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ABSTRACT

Multiview Structure from Motion is a fundamental and challenging computer vision
problem. A recent deep-based approach utilized matrix equivariant architectures
for simultaneous recovery of camera pose and 3D scene structure from large
image collections. That work, however, made the unrealistic assumption that the
point tracks given as input are almost clean of outliers. Here, we propose an
architecture suited to dealing with outliers by adding a multiview inlier/outlier
classification module that respects the model equivariance and by utilizing a robust
bundle adjustment step. Experiments demonstrate that our method can be applied
successfully in realistic settings that include large image collections and point
tracks extracted with common heuristics that include many outliers, achieving state-
of-the-art accuracies in almost all runs, superior to existing deep-based methods
and on-par with leading classical (non-deep) sequential and global methods.

1 INTRODUCTION

Simultaneous recovery of camera pose and 3D structure from large image collections, commonly
termed Multiview Structure from Motion (SfM), is a longstanding fundamental problem in computer
vision with applications in augmented and virtual reality, robot manipulation, and more. Classical, as
well as some recent deep-based SfM techniques, rely on extracting point tracks, i.e., point matches
across multiple frames, to solve for camera poses and structure. However, existing heuristics for
point track extraction and chaining often return erroneous (outlier) point matches due to significant
viewpoint, illumination differences, and repetitive scene structures, adversely affecting the perfor-
mance of SfM methods. Designing robust methods that can effectively overcome the effect of such
outliers, therefore, has been an active thread of research in the past several decades.

A promising approach to SfM is based on generalizations of projective factorization. This approach
uses the observation that if we stack the tracked points in a matrix, which we denote by M , and
assuming M has no missing entries and is error-free, then there exists a set of scale factors such that
scaling each tracked point in M will make it rank 4. Enforcing this constraint allows us to recover both
the 3D positions of the points that generate the tracks and the poses of the observing cameras (Sturm
& Triggs, 1996). However, prior algorithms required M to be complete and error-free; they were
sensitive to initialization and were applied only in uncalibrated settings, producing a reconstruction
up to a global projective ambiguity.

A deep network architecture for projective factorization was recently proposed in (Moran et al., 2021).
Their network uses a sets-of-sets architecture (Hartford et al., 2018), which is permutation equivariant
to both the rows and columns of the point track matrix. Brynte et al. (2023) proposed a related
architecture that uses self-attention blocks to improve runtime further. Both these networks showed
promising results on image collections acquired with a single camera. However, as we show in this
paper (see also Figure 1), they fail to handle collections of internet photos, primarily because they
were not designed to remove outlier matches.

In this paper, we aim to construct a robust network for projective factorization that can handle outliers
in realistic settings. To this end, we return to (Moran et al., 2021)’s architecture and enrich it with
an outlier removal module. Our module is integrated into the equivariant architecture, allowing it to
identify outliers if their motion is inconsistent with other points in the same image or if their motion is
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(a) Our recovery (b) ESFM recovery (c) GASFM recovery

Figure 1: 3D reconstruction and camera pose recovery in the presence of outliers. The figure shows
reconstruction results (point clouds) and camera poses (in red) obtained with our method (left) and existing
deep-based methods including ESFM (Moran et al., 2021) (middle), and GASFM (Brynte et al., 2023) for scene
0185 (MegaDepth dataset, 30% outliers). It is evident that our method copes well with outliers in contrast to
these existing methods.

at odds with the motion of other points in their track. We train this module with a cross-entropy loss,
using labels that are inferred automatically using COLMAP reconstructions, allowing for cross-scene
generalization. We further utilize a final bundle adjustment (BA) step that is robust to classification
errors. Experiments show that our network improves over the methods of Moran et al. (2021); Brynte
et al. (2023) in almost all runs, obtaining state-of-the-art accuracies and runtimes comparable to the
leading classical methods, including COLMAP, Theia, and GLOMAP (Schönberger & Frahm, 2016;
Sweeney et al., 2015; Pan et al., 2024).

In summary, our contributions are:

1. A deep network for robust multiview SfM, utilizing a sets-of-sets permutation equivariant
architecture.

2. A trainable architecture allows for cross-scene and cross-dataset generalization.
3. Our method is applied to large collections (hundreds of images) of uncontrolled internet

photos. This, to the best of our knowledge, is the first deep method for simultaneous recovery
of structure and camera pose that handles such challenging inputs.

4. Our method achieves highly accurate recovery of camera pose and structure, superior to
existing deep methods and on par both in accuracy and speed with state-of-the-art classical
methods.

5. A benchmark with point tracks and pseudo ground truth computed with COLMAP on the
MegaDepth and 1DSFM datasets.

2 RELATED WORK

The recovery of camera pose and 3D structure from image collections has been a central subject
of research in computer vision in the past several decades, leading to multiple breakthroughs that
enabled accurate reconstructions from hundreds and even thousands of unordered images (Agarwal
et al., 2011; Schönberger & Frahm, 2016; Snavely et al., 2006; Wu, 2013). In the typical sequential
pipeline point tracks are first extracted from the input images. Camera pose and 3D structure are
next computed for two images and then updated by processing the remaining images one by one.
This pipeline yields highly accurate recovery of pose and structure but can be slow when applied to
large image collections. Alternative global approaches attempt to compute camera poses by a process
of “averaging” the relative rotations and translations estimated from pairwise essential matrices
(Martinec & Pajdla, 2007; Özyeşil et al., 2017; Kasten et al., 2019). The recent Theia (Sweeney et al.,
2015) and GLOMAP (Pan et al., 2024), in particular, were shown to yield accurate recovery. Related
to our approach is the projective factorization (PF) method (Sturm & Triggs, 1996; Dai et al., 2010;
Lin et al., 2017), which is based on the observation that the full track matrix is derived from a rank
four matrix by a per-point scale factor. Classical PF algorithms, however, are limited to uncalibrated
settings and address neither missing entries nor outliers.

2



Published as a conference paper at ICLR 2025

Recent deep-learning techniques attempt to improve these pipelines by exploiting priors over the
input images, camera settings, and 3D structures learned with these networks. Existing methods
attempt to improve keypoint detection and matching (Lindenberger et al., 2021; Sun et al., 2021;
DeTone et al., 2018; Lindenberger et al., 2023; Sarlin et al., 2020), produce point tracks (He et al.,
2023), formulate differentiable alternatives to RANSAC (Yi et al., 2018; Zhang et al., 2019; Zhao
et al., 2021; Sun et al., 2020), or directly infer the relative orientation and location for pairs of images
(Khatib et al., 2024; Laskar et al., 2017; Cai et al., 2021; Rockwell et al., 2022; Arnold et al., 2022).

Recent work proposed end-to-end methods for camera pose estimation. Works such as RelPose
(Zhang et al., 2022) and its successor, RelPose++ (Lin et al., 2023), harness energy-based models
to recover camera poses from inputs that include the relative rotations between images. Similarly,
SparsePose (Sinha et al., 2023) learns to regress initial camera poses which are then refined iteratively.
PoseDiffusion (Wang et al., 2023b) employs a diffusion model to refine camera poses. Zhang et al.
(2024) improves on this by focusing on purifying the camera rays. These works, however, are only
applied to small collections of images (typically ≤30) and are commonly applied in object-centric
scenarios, e.g., as in (Reizenstein et al., 2021). Recent learnable SfM pipelines such as VGGSfM
(Wang et al., 2023a), DUST3R (Wang et al., 2023c), and MAST3R (Leroy et al., 2024) are still
limited to handling only a small number of images, while Ace-Zero (Brachmann et al., 2024) and
FlowMap (Smith et al., 2024) are applicable to video sequences with constant illumination.

Motivated by projective factorization schemes Moran et al. (2021) presented a trainable network for
simultaneous camera pose and 3D structure recovery. Arranging the input point tracks in a matrix, an
equivariant network to row and column permutations, i.e., sets-of-sets architecture, is used to regress
the camera poses and the 3D point cloud coordinates. The network is trained with unsupervised data
by optimizing a reprojection loss and is applied at inference to novel scenes not seen in training.
Additional fine-tuning and Bundle Adjustment (BA) are applied to attain sub-pixel reprojection errors.
This approach achieved highly accurate pose and structure recovery on large image collections (with
several hundreds of images) of outdoor urban scenes. However, it has a significant limitation as it
requires the point tracks matrix, to be almost free of outliers. This greatly restricts its applicability in
realistic settings.

GASFM (Brynte et al., 2023) replaces the set-of-sets architecture in (Moran et al., 2021) with a
graph attention network for increased expressiveness, enabling them to avoid fine-tuning, thereby
reducing inference runtime compared to (Moran et al., 2021) without compromising the performance.
Chen et al. (2024) applies (Moran et al., 2021)’s network (with some modifications) to aerial images
captured with GPS information under roughly constant camera orientation. Neither Brynte et al.
(2023) nor Chen et al. (2024) demonstrate results on point tracks contaminated by a significant
portion of outliers.

Our approach extends and improves over the work of Moran et al. (2021) by integrating a multiview in-
lier/outlier classification module that respects and exploits the equivariant structure of the network and
by introducing a robust BA scheme. This allows us to work with realistic point tracks contaminated
with outliers obtained with standard heuristics and still achieve high-accuracy performance.

3 METHOD

3.1 PROBLEM FORMULATION

We assume a stationary scene viewed by m cameras with unknown poses. We obtain as input a
(sparse) point track tensor M that includes 2D observations of n 3D points viewed by partial sets
of cameras. We further assume in this work that the cameras are internally calibrated. A camera
matrix therefore is expressed in the form of Pi = [Ri|ti], where Ri ∈ SO(3) is a rotation matrix.
With this notation, the camera is placed at the position −RT

i ti. We denote by Xj ∈ R3 the j’th 3D
scene point and by xij ∈ R2 its observed position in the ith image. The set Tj = {xi1j ,xi2j , ...}
with Cj = {i1, i2, ...} ⊆ [m] represents the j’th track, associated with the j’th 3D point. These
tracks are generally constructed in a preprocessing step by employing heuristics and, therefore, are
contaminated by small displacement errors (noisy measurements) and outliers.

We arrange the tracks T1, . . . , Tn in the columns of the measurement point track tensor M . The tensor
M is of size m× n× 2, so the rows of M correspond to the m cameras, and its columns correspond
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Figure 2: Network architecture. Our network comprises four main steps: (1) Given a point track tensor (left),
an equivariant feature encoder module (light blue) produces a latent feature representation. (2) The outlier head
(gray) applies an inlier/outlier classification. Predicted outliers are then removed from the input track, and the
encoder is fine-tuned for 1000 epochs. (3) 3D point locations and camera poses are predicted by the point head
(yellow) and the camera head (green), respectively. (4) The predicted camera poses and the point cloud are
finally optimized by robust bundle adjustment (orange).

to the unknown 3D points whose contaminated projections are given. We set (Mij1,Mij2)
.
= xij if

i ∈ Cj and otherwise leave Mij1 and Mij2 empty.

We aim to recover the pose parameters of the m camera matrices and the 3D positions of the n feature
points. Additionally, we seek to classify each track point as either an inlier or an outlier. The output
of our network will comprise three matrices: P ∈ Rm×7 for the set of cameras matrices, X ∈ Rn×3

for the 3D structure, and O ∈ Rm×n for the track point classification results. We represent camera
pose by a rotation quaternion qi ∈ R4 and a translation vector ti ∈ R3. Classification results in O
are represented by scores in [0, 1], where xij with Oij ≥ 0.6 is considered an outlier. (The threshold
0.6 was determined by a hyperparameter search.) Note that we classify individual points as outliers,
while other points in the same track may be classified as inliers.

3.2 NETWORK ARCHITECTURE

We use an architecture that is equivariant to row and column permutations of the tensor M , equivalent
respectively to independent permutations of the cameras and the 3D points. It comprises four modules:
a permutation equivariant feature encoder, followed by an inlier/outlier classification module, pose,
and structure regression modules (see Fig. 2).

Permutation equivariant feature encoder. This module takes as input the tensor M ∈ Rm×n×2

and outputs a latent representation in Rm×n×d, where d = 256. It comprises three permutation
equivariant layers with linear maps interspersed with pointwise non-linear ReLU function. A linear
equivariant map is the core of permutation equivariant networks. In our case, permutation equivariance
should apply to the rows (cameras) and columns (3D points) of the tensor M . Hartford et al. (2018)
showed that the space of linear maps that keep the permutation equivariant property of a single
channel (i.e., the input and the output are matrices) is spanned by the identity, the row sums, the
column sums, and the matrix sum. This can be applied to multiple input and output channels from a
feature space with d channels Rm×n×d to a feature space with d′ channels Rm×n×d′

in the following
way:

L(M̃)ij = W1M̃ij +W2

m∑
k=1

M̃kj +W3

n∑
l=1

M̃il +W4

m∑
k=1

n∑
l=1

M̃kl + b, (1)

where M̃ij ∈ Rd represents the vector of entries of M̃ at the (i, j) position, Wi ∈ Rd′×d for
i = 1, ..., 4, and b ∈ Rd′

are learnable parameters. We follow Moran et al. (2021) and replace
sums by averages over the non-empty entries of M , yielding invariance to the number of observed
projections.

Inlier/Outlier classification module. Given the latent representation Rm×n×d provided by the
equivariant feature encoder, this module, Houtlier, employs three MLP layers followed by a sigmoid
function. The output is a matrix O ∈ [0, 1]m×n expressing the probability of each entry being an
outlier. Note that this module respects the equivariance property, allowing our model to classify track
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points based on their relations to other points of the same track as well as other points within the
same image.

Pose and structure regression modules. Utilizing the latent representation Rm×n×d from the
equivariant feature encoder, the pose and structure heads, Hcams and Hpts, consist of three MLP
layers each. The first head, Hcams, processes the pooled average of the features along the columns
Rm×d, where each camera’s features are encoded into a vector in Rd, and outputs a tensor in Rm×7.
This tensor encapsulates the camera’s translation vector (first three values) and orientation (last four
values, represented as a quaternion), collectively forming the camera’s projection matrix. The second
head, Hpts, processes the pooled average of features along the rows Rn×d, where each scene point is
encoded by a vector in Rd, and outputs a tensor in Rn×3, representing the coordinates of the scene
points.

3.3 LOSS FUNCTION

Our loss function combines two terms

L = Loutliers + αLreprojection (2)

where the hyperparameter α = 10 balances the two terms and was determined by a hyperparameter
search. The outlier classification loss, Loutliers, employs a Binary Cross-Entropy (BCE) loss. The
second part of the loss Lreprojection is an unsupervised objective, and it includes reprojection and hinge
loss terms. The reprojection loss aims to minimize the error between projected scene points and their
detected positions in the image, similar to the objective in bundle adjustment. A hinge loss is also
used to prevent the prediction of non-positive depth values, thus ensuring a physically plausible scene
reconstruction.

Lreprojection =
1

p

m∑
i=1

n∑
j=1

ξijsij , (3)

where p =
∑n

j=1 |Tj | the number of measured projections, and ξij ∈ {0, 1} is indicating whether
point Xj is detected in image Ii.

sij =

{
rij , P 3

i Xj ≥ h

hij , P 3
i Xj < h,

and

rij =

∥∥∥∥(x1
ij −

P 1
i Xj

P 3
i Xj

,x2
ij −

P 2
i Xj

P 3
i Xj

)∥∥∥∥ ,
and hij = max(0, h − P 3

i Xj), where h > 0 is a small constant (in our setting, h = 0.0001). hij

therefore is the hinge loss for the depth value of Xj in image Ii.

3.4 TRAINING

During training, we processed all training scenes sequentially for each epoch. For each scene, we
randomly selected a subset of 10%-20% of the images. We employed a validation set for early
stopping, selecting the checkpoint with minimal error. More details can be found in Appendix A.

3.5 INFERENCE

After training our network, we test the network on unseen scenes. We first apply inlier/outlier
classification predictions to remove outliers, and then fine-tune the network for the tested scene. This
yields predictions for camera poses and 3D point locations. Having those predictions, we apply our
robust Bundle Adjustment procedure.

Fine-tuning. At this step, we leverage our inlier/outlier classification prediction and remove the
points predicted as outliers from the point tracks tensor M (using the threshold 0.6). Subsequently,
similar to (Moran et al., 2021), we fine-tune the network for the tested scene by minimizing the
unsupervised reprojection loss equation 3 for 1000 epochs.
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Robust Bundle Adjustment. As common in SfM pipelines, a post-processing step of applying
bundle adjustment is necessary to achieve sub-pixel reconstruction accuracy. Standard BA was found
to be ineffective as it was unable to handle the remaining outliers. We therefore utilize a Robust
Bundle Adjustment process:

1. Apply bundle adjustment (BA) to the predicted cameras and predicted 3D points.

2. Remove 3D points with projection error higher than 5 pixels and remove 3D points viewed
in fewer than 3 cameras.

3. If the view graph of the point tracks becomes unconnected due to the removals, then we take
the largest component and discard point tracks that originate from the removed images.

4. Triangulate the remaining point tracks and apply a second round of (standard) BA.

More details on the robust BA stage can be found in Appendix A.

4 EXPERIMENTS

4.1 DATASETS

Our network is trained on scenes from the MegaDepth dataset (Li & Snavely, 2018). It is then tested
on both novel scenes from the MegaDepth dataset and in cross-dataset generalization tests on the
1DSfM dataset (Wilson & Snavely, 2014), Strecha (Strecha et al., 2008), and BlendedMVS (Yao
et al., 2020). These datasets offer a diverse range of real-world scenes, which are instrumental in
assessing the robustness and versatility of our proposed architecture across different environments
and challenges.

The point tracks, which our network takes as input, are constructed by concatenating pairwise matches
between images within each scene. These matches are obtained by applying RANSAC to SIFT
matches, ensuring a robust selection of correspondences by mitigating the influence of outliers. The
detailed procedure for constructing these point tracks, including parameter settings and algorithmic
choices, is provided in Appendix C.

MegaDepth (Li & Snavely, 2018). The MegaDepth dataset comprises 196 different outdoor scenes,
each populated with internet photos showcasing popular landmarks around the globe. To facilitate
a comprehensive evaluation, we divide the dataset into two groups based on the number of images
per scene: (1) scenes with fewer than 1000 images, and (2) scenes with more than 1000 images.
From the first group, we randomly sampled 27 scenes to serve as our training dataset, along with
four scenes designated for validation purposes. For the test set, we randomly selected 14 scenes
from the first group. Moreover, from each scene in the second group, we randomly sampled 300
images to represent a condensed version of the scene. These samples form a part of the test dataset,
introducing a significant challenge for Structure from Motion (SfM) methods due to the reduced
number of images representing vast and complex scenes. In Table 1, the scenes above the middle rule
belong to Group 1 of scenes with fewer than 1000 images, while the scenes below the rule belong to
Group 2.

1DSFM (Wilson & Snavely, 2014). The 1DSFM dataset is renowned for its collection of diverse
scenes reconstructed from community photo collections. It includes a variety of urban locations,
making it a valuable resource for evaluating Structure from Motion (SfM) and multi-view stereo
algorithms. For our purposes, the dataset offers a challenging yet realistic setting to evaluate our
architecture’s effectiveness in dealing with large-scale reconstructions. Specifically, we train the
models on MegaDepth dataset and assess its generalization to 1DSFM dataset.

Strecha (Strecha et al., 2008). The Strecha dataset is widely used for benchmarking 3D reconstruc-
tion algorithms and consists of five outdoor scenes. It provides high-resolution images alongside
ground-truth data acquired with a LIDAR system. However, each scene includes only a small (≤ 30)
number of images acquired with a single camera. We perform our tests on four of these scenes.

BlendedMVS (Yao et al., 2020). The BlendedMVS is a synthetic dataset built by reconstructing
textured meshes and rendering them into color images and depth maps, which are blended with the
original inputs to create realistic data, thereby generating ground truth for camera poses.
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Ground truth camera poses. Challenging datasets such as MegaDepth and 1DSFM lack ground
truth. Therefore, as is common in the field Jiang et al. (2013); Wilson & Snavely (2014); Cui
& Tan (2015); Ozyesil & Singer (2015); Brynte et al. (2023); Wang et al. (2023a); Zhang et al.
(2024), we utilize COLMAP, a state-of-the-art incremental Structure from Motion (SfM) method, to
establish ground truth camera poses for the scenes in those datasets. COLMAP stands as one of the
most popular solutions in the field due to its robust performance in reconstructing 3D models from
unordered image collections. We apply COLMAP directly to the scene images to obtain the ground
truth poses. Additionally, we show results with the smaller datasets Strecha (Strecha et al., 2008) and
BlendedMVS (Yao et al., 2020) for which ground truth camera poses are available.

4.2 BASELINES

ESFM (Moran et al., 2021). We compare our method to this equivariant SfM method where,
for fairness, we replace BA with our robust BA. The model is trained on MegaDepth dataset and
evaluated both on MegaDepth and 1DSFM. We conduct two distinct evaluations: one in which ESFM
is trained and tested on the original point tracks, which include outliers (denoted as ESFM), and
another evaluation where the model is trained and tested on the same point tracks, but in which
outliers have been removed (this version is denoted as ESFM*). By testing ESFM on the original
contaminated tracks, we evaluate the method’s ability to handle realistic settings. A comparison with
outlier-free tracks provides an empirical upper bound for our method.

GASFM (Brynte et al., 2023). We compare our method to GASFM, which replaces the set-of-sets
architecture in ESFM (Moran et al., 2021) with a graph attention network. This modification increases
expressiveness, enabling them to avoid fine-tuning and thereby reduce inference runtime compared to
the traditional SfM method (Schönberger & Frahm, 2016), without compromising performance when
tested on the outlier-free Olsson’s dataset (Olsson & Enqvist, 2011). We trained and tested GASFM
on the original MegaDepth point tracks (which include outliers) and also tested it on the 1DSFM
dataset scenes.

To allow a fair comparison, in both ESFM and GASFM, the inference step is followed by 1000
epochs of fine-tuning.

VGGSfM (Wang et al., 2024) is a differentiable, end-to-end trainable SfM pipeline, simplifying
some of its components to streamline the process while maintaining accurate 3D reconstruction
capabilities.

MASt3R (Leroy et al., 2024) is a pipeline for SfM that merges pairwise pointmap predictions
through an optimization-based global alignment procedure to handle image collections effectively.

Theia (Sweeney et al., 2015). A widely recognized global SfM pipeline that begins by estimating
camera rotations using rotation averaging, followed by translation averaging to estimate camera
positions. It concludes with global triangulation to reconstruct the 3D point cloud and a final bundle
adjustment, similar to other global SfM techniques.

GLOMAP (Pan et al., 2024). GLOMAP is a newly proposed global SfM pipeline that addresses
the limitations of previous global methods, which were considered efficient but less robust than
incremental approaches. Instead of relying on separate translation averaging and point triangulation,
GLOMAP combines them into a single global positioning step, optimizing both camera positions and
3D structure simultaneously.

4.3 METRICS AND EVALUATION

We evaluate our results using camera position and orientation errors. Specifically, after performing
a similarity alignment per scene, we compare our camera orientation predictions with the ground
truth ones by measuring angular differences in degrees. Similarly, we measure differences between
our predicted and ground truth camera locations. For a fair comparison, both our method and all the
baseline methods (except VGGSfM, which is applied directly to the input images) were run with the
same set of point tracks. For all methods, we apply a final post-processing step of our robust bundle
adjustment. When highlighting the best results in the tables, we do not compare to ESFM*.
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Table 1: MegaDepth experiment. For each scene, we show the number of input images (denoted Nc) and the
fraction of outliers. For each model, we show the number of images used for reconstruction (denoted Nr) and
mean values of the rotation (in degrees) and translation errors. (Above the middle rule are Group 1 scenes with
<1000 images; below are Group 2 scenes with >1000 images, subsampled to 300 for testing.) Winning results
are marked in bold and underlined. Yellow represents the best result among the deep-based algorithms and green
among the classical algorithms.

Scene Nc Outliers%
Ours ESFM GASFM Theia GLOMAP ESFM*

Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans
0238 522 44.6 283 2.61 0.325 76 11.49 1.088 76 9.89 0.969 506 1.21 0.334 499 0.74 0.349 512 3.06 0.142
0060 528 41.6 503 0.29 0.029 303 14.92 2.167 258 18.48 2.736 525 0.85 0.124 522 0.11 0.048 524 0.02 0.005
0197 870 40.7 667 4.22 0.333 281 9.62 0.980 454 12.23 1.678 855 1.16 0.227 814 0.43 0.129 825 0.41 0.050
0094 763 40.1 537 3.77 0.750 93 14.91 1.772 359 2.27 0.322 742 0.75 0.160 717 0.88 3.907 643 4.55 1.018
0265 571 38.8 346 1.25 0.389 270 22.14 2.712 274 22.29 2.756 554 5.83 2.216 558 7.46 2.839 559 0.12 0.039
0083 635 31.3 596 0.64 0.058 568 4.40 0.558 574 3.95 0.245 632 0.37 0.372 614 0.08 0.016 556 21.02 1.904
0076 558 30.5 524 0.37 0.094 454 3.86 0.655 431 0.11 0.015 549 0.78 0.120 541 0.17 0.042 547 0.04 0.006
0185 368 30.0 350 0.06 0.010 261 1.76 0.271 254 1.36 0.184 365 0.41 0.094 365 0.16 0.051 130 38.49 2.478
0048 512 24.2 474 4.69 0.178 469 4.03 0.235 481 1.44 0.073 507 0.41 0.105 506 0.15 0.224 508 0.09 0.006
0024 356 23.0 309 2.03 0.398 271 9.08 1.320 300 9.80 2.546 355 0.56 0.219 339 0.15 0.104 343 2.78 0.568
0223 214 17.0 204 3.76 0.510 191 11.97 2.272 194 13.69 2.649 212 3.34 0.519 214 1.75 0.275 211 0.09 0.017
5016 28 0.2 28 0.12 0.016 28 0.09 0.015 28 0.09 0.015 28 0.10 0.061 28 0.08 0.046 28 0.04 0.009
0046 440 14.6 399 0.95 0.043 97 1.68 0.082 426 0.45 0.019 434 0.25 0.112 440 0.03 0.007 33 37.09 1.387

0099 299 47.4 190 3.53 0.709 104 4.17 0.862 128 8.13 1.116 297 3.28 0.664 255 0.15 0.085 243 6.22 1.075
1001 285 43.9 251 1.70 0.661 241 4.40 1.846 261 3.26 1.143 276 7.97 4.014 281 4.56 3.817 280 0.12 0.085
0231 296 42.2 246 0.84 0.065 214 0.85 0.080 209 0.91 0.088 286 1.37 0.322 279 0.73 0.134 284 0.56 0.022
0411 299 29.9 273 0.13 0.020 188 15.89 1.650 232 2.95 0.304 293 0.39 0.196 269 0.19 0.148 288 0.08 0.013
0377 295 27.5 210 0.29 0.018 162 0.54 0.044 167 0.13 0.013 269 1.13 0.205 268 0.65 0.237 279 1.19 0.147
0102 299 25.8 284 0.28 0.059 255 1.55 0.403 278 1.79 0.478 294 2.31 0.698 293 0.15 0.101 155 21.00 3.470
0147 298 24.6 207 4.62 0.325 197 4.90 0.522 225 10.89 0.961 284 6.36 0.934 290 6.75 3.542 251 3.22 0.215
0148 287 24.6 197 0.60 0.035 206 1.64 0.133 209 1.73 0.135 275 13.98 1.558 283 22.73 2.646 249 0.94 0.083
0446 298 22.1 288 0.72 0.046 283 2.02 0.193 291 1.71 0.237 289 1.23 0.391 296 0.20 0.071 294 0.92 0.115
0022 297 21.2 274 0.29 0.039 241 1.38 0.184 263 0.54 0.082 296 0.58 0.160 281 0.22 0.087 289 0.30 0.646
0327 298 21.0 271 0.26 0.090 281 1.83 0.398 284 0.25 0.029 288 1.27 0.360 290 15.54 2.035 294 0.06 0.008
0015 284 20.6 215 1.04 0.167 142 5.00 0.920 149 14.02 2.105 244 2.21 0.389 274 0.28 0.095 185 4.51 0.941
0455 298 19.8 293 0.68 0.105 293 0.68 0.138 294 0.74 0.144 294 0.77 0.159 298 0.35 0.064 298 0.89 0.109
0496 297 19.2 281 0.35 0.055 281 3.59 0.311 277 0.68 0.061 285 1.40 0.550 291 0.44 0.303 293 0.29 0.028
1589 299 17.4 290 0.14 0.019 284 0.92 0.131 283 2.71 0.505 288 0.82 0.193 299 0.07 0.041 296 0.40 0.053
0012 299 16.3 287 0.40 0.027 291 5.20 0.327 294 0.88 0.114 129 1.04 0.318 295 0.51 0.121 294 0.47 0.044
0104 284 16.2 193 0.29 0.029 220 24.40 2.174 228 4.10 0.306 265 17.05 1.530 280 19.69 0.834 200 0.78 0.044
0019 299 15.4 250 0.06 0.008 267 9.34 0.329 293 2.34 0.113 271 0.81 0.250 296 0.09 0.025 296 4.90 0.180
0063 293 14.5 262 0.46 0.048 262 2.15 0.456 257 0.44 0.040 268 0.92 0.605 288 0.32 0.100 275 0.32 0.301
0130 285 14.4 192 0.20 0.023 192 1.46 0.058 194 2.27 0.070 187 1.20 0.349 281 2.00 0.909 282 1.59 0.179
0080 284 12.9 139 0.59 0.096 137 1.34 0.325 139 2.18 0.104 278 2.62 0.868 283 1.92 0.237 163 1.92 0.173
0240 298 11.9 275 3.13 0.265 274 1.69 0.170 272 2.54 0.227 278 1.31 0.470 294 0.39 0.135 296 0.27 0.111
0007 290 11.7 172 0.91 0.041 260 38.74 2.284 280 1.87 0.101 277 1.24 0.174 290 0.19 0.035 286 1.59 0.264
Mean 379 25.6 298 1.29 0.169 239 6.77 0.780 267 4.53 0.630 346 2.42 0.556 353 2.51 0.662 319 4.45 0.443

4.4 RESULTS

Our results for the MegaDepth and 1DSFM test scenes are shown in Tables 1 and 2, respectively.
Each table lists the number of input images (Nc), the fraction of outlier track points, and our results
compared to the baseline methods. For each method, we provide the number of registered cameras
(Nr) and mean camera orientation and position errors. It can be seen that our method outperforms
both ESFM and GASFM in almost all runs, achieving accurate results that are close to what is
obtained with ESFM on clean tracks (ESFM*). Our results are also on par with state-of-the-art
classical methods, including Theia and GLOMAP, often yielding superior translation recovery (but
handling fewer images). This demonstrates the utility of our method in realistic settings.

We further tested our method on the smaller Strecha and BlendedMVS datasets which include ground
truth measurements. Our method is more accurate than the deep-based VGGSfM and MASt3R (that
cannot run on the larger datasets) and is on par with the classical methods, see Tables 3 and 4.

Qualitative results. Figure 1 shows an example of 3D reconstructions and camera parameters
obtained using our method compared to those obtained with ESFM and GASFM. These results
clearly demonstrate that our method produces superior 3D reconstructions, effectively handling
outliers in contrast to the other baselines. Additional qualitative results are provided in Appendix A.

Runtime and resources. Table 5 compares the runtimes of our method with the classical COLMAP,
Theia, and GLOMAP when applied to the point tracks generated in our preprocessing stage. Our
approach is significantly faster than COLMAP and GLOMAP but is slower than Theia. We note that
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Table 2: 1DSFM experiment. For each scene, we show the number of input images (denoted Nc) and the
fraction of outliers. For each model, we show the number of images used for reconstruction (denoted Nr)
and mean values of the rotation (in degrees) and translation errors. Winning results are marked in bold and
underlined. Yellow represents the best result among the deep-based algorithms and green among the classical
algorithms.

Scene Nc Outliers%
Ours ESFM GASFM Theia GLOMAP ESFM*

Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans
Alamo 573 32.6 484 3.66 0.515 457 4.53 0.319 448 5.85 0.460 553 4.42 1.433 557 2.45 1.520 526 3.17 0.321

Ellis Island 227 25.1 214 0.82 0.122 196 21.13 2.053 198 21.91 2.081 213 5.01 1.527 219 0.58 0.155 220 0.38 0.033
Madrid Metropolis 333 39.4 244 8.42 0.827 151 19.56 1.946 159 21.97 2.205 - - - 320 1.22 0.242 290 25.25 2.664

Montreal Notre Dame 448 31.7 346 2.82 0.352 309 10.13 1.773 311 11.77 1.557 422 4.47 1.285 444 0.60 0.211 414 0.16 0.020
Notre Dame 549 35.6 517 1.2 0.231 487 1.95 0.226 499 1.74 0.232 314 3.70 0.828 543 2.73 0.389 528 0.72 0.051
NYC Library 330 33.6 224 3.96 0.429 177 4.42 0.468 218 7.65 0.667 534 4.06 1.141 323 0.58 0.189 301 2.62 0.226

Piazza del Popolo 336 33.1 249 2.20 0.186 204 10.77 0.997 198 9.05 1.063 325 3.31 1.053 331 0.80 0.188 303 4.31 0.604
Tower of London 467 27.0 94 0.67 0.026 196 22.02 2.239 152 32.36 2.306 448 6.61 1.189 466 0.81 0.138 213 13.08 0.704
Vienna Cathedral 824 31.4 479 1.52 0.112 551 6.52 0.537 558 7.98 0.573 772 12.25 1.663 822 2.00 2.414 536 1.51 0.069

Yorkminster 432 29.0 331 14.54 1.468 215 10.63 0.637 251 13.01 0.846 390 8.35 1.916 418 0.95 0.316 389 12.63 0.994

Table 3: Strecha experiment. For each scene, we present the number of input images (denoted Nc) and the
fraction of outliers. For each model, we show the number of images used for reconstruction (denoted Nr) and
the mean values of the rotation error (in degrees), translation error (in meters) and runtime (in seconds). The
best results are marked in bold and the second best are underlined.

Scene Nc Out.% Ours MASt3R VGGSfM Theia COLMAP GLOMAP
Nr Rot Trans Time Nr Rot Trans Time Nr Rot Trans Time Nr Rot Trans Time Nr Rot Trans Time Nr Rot Trans Time

entry-P10 10 4.8 10 0.024 0.008 3.3 10 0.442 0.055 19 10 0.165 0.056 10.3 10 0.024 0.008 0.9 10 0.023 0.007 36.0 10 0.187 0.026 12.5
fountain-P11 11 1.4 11 0.028 0.003 5.3 11 0.160 0.026 22 11 0.172 0.016 15.4 11 0.027 0.002 1.5 11 0.027 0.003 37.0 11 0.194 0.022 38.6
Herz-Jesus-P8 8 1.8 8 0.026 0.004 2.6 8 0.363 0.037 16 8 0.206 0.042 8.7 8 0.025 0.005 0.6 8 0.026 0.004 22.0 8 0.091 0.015 5.0
Herz-Jesus-P25 25 2.8 24 0.030 0.006 9.4 25 0.869 0.057 81 25 0.158 0.046 19.6 25 0.026 0.006 2.4 25 0.028 0.006 60.0 25 0.138 0.013 76.6
Mean 1.5 2.7 13.5 0.027 0.005 5.2 13.5 0.459 0.044 34.5 13.5 0.175 0.040 13.5 13.5 0.026 0.005 1.4 13.5 0.026 0.005 38.8 13.5 0.153 0.019 33.2

Table 4: BlendedMVS experiment. For each scene, we present the number of input images (denoted Nc)
and the fraction of outliers. For each model, we show the number of images used for reconstruction (denoted
Nr) and the mean values of the rotation error (in degrees), translation error, and runtime (in seconds). The best
results are marked in bold and the second best are underlined.

Scene Nc Out.% Ours MASt3R VGGSfM Theia COLMAP GLOMAP
Nr Rot Trans Time Nr Rot Trans Time Nr Rot Trans Time Nr Rot Trans Time Nr Rot Trans Time Nr Rot Trans Time

scene0 75 2.0 75 0.016 0.0007 54 75 0.501 0.191 516 75 0.045 0.0106 61 75 0.009 0.0017 49 75 0.006 0.0005 106 75 0.007 0.0016 198
scene1 51 1.4 51 0.011 0.0021 32 51 0.919 0.173 1017 51 0.098 0.0112 32 51 0.029 0.0099 18 51 0.007 0.0003 67 51 0.024 0.0102 117
scene2 33 2.2 33 0.009 0.0006 21 33 1.972 0.130 117 33 0.227 0.0180 30 33 0.045 0.0098 15 33 0.003 0.0002 55 33 0.025 0.0060 87
scene3 66 8.8 66 0.007 0.0007 52 66 0.927 0.045 815 66 0.372 0.0174 52 66 0.019 0.0018 21 66 0.004 0.0002 128 66 0.008 0.0017 392

the fine-tuning phase is the most time-consuming part of our pipeline. Table 6 further compares the
utilization of resources of the deep-based methods. Our method utilizes slightly more parameters
than (Moran et al., 2021) and is two orders of magnitude smaller than (Brynte et al., 2023). In terms
of memory usage and proceeding speed our method is the most efficient.

Classification performance. Table 7 (left) presents various classification metrics to assess the
performance of our inlier/outlier classification module. After removing the predicted outliers, our
method significantly decreases the percentage of outliers in the point tracks. These classification
results enable the robust BA module to perform well and produce accurate reconstruction and camera
pose estimation, yielding another significant decrease in the outlier ratio. Removing these remaining
outliers is challenging since these outlier matches survived the RANSAC preprocessing.

4.5 ABLATIONS

For ablations, we first examine the impact of our permutation sets-of-sets equivariant architecture.
We replace our inlier/outlier classifier module with a set equivariant PointNet architecture. The
input in this experiment consists of a set of quadruples, (x, y, c, t), where (x, y) are the keypoint
coordinates, c represents camera id, and t denotes track id. As shown in Table 7, our equivariant
architecture achieves superior classification accuracies, justifying the importance of using sets-of-sets
equivariance.

Next, we examine the importance of the equivariant features. We compare our method, which is
trained end-to-end, to (1) the case that only the classification head is trained while the feature encoder
is frozen (i.e., trained as in ESFM without outlier classification), and (2) the same architecture but
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Table 5: Runtime. Given the same contaminated point tracks, we compare the runtime of our proposed method
to classical methods, including COLMAP, Theia, and GLOMAP.

Scene Nc Outliers%
Ours COLMAP Theia GLOMAP

Inference (Secs) Fine-tuning (Secs) BA (Secs) Total (Mins) Nr Nr/t ↑ Total (Mins) Nr Nr/t ↑ Total (Mins) Nr Nr/t ↑ Total (Mins) Nr Nr/t ↑
Alamo 573 32.6 0.004 674.3 355.6 17.2 484 28.2 83.7 568 6.8 13.4 553 41.4 40.0 557 13.9
Ellis Island 227 25.1 0.004 103.4 66.1 2.8 214 75.9 14.9 223 15.0 1.1 213 201.8 7.7 219 28.6
Madrid Metropolis 333 39.4 0.003 286.8 61.2 5.8 244 42.1 25.1 323 12.9 - - - 7.1 320 45.2
Montreal Notre Dame 448 31.7 0.005 190.62 174.9 6.1 346 56.7 35.9 447 12.5 3.7 422 114.6 13.5 444 32.9
Notre Dame 549 35.6 0.003 1101.75 229.4 22.2 517 23.3 72.6 546 7.5 11.6 534 46.0 21.1 543 25.8
NYC Library 330 33.6 0.004 153.15 88.0 4.0 224 55.7 26.6 330 12.4 1.5 314 204.2 7.3 323 44.5
Piazza del Popolo 336 33.1 0.002 91.6 70.0 2.7 249 92.6 9.6 334 34.9 3.0 325 108.8 5.9 331 56.0
Tower of London 467 27.0 0.003 271.65 84.0 5.9 94 15.9 65.0 467 7.2 3.1 448 142.5 23.5 466 19.8
Vienna Cathedral 824 31.4 0.005 470.35 963.5 23.9 479 20.0 98.9 824 8.3 11.2 772 68.8 41.6 822 19.8
Yorkminster 432 29.0 0.002 270 192.5 7.7 331 42.9 31.4 419 13.3 2.9 390 135.3 14.8 418 28.2

Table 6: Resources. Performance comparison between different methods in terms of a number of parameters,
maximum memory usage, and processing speed (images per minute) averaged over the 1dsfm scenes.

Method Ours ESFM GASFM
#Params (millions) ↓ 0.73 0.66 145.17
Max Memory (GBs) ↓ 9.5 10.1 25.7
Image/minutes ↑ 45.3 40.9 10.7

with the classification head removed (equivalent ESFM). It can be seen in Table 8 that training the
feature encoder in an end-to-end schedule makes a crucial impact on the accuracy of our method.

Finally, in Appendix D, we validate the importance of our Robust BA; we compare it to a standard
BA, showing that the accuracy is significantly improved with our Robust BA.

Table 7: Classification metric and architecture ablation. Inlier/outlier classification accuracies and the
fraction of outliers predicted with our permutation-equivariant network (sets of sets) compared to an alternative
set network (PointNet architecture).

Ours PointNet architecture
Scene Nc Outliers% Recall Recall Precision F-score Outliers% Outliers% Recall Recall Precision F-score Outliers%

Input (inliers) (outliers) (outliers) (outliers) Predicted ↓ Robust BA ↓ (inliers) (outliers) (outliers) (outliers) Predicted ↓
Alamo 573 32.6 65.8 74.3 51.5 60.8 16.0 10.8 36.4 74.3 36.3 48.8 25.7
Ellis Island 227 25.1 61.9 70.4 38.4 49.7 13.9 5.7 31.1 70.8 25.8 37.8 24.0
Madrid Metropolis 333 39.4 62.6 62.3 51.7 56.5 27.9 30.0 36.2 71.6 41.9 52.9 33.6
Montreal Notre Dame 448 31.7 61.5 70.4 46.4 56.0 18.6 10.8 33.8 71.6 33.9 46.0 28.5
Notre Dame 549 35.6 62.8 61.4 48.5 54.2 26.0 17.7 33.8 71.0 35.7 47.5 30.8
NYC Library 330 33.6 51.7 81.1 46.5 59.1 15.9 9.2 33.7 68.0 37.0 47.9 35.2
Piazza del Popolo 336 33.1 56.7 78.1 47.5 59.0 16.3 7.5 26.1 81.1 35.5 49.4 26.6
Tower of London 467 27.0 28.3 85.4 30.3 44.8 15.9 2.9 42.5 59.0 27.3 37.3 26.1
Vienna Cathedral 824 31.4 58.5 65.8 42.2 51.5 21.2 13.6 38.3 64.9 32.6 43.4 29.7
Yorkminster 432 29.0 50.6 71.8 37.5 49.3 18.7 10.2 48.7 53 29.9 38.2 28.5
Mean 451.9 31.9 56.0 72.1 44.1 54.1 19.0 11.8 36.1 68.5 33.6 44.9 28.9

Table 8: Encoder ablation. For each scene, we show the number of input images (denoted Nc) and the fraction
of outliers. For each model, we show the number of images used for reconstruction (denoted Nr) and the mean
values of the rotation (in degrees) and translation errors.

Scene Nc Outliers%
Ours Frozen Encoder No Encoder (ESFM)

Nr Rot Trans Nr Rot Trans Nr Rot Trans
Alamo 573 32.6 484 3.66 0.515 511 3.79 0.394 457 4.53 0.338

Ellis Island 227 25.1 214 0.82 0.122 198 20.60 2.094 196 21.13 2.091
Madrid Metropolis 333 39.4 244 8.42 0.827 231 9.09 0.794 151 19.56 1.932
Montreal Notre Dame 448 31.7 346 2.82 0.352 335 1.17 0.244 309 10.13 1.778
Notre Dame 549 35.6 517 1.2 0.231 518 0.69 0.168 487 1.95 0.233
NYC Library 330 33.6 224 3.96 0.429 232 4.07 0.542 177 4.42 0.546
Piazza del Popolo 336 33.1 249 2.20 0.186 254 5.59 0.739 204 10.77 1.006
Tower of London 467 27.0 94 0.67 0.026 141 25.93 1.601 196 22.02 2.226
Vienna Cathedral 824 31.4 479 1.52 0.112 523 2.94 0.222 551 6.52 0.553
Yorkminster 432 29.0 331 14.54 1.468 354 13.24 1.183 215 10.63 0.636

5 CONCLUSION

We present a permutation equivariant architecture for robust multiview structure from motion. By
integrating a sets-of-sets equivariant inlier/outlier classification module, our proposed method copes
well with point-track tensors contaminated with many outliers originating from scenes that include
hundreds of images. In addition, we modified the bundle adjustment module to make it robust enough
to handle classification errors. Our method successfully handles challenging datasets that include
hundreds of uncontrolled internet images, achieving highly accurate recovery, superior to existing
deep methods and on par with state-of-the-art classical methods. However, we observed cases in
which our method uses only a subset of the input cameras. This occurs due to an excess removal
of predicted outliers, which might yield an unconnected viewing graph. We plan to address this
limitation in our future work.
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APPENDIX

A QUALITATIVE RESULTS

Figures 3 and 4 show reconstruction examples with our method, compared to other deep-based
methods.

(a) Our recovery (b) ESFM recovery (c) GASFM recovery

Figure 3: Reconstruction results on scenes from the 1DSFM dataset. The figure shows 3D reconstructions
and camera pose estimation. The triplet in each row shows reconstruction with our method (left), ESFM (Moran
et al., 2021) (middle), and GASFM (Brynte et al., 2023) (right). The scenes are Piazza del Popolo (top row,
33.1% outliers), Montreal Notre Dame (middle row, 33% outliers), and Madrid Metropolis (bottom row, 39.4%
outliers).
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(a) Our recovery (b) ESFM recovery (c) GASFM recovery

Figure 4: Reconstruction results on scenes from MegaDepth dataset. The figure shows 3D reconstructions
and camera pose estimation. The triplet in each row shows reconstruction with our method (left), ESFM (Moran
et al., 2021) (middle), and GASFM (Brynte et al., 2023) (right). The scenes are 0012 (top row, 16.3% outliers),
0015 (middle row, 20.6% outliers), and 0060 (bottom row, 41.6% outliers).
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B IMPLEMENTATION DETAILS

Our code and preprocessed point tracks data will be made publicly available.

Framework. Our method was trained and evaluated on NVIDIA A40 GPUs (48GB of
GPU Memory). We used PyTorch (Paszke et al., 2019) as the deep learning framework and the
ADAM optimizer (Kingma & Ba, 2014) with normalized gradients.

Training. During training, for each epoch, we processed all training scenes sequentially. For each
scene, we randomly selected a subset of 10%-20% of the images in the scene. We used a validation
set for early stopping. The validation and test sets were evaluated by using the complete point tracks
matrix. The training time of our model on the Megadepth dataset took roughly 16 hours on a single
NVIDIA A40 GPU. We fix the seed to 20.

Architecture details. We use normalized point tracks xij , as inputs to our method which are
normalized using the known intrinsic parameters. The shared features encoder E has 3 layers, each
with 256 feature channels and ReLU activation. The camera head Hcams, 3D point head Hpts, and
the outliers classification head Houtlier, each have 3 layers with 256 channels. After each layer in E
we normalize its features by subtracting their mean.

Hyper-parameter search. We tried different implementation hyper-parameters including (1) learning
rates ∈ {1e − 2, 1e − 3, 1e − 4}, (2) network width ∈ {128, 256, 512} for the encoder E and the
heads, (3) number of layers ∈ {2, 3, 4, 5} in these networks, and (4) threshold for outlier removal
∈ {0.4, 0.5, 0.6, 0.7, 0.8}. For the Strecha and BlendedMVS datasets, we chose a threshold of 0.8, as
these datasets are captured with a single camera and therefore contain fewer outliers.

Bundle adjustment For the bundle adjustment, we employed the Ceres Solver’s implementation of
bundle adjustment Agarwal et al. with the Huber loss to enhance robustness (with parameter 0.1).
In each bundle adjustment round, we limited the number of iterations to 300 or until convergence,
whichever occurred first.

C CONSTRUCTING POINT TRACKS

Our preprocessing step for constructing the point tracks is as follows:

1. Extracting SIFT (Lowe, 2004) features for all the images.
2. Applying exhaustive pair-wise RANSAC (Fischler & Bolles, 1981) matching for all image

pairs.
3. Chaining each sequence of two-view matches for creating a point track.

We discard a 3D point and its track if it is viewed in less than 3 cameras or if it includes an inconsistent
cycle, i.e., we detect two key points in the same image for the same point track.

The above preprocess defines a valid point track structure for our architecture. We next define the
inliers/outliers labeling process, which assumes that every training scene has an associated COLMAP
(Schönberger & Frahm, 2016) reconstruction:

1. For each track within our point track set:
(a) Identify the corresponding track in COLMAP’s reconstruction output
(b) For every keypoint in the track:

• Label the keypoint as an outlier if it does not appear in the corresponding COLMAP
track; otherwise, label it as an inlier.

2. Remove keypoints labeled as outliers from the point tracks.
3. Triangulate the 3D points from the cleaned point tracks using the ground truth camera poses

obtained from COLMAP.
4. Calculate the reprojection error for the triangulated 3D points across the entire point tracks,

including the ones labeled initially as outliers.
5. Assign an inlier label to each keypoint whose reprojection error is below 4 pixels; keypoints

exceeding this threshold are classified as outliers.
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D ADDITIONAL RESULTS

Here we show median results for the MegaDepth and 1DSFM experiments (Tables 9 and 10). We
further validate the importance of our Robust BA compared to a standard BA (Table 11).

Table 9: MegaDepth experiment. The table shows the median values of the rotation (in degrees) and
translation errors. (Above the middle rule are Group 1 scenes with <1000 images; below are Group 2
scenes with >1000 images, subsampled to 300 for testing.) Winning results are marked in bold and
underlined. Yellow represents the best result among the deep-based algorithms, and green among the
classical algorithms.

Scene Nc Outliers%
Ours ESFM GASFM Theia GLOMAP ESFM*

Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans
0238 522 44.6 283 0.72 0.043 76 1.75 0.100 76 5.15 0.323 506 0.54 0.109 499 0.22 0.043 512 0.64 0.038
0060 528 41.6 503 0.14 0.011 303 8.54 1.268 258 13.81 2.744 525 0.26 0.039 522 0.04 0.012 524 0.02 0.003
0197 870 40.7 667 2.06 0.133 281 4.14 0.183 454 6.65 0.688 855 0.77 0.118 814 0.13 0.016 825 0.11 0.008
0094 763 40.1 537 0.38 0.015 93 17.62 2.048 359 0.88 0.028 742 0.21 0.033 717 0.20 1.957 643 0.18 0.014
0265 571 38.8 346 0.74 0.209 270 14.64 1.666 274 18.91 1.716 554 4.11 1.651 558 6.66 1.889 559 0.06 0.022
0083 635 31.3 596 0.15 0.009 568 0.90 0.027 574 2.48 0.099 632 0.15 0.013 614 0.04 0.007 556 16.03 0.973
0076 558 30.5 524 0.11 0.010 454 1.60 0.091 431 0.05 0.006 549 0.44 0.058 541 0.08 0.017 547 0.03 0.004
0185 368 30.0 350 0.04 0.006 261 0.53 0.037 254 0.46 0.048 365 0.31 0.037 365 0.11 0.012 130 29.39 2.160
0048 512 24.2 474 2.16 0.098 469 1.57 0.080 481 0.60 0.028 507 0.21 0.020 506 0.06 0.007 508 0.05 0.002
0024 356 23.0 309 0.58 0.046 271 4.64 0.187 300 0.48 0.104 355 0.24 0.091 339 0.07 0.045 343 1.41 0.078
0223 214 17.0 204 1.56 0.078 191 1.81 0.180 194 1.53 1.106 212 0.89 0.152 214 0.41 0.046 211 0.06 0.010
5016 28 0.2 28 0.10 0.005 28 0.07 0.004 28 0.06 0.003 28 0.07 0.019 28 0.04 0.016 28 0.02 0.003
0046 440 14.6 399 0.78 0.028 97 0.58 0.017 426 0.35 0.011 434 0.16 0.016 440 0.02 0.002 33 29.18 1.331

0099 299 47.4 190 3.18 0.697 104 2.21 0.402 128 3.95 0.409 297 1.79 0.394 255 0.06 0.026 243 2.97 0.618
1001 285 43.9 251 1.41 0.276 241 2.44 0.860 261 2.26 0.386 276 4.85 2.893 281 3.29 2.645 280 0.08 0.053
0231 296 42.2 246 0.38 0.014 214 0.28 0.011 209 0.19 0.009 286 0.58 0.072 279 0.20 0.021 284 0.26 0.011
0411 299 29.9 273 0.07 0.009 188 6.21 0.338 232 1.28 0.051 293 0.19 0.079 269 0.09 0.036 288 0.05 0.007
0377 295 27.5 210 0.28 0.014 162 0.25 0.010 167 0.09 0.008 269 0.29 0.075 268 0.23 0.021 279 0.52 0.022
0102 299 25.8 284 0.07 0.007 255 0.50 0.032 278 0.37 0.023 294 1.03 0.114 293 0.04 0.013 155 13.56 2.859
0147 298 24.6 207 2.07 0.088 197 2.05 0.097 225 5.26 0.296 284 1.10 0.064 290 1.78 2.056 251 1.14 0.041
0148 287 24.6 197 0.54 0.024 206 0.59 0.028 209 0.59 0.028 275 3.01 0.301 283 3.09 1.301 249 0.46 0.023
0446 298 22.1 288 0.41 0.013 283 0.70 0.021 291 0.20 0.008 289 0.61 0.073 296 0.14 0.020 294 0.22 0.006
0022 297 21.2 274 0.13 0.011 241 0.51 0.025 263 0.16 0.013 296 0.28 0.065 281 0.08 0.023 289 0.08 0.008
0327 298 21.0 271 0.11 0.006 281 0.75 0.022 284 0.10 0.007 288 0.73 0.087 290 7.14 0.333 294 0.03 0.003
0015 284 20.6 215 0.27 0.021 142 1.30 0.105 149 6.35 0.556 244 0.42 0.084 274 0.11 0.014 185 0.43 0.053
0455 298 19.8 293 0.18 0.010 293 0.23 0.014 294 0.29 0.016 294 0.36 0.047 298 0.14 0.017 298 0.26 0.012
0496 297 19.2 281 0.13 0.006 281 2.81 0.197 277 0.44 0.027 285 0.61 0.080 291 0.16 0.028 293 0.23 0.009
1589 299 17.4 290 0.08 0.003 284 0.40 0.008 283 1.00 0.016 288 0.32 0.057 299 0.03 0.007 296 0.20 0.004
0012 299 16.3 287 0.39 0.023 291 2.04 0.131 294 0.21 0.018 129 0.56 0.092 295 0.20 0.017 294 0.22 0.013
0104 284 16.2 193 0.16 0.009 220 11.31 0.568 228 1.32 0.051 265 9.24 0.658 280 9.86 0.550 200 0.49 0.019
0019 299 15.4 250 0.04 0.004 267 2.46 0.128 293 0.58 0.023 271 0.31 0.030 296 0.04 0.004 296 2.23 0.097
0063 293 14.5 262 0.26 0.013 262 1.18 0.057 257 0.40 0.020 268 0.45 0.063 288 0.17 0.017 275 0.15 0.009
0130 285 14.4 192 0.10 0.005 192 0.94 0.030 194 1.00 0.033 187 0.63 0.072 281 0.94 0.535 282 0.82 0.041
0080 284 12.9 139 0.27 0.010 137 0.32 0.012 139 1.36 0.054 278 1.84 0.335 283 1.71 0.169 163 0.32 0.011
0240 298 11.9 275 1.56 0.090 274 1.14 0.064 272 2.00 0.113 278 0.47 0.057 294 0.17 0.041 296 0.09 0.006
0007 290 11.7 172 0.23 0.010 260 25.50 1.432 280 0.18 0.010 277 0.69 0.071 290 0.06 0.006 286 0.96 0.053
Mean 379 25.6 298 0.61 0.057 239 3.46 0.291 267 2.25 0.252 346 1.08 0.228 353 1.05 0.332 319 2.86 0.240

Table 10: 1DSFM experiment. The table shows the median values of the rotation (in degrees), and
translation errors. Winning results are marked in bold and underlined. Yellow represents the best
result among the deep-based algorithms and green among the classical algorithms.

Scene Nc Outliers%
Ours ESFM GASFM Theia GLOMAP ESFM*

Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans Nr Rot Trans
Alamo 573 32.6 484 0.97 0.037 457 1.00 0.047 448 2.64 0.115 553 2.29 0.539 557 0.61 0.144 526 0.35 0.016

Ellis Island 227 25.1 214 0.32 0.036 196 18.88 1.554 198 19.24 1.548 213 3.85 0.712 219 0.46 0.087 220 0.19 0.026
Madrid Metropolis 333 39.4 244 4.42 0.193 151 19.85 1.641 159 21.76 1.560 - - - 320 0.53 0.096 290 23.71 2.154

Montreal Notre Dame 448 31.7 346 1.00 0.056 309 4.42 0.790 311 4.83 0.945 422 2.63 0.808 444 0.40 0.158 414 0.07 0.009
Notre Dame 549 35.6 517 0.55 0.025 487 0.43 0.025 499 0.51 0.025 314 1.54 0.133 543 1.15 0.130 528 0.30 0.012
NYC Library 330 33.6 224 1.48 0.074 177 1.93 0.102 218 3.74 0.264 534 1.65 0.360 323 0.46 0.075 301 1.16 0.087

Piazza del Popolo 336 33.1 249 0.80 0.034 204 3.20 0.353 198 3.79 0.583 325 1.15 0.342 331 0.28 0.084 303 0.88 0.052
Tower of London 467 27.0 94 0.48 0.012 196 13.59 0.564 152 33.19 2.339 448 3.23 0.527 466 0.42 0.071 213 4.53 0.163
Vienna Cathedral 824 31.4 479 0.48 0.016 551 1.40 0.046 558 1.67 0.044 772 9.32 0.838 822 0.61 0.206 536 0.44 0.013

Yorkminster 432 29.0 331 4.67 0.299 215 6.15 0.302 251 7.80 0.378 390 4.26 0.948 418 0.60 0.069 389 6.48 0.265
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Table 11: Bundle-Adjustment (BA) ablation. We compare the effect of post-processing with a
robust vs. standard BA. For each scene, we show the number of input images (denoted Nc) and the
fraction of outliers. For each model, we show the number of images used for reconstruction (denoted
Nr) and the mean values of the rotation (in degrees) and translation errors.

Scene Nc Outliers% Robust BA (Ours) Standard BA)
Nr Rot Trans Nr Rot Trans

Alamo 573 32.6 484 3.66 0.515 568 10.18 1.970
Ellis Island 227 25.1 214 0.82 0.122 227 4.05 1.045
Madrid Metropolis 333 39.4 244 8.42 0.827 333 20.07 2.352
Montreal Notre Dame 448 31.7 346 2.82 0.352 447 4.52 0.563
Notre Dame 549 35.6 517 1.20 0.231 548 3.45 0.378
NYC Library 330 33.6 224 3.96 0.429 329 24.94 3.571
Piazza del Popolo 336 33.1 249 2.20 0.186 335 21.68 2.001
Tower of London 467 27.0 94 0.67 0.026 465 57.41 3.347
Vienna Cathedral 824 31.4 479 1.52 0.112 819 43.38 2.784
Yorkminster 432 29.0 331 14.54 1.468 431 21.17 3.660
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