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ABSTRACT

This paper presents miCSE, a mutual information-based Contrastive learning frame-
work that significantly advances the state-of-the-art in few-shot sentence embedding.
The proposed approach imposes alignment between the attention pattern of differ-
ent views during contrastive learning. Learning sentence embeddings with miCSE
entails enforcing the syntactic consistency across augmented views for every single
sentence, making contrastive self-supervised learning more sample efficient. As a
result, the proposed approach shows strong performance in the few-shot learning
domain. While it achieves superior results compared to state-of-the-art methods on
multiple benchmarks in few-shot learning, it is comparable in the full-shot scenario.
The proposed approach is conceptually simple, easy to implement and optimize,
yet empirically powerful. This study opens up avenues for efficient self-supervised
learning methods that are more robust than current contrastive methods for sentence
embedding.

1 INTRODUCTION

Measuring sentence similarity has been a challenging endeavor due to the ambiguity and variability
of linguistic expressions. The community’s strong interest in the topic can be attributed to its
applicability in numerous language processing applications, such as sentiment analysis, information
retrieval, and semantic search |Pilehvar & Navigli| (2015); Iyyer et al.| (2015). It has been recently
shown that the Transformer-based language models already perform surprisingly well Reimers &
Gurevych| (2019). Simultaneously, to unfold their full potential, language models pre-trained on
large generic corpora require fine-tuning on the downstream task and corpora Devlin et al|(2018));
Pfeiffer et al.| (2020); Mosbach et al.|(2021)). In terms of sentence embeddings, contrastive learning
schemes have already been adopted successfully |van den Oord et al.[(2018); Liu et al.| (2021); |Gao
et al.| (2021); |Carlsson et al.|(2021)). The idea of contrastive learning is that positive and negative pairs
are generated given a batch of samples. Whereas the positive pairs are obtained via augmentation,
negative pairs are often created by random collation of sentences. Following the construction of pairs,
contrastive learning forces the network to learn feature representations by pushing apart different
samples (negative pairs) or pulling together similar ones (positive pairs). While some methods seek
to optimize for selecting “hard” negative for negative pair generation Zhou et al.| (2022), others
investigated better augmentation techniques for positive pair creation. In this regard, many methods
have been proposed to create augmentations to boost representation learning. A standard approach for
the augmentation aim at input data level (a.k.a discrete augmentation), which comprises word level
operations such as swapping, insertion, deletion and substitution |Xie et al.|(2017)); Coulombe]| (2018);
Wei & Zou|(2019)). In contrast to that, continuous augmentation operate at the representation level,
comprising approaches like interpolation or “mixup” on the embedding space |Chen et al.| (2020);
Cheng et al.|(2020); |Guo et al.|(2019). Most recently, augmentation was also proposed in a more
continuous fashion operating in a parameter level via simple techniques such as drop-out|Gao et al.
(2021);|Liu et al.[(2021); Klein & Nabi|(2022) or random span masking|Liu et al.|(2021). The intuition
is that “drop-out” acts as minimal data augmentation, providing an expressive semantic variation.
However, it will likely affect syntactic alignment across views. Since positive pairs are constructed
from identical sentences, utilizing drop-out noise, we hypothesize that the syntactic dependency
over the views should be preserved. Building on this idea, we maximize the syntactic dependence
by enforcing distributional similarity over the attention values across the augmentation views. To
this end, we employ maximization of the mutual information (MI) on the attention tensors of the
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positive pairs. However, since attention tensors can be very high-dimensional, computing mutual
information (MI) can quickly become a significant burden if not intractable. Common approaches for
MI estimation are non-parametric, e.g., relying on binning, non-parametric kernel density estimators -
see |Suzuki et al.| (2008); Kwak & Choi| (2002)); [Kraskov et al.| (2004). These estimators often do not
scale well and cannot be computed efficiently on GPUs |Gao et al.|(2014)). In contrast, the parametric
modeling of attention seems to be a more reasonable choice for statistical modeling of Transformer
attention distribution (e.g., Gaussian distribution Bahuleyan et al.| (2018)), Dirichlet distribution Deng
et al.|(2018)), Weibull and Log-Normal distribution [Fan et al.|(2020)). This paper proposes a simple
parametric solution to alleviate the computational burden of MI computation, which can be deployed
efficiently. Specifically, we adopt the Log-Normal distribution for modeling the attention pattern.
On the one hand, empirical evidence confirms this model to be a good fit. On the other hand, it
facilitates the optimization objective to be defined in closed form. In this case, mutual information
can be provably reformulated as a function of correlation, allowing native GPU implementation.

As discussed above, the proposed approach builds upon the contrastive learning paradigm known to
suffer from model collapse. This issue becomes even more problematic when enforcing MI on the
attention level, as it tightens the positive pairs via regularizing the attention. Therefore the selection
of negative pairs becomes more critical in our setup. To this end, we utilize momentum contrastive
learning to generate harder negatives |He et al.|(2020). A “tighter” binding on positive pairs and
repulsion on “harder” negative pairs empowers the proposed contrastive objective, yielding more
powerful representations.

Combining ideas from momentum contrastive learning and attention regularization, we propose
miCSE, a conceptually simple yet empirically powerful method for sentence embedding, with the
goal of integrating semantic and syntactic information of a sentence in an information-theoretic
and Transformer-specific manner. We conjecture the relation between attention maps and a form of
syntax to be the main driver behind the success of our approach. To validate that, we performed a
controlled empirical observation on this matter which suggests the lack of syntax-related properties
of the sentences in a previous work (i.e., SImCSE|Gao et al.|(2021)) compared to miCSE (see Fig. E])
We speculate that our proposed method injects syntactic information into the model as an inductive
bias, facilitating representation learning with fewer samples. The adopted syntactic information
inductive biases provide a structural prior as an implicit form of supervision during training |Wilcox
et al.|(2020), which promotes few-shot learning capabilities in neural language models. To validate
this, we introduced a low-shot setup for training sentence embeddings. In this benchmark, we finetune
the language model only with a small number of training samples. Note that this is a very challenging
setup. The inherent difficulty can be attributed to the need to mitigate the domain shift in the low-shot
self-supervised learning scheme. We emphasize the importance of this task, as in many real-world
applications, only small datasets are often available. Examples of such cases are NLP for low-resource
languages or expert-produced texts (e.g., medical records by doctors), personalized LM for social
media analysis (e.g., personalized hate speed recognition on Twitter), etc. In the low-shot sentence
embedding benchmark, our proposed method significantly improves over the state-of-the-art. We
believe this is the first work that explores how to combine semantic and syntactic information through
attention regularization, and empirically demonstrates this benefit for low-shot sentence embeddings.
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FIGURE 1. Sentence embeddings of positive and negative contrastive pairs in terms of semantic and
syntax, comparing SIimCSE and miCSE. Semantic similarity is measured in terms of cosine similarity,
syntactic similarity measured with mutual information on attention-level. (®) and (®) denote centroids
of positive and negative centroids, («) their distance.
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Related works: Recently, VaSCL [Zhang et al.|(2022)), ConSERT |Yan et al.| (2021) and PCL [Wu
et al.| (2022) proposed contrastive representation learning with diverse augmentation strategies on
positive pair. However, we proposed a principled approach for enforcing alignment in positive pairs
at contrastive learning. Similar to us, ESimCSE |Wu et al.| (2021)) and MoCoSE |Cao et al.| (2022
proposed to exploit a momentum contrastive learning model with negative sample queue for sentence
embedding to boost uniformity of the representations. However, unlike us, they do not enforce
any further tightening objective on the positive pairs nor consider few-shot learning. Very recently,
authors in InforMin-CL |Chen et al.[(2022) proposed information minimization-based contrastive
learning. Specifically, the authors propose to minimize the information entropy between positive
embeddings generated by drop-out augmentation. Our model differs from this paper and the method
in Bachman et al.| (2019); |Yang et al.| (2021)); [Zhang et al.[(2020); Sordoni et al. (2021); [Wu et al.
(2020), which focuses on using mutual information for self-supervised learning. A key difference
compared to these methods is that they estimate MI directly on the representation space. In contrast,
our method computes the MI on attention. Other related works include |(Chuang et al.[(2022); |[Liu
et al.[(2022).

The contributions of the proposed work are threefold: First, we propose to inject syntactic information
into language models by adding an attention-level objective. Second, we introduce Attention Mutual
Information (AMI), a simple and efficient objective for sample efficient self-supervised contrastive
learning. Third, we introduce low-shot learning for sentence embedding. We show that our method
performs comparably to the state-of-the-art in the full-shot scenario and significantly better in few-shot
learning.

2 METHOD

The proposed approach aims to exploit the syntactic structure of the sentences in a contrastive learning
scheme. Compared to conventional contrastive learning that solely operates at the level of semantic
similarity in the embedding space, the proposed approach injects syntactic information into the model.
This is achieved by regularizing the attention space of the model during training. We let D denote a
dataset consisting of string sequences (sentences) from corpus X with D = {z1, 22, ..., T\ x| }, where
we assume x; to be a tokenized sequence of length n with x; € N™. For mapping the input data to
the embedding space, we use a bi-encoder fy parametrized by 6. Bi-encoders entail the computation
of embeddings for similarity comparison, whereby each sentence in a pair is encoded separately.
Hence, the instantiation of a bi-encoder on augmented input data induces multiple views. For the
following, we let v € {1, 2} denote the index of the view, where each view corresponds to a different
augmentation. Consequently, encoding a data batch Dj, yields embedding matrices E,, € R!Pv/xU,
where U denotes the dimensionality of the embeddings. Employing a Transformer, encoding the
input data yields the embedding matrices and the associated attention tensors W,. Then learning
representation of the proposed approach entails the optimization of a joint loss:

meinﬁc(EhEz) + Lp(Wh, Wa) (1

with (E1, W1), (Ea, Wa) = fo(Dy). Here, L¢ is responsible for the semantic alignment, correspond-
ing to the standard InfoNCE |van den Oord et al.| (2018)) loss that seeks to pull positive pairs close
together while pushing away negative pairs in the embedding space. In contrast, £ p is responsible for
the syntactic alignment, operating on the attention space. However, in comparison to £ is employed
only on the attention tensors of the positive pairs.

2.1 EMBEDDING-LEVEL MOMENTUM-CONTRASTIVE LEARNING (INFONCE)

The InfoNCE-loss seeks to pull positive pairs together in the embedding space while pushing negative
pairs apart. Specifically, InfoNCE on embeddings pushes for the similarity of each sample and
its corresponding augmented embedding. Negatives pairs are constructed in two ways, reflected
by the two terms in the denominator of Eq. 2] First, in-batch negative pairs are constructed by
pairing each sentence with another random sentence (sharing no semantic similarity), pushing for
dissimilarity. Second, using embeddings obtained from a momentum encoder known as MoCo He
et al.| (2020); [Cao et al.|(2022). The momentum encoder is a replication of the encoder fy, whose
parameters are updated more slowly. Specifically, while the parameters of fy encoder are updated
via back-propagation, the parameters of the momentum encoder are updated using an exponential
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Algorithm 1 Mutual Information estimation

Input: Batch Dy, encoder fy, multinomial sampler ;¢
Output: Average mutual information m Zf:’R MIT

(E1, Wh), (B2, W2) < fo(Ds) > Transformer encoding creating views
fori < 1...|D;| do
w;, T w; < EXTRACT(W1, Wa, 1) > Extract attention tensor for each sample
{®wl, .., Pl 7(Fw;) > Slicing the attention tensors

s < number of text tokens in z;
for r < 1...|R| do

Jr = pmuit(1/8%,...1/5%,0) > Sampling indices of valid attentions
MI7 + AMI(U; ¢, wili],Ujes, Tl [5])
end for
end for
procedure AMI(w, ws)
z1, 22 < log(wy), log(ws) > Log-Normal to Normal transform
p < cos(z1 — 21,22 — Z2) > Compute correlation coefficient on centered attentions
Return — 3 (1 — p?) > Mutual information for tensor slice

end procedure

moving average from the former. The negative embeddings are produced from samples from previous
batches, which are stored in queue Q and are forward-passed through the momentum encoder.

Then the InfoNCE |van den Oord et al.| (2018)) loss is defined as:
| Dy | . T
exp(sim(e;, Te;)/T
Lo==) log = : oot \Q)\/ ) : : 2)
T Xz exp(sim(e;, e;)/T) + 30 exp(sim(e;, q;)/7)
where e; € F1 and Te; € E, denote the embeddings of different augmentations of x;, sim/(.) is the

cosine similarity metric, ¢; denote representations obtained from momentum encoder, and 7 € R is
temperature scalar.

2.2 ATTENTION-LEVEL MUTUAL INFORMATION (AMI)

Preliminaries and notations: We first briefly review the attention mechanism and explain the
notation used in the rest of this section. A Transformer stack consists of a stack of L layers, with input
data cascading up the layer stack. Each layer comprises a self-attention module and a feed-forward
network in its simplest form. Passing sentences through the encoder stack entails simultaneous
computation of attention weights. These attention weights indicate the relative importance of every
token. To this end, key-value pairs are computed for each token of the input sequence Within each
self-attention module. This entails the computation of three different matrices: key matrix K, value
matrix V, and query matrix (). The values of the attention weights W are obtained according
to W = softmax(f(Q, K)) € R ", where f(.) is a scaled dot-product. Output features are
then generated as obtained according to WV. In order to attend to different sub-spaces |Vaswani
et al. (2017) simultaneously, the attention mechanism is replicated H times, which is referred to as
multi-head attention. During training the encoder, the self-attention tensors W values are subject
to a random deterministic process, with randomness arising due to drop-out. Hence, the proposed
approach seeks to optimize syntactic alignment by maximizing mutual information between the
attention tensors W, of the augmentation views. To regularize the joint attention space, we propose a
pipeline consisting of four steps:

1) Attention Tensor Slicing: Given that augmentation has different effects on the attention distri-
bution depending on the depth (layer) and the position (head) in the Transformer stack, we propose
to slice the attention tensor. Chunking the attention has multiple advantages. On the one hand, this
allows for preserving the locality of distribution change. This is important as it can be empirically
observed that distribution divergence between views decreases with increasing depth in the encoding
stack. On the other hand, restricting the space permits the use of a simple distributional model such
as bivariate distribution. For the sake of economy in notation, we will restrict the attention tensor of a
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FIGURE 2. Few-shot performance of different algorithms. miCSE (—), SimCSE |Gao et al.[ (2021}
(—), SCD [Klein & Nabi|(2022) (—), CT|Carlsson et al.|(2021)) (—), VaSCL Zhang et al.|(2022)
(—). Performance is shown in Spearman’s correlation average of the STS benchmark. Training set
size: 0.1%, 1.0%, 10.0%, 100.0% of the data.

single encoded sample for the following. To this end, a slicing function 7 : REXHxnxn _, Ritxnxn
cuts the attention tensor for sample 4 into R (indexed) elements: 7(w;) = {w}, ..., wi}.

2) Attention Sampling: Different sentences in the batch are typically in token sequences of
different lengths. To accommodate the different lengths and facilitate efficient training, sequences
are typically padded with [PAD] -token for length equality. Although this allows for efficient batch
encoding on GPU, attentions arising from [PAD]-tokens have to be discarded when looking at
statistical relationships. In order to accommodate for the different lengths of tokenized sequences,
perform a sampling step for attention values within each grid cell w;. To this end, we leverage
multinomial distribution P,,,,,;¢(p1, .-, Pr2 ), where s correspond to the number of non-padding tokens
with 1 < s < n. Specifically, we sample from the pool of s? attention values, each with a probability
of S%, with the remaining elements associated with probability 0. As a result, we obtain a set J,.
consisting of m indices of the attention tensors for each slice r € R:

Jr =1, s dm} ~ Prae(1/5%,...,1/5%, 0,...,0 ) 3)
N————— N——
1,..,s2 (n —s)?,...,n?

It should be noted that for the same slice r across the views, the same index set is used for sampling:
~r rr. —+ ~T _ + Tr -

w; = Uje.]r w;[j] and Tw; = UjeJT w; [j].

3) Attention Mutual Information Estimation: We propose using mutual information to measure
the similarity of attention patterns for different views. Specifically, we follow [Fan et al.| (2020)
and adopt the Log-Normal distribution for modeling the attention distribution, which is prudent for
several reasons. First, Empirical observation confirms attention asymmetry. Second, leveraging a
non-symmetric distribution accommodates that the attention tensor W decomposes into K and @),
which enables attention to be non-symmetric. Third, adopting the log-normal models facilitates the
optimization objective to be defined in closed form and hence easy to optimize, particularly on GPUs.
Mutual information for two normally distributed tuple vectors (21, z2) can be written as a function
of correlation [.M. & A.M.|(1957) given by:

1
I(z1,22) = —glog(l - 102)7 “)

where p corresponds to the correlation coefficient computed from from 2z; and z5. Hence, we compute
the mutual information with for each slice r and sample x; as M1 = I(log(w?),log(*w.)).
Application of log(.) function is employed to accommodate for the Log-Normal to Normal random
variable transformation. For details on the implementation, see Alg.[T}

4) Mutual Information Aggregation: In order to compute the loss component for attention
regularization, we need to aggregate the distributional similarities for the entire tensor. Aggregation
is obtained by averaging the individual similarities obtained for each slice » € R and each sample x;
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Semantic Textual Similarity (STS) Benchmark

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R  Avg.
BERT 2154 3211 2128 3789 4424 2029 4242 3140
BERT(first-last avg) ~ 39.70 5938  49.67  66.03  66.19 5387 6206  56.70
GloVe*(avg.) 55.14 7066 5973 6825 63.66 5802 5376 6132
BERT-flow® 5840 6710  60.85 7516 7122 6866 6447 6655
BERT-whitening® 5783 6690 6090 7508 7131 6824 6373  66.28
1S9 5677 6924 6121 7523 70.16 6921 6425 6658
SG-OPT* 66.84  80.13 7123 8156 77.17 7723 6816 7462

“CT 67.43 ~ 79.18  69.05 7692 7462 7324 6838  T72.69
scof 6694 7803 69.89 7873 7623 7630  73.18  74.19
Mirror-BERT! 69.10 8110  73.00 8190 7570 7800  69.10  75.40
SimCSE 68.69 8205 7291  81.15 7939 7793 7093  76.15
ConSERT}, .. 7069 8296 7413 8278 7666 7753 7037 7645
VaSCL' 69.08 8195 7464 8264 80.57 8023 7123  77.19
MoCoSE! 7158 8140 7447 8345 7899 7868 7244 7727
InforMin-CL' 7022 8348 7551 8172 7988 7927 7103  77.30
PCL' 7274 8336 7605 8307 7926 7972 7275  78.14
miCSE 7171 8309 7546 8313 8022 7970  73.62  78.13

TABLE 1. Sentence embedding performance on STS tasks measured as Spearman’s correlation using
BERT}sc, except for VaSCL that uses ROBERTa. Unless states otherwise, [CLS]-embedding was
used. &: results from|Reimers & Gurevych| (2019); ©: results from Zhang et al.|(2020); & results
from Kim et al.|(2021)); ¢ results from|Gao et al.| (2021)); T by the respective authors; other results are
by ourselves. (®) denotes top-3 results, () denotes the proposed approach, bold denotes best result.

in the batch. With A € R some weighting scalar, the attention alignment loss term is:

N DR
Lp(Wi,Wa) = _WZZMH ®)

3 EXPERIMENTS

In this section, we describe the experimental setting used for the evaluation, present our main results,
and discuss different aspects of our method by providing several empirical analyses.

3.1 EXPERIMENTAL SETUP

Model and Hyperparameters: Training is started from a pre-trained transformer LM. Specifically,
we employ the Hugging Face |[Wolf et al.|(2020) implementation of BERT}, ... For each approach
evaluated, we follow the same hyperparameters proposed by the authors. In the InfoNCE loss we set
7 = 0.05. In order to determine the hyperparameter \ a coarse grid search {1.0,0.1, ..., 1.0e—5} was
conducted to assess the magnitude. Upon determination, a fine grid search was conducted once with
10 steps. We set A = 2.5¢ — 3 for training 100% of the data in a single episode with a batchsize of
50 at a learning rate of 3.0e—5 and 250 warm-up steps. The number of optimization steps is largely
kept constant for training the different dataset sizes. For the training set of size 105(= 100%) we
train for 1 epoch, for the size of 105(: 10%), we train for 10 epochs, etc. The momentum encoder is
associated with a sample queue of size |Q| = 384. The momentum encoder parameters are updated
with a factor of 0.995, except for the MLP pooling layer, which is kept identical to the online network.
Additionally, we increase the drop-out for the momentum encoder network from the default rate (0.1)
to 0.3.

Data and Evaluation: Following|Gao et al.|(2021)), we train the model in an unsupervised fashion
on sentences from Wikipedia. In order to train the model in a few-shot learning scenario, we create
random sample sets of different sizes {10, 10%,10%,5.0 - 103, 10%}. We repeated the training set
creation for each size for 5 times with different random seeds.
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Mutual Information Estimation: Following the observations in|Voita et al.| (2019), we restrict the
computation of the mutual information to the upper part of the layer stack. Specifically, we select the
layers between 8 and 12 (= last layer in BERT},,5.). To accommodate input sequences of varying
lengths and make computation more efficient, we pool together pairs of adjacent heads (without
overlap) while preserving the head separation. From each of the (4 x L) chunks of pooled attentions,

2
we random sample 150 joint-attention pairs for each embedding of the bi-encoder.

3.2 EXPERIMENTAL RESULTS

Unsupervised Sentence Embedding: We compare miCSE to previous state-of-the-art sentence
embedding methods on STS tasks. For comparisons, we favored comparable architectures (bi-
encoder) that facilitate seamless integration of the proposed approach and methods of comparable
backbone.

For semantic text similarity, we evaluated on 7 STS tasks: |Agirre et al.| (2012} 20132014} 2015}
2016), STS Benchmark |Cer et al.|(2017)) and SICK-Relatedness Marell1 et al.| (2014). These datasets
come in sentence pairs with correlation labels in the range of 0 and 5, indicating the semantic
relatedness of the pairs. Specifically, we employ the SentEval toolkit|Conneau & Kielal (2018]) for
evaluation. It should be noted that all our STS experiments are conducted in a fully unsupervised
setup, not involving any STS training data. The benchmark measures the relatedness of two sentences
based on the cosine similarity of their embeddings. The evaluation criterion is Spearman’s rank
correlation (p). For comparability, we follow the evaluation protocol of |Gao et al.|(2021), employing
Spearman’s rank correlation and aggregation on all the topic subsets. Results for the sentence
similarity experiment are presented in Tab.[I] As can be seen, the proposed approach is slightly lower
in terms of average performance than state-of-the-art algorithms such as PCL. However, our proposed
method has the most consistent performance across all benchmarks, with performance always in
the top-3. A more in-depth analysis shows the best performance on the SICK-R benchmark, where
it outperforms the second best approach SCD by (+0.44) and PCL by (+0.87). We highlight the
comparison to the closest method SimCSE, where the proposed approach has an average gain of
(43.94). This improvement is due to the two additional components (i.e., AMI and MoCo) we add to
this baseline method.

Low-shot Sentence Embedding: In this experiment, the performance of several SOTA sentence
embedding approaches is benchmarked elaboratively. Similar to Sec. we evaluate 7 STS tasks,
STS Benchmark, and SICK-Relatedness with Spearman’s p rank correlation as the evaluation metric.
However, in contrast to the previous section, models are trained on different subsets of the data,
namely {100%, 10%, 1%, 0.1%} of the Wikipedia dataset used in|Gao et al.|(2021). Results for the
low-shot sentence similarity experiment can be presented in Fig.[2] As can be seen, the proposed
approach gains by increasing the training set size and consistently outperforms all the baselines in all

Semantic Textual Similarity

Model 0.1% 1% 10% 100%
CT Carlsson et al.[(2021) 68.46 +£2.33  66.21 =4.06 72.06 £1.46  72.69
AMI+CT 71.12£1.11 72.20 £ 0.49 73.20+£0.78  73.55
Mirror-BERT [Liu et al.[(2021)  40.13 £5.08  42.17+£1.69  4247+3.66 43.32
AMI+Mirror-BERT 43.99+1.26 45.26 £2.60 44.72+1.36 47.48
Mirror (avg.)|Liu et al|(2021)  71.48 £1.19 71.80 £1.18 70.38 £1.18  69.81
AMI+Mirror-BERT (avg.) 71.49 +£0.95 72.54 £ 0.49 70.68+£1.19 71.34
SimCSE Gao et al.| (2021) 67.94 +1.16 74.96 = 0.65 75.76 £0.24  76.15
AMI+SimCSE 73.85+049 76.21 £ 0.28 76.31 £0.46  76.88
MoCo+SimCSE 69.54 £ 1.61 75.73+£091 76.73+0.29 76.81
miCSE 73.68 089 76.40+048 76.38+0.35 78.13

TABLE 2. Sentence embedding few-shot learning performance on STS tasks measured as Spear-
man’s correlation using BERT}, ... Unless states otherwise, [CLS]-embedding was used, number
corresponds to the average performance across all benchmarks, bold denotes best performance, ()
denotes integration of the proposed approach. Results computed by ourselves.
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training subsets. Interestingly, our proposed method reaches the performance of SimCSE trained on
the entire dataset with only 0.5% of the data. We believe it shows the impact of exploiting syntax
information for data augmentation during training. It should be noted that the performance gain is
most significant when conducted on a single token rather than token averaging. We attribute this
to token averaging to a certain degree equivalent to attention regularization. On the extremely low
data regime, the proposed approach shows very strong performance up (+11) compared to SimCSE -
see Fig.[3a] It suggests the potential resilience of our self-supervised fine-tuning to very small batch
training.

7 SimCSE
+AMI
6 +MoCo

lation

60

Spearman rank correlation (p)

—— miCSE ) I I I
SimCSE ! | I I

0.01% 0-1% L% 10.0% 100.0% 0.1% 0.5% 10% 100% 1000%
Trainingset Size Trainset Size

(A) Few-shot Performance (B) Component Analysis

FIGURE 3. Few-shot performance analaysis of models trained with different ratios of dataset size.
Performance is shown in Spearman’s correlation average of the STS benchmark . Left: Few-shot
performance of SimCSE |Gao et al.|(2021)) (—) and the proposed approach miCSE (—). Right:
Few-shot ablation study with y-axis showing change (A) in Spearman’s rank correlation p, showing
the effect of adding individual components w.r.t. the SimCSE baseline.

3.3 EXPERIMENTAL ANALYSIS OF COMPONENTS

Untitled document Saved 255 words Given that AMI acts as a regularizer on Transformer attention,
we evaluate the applicability in conjunction with other contrastive learning methods. We evaluate the
following approaches CT |Carlsson et al.[(2021)), Mirror-BERT [Liu et al.|(2021), and SimCSE |Gao
et al.[|(2021). Evaluation is conducted on 7 STS tasks, STS Benchmark, and SICK-Relatedness with
Spearman’s p rank correlation as the evaluation metric. Results for the low-shot sentence similarity
experiment are presented in Tab. |2} As can be seen, our proposed AMI can boost the performances of
all approaches in all data portions.

Additionally, it shows the most significant boost in performance in combination with SImCSE. In
addition, we observe that the impact of AMI grows with declining training set size. In combination
with SimCSE, AMI leads to a performance gain of up to (+5.91) at 0.1% of the data. We also
observe that adding AMI to all the approaches significantly reduces the variance for all methods. This
can probably be attributed to the regularization effect of the proposed AMI component. In addition,
we conducted an ablation study to assess the effect of AMI and MoCo w.r.t. the baseline SimCSE.
As can be seen in Fig. both AMI and MoCo improve the baseline at different data ratios. Again,
AMI provides a particularly strong performance boost in the low-data regime.

In contrast, the impact of MoCo diminishes with decreasing training set size. We emphasize that
our approach gets the best of both worlds by integrating these two components. In practice, this can
be directly exploited for different few-shot setups by adjusting the relative importance of AMI via
tuning hyper-parameter \.

3.4 EXPERIMENTAL ANALYSIS ON SYNTAX VS. SEMANTIC

In light of the lack of a rigorous benchmark for analyzing syntax in sentence embedding, we performed
two qualitative analyses visualized in Fig.[T]and Fig[d] Our empirical observations are:

Observation (i) There is higher semantic and syntactic similarity between positive pairs compared
to the negative pairs: Our contrastive learning approach assumes that positive pairs exhibit more
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syntactic similarity than negative pairs (i.e., syntactic inductive bias). To validate this hypothesis,
we plot the semantic similarity against syntactic similarity - for both positive and negative pairs.
Specifically, we analyzed the embeddings and attention values of the trained model with SImCSE
and the proposed approach. Input to the models was randomly sampled sentences from Wikipedia.
Interestingly enough, although training the proposed model involves maximization of MI over the
attention w.r.t. positive pairs, we also observe the reflection of syntactic information in the negative
pairs. As can be seen in Fig. [I] the negative pairs end up in the low left corner, whereas the positive
pairs are in the upper right corner.

Observation (ii): Negative pairs with similar syntax shows higher attention similarity, compared
to pairs with dissimilar syntax: For a more in-depth analysis of this, we further sub-divided the
negative pairs into two groups: a) negative pairs with similar dependency trees, b) negative pairs
with dissimilar dependency trees. For simplicity, we adopted a binary similarity scheme - “similar”
implies an identical dependency tree, whereas “dissimilar” corresponds to a non-identical dependency
tree. To highlight the inter-group syntax similarity, samples of each group were normalized w.r.t.
the centroid of the opposite group. As can be seen in Fig[] (by the increased distance between the
cluster centers), the proposed approach encodes a notion of syntactic similarity. Note that this margin
appeared solely due to enforcing the AMI on attention for the positive pairs, leading to the emergence
of a notion of “syntax” on negative pairs.
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FIGURE 4. Comparison of negative contrastive pairs sentence embeddings in terms of semantic and
syntax. Left: SimCSE Right: miCSE. Semantic similarity measured in terms of cosine similarity,
syntactic similary measured with mutual information on attentions. Negative pairs sub-divided into
pairs with similar/dissimilar dependency trees. (®) denote cluster centroids, (<) distance between
centroids. Ranges are aligned.

Discussion on the relation of Syntax and Attention: The proposed approach aligns the attention
patterns for drop-out augmented input pairs. We posit that conducting such a regularization enforces
constraints w.r.t. the syntax tree of the sentence embeddings. This is motivated by recent literature
findings, which suggest that the Transformers attention captures the syntactic grammatical relation-
ships of the sentences Ravishankar et al.|(2021));|Clark et al.|(2019); Raganato et al.|(2018)); |Voita et al.
(2019). Additionally, recent research explicitly targets the extraction of topologies from attention
maps for diverse tasks on syntactic and grammatical structure Kushnareva et al.|(2021); |Cherniavskii
et al| (2022); [Perez & Reinauer] (2022)). Although no “one-to-one” mapping connects syntactic
structures and attention patterns, the attention tensor, at the bare minimum, encodes a “holistic notion”
of the grammatical structure of sentences.

4 CONCLUSION

We proposed a method to inject structural similarity into language models for self-supervised
representation learning for sentence embeddings. The proposed approach integrates the inductive
bias at the level of Transformer attention by enforcing mutual information on positive pairs obtained
by drop-out augmentation. Leveraging attention regularization makes the proposed approach much
more sample efficient. Consequently, it outperforms methods with a significant margin in low-shot
learning scenarios while having state-of-the-art performance in full-shot to comparable approaches.
Future work will investigate the extension of the proposed approach to discrete augmentation.
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A APPENDIX

In the following sections, we add additional details omitted in the main paper due to space restrictions.
First, we illustrate the cosine similarity distribution according to human judgment (ground-truth) in
Sec. [B] Next, in Sec.|[C] we visualize the 2D histogram of joint distributions between views. In Sec.[D}
we present detailed results of the few-shot performance of miCSE in contrastive and non-contrastive
setup. Finally, the exact relation between mutual information and correlation is presented in Sec. [E]

B COSINE-SIMILARITY DISTRIBUTION

To directly show the strengths of our approaches on STS tasks, we illustrate the cosine similarity
on embeddings distributions of STS-B pairs in combination with human ratings in Fig. [5| The STS
dataset comes in sentence pairs together with correlation labels in the range of 0 and 5, indicating the
semantic relatedness of the pairs. Here, the x-axis is the sample similarity of sentences according
to human judgment (ground-truth), and the y-axis represents cosine similarity between pairs using
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embeddings. Color coding corresponds to ground-truth similarity. Compared to the baseline model
(SimCSE), miCSE better distinguishes sentence pairs with different levels of similarities, as can be
seen from the stronger correlation between embedding distance and human rating. This property
leads to better performance on STS tasks. In addition, we observe that miCSE generally shows a
more scattered distribution while preserving a lower variance on semantically similar sentence pairs.
This observation further validates that miCSE can potentially achieve a better alignment-uniformity
balance.

C VISUALIZATION OF JOINT DISTRIBUTION

To analyze the impact of the proposed approach compared to the baseline SimCSE at the attention
level, we visualized the joint distribution of the attention values created by the two views created by
the bi-encoder. The joint distribution and mutual information are closely related. More specifically,
given two random variables X and Y, the associated mutual information can be expressed in terms
of the joint distribution as:

p(x)p(y)’

where p(z, y) denotes the joint-distribution and p(z), p(y) the marginals. Assuming random variables
that are normally distributed, the joint distribution of random variables is distinctly shaped depending
on the correlation coefficient p. See Sec. [E] details on the relationship between entropy and the
correlation coefficient. In the extreme case of totally unrelated marginals p = 0, the joint distribution
assumes a circular shape having the lowest possible mutual information. On the other end of the
spectrum, in the case of perfect correlation, the joint distribution assumes collinearity (45° diagonal),
with mutual information assuming maximal value. In order to avoid visual clutter, we sliced the
attention tensor into 12 slices, pooling together every 3 adjacent heads and every 4 adjacent layers.
Slicing the tensor at a higher resolution leads to visually very similar results. The axes of the joint
distribution (2d histogram) correspond to the marginals’ distribution. As miCSE maximizes the
mutual information, one can observe a reduction in the scatter of the joint distribution compared to
SimCSE.

I(X,Y) =Y plx,y)log ]Z;x’y) 6)

D DETAILED COMPARISON WITH SIMCSE

Our proposed method is built on top of contrastive learning. Thus it intrinsically relies on the
existence of the negative pairs. To complement the performance comparison of contrastive learning
in Fig.[3a] we designed an experiment to analyze the extent to which attention regularization alone
(AMI) can compensate for the lack of negative pairs. To that end, we conducted training with positive
pairs only. See Tab. [3]and Fig.[7]for results. The integration of mutual attention information boosts
the performance by up to (+15) across all training set sizes. It suggests the potential application of
our proposed attention regularization for non-contrastive learning.
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FIGURE 5. Scatter plots of cosine similarities between sentence pairs in STS. Pairs are shown
based on ground-truth human scores (higher means more similar) along the x-axis, and the y-axis is
the cosine similarity. Color coding corresponds to ground-truth similarity. Left: SimCSE, Right:
miCSE (best viewed in color)
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FIGURE 6. Join distribution between two augmentation induced views. Images depict 12 attention
slices per methods, obtained by slicing the attention tensor for the input sentence “the best thing you
can do is to know your stuff.” Increasing depth in layer stack from left to right, top to bottom. (®)
SimCSE, (®): miCSE(best viewed in color)

Semantic Textual Similarity
Model 0.1% 1% 10% 100%

SimCSE (with negatives) 66.69 +1.03 74.08+£0.81 75.01+0.23 76.15
* miCSE(with negatives) 73.85+0.49 76.21+0.28 76.31+£0.46 78.13

"~ SimCSE (w/o negatives) ~ 43.02 £4.48 41.304+1.63 42.56 +6.87 40.18
* miCSE(w/o negatives)  57.00£1.32 56.41 +£3.38 53.38£4.70 54.34

TABLE 3. Sentence embedding few-shot learning performance on STS tasks measured as Spearman’s
correlation. Top: performance in contrastive setup with in-batch negatives. Bottom: performance with
positive samples only. The number corresponds to the average performance across all benchmarks.
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FIGURE 7. Few-shot performance of SimCSE Gao et al. (2021) (—) and the proposed approach
AMI in combination with SimCSE (—). Performance is shown in Spearman’s correlation average
of the STS benchmark at different ratios of dataset sizes used for training. Training in non-contrastive

setting with positive-only pairs.

Spearman rank correlation (p)
P
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E BIVARIATE NORMAL MUTUAL INFORMATION

General Log-Normal Properties: Similar to the normal distribution, the log-normal distribution
log N (w|ptw, o2) has two parameters i, and o, capturing mean and variance. It follows that
applying the log transformation on a random variable w, we yield random variable z = log(w),
which is normally distributed: z ~ N (p1,, 02).

Mutual Information: Given a vectors of tuples (X7, X7) containing i.i.d. points sampled the joint
bivariate normal distribution of p(A, B) = N'(u, %) with g € R% Y € R?*2, It can be shown that
there exists an exact relationship between mutual information and the correlation coefficient p|I.M. &
A.M.|(1957) derived from X; and X5. To that end, we expand the notation:

2
p=(m p2), Y= ( o1 p01202> (7

pPO102 g5

The marginal and the join entropy terms for Gaussian distributed variables can be written as:

H(X;) = %1og(27reai2) = % + %log(27r) +log(oy), i€{1,2} 8)
1 1
H(X;,X5) = 3 log [(2me)?|2|] = 1 + log(2) + log(o102) + 5(1 —p%). )

Given that Mutual Information can be written in terms of entropy as:

I1(X,,Xo)=H(Xy)+ H(X:) — H(X;, Xo) (10)
Then it follows by inserting Eq. [§[9]in Eq. [T}

1
I(X17X2)=—§(1—02) (1D
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