) = E[

∑h
t=1 γ

t−1rt|s1 = s,a1 = a,at ∼ π].

Base case. For h = 1, the one-step Q-function is simply the reward, which by assumption r(s,a) = r1(z1, a1)+r2(z2, a2).
We can trivially set q(1)d (zd, ad) = rd(zd, ad) such that Q(1)(s,a) = q

(1)
1 (z1, a1) + q

(1)
2 (z2, a2).

Inductive step. Suppose Q(h)(s,a) = q
(h)
1 (z1, a1) + q

(h)
2 (z2, a2) holds. We can express Q(h+1) in terms of Q(h) using

the Bellman equation:
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Q(h+1)(s,a) = r(s,a)︸ ︷︷ ︸
1

+γ
∑
s′

p(s′|s,a)V (h)(s′)︸ ︷︷ ︸
2

where V (h)(s′) =
∑
a′

π(a′|s′)Q(h)(s′,a′).

1 can be written as a sum r(s,a) = r1(z1, a1) + r2(z2, a2) where each summand depends on only either a1 or a2 but
not both. Next we show 2 also decomposes in a similar manner.

For a given s we have:

V (h)(s) =
∑
a

π(a|s)Q(h)(s,a)

=
∑
a1,a2

π1(a1|z1)π2(a2|z2)
(
q
(h)
1 (z1, a1) + q

(h)
2 (z2, a2)

)
=

(
�������: 1∑

a2
π2(a2|z2)

)∑
a1

π1(a1|z1)q(h)1 (z1, a1) +
(
�������: 1∑

a1
π1(a1|z1)

)∑
a2

π2(a2|z2)q(h)2 (z2, a2)

=
∑
a1

π1(a1|z1)q(h)1 (z1, a1) +
∑
a2

π2(a2|z2)q(h)2 (z2, a2) ,

where we used the property that π1(a1|z1)q(h)1 (z1, a1) is independent of π2(a2|z2) (and vice versa), and that πd(·|zd) is a
probability simplex. Letting v

(h)
d (zd) =

∑
ad

πd(ad|zd)q(h)d (zd, ad), then we can write V (h)(s′) = v
(h)
1 (z′1) + v

(h)
2 (z′2).

Substituting into 2 , we have:∑
s′

p(s′|s,a)V (h)(s′) =
∑
z′

∑
s̃∈ϕ−1(z′)

p(s̃|s,a)V (h)(s̃)

=
∑
z′

∑
s̃∈ϕ−1(z′)

p(s̃|s,a)
(
v
(h)
1 (z′1) + v

(h)
2 (z′2)

)
=

∑
z′

( ∑
s̃∈ϕ−1(z′)

p(s̃|s,a)
)(

v
(h)
1 (z′1) + v

(h)
2 (z′2)

)
=

∑
z′
1,z

′
2

p1(z
′
1|z1, a1)p2(z′2|z2, a2)

(
v
(h)
1 (z′1) + v

(h)
2 (z′2)

)
=

(
��������: 1∑

z′
2
p2(z

′
2|z2, a2)

)∑
z′
1
p1(z

′
1|z1, a1)v(h)1 (z′1) +

(
��������: 1∑

z′
1
p1(z

′
1|z1, a1)

)∑
z′
2
p2(z

′
2|z2, a2)v(h)2 (z′2)

=
(∑

z′
1

p1(z
′
1|z1, a1)v(h)1 (z′1)

)
+
(∑

z′
2

p2(z
′
2|z2, a2)v(h)2 (z′2)

)

where on the first line we used the property of state abstractions to replace the index of summation, and from the
second to the third line we used the fact that for all s̃ ∈ ϕ−1(z′) that have the same abstract state vector z′, their value
V (h)(s̃) = v

(h)
1 (z′1) + v

(h)
2 (z′2) are equal; this allows us to directly sum their transition probabilities p(s̃|s,a). Following

that, we substitute in Eqn. (2), and then simplify using the same independence-like property as above and that pd(·|zd, ad)
is a probability simplex.

Therefore, we have Q(h+1)(s,a) = q
(h+1)
1 (z1, a1) + q

(h+1)
2 (z2, a2) as desired where q

(h+1)
d (zd, ad) = rd(zd, ad) +

γ
∑

z′
d
pd(z

′
d|zd, ad)

∑
a′
d
π(a′d|z′d)q

(h)
d (z′d, a

′
d).

By mathematical induction, this decomposition holds for any h-step Q-function. Letting h→∞ shows that this holds for
the full Q-function.
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B.3. Policy Learning with Bias - Performance bounds

Consider a particular model-based procedure for approximating the optimal Q-function using Eqn. (1): i) find approximations
p̂, r̂ that are close to the true transition/reward functions p, r such that there exists some state abstraction set ϕ with p̂, r̂
satisfying (2) and (3) with respect to ϕ, ii) do planning (e.g., dynamic programming) using the approximate MDP parameters
p̂ and r̂. We can show the following performance bounds; note that these upper bounds are loose and information-theoretic
(in that they require knowledge of the implicit factorization).

Proposition 8. If the approximation errors in p̂ and r̂ are upper bounded by ϵp and ϵr for all s ∈ S,a ∈ A:∑
s′

∣∣p(s′|s,a)− p̂(s′|s,a)
∣∣ ≤ ϵp,∣∣r(s,a)− r̂(s,a)
∣∣ ≤ ϵr,

then the above model-based procedure leads to an approximate Q-function Q̂ and an approximate policy π̂ that satisfy:

∥Q∗
M −Q∗

M̂∥∞ ≤
ϵr

1− γ
+

γϵpRmax

2(1− γ)2
,

∥V ∗
M − V π̂

M∥∞ ≤
2ϵr
1− γ

+
γϵpRmax

(1− γ)2
.

Proof. See classical results by Singh & Yee (1994) and Kearns & Singh (2002) (the simulation lemma). Also see the section
on the performance bounds of approximate bisimulations in Jiang (2018).

B.4. Subspace of Representable Q Functions

To help understand how the linear parameterization of Q-function Eqn. (1) affects the representation power of the function
class, we first define the following matrices for action space featurization.

Definition 3. The sub-action mapping matrix Ψd for sub-action space Ad is defined as

Ψd =

 | ψd(a
1)⊺ |

...

| ψd(a
|A|)⊺ |

 ∈ {0, 1}|A|×|Ad|

where each row ψd(a
i)⊺ ∈ {0, 1}1×|Ad| is a one-hot vector with value 1 in column projA→Ad

(ai).

Remark. The i-th row of Ψd corresponds to an action ai ∈ A, and the j-th column corresponds to a particular element of
the sub-action space ajd ∈ Ad. The (i, j)-entry of Ψd is 1 if and only if the projection of ai onto the sub-action space Ad is
ajd. Since each row is a one-hot vector, the sum of elements in each row is exactly 1, i.e., ψd(a

i)⊺1 = 1.

Definition 4. The sub-action mapping matrix, Ψ, is defined by a horizontal concatenation of Ψd for d = 1 . . . D

Ψ =

Ψ1 · · · ΨD

 ∈ {0, 1}|A|×(
∑

d |Ad|)

Remark. Ψ describes how to map each action ai ∈ A to its corresponding sub-actions. Therefore, the sum of elements in
each row is exactly D, the number of sub-action spaces; ψ(ai)⊺1 = D.

Definition 5. The condensed sub-action mapping matrix, Ψ̃, is

Ψ̃ =

 1 Ψ̃1 · · · Ψ̃D

 ∈ {0, 1}|A|×(1+
∑

d(|Ad|−1))

where the first column contains all 1’s, and Ψ̃d denotes Ψd with the first column removed.

Proposition 9. colspace(Ψ) = colspace(Ψ̃) and rank(Ψ) = rank(Ψ̃) = ncols(Ψ̃) (i.e., matrix Ψ̃ has full column
rank). Consequently, ΨΨ+ = Ψ̃Ψ̃

+
.
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Corollary 10. Suppose the Q-function Q of a policy π at state s is linearly decomposable with respect to the sub-actions, i.e.,
we can write Q(s, a) =

∑D
d=1 qd(s, ad) for all ad ∈ Ad, then there exists w and w̃ such that the column vector containing

the Q-values for all actions at state s can be expressed asQ(s,A) = Ψw = Ψ̃w̃. In other words, Eqn. (1) is equivalent to
Q(s,A) ∈ colspace(Ψ̃).

Corollary 11. Suppose Q(s,A) /∈ colspace(Ψ̃). Let ŵ = Ψ+Q(s,A) and ˆ̃w = Ψ̃
+
Q(s,A) be the least-squares

solutions of the respective linear equations. Then Ψŵ = Ψ̃ ˆ̃w.
Remark. Corollaries 10 and 11 imply there are two possible implementations, regardless of whether the true Q-function can
be represented by the linear parameterization. Intuitively, both versions try to project the true Q-value vectorQ(s,A) for
a particular state s onto the subspace spanned by the columns of Ψ or Ψ̃. Since the two matrices have the same column
space, the results of the projections are equal. This does not imply ŵ and ˆ̃w are equal (they cannot be as they have different
dimensions), but rather the resultant Q-value estimates are equal, Q̂(s,A) = Ψŵ = Ψ̃ ˆ̃w.

To make the theorem statements more concrete, we inspect a simple numerical example and verify the theoretical properties.
Example 3. Consider an MDP with A = A1 ×A2, where A1 = {0, 1} and A2 = {0, 1}. Consequently, |A1| = |A2| = 2
and |A| = 22 = 4.

Suppose for state s we can write Q(s, a) = Q(s, [a1, a2]) = q1(s, a1) + q2(s, a2) for all a1 ∈ A1, a2 ∈ A2. Then

Q(s,A) =


Q(s, a1 = 0, a2 = 0)
Q(s, a1 = 0, a2 = 1)
Q(s, a1 = 1, a2 = 0)
Q(s, a1 = 1, a2 = 1)

 =


q1(s, 0) + q2(s, 0)
q1(s, 0) + q2(s, 1)
q1(s, 1) + q2(s, 0)
q1(s, 1) + q2(s, 1)

 =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1



q1(s, 0)
q1(s, 1)
q2(s, 0)
q2(s, 1)



=

 |

| Ψ |

|

 |w
|

 where Ψ =


1 0 1 0
1 0 0 1
0 1 1 0

︸︷︷︸
Ψ1

0 1 ︸︷︷︸
Ψ2

0 1

 , w =


q1(s, 0)
q1(s, 1)
q2(s, 0)
q2(s, 1)


}
w1}
w2

We can also write

Q(s,A) = Ψ̃w̃, where Ψ̃ =


1 0 0
1 0 1
1 1 0
1 1 1

 , w̃ =

v0(s)u1(s)
u2(s)

 =

q1(s, 0) + q2(s, 0)
q1(s, 1)− q1(s, 0)
q2(s, 1)− q2(s, 0)


One can verify that rank(Ψ) = rank(Ψ̃) = 3 and colspace(Ψ) = colspace(Ψ̃), because the columns of Ψ̃ are linearly
independent, but the columns of Ψ are not linearly independent:

1
1
0
0

+


0
0
1
1

−

1
0
1
0

 =


0
1
0
1

 .

Furthermore,

Ψ+ =


3/8 3/8 −1/8 −1/8
−1/8 −1/8 3/8 3/8
3/8 −1/8 3/8 −1/8
−1/8 3/8 −1/8 3/8

 , Ψ̃
+
=

 3/4 1/4 1/4 −1/4
−1/2 −1/2 1/2 1/2
−1/2 1/2 −1/2 1/2


and

ΨΨ+ = Ψ̃Ψ̃
+
=


3/4 1/4 1/4 −1/4
1/4 3/4 −1/4 1/4
1/4 −1/4 3/4 1/4
−1/4 1/4 1/4 3/4

 .

◁
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Proof of Proposition 9.

First note that Ψ is a tall matrix for non-trivial cases, with more rows than columns, because |A| = ∏
d |Ad| ≥

∑
d |Ad| if

|Ad| ≥ 2 for all d (see proof). Therefore, the rank of Ψ is the number of linear independent columns of Ψ.

We use the following notation to write matrix Ψd in terms of its columns:

Ψd =

 | |
cd,1 · · · cd,|Ad|
| |

 .

The following statements are true:

Claim 1: The columns of Ψd are pairwise orthogonal, cd,j⊺cd,j′ = 0,∀j ̸= j′, and they form an orthogonal basis. This is
because each row ψd(a

i)⊺ is a one-hot vector, containing only one 1; this implies that out of the two entries in
row i of cd,j and cd,j′ , at least one entry is 0, and their product must be 0.

Claim 2: The sum of entries in each row of Ψd is 1, and
∑|Ad|

j=1 cd,j = 1 a column vector of 1’s with matching size. This
is a direct consequence of each row ψd(a

i)⊺ being a one-hot vector. In other words, 1 ∈ colspace(Ψd).

Claim 3: The columns of Ψ are not linearly independent. This is because there is not a unique way to write 1 as a linear
combination of the columns of Ψ. For example,

∑|Ad|
j=1 cd,j =

∑|Ad′ |
j=1 cd′,j = 1 for some d′ ̸= d, where we used

the columns of Ψd and Ψd′ .

Claim 4: 1 /∈ colspace(Ψ̃1 · · · Ψ̃D) because the first entry of every column vector in any Ψ̃d is 0 and no linear combination
of them can result in a 1. Consequently, 1 /∈ colspace(Ψ̃d) for any d.

Claim 5: cd,1 /∈ colspace(1, Ψ̃d′ : d′ ̸= d), where cd,1 is the column removed from Ψd to construct Ψ̃d. This can also be
seen from the first entry of the column vector: the first entry of cd,1 is 1, and all columns of Ψ̃d′ : d′ ̸= d have
the first entry being 0.

Claim 6: cd,j /∈ colspace(1, Ψ̃1 · · · Ψ̃D \ {cd,j}) for j > 1. By expressing cd,j = (1 −∑|Ad|
j′=2,j′ ̸=j cd,j′) + (−cd,1),

we observe that the first part of the sum lies in the column space, while the second part does not (from the
previous claim, cd,1 is not in the column space of Ψ̃d′ where d′ ̸= d; this is because within Ψ̃d, the only way is
cd,1 = 1−∑|Ad|

j′=2 cd,j′ and we have excluded one of the columns cd,j from the column space).

Combining these claims implies that each column of Ψ̃ cannot be expressed as a linear combination of all other columns,
and thus Ψ̃ has full column rank, rank(Ψ̃) = ncols(Ψ̃) = 1 +

∑D
d=1(|Ad| − 1). It follows that Ψ̃ contains the linearly

independent subset of columns from Ψ, and their column spaces and ranks are equal.

ΨΨ+ and Ψ̃Ψ̃
+

are orthogonal projection matrices onto the column space of Ψ and Ψ̃, respectively. Since colspace(Φ) =

colspace(Ψ̃), it follows that ΨΨ+ = Ψ̃Ψ̃
+

.

B.5. A Necessary Condition

Consider the matrix form of the Bellman equation (cf. Sec 2 of Lagoudakis & Parr (2003)):

Q = R+ γP πQ

where Q ∈ R|S||A| is a column vector containing the Q-values for all state-action pairs, R ∈ R|S||A|, and P π ∈
R|S||A|×|S||A| is the (s, a)-transition matrix induced by the MDP and policy π. Solving this equation gives us the Q-function
in closed form:

Q = (I − γP π)−1R (5)

where I ∈ R|S||A|×|S||A|.

https://math.stackexchange.com/questions/2998898/show-that-product-is-larger-than-sum
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To derive a necessary condition, we start by assuming that the Q-function is representable by the linear parameterization,
i.e., there exists W ∈ R(

∑D
d=1 |Ad|)×|S| such that vec−1

|A|×|S|(Q) = ΨW . Here, vec−1
|A|×|S| is the inverse vectorization

operator that reshapes the vector of all Q-values into a matrix of size |A| × |S|, and Ψ ∈ {0, 1}|A|×(
∑D

d=1 |Ad|) is defined in
Appendix B.4. Substituting Eqn. (5) into the premise gives us a necessary condition: if there existsW ∈ R(

∑D
d=1 |Ad|)×|S|

such that
vec−1

|A|×|S|
(
(I − γP π)−1R

)
= ΨW

Unfortunately, unlike the sufficient conditions in Theorem 1 (and Proposition 7), this necessary condition is not as clean
and likely not verifiable in most settings. The matrix inverse and vec−1 reshaping operation make it challenging to further
manipulate the expression. This highlights the non-trivial nature of the problem.

B.6. Variance Reduction in the Bandit Setting

Background on Rademacher complexity. Let F be a family of functions mapping from Rd to R. The empirical Rademacher
complexity of F for a sample S = {x1, . . . ,xm} is defined by

R̂S(F) = E
σ

[
sup
f∈F

1

m

m∑
i=1

σif(xi)

]
,

where σ = [σ1, . . . , σm] is a vector of i.i.d. Rademacher variables, i.e., independent uniform r.v.s taking values in {−1,+1}.
For a matrix M ∈ Rm×D, define the (p, q)-group norm as the q-norm of the p-norm of the columns of M, that is
∥M∥p,q = ∥[∥M1∥p, · · · , ∥MD∥p]∥q , where Mj is the j-th column of M.

In Awasthi et al. (2020), Theorem 2 stated that: let F = {f = w⊺x : ∥w∥p ≤ A} be a family of linear functions defined
over Rd with bounded weight in ℓ2-norm, then the empirical Rademacher complexity of F for a sample S = {x1, . . . ,xm}
satisfies the following lower bound (where X = [x1 . . .xm]⊺):

R̂S(F) ≥
A√
2m
∥X∥2,2.

Proof for Proposition 5. For the sake of argument, we consider the one-timestep bandit setting; extension to the sequential
setting can be similarly derived following Chen & Jiang (2019); Duan et al. (2021). Let the true generative model be
Q∗ = Ψr +ψInteractrInteract (details in Appendix B.8). We formally show the reduction in the variance of the estimators, by
comparing the lower bound of their respective empirical Rademacher complexities. A smaller Rademacher complexity
translates into lower variance estimators.

Suppose we obtain a sample of m actions and apply the linear approximation. Our approach for factored action space
corresponds to the matrixX ∈ {0, 1}m×(

∑
d |Ad|), obtained by stacking the corresponding rows of Ψ (recall Definition 4).

The complete, combinatorial action space corresponds to the matrixX ′ = [X,xInteract] ∈ {0, 1}m×(1+
∑

d |Ad|) by adding
the corresponding rows of ψInteract. By definition, ∥X∥p,q < ∥X ′∥p,q , since the former drops a column with non-zero norm
that exists in the latter.

Consider the following two function families, for the factored action space and the complete action space respectively:

FF = {f = w⊺
Fx : ∥wF∥2 ≤ A}

FC = {f = w⊺
Cx

′ : ∥wC∥2 ≤ A},

for some A > 0. A straightforward application of Theorem 2 of Awasthi et al. (2020) shows that the lower bound on
the Rademacher complexity of the of the factored action space is smaller than that of the complete action space, which
completes our argument.

B.7. Standardization of Rewards for the Bandit Setting (Proposition 6)

Suppose the rewards of the four arms are [R0,0, R0,1, R1,0, R1,1]. We can apply the following transformations to reduce any
reward function to the form of [0, α, 1, 1 + α+ β], and these transformations do not affect the least-squares solution:
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s

R0,0

R0,1

R1,0

R1,1

⇝ s

0

α

1

1 + α+ β

Figure 10. Standardization of rewards.

• If R0,0 = R1,0 and R0,1 = R1,1, we can ignore x-axis sub-action as setting it to either 0 (←) or 1 (→) does not affect
the reward. Similarly, if R0,0 = R0,1 and R1,0 = R1,1, we can ignore y-axis sub-action. In both cases, this reduces to
a one-dimensional action space which we do not discuss further.

• Now at least one of the following is false: R0,0 = R1,0 or R0,1 = R1,1. If R0,0 ̸= R1,0, skip this step. Otherwise, it
must be that R0,0 = R1,0 and R0,1 ̸= R1,1. Swap the role of down vs. up such that the new R0,0 ̸= R1,0.

• If R0,0 < R1,0, skip this step. Otherwise it must be that R0,0 > R1,0. Swap the role of left vs. right so that
R0,0 < R1,0.

• If R0,0 ̸= 0, subtract R0,0 from all rewards so that the new R0,0 = 0.

• Now R1,0 > R0,0 = 0 must be positive. If R1,0 ̸= 1, divide all rewards by R1,0 so that the new R1,0 = 1.

• Lastly, we should have R0,0 = 0 and R1,0 = 1. Set α = R0,1 and β = R1,1 −R1,0 −R0,1.

B.8. Omitted-Variable Bias in the Bandit Setting (Proposition 6)

Suppose the true generative model is

Q∗(a) = 1(ax=Left)rLeft + 1(ax=Right)rRight + 1(ay=Down)rDown + 1(ay=Up)rUp + 1(a=Right,Up)rInteract

In other words,


Q∗(↙)
Q∗(↖)
Q∗(↘)
Q∗(↗)

 =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1



rLeft

rRight

rDown

rUp

+


0
0
0
1

 rInteract ⇝ Q∗ = Ψr +ψInteractrInteract

Here, rLeft, rRight, rDown, rUp, rInteract are parameters of the generative model. Note that the matrix [Ψ,ψInteract] has a column space
of R4, i.e., this generative model captures every possible reward configuration of the four actions.

Applying our proposed linear approximation translates to “dropping” the interaction parameter, rInteract, and estimate the
remaining four parameters. This leads to a form of omitted-variable bias, which can be computed as:

Ψ+ψInteractrInteract =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1


+ 

0
0
0
1

 rInteract

=


3/8 3/8 −1/8 −1/8
−1/8 −1/8 3/8 3/8
3/8 −1/8 3/8 −1/8
−1/8 3/8 −1/8 3/8



0
0
0
1

 rInteract =


−1/8
3/8
−1/8
3/8

 rInteract
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The biased estimate of the four parameters are:

r̂ = r +Ψ+ψInteractrInteract ⇝


r̂Left

r̂Right

r̂Down

r̂Up

 =


rLeft − 1

8rInteract

rRight +
3
8rInteract

rDown − 1
8rInteract

rUp + 3
8rInteract


and the estimated Q-values are:

Q̂ =


Q̂(↙)

Q̂(↖)

Q̂(↘)

Q̂(↗)

 =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1



rLeft − 1

8rInteract

rRight +
3
8rInteract

rDown − 1
8rInteract

rUp + 3
8rInteract

 =


rLeft + rDown − 1

4rInteract

rLeft + rUp + 1
4rInteract

rRight + rDown +
1
4rInteract

rRight + rUp + 3
4rInteract


For the bandit problem in Figure 4a, substituting rLeft + rDown = 0, rLeft + rUp = α, rRight + rDown = 1, and rInteract = β gives

Q̂(↙)

Q̂(↖)

Q̂(↘)

Q̂(↗)

 =


− 1

4β

α + 1
4β

1 + 1
4β

1 + α+ 3
4β


which is the solution we presented in Figure 4c.

C. More Illustrative Examples
In this appendix, we discuss the building blocks of the examples used in the main paper and provide additional examples to
support the theoretical properties presented in Section 3.

One-dimensional Chain. First, consider the chain problem depicted in Figure 11a. The agent always starts in the initial
state s0 and can take one of two possible actions: left (a = 0), which leads the agent to stay at s0, or right (a = 1), which
leads the agent to transition into s1 and receive a reward of +1. After reaching the absorbing state s1, both a = 0 and a = 1
lead the agent to stay at s1 with zero reward. For γ < 1, a (deterministic) optimal policy is π∗(s0) = 1, and either action
can be taken in s1. Next, we use this MDP to construct a two-dimensional problem.

(a) (b)

s0 s1
+1

a = 0
a = 1

a = 0 a = 1

s0,0

s0,1

s1,0

s1,1

+1

+1 +1 +1

+1

+1

+2

s0,? s1,?
+1

s?,0

s?,1

+1

Mx

My

Figure 11. (a) A one-dimensional chain MDP, with an initial state s0 and an absorbing state s1, and two actions a = 0 (left) and a = 1
(right). (b) A two-dimensional chain MDP shown together with the component chainsMx andMy. Rewards are denoted in red. Squares
□ indicate absorbing states whose outgoing transition arrows are omitted. For readability, in the diagram, the states and actions are laid
out following a convention similar to the Cartesian coordinate system so that the bottom left state has index (0, 0), and right and up both
increase the corresponding coordinate by 1.
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Policy π MDP diagram Qπ = Qx + Qy

Optimal policy π∗

s0,0
s0,1
s1,0
s1,1


↗
↗
↗
↗

 =


→, ↑
→, ↑
→, ↑
→, ↑


1.8

1.9

1.9

2


↙ ↖ ↘ ↗

s0,0 1.8 1.9 1.9 2
s0,1 0.9 0.9 1 1
s1,0 0.9 1 0.9 1
s1,1 0 0 0 0



← ← → →

s0,? 0.9 0.9 1 1
s0,? 0.9 0.9 1 1
s1,? 0 0 0 0
s1,? 0 0 0 0



↓ ↑ ↓ ↑

s?,0 0.9 1 0.9 1
s?,1 0 0 0 0
s?,0 0.9 1 0.9 1
s?,1 0 0 0 0



A non-optimal policy

s0,0
s0,1
s1,0
s1,1


↖
↖
↗
↗

 =


←, ↑
←, ↑
→, ↑
→, ↑


0.9

1

1.9

2


↙ ↖ ↘ ↗

s0,0 0.9 1 1.9 2
s0,1 0 0 1 1
s1,0 0.9 1 0.9 1
s1,1 0 0 0 0



← ← → →

s0,? 0 0 1 1
s0,? 0 0 1 1
s1,? 0 0 0 0
s1,? 0 0 0 0



↓ ↑ ↓ ↑

s?,0 0.9 1 0.9 1
s?,1 0 0 0 0
s?,0 0.9 1 0.9 1
s?,1 0 0 0 0



Another non-optimal policy

s0,0
s0,1
s1,0
s1,1


↙
↖
↘
↗

 =


←, ↓
←, ↑
→, ↓
→, ↑


0

1

1

2


↙ ↖ ↘ ↗

s0,0 0 1 1 2
s0,1 0 0 1 1
s1,0 0 1 0 1
s1,1 0 0 0 0



← ← → →

s0,? 0 0 1 1
s0,? 0 0 1 1
s1,? 0 0 0 0
s1,? 0 0 0 0



↓ ↑ ↓ ↑

s?,0 0 1 0 1
s?,1 0 0 0 0
s?,0 0 1 0 1
s?,1 0 0 0 0



Figure 12. Example MDPs and policies where Proposition 7 applies, for the optimal policy and two particular non-optimal policies.
γ = 0.9. We show the linear decomposition of the Q-function into Qx and Qy. Qx only depends on the x-coordinate of state and the
sub-action that moves← or→; Qy only depends on the y-coordinate of state and the sub-action that moves ↓ or ↑.

Two-dimensional Chain. Following the construction used in Definition 1, we consider an MDPM =Mx×My consisting
of two chains (the horizontal chainMx and the vertical chainMy) running in parallel, as shown in Figure 11b. Their
corresponding state spaces are Sx = {s0,?, s1,?} and Sy = {s?,0, s?,1}, which indicate the x- and y-coordinates respectively.
There are 4 actions from each state, depicted by diagonal arrows {↙,↖,↘,↗}; each action a = [ax, ay] effectively leads
the agent to perform ax inMx and ay inMy. For example, taking action↗= [→, ↑] from state s0,0 leads the agent to
transition into state s1,1 and receive a reward of +2 (the sum of +1 fromMx and +1 fromMy). For γ < 1, an optimal
policy for this MDP is to always move up and right, π∗(·) =↗= [→, ↑], regardless of which state the agent is in.

Satisfying the Sufficient Conditions. Let ϕx : S → Sx and ϕy : S → Sy be the abstractions. By construction, the
transition and reward functions of this MDP satisfy Eqn. (3) and (4). To apply Theorem 1, the policy must satisfy Eqn. (4).
In Figure 12, we show three such policies (other policies in this category are omitted due to symmetry and transitions that
have the same outcome), together with the true Q-functions (with γ = 0.9) and their decompositions in the form of Eqn. (1).

Violating the Sufficient Conditions.

• Policy violates Eqn. (4) - Nonzero bias. For this setting, we hold the MDP (transitions and rewards) unchanged. In
Figure 13, we show seven policies that do not satisfy Eqn. (4), together with the resultant Q-function and the biased
linear approximation with the non-zero approximation error.

• Transition violates Eqn. (2) - Nonzero Bias. Figure 14 shows an example where one transition has been modified.

• Reward violates Eqn. (2) - Nonzero Bias. Figure 15 shows an example where one reward has been modified.

• Transition violates Eqn. (2), or policy violates Eqn. (4) - Zero Bias. If γ = 0, then the Q-function is simply the
immediate reward, and any conditions on the transition or policy can be forgone.

• Reward violates Eqn. (3) - Zero Bias. It is possible to construct reward functions adversarially such that r itself does
not satisfy the condition, and yet Q can be linearly decomposed. See Figure 16 for an example.
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π(S) MDP diagram Qπ(s0,0,A) Q̂(s0,0,A)
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2
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π(S) MDP diagram Qπ(s0,0,A) Q̂(s0,0,A)
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

Figure 13. Example MDPs and policies where Proposition 7 does not apply because the policy violates Eqn. (4) (violations are highlighted).
γ = 0.9. For example, in the first case, the policy does not take the same sub-action from s0,0 and s0,1 with respect to the horizontal
chainMx. Applying the linear approximation produces biased estimates Q̂ of the true Q-function, Qπ .

π(S) MDP diagram Qπ(s0,0,A) Q̂(s0,0,A)

s0,0
s0,1
s1,0
s1,1


↗
↗
↗
↗

 =


→, ↑
→, ↑
→, ↑
→, ↑


1.8

1

1.9

2


1.8
1.9
1
2



1.575
2.125
1.225
1.775



Figure 14. Example MDPs and policies where Theorem 1 does not apply because the transition function violates Eqn. (2). γ = 0.9. In
this example, the highlighted transition corresponding to the action↗= [→, ↑] from s0,1 does not move right (→ underMx) to s1,1 and
instead moves back to state s0,1. Applying the linear approximation produces biased estimates Q̂ of the true Q-function, Qπ .

Reward function Q-function Qπ(s0,0,A) Q̂(s0,0,A)

0

1

1
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1.9
1.9
1
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
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

Figure 15. Example MDPs and policies where Theorem 1 does not apply because the reward function violates Eqn. (3). γ = 0.9. In this
example, the reward function of the bottom left state s0,0 does not satisfy the condition because the reward of↗ is 1 ̸= 2 = 1 + 1.
Applying the linear approximation produces biased estimates Q̂ of the true Q-function, Qπ .
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Reward function Q-function Qπ = Qx + Qy
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2

3

1.5

0
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1

1

0

4
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4

8.5
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7

1.5

0

0

1

1

0

4

0

4


↙ ↖ ↘ ↗

s0,0 8.5 3 7 1.5
s0,1 0 0 1 1
s1,0 0 4 0 4
s1,1 0 0 0 0



← ← → →

s0,? 1.5 1.5 0 0
s0,? 0 0 1 1
s1,? 0 0 0 0
s1,? 0 0 0 0



↓ ↑ ↓ ↑

s?,0 7 1.5 7 1.5
s?,1 0 0 0 0
s?,0 0 4 0 4
s?,1 0 0 0 0



Figure 16. Example MDPs and policies where Theorem 1 does not apply because the reward function violates Eqn. (3). γ = 1. In this
example, the reward function of the bottom left state s0,0 does not satisfy the condition because 7 + 1.5 ̸= 2 + 3. However, there exists a
linear decomposition of the true Q-function, Qπ , for a particular policy denoted by bold blue arrows.

D. Experiments
D.1. Sepsis Simulator - Implementation Details

When generating the datasets, we follow the default initial state distribution specified in the original implementation.

By default, we used neural networks consisting of one hidden layer with 1,000 neurons and ReLU activation to allow for
function approximators with sufficient expressivity. We trained these networks using the Adam optimizer (default settings)
(Kingma & Ba, 2015) with a batch size of 64 for a maximum of 100 epochs, applying early stopping on 10% “validation
data” (specific to each supervised task) with a patience of 10 epochs. We minimized the mean squared error (MSE) for
regression tasks (each iteration of FQI). We also added value clipping (to be within the range of possible returns [−1, 1])
when computing bootstrapping targets of FQI training to ensure a bounded function class and encourage better convergence
behavior (Mnih et al., 2015).

D.2. MIMIC Sepsis - Implementation Details

The RNN was trained to predict the mean of a unit-variance multivariate Gaussian that outputs the observation at subsequent
timesteps, conditioned on the subsequent actions.

Hyperparameter Searched Settings

RNN:
- Embedding dimension, dS {8, 16, 32, 64, 128}
- Learning rate { 1e-5, 5e-4, 1e-4, 5e-3, 1e-3 }
BCQ (with 5 random restarts):
- Threshold, τ {0, 0.01, 0.05, 0.1, 0.3, 0.5, 0.75, 0.999}
- Learning rate 3e-4
- Weight decay 1e-3
- Hidden layer size 256

Table 2. Hyperparameter values used for training the RNN approximate information state as well as BCQ for offline RL. Discrete BCQ
for both the baseline and factored implementation are identical except for the final Q-network layer.

D.3. MIMIC Sepsis results
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Figure 17. Validation performance (in terms of WIS and ESS) for all hyperparameter settings and all checkpoints considered during model
selection. Left - baseline, Right - proposed.
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Figure 18. Left - Pareto frontiers of validation performance for the baseline and proposed approaches; Right - test performance of the
candidate models that lie on the validation Pareto frontier. The validation performance largely reflects the test performance, and proposed
approach outperforms the baseline in terms of test performance albeit with a bit more overlap.
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Figure 19. Model selection with different minimum ESS cutoffs. In the main paper we used ESS ≥ 200; here we sweep this threshold and
compare the resultant selected policies for both the baseline and proposed approach (only using candidate models that lie on the validation
Pareto frontier). In general, across the ESS cutoffs, the proposed approach outperforms the baseline in terms of test set WIS value, with
comparable or slightly lower ESS.


