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Abstract
Federated graph learning (FGL) aims to collabora-
tively train a global graph neural network (GNN)
on multiple private graphs with preserving the
local data privacy. Besides the common cases
of data heterogeneity in conventional federated
learning, FGL faces the unique challenge of topol-
ogy heterogeneity. Most of existing FGL methods
alleviate the negative impact of heterogeneity by
introducing global signals. However, the man-
ners of creating increments might not be effec-
tive and significantly increase the computation
amount. In light of this, we propose the FedATH,
an FGL method with Alleviating Topology Het-
erogeneity from a causal perspective. Inspired
by the causal theory, we argue that not all edges
in a topology are necessary for the training ob-
jective, less topology information might make
more sense. With the aid of edge evaluator, the
local graphs are divided into causal and biased
subgraphs. A dual-GNN architecture is used to
encode the two subgraphs into corresponding rep-
resentations. Thus, the causal representations are
drawn closer to the training objective while the
biased representations are pulled away from it.
Further, the Hilbert-Schmidt Independence Cri-
terion is employed to strengthen the separability
of the two subgraphs. Extensive experiments on
six real-world graph datasets are conducted to
demonstrate the superiority of the proposed Fe-
dATH over the compared approaches.

1. Introduction
Federated learning (FL) (Yang et al., 2019; Ye et al., 2023;
Huang et al., 2024; Liao et al., 2024; Fu et al., 2025a; Hu
et al., 2024) is a distributed model training approach that
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(b) Wasserstein distance on WikiCS dataset   
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Figure 1. The illustration of topology heterogeneity in FGL. (a)
shows that the nodes of same classes in different local graphs may
be connected to these of diverse classes, resulting in the topology
heterogeneity (the bolded node as an example). (b) compares
the average wasserstein distance between the embedding from
different local graphs for the same classes. It can be seen that the
proposed FedATH effectively mitigates the embedding divergence
caused by topology heterogeneity for different local graphs, thus
alleviating the biased training of local GNNs.

has attracted wide attention for ensuring private data is not
compromised. In light of this, various FL algorithms have
flourished and been applied in many scenarios. Notably,
an important assumption behind them cannot be ignored,
that is, the samples on each client are independent and
not correlated with each other, such as images and text.
Meanwhile, graph data (Wu et al., 2020; Liu et al., 2022a;
Wang et al., 2025; Deng et al., 2025; Cai et al., 2024b) is
nowadays prevalent and may also present distributed storage
such as transaction networks of multiple banks. Specifically,
graph data has both feature attributes and topology structure,
each node in a graph is connected with other nodes via
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the edges. This complicated data format raises significant
challenges for FL, which gives birth to federated graph
learning (FGL) (Liu et al., 2024; Tan et al., 2023; Xie et al.,
2021; Meng et al., 2024; Cai et al., 2024a; Wan et al., 2024).

As an emerging technique for distributed graph analysis,
FGL aims to train a powerful global graph neural network
(GNN) via incorporating multiple private graphs. Driven by
practical requirements, many endeavors have been imple-
mented. For example, (Zhang et al., 2021; Chen et al., 2024;
Liu et al., 2022b; Tian et al., 2024) attempted to repair the
neighbor nodes or global graph information, then allowing
local GNNs to capture a wider scope of node information
for enhancing the model training. The above approaches
provide novel perspectives and achieve promising results.
Unfortunately, FGL like traditional FL also suffers from the
curse of data heterogeneity. The common manifestations of
data heterogeneity are label shift and feature shift, both of
which guide the local models to optimize in the direction of
the locally optimal solutions, thereby weakening the ability
of global model. In addition to the two kinds of data hetero-
geneity, a particular heterogeneity form in FGL needs to be
emphasized, i.e., topology heterogeneity.

As presented in Fig. 1(a), topology heterogeneity shows
that the nodes of the same classes may be connected to other
nodes of different classes on different clients. When local
GNNs encode the node information, the embedding com-
position of a node is not only determined by itself, but also
influenced by its neighbor nodes. Then the topology hetero-
geneity across clients directly induces the heterogeneity of
local embedding even for the same categories, resulting in
biased training of local GNNs. Therefore, how to alleviate
the impact of topology heterogeneity is a particular concern.
Some efforts have been made for addressing this issue. For
instance, Huang et al. (Huang et al., 2023a) used the global
model to calibrate local embedding and structures. Zhu et al.
(Zhu et al., 2024) generated a pseudo graph with the reliable
knowledge from multiple clients, which served as the dis-
tillation data for training the global model. Xia et al. (Xia
et al., 2024) augmented the local graph data via exploring
the topological complementarity of various private graphs.
In a nutshell, they attempt to conduct increments (e.g., addi-
tional global graphs or global representations) to shrink the
heterogeneity of local graphs, but the used techniques, such
as knowledge distillation and contrastive learning, signifi-
cantly increase the computation and communication volume.
More importantly, they might not be effective in reducing
the negative impact of topology heterogeneity.

Fig. 1(b) compares the average wasserstein distance (WD)
between the embedding from different local graphs for the
same classes, where the WD is used to measure the sim-
ilarity between distributions. Smaller WD indicates that
the two distributions are more similar, and the opposite is

less similar. It can be seen that existing SOTA FGL meth-
ods such as FGSSL (Huang et al., 2023a) and FedTAD
(Zhu et al., 2024) cannot consistently guarantee that the
embedding divergences from different clients are decreased,
demonstrating that they fail to effectively address the prob-
lem of topology heterogeneity. As a result, we reflect on
whether conducting increments is really conducive to mit-
igating topology heterogeneity. Are there better ways to
accomplish this goal? Inspired by the causal theory, we
believe that not all edges in a local topology are necessary
for the training objective, and only a part of them plays
a deterministic role, while the rest is unimportant or even
has a negative effect. Less local topology information may
make more sense. The component consisting of determin-
istic edges is considered as the causal subgraph, while the
rest is considered as the biased subgraph. When each client
explores the causal subgraph, the node embedding is as rele-
vant as possible to the training objective, thereby mitigating
topology heterogeneity and preventing biased training of
local GNNs.

In this paper, we propose an FGL method with Alleviating
Topology Heterogeneity (FedATH) across multiple clients.
Concretely, we adopt an edge evaluator to assess the im-
portance of each edge. Based on the assessment results,
the local graphs are divided into causal subgraphs and bi-
ased subgraphs. Further, a dual-GNN architecture is used
to encode the two kinds of subgraphs into corresponding
representations. The cross entropy loss is used to reinforce
the correlation of causal representation with the training
objective while the negative entropy loss is used to disasso-
ciate the biased representation from the training objective.
To enhance the separability of them, the Hilbert-Schmidt
Independence Criterion (HSIC) is introduced to maximize
their independence. Notably, only the local causal GNNs are
uploaded to the server for aggregation without increasing
communication burden. Fig. 1(b) shows that the proposed
FedATH significantly reduces the embedding divergence
between varying local graphs, this is because the exploration
of causal subgraphs effectively handles the topology het-
erogeneity across multiple clients. Generally, the principal
contributions of this paper are concluded as follows:

• We provide a novel perspective on the problem of topol-
ogy heterogeneity in FGL, mitigating the negative im-
pact of topology heterogeneity across different clients
by diminishing superfluous information rather than
creating new increments.

• Inspired by the causal theory, we divide the local
graphs into causal and biased subgraphs with the aid of
the edge evaluator, and the HSIC is adopted to enforce
their separability. Finally, only the local causal GNNs
are shared for aggregation.

• A large number of experiments are conducted on six
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real-world graph datasets, the experimental results
demonstrate that the proposed FedATH is more supe-
rior than the SOTA conventional FL and FGL methods.

2. Related Work
2.1. Federated Learning

With the increased awareness of protection for private data,
FL has flourished as a means of distributed model train-
ing. As the pioneering algorithm, FedAvg (McMahan et al.,
2017) has demonstrated the superiority of FL, but it is highly
sensitive to the heterogeneous data. Therefore, how to over-
come the detrimental effects induced by heterogeneous data
has always been a central concern in FL. For the scenario
of heterogeneous labels, (Li et al., 2020; Karimireddy et al.,
2020; Li et al., 2021; Fu et al., 2025c; Huang et al., 2025)
corrected the bias between the local models and global
model to prevent the local models from falling into local
optima. Knowledge distillation is an effective method for
transferring information between different models, which is
also introduced into FL to address the issue of catastrophic
forgetting caused by heterogeneous data. (Li & Wang, 2019;
Zhu et al., 2021; Shao et al., 2024; Xie et al., 2024) passed
the global knowledge to clients by leveraging knowledge dis-
tillation, promoting the generalization of local models. For
the scenario of heterogeneous features, (Hong et al., 2023;
Wang et al., 2023; Zhang et al., 2024) adopted an adver-
sarial training method, eliminating the divergence between
various domains by fooling the discriminator. (Huang et al.,
2023b; Li et al., 2023a; Yan et al., 2024; Qi et al., 2023;
Meng et al., 2025; Fu et al., 2025b) explored the generalized
global prototypes and aligned the representation spaces of
different clients through contrastive learning. Despite the
aforementioned methods achieve impressive results, they
perform unsatisfactorily when the clients’ private data is
graph-structured, which is because graph data is far more
complex than common image or text data. Accordingly, it
is necessary to develop tailored FGL algorithms.

2.2. Federated Graph Learning

FGL aims to train a decent GNN with distributed graph
data. Unlike traditional FL strategies, FGL requires to addi-
tionally consider the impact of topology structure on model
training. Overall, FGL is categorized into two types based
on the graph data format on the clients. The first type is
the graph-level, where each graph is considered as a sample
such as molecular graphs and protein graphs. The second
type is the node-level, where each node in a graph serves
as a sample such as citation network and social network.
For the graph-level, each client has a set of graphs. Xie
et al. (Xie et al., 2021) dynamically grouped clients into
different clusters according to the gradients of local GNNs.

Tan et al. (Tan et al., 2023) proposed to share the topology
encoding networks while maintaining the feature encoding
networks specific. Pan et al. (Pan et al., 2024) devised an
incentive mechanism to retain the fairness among multi-
ple agents in federated graph system. For the node-level,
each client stores a subgraph. Zhang et al. (Zhang et al.,
2021) generated the missing neighbor nodes for each client
with federated training, promoting the performance of local
GNNs. Chen et al. (Chen et al., 2021) developed a graph
sampling strategy and federated graph convolutional oper-
ation for distributed graph data. Li et al. (Li et al., 2023b)
considered the impact of topology structure and proposed
a topology-aware federated aggregation manner. Kong et
al. (Kong et al., 2024) adopted a federated fusion strategy
for local anomalous neighbor embedding, enhancing the
difference between anomalous nodes and neighbor nodes.

3. Preliminaries
Graph Neural Networks. Given a graph dataset G =
(V,E,X), V denotes the node set, E denotes the edge set,
and X ∈ RN×d denotes the node feature matrix, where
N and d are the number of nodes and feature dimension,
respectively. For each node vi ∈ V , it has a feature attribute
xi (the i-th row of X) with label yi ∈ [C], where C is the
number of categories. GNNs aim to aggregate the neighbor-
hood information of nodes to improve the discriminability
of their representations through a certain defined informa-
tion propagation mechanism. Generally, the calculation of
the l-layer GNN is formulated as

hl+1
i = δ(hl

i,AGG(hl
j , eij)|∀j ∈ V ), (1)

where hl
i is the embedding of the l-layer for the i-th node,

eij denotes the edge between the i-th and j-th nodes,
AGG(·) is the defined aggregation operator of neighbor
nodes, δ(·) denotes the activation function. Especially,
h0
i = xi is the raw feature.

Federated Graph Learning. In a federated graph system,
a centralized server and K clients are included, each client
stores a private graph dataset Gk = (Vk, Ek,Xk). Each
node vik is characterized as (xi

k, y
i
k|∀i ∈ [Nk]), whereNk is

the number of the k-th local graph’s nodes. The vanilla FGL
is to directly transplant FedAvg into the federated scenario.
Thus, the objective optimization of FGL is written as

min
W1,...,WK

K∑
k=1

1

K
Rk(Wk) (2)

where Wk is the parameter of the k-th local GNN, Rk

denotes the k-th empirical risk and is defined as

Rk(Wk) = E(xi
k,y

i
k)
(Fk(Wk|(xi

k, y
i
k))), (3)

where Fk(·) denotes the loss function for the k-th client.
When each communication round completes, the updated
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Figure 2. The overview of the proposed FedATH. The pink box presents the general FGL framework, the green box shows the local
training process on each client, and the blue box shows the aggregation procedure on the server. In particular, the yellow box displays the
meaning of used graphics.

global GNN is obtained by

W =

K∑
k=1

Nk

N
Wk, (4)

where N =
∑K

k=1Nk is the total number of nodes. How-
ever, simple aggregation inescapably causes the perfor-
mance degeneration due to the topology heterogeneity
across multiple clients.

4. Proposed Method
Concretely, the proposed FedATH consists of two important
modules: Subgraph Division via Edge Evaluation and Dis-
entanglement of Causal and Biased Representations. Fig.
2 illustrates the framework of the proposed FedATH. The
details are elaborated as follows.

4.1. Inspiration from Causal Theory

The proposed FedATH is inspired by the causal theory. To
better understand it, the graph generation procedure from
the structure causal model (SCM) (Schölkopf et al., 2021;
Fan et al., 2022) has to be first elaborated. As shown in Fig.
3(a), there are four kinds of causal relationships between
various variables in the general cases. (1) C → G ← B.
The observed graph is produced by the unobserved causal
variable C and biased variable B. (2) C → Y . The causal
variable C fundamentally determines the semantics Y . (3)
C B. There may be redundant entanglement between
C and B. (4) G→ R→ Y . Most GNNs directly map the
raw graph G into latent representation R, then yields the
semantic label Y .

In FGL, the nodes of same categories in different local
graphs might be connected to ones of various categories due
to the heterogeneous topology, contributing to the biased
training of local GNNs. However, inspired by the above
SCM, not all edges in a topology are essential for the node
semantics, some are the biased factors and even play the
negative roles. If each client adopts the common GNN en-
coding manner, the representation is mixed with causal and
biased variables, which is not conducive to the homogeneity
across clients. Hence, we expect to identify which edges are
determinant for the semantic and explore the key topology
on each client. The part formed by keeping the important
edges are regarded as causal subgraph, while the rest are re-
garded as biased subgraph. When each client disentangles
the local graph into causal and biased subgraphs, the labels
are only associated with the causal subgraph and stripped
from the biased subgraph, then the topology heterogeneity
of various local graphs can be alleviated.

BC

GY

(a) General SCM  

B

C

GY

R

(b) SCM of FedATH

Figure 3. The SCMs of common FGL methods and the proposed
FedATH, where the grey circle denotes the observed variable and
the white circle denotes the latent variable.
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4.2. Subgraph Division via Edge Evaluation

To divide the local graph into causal and biased subgraphs,
we propose to train an edge evaluator Φk on each client for
deciding the affiliation of edges. Specifically, for the k-th
local graph Gk = (Vk, Ek,Xk), the contribution degree
of each edge eij ∈ Ek between node vi ∈ Vk and node
vj ∈ Vk is evaluated by

cij = Φk([x
i
k||x

j
k]), (5)

where || denotes the concatenation of two vectors, the evalu-
ator Φk can be specified as a Multi-Layer Perceptron (MLP).
Further, to enable cij to be probabilistically meaningful, it
is mapped into [0, 1] by

ωij = sigmoid(cij), (6)

where ωij can be viewed as the probability that edge eij be-
longs to the causal subgraph, while 1−ωij is the probability
that edge eij belongs to the biased subgraph. Frequently,
the adjacency matrix Ak ∈ RNk×Nk of a local graph Gk is
conducted based on the edge set Ek for an intuitive expres-
sion. Likewise, the edge mask matrices of causal and biased
subgraphs can be formulated as Ωc

k = [ωij ] ∈ RNk×Nk

and Ωb
k = [1 − ωij ] ∈ RNk×Nk , respectively. Further,

the adjacency matrix Ak is disentangled into causal adja-
cency matrix Ac

k = Ak ⊙Ωc
k and biased adjacency matrix

Ab
k = Ak ⊙ Ωb

k, where ⊙ denotes the Hadamard prod-
uct. When Ac

k and Ab
k are obtained, the causal subgraph

Gc
k = (Ac

k,Xk) and the biased subgraph Gb
k = (Ab

k,Xk)
can be constructed.

With the help of the edge evaluator, each client explores
the causal and biased subgraphs, which further assist the
GNNs to explore the corresponding latent representations.
Notably, the edge evaluator is only trained on local clients
and not shared, which elicits two advantages. First, feder-
ated learning emphasizes efficient communication, while a
private evaluator does not incur additional communication
burdens. Second, the topologies of different local graphs
have different characteristics, a private edge evaluator cap-
tures the personalized information, and a shared evaluator
may interfere with the extraction of local causal and biased
subgraphs. Moreover, the experimental comparison between
shared and unshared edge evaluator is expanded in detail in
the experimental section.

4.3. Disentanglement of Causal and Biased
Representations

For causal subgraph Gc
k and biased subgraph Gb

k, how to
guarantee their disengagement becomes the principal con-
cern. In response to this problem, we propose to adopt a
dual-GNN architecture to encode the two subgraphs into
latent representations and achieve the disengagement of the
two that is driven by the designed losses upon them.

Concretely, a causal GNN f ck and a biased GNN f bk are
equipped on each client, they encode the corresponding
subgraphs into latent space as

Hc
k = f ck(G

c
k|Wc

k)

Hb
k = f bk(G

b
k|Wb

k),
(7)

where Wc
k and Wb

k are the parameters of f ck and f bk , respec-
tively. For a concise denotation, the subscript k is omitted
in the following presentation. The causal representation Hc

is considered to capture the information that is strongly rel-
evant to the objective, the cross entropy is used to constrain
its distance from the ground truth labels, which is written as

LCE = −E(hc
i ,yi|∀i∈[Nt])

Nt∑
i=1

1yi
log(softmax(hc

i )), (8)

where hc
i is the i-th row of Hc, 1yi denotes the one-hot vec-

tor for the label yi, Nt denotes the number of training nodes.
Due to the absorption of unnecessary or even negative in-
formation from neighbor nodes, the biased representation
Hb is regarded to be not discriminative, as a direct result
of which its predicted label probability distribution appears
smooth rather than sharp. Hence, the negative entropy loss
is adopted to achieve the goal:

LENT = −E(hb
i |∀i∈[Nk])

Nk∑
i=1

log(softmax(hb
i )), (9)

where hb
i is the i-th row of Hb, Nk is the number of nodes

in the k-th local graph.

According to the causality presented in Fig. 3, the causal
representation Hc and the biased representation Hb should
be independent of each other. To measure the depen-
dence between Hc and Hb, the Hilbert-Schmidt Indepen-
dence Criterion (HSIC) is introduced. Give two variables
P = [p1,p2, ...,pN ] and Q = [q1,q2, ...,qN ], the map-
ping functions ψ and ϕ map them into kernel spaces P and
Q: ψ(p) ∈ P , ϕ(q) ∈ Q. Then, the inner product for two
vectors in kernel spaces can be written as κ1(p1,p2) =
⟨ψ(p1), ψ(p2)⟩, κ2(q1,q2) = ⟨ϕ(q1), ϕ(q2)⟩. Then, it
has following definition.

Definition 4.1. Given a set of independent observed vari-
ables X := {(p1,q1), ..., (pN ,qN )}, an empirical estima-
tor of HSIC(X ,P,Q) is defined as

HSIC(X ,P,Q) = (N − 1)−2 Tr(K1CK2C), (10)

where Tr(·) denotes the trace of a matrix. K1 and K2

are the Gram matrices, whose each entry is computed by
K1,ij = κ1(p1,p2), K2,ij = κ2(q1,q2) respectively. C
is the centralized matrix for the Gram matrix and is defined
as H = I − 1/N , where I ∈ RN×N is an identity matrix.
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Therefore, the dependence loss between Hc and Hb can be
written as

LDEP =HSIC(Hc,Hb)=(N −1)2 Tr(K1CK2C) (11)

where the inner kernels are specified as K1 = HcHcT ,
K2 = HbHbT . Through minimizing the objective ex-
pressed as Eq. (11), the disentanglement of causal and
biased representations are enhanced. Here, the overall loss
function is formulated as

L = LCE + LENT + λLDEP , (12)

where λ is the trade-off parameter. When the local training
completes, only the causal GNN is uploaded to the server for
aggregation while the biased GNN and the edge evaluator
remain private.

5. Theoretical Analysis
Here, we provide the generalization analysis for the pro-
posed FedATH. Denote D and Dk the global and local dis-
tributions, respectively. D̃k denotes the empirical local dis-
tribution. hk is the local hypothesis learned on the local em-
pirical distribution D̃k and defined as hk : X → Y , mapping
the data features into predicted labels. h = 1/K

∑K
k=1 hk

denotes the global hypothesis integrated by local hypoth-
esis. H denotes the hypothesis space of VC-dimension
d. Moreover, without losing generality, it is specified that
N1 = ... = NK = m.
Theorem 5.1. Given an FGL system with global distribu-
tion D and local distribution Dk, with the the probability
at least 1− δ (0 < δ ≤ 1), the generalization error for any
hypothesis hk satisfies

RD(h) ≤
1

K

∑
k∈[K]

R̂D̃k
(hk)

+
1

K(K − 1)

∑
k∈[K]

K∑
l ̸=k

dH∆H

(
D̃k, D̃l

)
+ ϵ

+
1

K

∑
k∈[K]

λk +

√
4

m

(
d log

2em

d
+ log

4K

δ

)
,

(13)

where R̂D̃k
(hk) denotes the empirical risk on D̃k,

dH∆H(D̃k, D̃l) is the H-distance between D̃k and D̃l,
ϵ denotes a upper-bound constant with respect to
dH∆H(D̃l, D̃),∀l ∈ [K], λk = minh(RD(h) + RDk

(h))
denotes the optimal risk on D and Dk.

Theorem 5.1 reveals that the generalization error of an
FGL system depends mainly on two factors: the distribution
divergence between local graph data dH∆H(D̃k, D̃l) and
the number of observed samples m. In particular, we further
have following corollary for dH∆H(D̃k, D̃l).

Corollary 5.2. Given an FGL system, the k-th and l-th em-
pirical local distributions are denoted as D̃k and D̃l, its gen-
eralization error follows Theorem 5.1. For dH∆H(D̃k, D̃l),
the following inequality holds.

dH∆H(D̃k, D̃l) ≤ 1 + sup
f
B2

WBX

(
1

Dminm
+

1

D2
min

)
(∥Ak∥F + ∥Al∥F ) +

B2
W

m
∥Xk −Xl∥F ,

(14)

where sup denotes the supremum, BW and BX denote the
network parameters of GNN and the upper-bound constants
with respect to the data features X, respectively. Dmin

denotes the minimum degree.

When the local causal subgraphs are explored, the edge
weights in the adjacency matrices are reduced from 1 to
[0, 1], the Frobenious norms of ||Ak||F and ||Al||F are de-
creased, then the bound of generalization error with respect
to the global hypothesis can be shrunk. Hence, the gener-
alization ability of global model learned by the proposed
FedATH is enhanced. The detailed proof process refers to
the Appendix.

6. Experiments
6.1. Datasets

The comparative experiments are conducted on six real-
world graph datasets covering four categories. Cora,
PubMed, and ogbn-arxiv (Yang et al., 2016) are three
kinds of citation networks, depicting the citation relation-
ships between various papers. Photo (Shchur et al., 2018) is
a co-purchase network, recording items that are purchased
together. WikiCS (Mernyei & Cangea, 2020) is a Wiki-page
network and constructed based on Wikipedia, recording the
relationships between diverse computer science subjects
based on hyperlink. Roman-empire (Platonov et al., 2023)
is an article syntax network via counting the Roman Empire.
The details of above six datasets are reported in Table 7. To
simulate the distributed graphs, the Louvain method (Blon-
del et al., 2008) is used to separate the complete graph to
multiple clients, e.g., 10, 15, 20.

6.2. Compared Methods

We compare the proposed FedATH with nine federated
learning algorithms, including conventional and graph-
oriented methods. FedAvg (McMahan et al., 2017) is used
as the baseline. FedProx (Li et al., 2020), MOON (Li et al.,
2021), FedOPT (Reddi et al., 2021), and FedProto (Tan
et al., 2022) are four conventional federated learning ap-
proaches, effectively coping with the common distributed
data. FedSage+ (Zhang et al., 2021), FGSSL (Huang et al.,
2023a), FedPUB (Baek et al., 2023), FedTAD (Zhu et al.,
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Cora PubMed ogbn-arxivType Method K = 10 K = 15 K = 20 K = 10 K = 15 K = 20 K = 10 K = 15 K = 20
BL FedAvg 73.59 69.52 62.44 82.42 81.51 80.80 35.75 34.74 33.57

FL

FedProx 74.29 69.96 63.19 82.43 81.55 80.82 35.67 34.35 33.62
MOON 74.22 70.46 61.35 82.49 81.57 80.25 34.89 33.69 33.88
FedOPT 74.56 71.31 63.71 81.52 80.45 80.92 36.42 34.41 35.53
FedProto 74.56 70.04 63.36 82.70 81.54 80.82 35.84 34.56 33.57

FGL

FedSage+ 73.98 67.35 65.00 82.36 78.23 78.66 41.02 36.64 37.21
FGSSL 74.47 72.21 65.89 82.38 81.86 80.99 39.22 36.61 35.20
FedPUB 75.35 72.43 66.44 82.67 79.06 79.60 39.02 36.87 36.41
FedTAD 74.29 72.23 63.74 82.72 82.03 81.19 37.65 36.28 34.65

FGL FedATH 77.90 73.42 67.97 84.06 83.61 83.03 42.21 38.46 39.54

Table 1. Performance comparison (ACC %) on Cora, PubMed, and ogbn-arxiv datasets for all compared methods, where BL denotes the
baseline, the optimal results are bolded and the suboptimal results are underlined.

Photo WikiCS Roman-empireType Method K = 10 K = 15 K = 20 K = 10 K = 15 K = 20 K = 10 K = 15 K = 20
BL FedAvg 87.19 86.04 84.35 69.56 66.33 67.54 34.41 33.83 32.23

FL

FedProx 87.12 86.49 84.35 69.47 66.22 67.57 34.30 33.64 32.04
MOON 86.45 85.24 81.47 70.03 67.16 66.53 33.97 33.78 33.03
FedOPT 87.73 86.10 84.20 69.39 68.11 66.46 34.35 33.44 32.10
FedProto 87.32 87.86 84.82 70.04 66.97 68.16 34.93 33.64 32.26

FGL

FedSage+ 88.46 86.80 84.37 71.72 69.32 70.69 41.59 39.35 39.12
FGSSL 88.56 86.17 84.27 70.63 68.97 68.64 36.96 36.85 35.21
FedPUB 88.79 87.17 84.21 72.30 69.82 69.88 37.31 36.12 35.47
FedTAD 87.76 86.60 84.94 71.63 69.32 69.01 39.01 37.94 37.28

FGL FedATH 90.33 88.61 85.50 75.22 72.16 71.38 48.18 47.19 45.26

Table 2. Performance comparison (ACC %) on Photo, WikiCS, and Roman-empire datasets for all compared methods, where BL denotes
the baseline, the optimal results are bolded and the suboptimal results are underlined.

2024) are four graph-oriented federated learning approaches,
tailored for the distributed graph data.

6.3. Implementation Details

For the backbone of causal and biased GNNs, a 2-layer
graph convolutional network is adopted, encoding the raw
graph data into 64-dimensional embedding. The Adam is
employed as optimizer with the learning rate set as 0.001.
The numbers of communication rounds and local training
epochs are fixed as 100 and 3, respectively. Considering
the node classification task, classification accuracy (ACC)
and F1-score (F1) are employed as the evaluation met-
rics. For the trade-off parameter λ, it is tuned in range
of {0.001, 0.1, 7, 10}.

6.4. Performance Comparison

The experimental results for all compared methods are re-
ported in Tables 1 and 2, where three cases of client num-
ber are considered, i.e., 10, 15, 20. Undoubtedly, FedAvg
achieves inferior performance, indicating that simply aggre-

gating model parameters is not effective against the topolog-
ical heterogeneity. It can also be seen that the conventional
federated learning algorithms achieve minor gains versus
FedAvg, and are even less effective than FedAvg in many
cases, showing that they cannot cope well with the topology
heterogeneity in FGL. Conversely, the tailored FGL meth-
ods achieve relatively good results, which thanks to their
strategies for heterogeneity of graph data such as fixing the
global graph or generating the global representations. How-
ever, the proposed FedATH achieves the optimal results over
the other compared approaches, demonstrating that using
less key information is more conducive to more gains for
the performance.

6.5. Ablation Study

Effects of Different Losses. In addition to the cross en-
tropy loss, two important losses are included in the proposed
FedATH: LENT and LDEP . The tailored ablation experi-
ments are designed to verify their effects in Tables 3 and
4. It can be seen that when either item is removed, the
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performance of FedATH is inevitably weakened, suggest-
ing that both of them play an essential role in achieving
the separation of causal and biased subgraphs. Only when
both losses are present, the proposed FedATH reaches the
optimal results.

Effects of Sharing Different Components. Overall, three
network modules are equipped in each client, including the
edge evaluator, the causal GNN, and the biased GNN. We
test the performance with sharing various components. As
shown in Tables 5 and 6, the proposed FedATH reaches its
optimality when only the local CGs are shared in general.
When local EEs and BGs are involved in sharing, the perfor-
mance suffers from varying degrees of degradation. This is
because they capture the biased information caused by local
topology heterogeneity, which is not conducive to model
generalization.

Cora PubMedLENT LDEP K = 10 K = 15 K = 20 K = 10 K = 15 K = 20
✗ ✗ 73.59 69.52 62.44 82.42 81.51 80.80
✗ ✓ 76.40 72.92 66.29 83.78 83.29 82.44
✓ ✗ 75.09 72.12 63.01 83.95 83.36 82.42
✓ ✓ 77.90 73.42 67.97 84.06 83.61 83.03

Table 3. Ablation results (ACC %) with respect to two principal
losses on Cora and PubMed datasets.

Photo WikiCSLENT LDEP K = 10 K = 15 K = 20 K = 10 K = 15 K = 20
✗ ✗ 87.19 86.04 84.35 69.56 66.33 68.73
✗ ✓ 89.24 85.01 85.06 72.07 70.00 70.47
✓ ✗ 89.81 86.66 85.24 72.92 69.86 71.15
✓ ✓ 90.33 88.61 85.50 75.22 72.16 71.38

Table 4. Ablation results (ACC %) with respect to two principal
losses on Photo and WikiCS datasets.

Cora PubMed
Sharing K = 10 K = 15 K = 20 K = 10 K = 15 K = 20
CG+EE 78.69 73.34 67.02 83.23 83.01 81.77
CG+BG 76.59 73.17 66.45 83.16 82.94 82.53

CG+EV +BG 78.25 73.94 67.19 83.18 83.13 81.74
CG 77.90 73.42 67.97 84.06 83.61 83.03

Table 5. The performance comparison (ACC %) with various
shared components on Cora and PubMed datasets, where CG,
BG, and EE denote the causal GNN, biased GNN, and edge eval-
uator, respectively.

6.6. Hyperparameter Study

The trade-off parameter λ balances the contribution of HSIC
loss, its importance is validated by tuning the values in
{0.0001, 0.001, ..., 10}. From Fig. 4, we can observe that
a larger λ is required on Cora dataset while a smaller one

Photo WikiCS
Sharing K = 10 K = 15 K = 20 K = 10 K = 15 K = 20
CG+EE 86.96 85.20 84.78 74.55 71.27 67.45
CG+BG 86.87 85.58 84.86 74.21 70.86 69.48

CG+EE+BG 86.61 85.62 84.90 74.77 71.57 67.40
CG 90.33 88.61 85.50 75.22 72.16 71.38

Table 6. The performance comparison (ACC %) with various
shared components on Photo and WikiCS datasets, where CG,
BG, and EE denote the causal GNN, biased GNN, and edge eval-
uator, respectively.

is set on WikiCS dataset. Different datasets have different
statistical characteristics, and an appropriate λ is needed
to achieve a well separation of causal subgraph and biased
subgraph. Hence, it is necessary to introduce λ. Further-
more, the impact of label ratio is verified in Fig. 5. The
larger the label ratio, the higher the performance is obtained
for all algorithms. Fortunately, the proposed FedATH still
maintains leading performance.

(a) Cora (b) WikiCS

Figure 4. The performance comparison when the trade-off parame-
ter λ is tuned, where the client number is set as 15.

(a) Cora (b) WikiCS

Figure 5. The performance comparison for all compared methods
with different label ratios, where the client number is set as 15.

7. Conclusion
In this paper, we propose a new FGL method called FedATH
to cope with the topology heterogeneity across different lo-
cal graphs. We recognize that correcting model training by
creating increments could be tough. Instead, we mitigate the
topology heterogeneity via reducing the superfluous infor-
mation. Specifically, the local edge evaluators are developed

8
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to distinguish the local graphs into the causal subgraphs and
biased subgraphs. A dual-GNN architecture maps the two
subgraphs into latent representations. With the aid of the
designed losses, the separability of the two subgraphs is
enhanced. The experimental results verify the advancement
of FedATH over other compared methods. However, in
real-world scenarios, node labels are often unavailable, and
the lack of unified semantic information further exacerbates
the difficulty of federation training. In future work, we will
explore how to achieve effective federated graph learning in
unsupervised scenarios.
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A. Summary of Appendix
In the appendix, the following contents are included.

• Summaries of the proposed FedATH in Algorithm 1 and the used datasets.

• Performance comparison with F1 metric.

• Proof of Theorem 5.1 and Corollary 5.2.

• Performance with increasing client number.

• Convergence verification of the proposed FedATH.

B. Summaries of The Propose FedATH and The Used Datasets
We summarize the main steps of the proposed FedATH in Algorithm 1 and the main statistics of used graph datasets in
Table 7.

Algorithm 1 The flow of FedATH
Input: Number of clients K, local training epochs E, communication rounds T , learning rate η, trade-off parameter λ,

local graph data Gk = (Vk, Ek,Xk), causal GNN f ck , and biased GNN f bk .
Output: Global causal GNN f c.

1: Client Side:
2: for k = 1 : K in parallel do
3: for epoch e = 1 : E do
4: Calculate the casual and biased edge mask matrices Ωc

k and Ωb
k via Eqs. (5) and (6);

5: Calculate the casual and biased representations Hc
k and Hb

k via Eq. (7);
6: Calculate LCE ← (1yi ,h

c
i ) via Eq. (8);

7: Calculate LENT ← (hb
i ) via Eq. (9);

8: Calculate LDEP ← (Hc,Hb) via Eq. (11);
9: Update f c,ek ← f c,e−1

k − η∇(LCE + LDEP );
10: Update f b,ek ← f b,e−1

k − η∇(LENT + LDEP );
11: end for
12: Upload the local causal GNN f ck to the server;
13: end for
14: Server Side:
15: for t = 1 : T do
16: Aggregate the parameter of global causal GNN via Wc,t ←

∑K
k=1Nk/NWc,t−1

k ;
17: Distribute the global causal GNN Wc,t to clients;
18: end for

Dataset Nodes Features Edges Classes Train / Val / Test

Cora 2,708 1,433 5,429 7 20% / 40% / 40%
PubMed 19,717 500 44,338 3 20% /40 % / 40%

ogbn-arxiv 169,343 128 231,559 40 60% / 20% / 20%
Photo 7,487 745 119,043 8 20% / 40% / 40%

WikiCS 11,701 300 216,123 10 50% / 20% / 30%
Roman-empire 22,662 300 32,927 18 50% / 20% / 30%

Table 7. Descriptions of six graph datasets.
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Cora PubMed ogbn-arxivType Method K = 10 K = 15 K = 20 K = 10 K = 15 K = 20 K = 10 K = 15 K = 20
BL FedAvg 72.04 66.22 58.80 80.20 79.00 78.87 26.05 26.17 25.07

FL

FedProx 72.89 66.68 59.65 80.21 79.05 78.88 26.07 25.93 25.12
MOON 71.88 67.95 58.03 80.41 79.10 78.10 25.82 24.73 25.56
FedOPT 67.73 63.64 59.75 78.10 75.33 76.51 24.06 24.23 26.35
FedProto 72.99 67.01 59.38 80.44 79.03 78.88 26.09 25.99 24.99

FGL

FedSage+ 71.96 62.07 59.85 82.18 78.03 76.18 27.45 28.82 30.23
FGSSL 72.94 69.33 61.85 79.88 79.32 78.82 30.41 27.93 26.59
FedPUB 73.08 66.76 60.01 80.43 75.44 79.63 29.55 24.83 24.37
FedTAD 71.57 70.38 60.34 80.26 78.84 78.57 27.20 26.74 25.10

FGL FedATH 76.93 72.16 65.80 82.71 81.82 81.31 34.90 30.94 31.97

Table 8. Performance comparison (F1 %) on Cora, PubMed, and ogbn-arxiv datasets for all compared methods, where BL denotes the
baseline, the optimal results are bolded and the suboptimal results are underlined.

Photo WikiCS Roman-empireType Method K = 10 K = 15 K = 20 K = 10 K = 15 K = 20 K = 10 K = 15 K = 20
BL FedAvg 84.85 83.06 81.37 63.65 61.66 62.38 30.34 29.74 27.80

FL

FedProx 84.78 83.70 81.37 63.55 61.50 62.34 30.22 29.52 27.60
MOON 83.64 82.02 79.43 63.99 62.15 60.90 29.86 29.60 28.55
FedOPT 84.92 83.02 80.26 60.53 60.37 56.86 30.50 29.58 28.08
FedProto 84.94 85.07 81.70 64.04 61.95 62.25 30.01 28.82 27.32

FGL

FedSage+ 86.13 82.00 82.94 61.47 62.17 61.15 31.88 29.39 29.60
FGSSL 85.99 82.62 80.24 64.84 64.11 62.91 33.59 33.08 31.52
FedPUB 85.86 83.53 79.32 63.79 59.18 59.71 30.15 29.22 28.71
FedTAD 85.24 83.45 81.20 65.31 63.69 63.10 35.08 33.80 33.21

FGL FedATH 88.80 86.52 82.88 71.10 68.15 67.37 44.98 44.27 42.08

Table 9. Performance comparison (F1 %) on Photo, WikiCS, and Roman-empire datasets for all compared methods, where BL denotes
the baseline, the optimal results are bolded and the suboptimal results are underlined.

C. Performance Comparison with F1
To avoid the biased evaluation for experimental results, we employ an additional widely used classification metric F1-score
(F1), which can overcome the evaluation distortion caused by the unbalanced data. From Tables 8 and 9, it can be seen that
the proposed FedTAH consistently achieves the optimal results just like ACC, showing that FedATH solidly enhances the
ability of global model. Nevertheless, some algorithms achieve suboptimality on ACC but not on F1, such as FGSSL and
FedTAD, demonstrating that they are vulnerable to unbalanced data.

D. Proof of Theorem 1 and Corollary 1
For Theorem 5.1, we provide the detailed proof process. Denote D and Dk the global and local distributions, respectively.
D̃k denotes the empirical local distribution. hk is the local hypothesis learned on the local empirical distribution D̃k and
defined as hk : X → Y , mapping the data features into predicted labels. h = 1/K

∑K
k=1 hk denotes the global hypothesis

integrated by local hypothesis. H denotes the hypothesis space of VC-dimension d. Moreover, without losing generality, it
is specified that N1 = ... = NK = m.

Theorem D.1. Given an FGL system with global distribution D and local distribution Dk, with the the probability at least

13
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1− δ (0 < δ ≤ 1), the generalization error for any hypothesis hk satisfies

RD(h) ≤
1

K

∑
k∈[K]

R̂D̃k
(hk)

+
1

K(K − 1)

∑
k∈[K]

K∑
l ̸=k

dH∆H

(
D̃k, D̃l

)
+ ϵ

+
1

K

∑
k∈[K]

λk +

√
4

m

(
d log

2em

d
+ log

4K

δ

)
,

(15)

where R̂D̃k
(hk) denotes the empirical risk on D̃k, dH∆H(D̃k, D̃l) is the H-distance between D̃k and D̃l, ϵ denotes a

upper-bound constant with respect to dH∆H(D̃l, D̃),∀l ∈ [K], λk = minh(RD(h) +RDk
(h)) denotes the optimal risk on

D and Dk.

Corollary D.2. Given an FGL system, the k-th and l-th empirical local distributions are denoted as D̃k and D̃l, its
generalization error follows Theorem 5.1. For dH∆H(D̃k, D̃l), the following inequality holds.

dH∆H(D̃k, D̃l) ≤ 1 + sup
f
B2

WBX

(
1

Dminm
+

1

D2
min

)
(∥Ak∥F + ∥Al∥F ) +

B2
W

m
∥Xk −Xl∥F ,

(16)

where sup denotes the supremum, BW and BX denote the network parameters of GNN and the upper-bound constants with
respect to the data features X, respectively. Dmin denotes the minimum degree.

When the local causal subgraphs are explored, the edge weights in the adjacency matrices are reduced from 1 to [0, 1], the
Frobenious norms of ||Ak||F and ||Al||F are decreased, then the bound of generalization error with respect to the global
hypothesis can be shrunk. Hence, the generalization ability of global model learned by the proposed FedATH is enhanced.

Proof. According to the generalization error of FL (Barnes et al., 2022; Zhu et al., 2021), we first introduce following
Lemma D.3.

Lemma D.3. Given an FL system with global distribution D and local distribution Dk, the generalization error for any
hypothesis with the probability at least 1− δ (0 < δ ≤ 1) is

RD(h) ≤
1

K

∑
k∈[K]

R̂D̃k
(hk) +

1

K

∑
k∈[K]

(
dH∆H

(
D̃k, D̃

)
+ λk

)
+

√
4

m

(
d log

2em

d
+ log

4K

δ

)
. (17)

For theH-divergence dH∆H(D̃k, D̃), we further have

dH∆H

(
D̃k, D̃

)
≤dH∆H

(
D̃k, D̃l

)
+dH∆H

(
D̃l, D̃

)
(K − 1)dH∆H

(
D̃k, D̃

)
≤

K∑
l ̸=k

[
dH∆H

(
D̃k, D̃l

)
+dH∆H

(
D̃l, D̃

)] (18)
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Assume ∀l ∈ [K], dH∆H(D̃l, D̃) ≤ ϵ0, it can obtain

(K − 1)dH∆H

(
D̃k, D̃

)
≤

K∑
l ̸=k

[
dH∆H

(
D̃k, D̃l

)
+ ϵ0

]
1

K

∑
k∈[K]

dH∆H

(
D̃k, D̃

)
≤ 1

K(K − 1)

∑
k∈[K]

K∑
l ̸=k

[
dH∆H

(
D̃k, D̃l

)
+ ϵ0

]

≤ 1

K(K − 1)

∑
k∈[K]

K∑
l ̸=k

dH∆H

(
D̃k, D̃l

)

+
1

K(K − 1)

∑
k∈[K]

K∑
l ̸=k

ϵ0︸ ︷︷ ︸
ϵ

.

(19)

Then, we have

RD(h) ≤
1

K

∑
k∈[K]

R̂D̃k
(hk) +

1

K(K − 1)

∑
k∈[K]

K∑
l ̸=k

dH∆H

(
D̃k, D̃l

)
+ ϵ

+
1

K

∑
k∈[K]

λk +

√
4

m

(
d log

2em

d
+ log

4K

δ

)
.

(20)

The proof completes.

Proof. Next, we estimate the upper bound of dH∆H(D̃k, D̃l) in the context of FGL. m nodes with their topology from the
distributions of the k-th and l-th clients are sampled, respectively: Gk = (Ak,Xk) ∼ D̃k, Gl = (Al,Xl) ∼ D̃l. Taking a
two-layer GCN as an example, it has f(A,X) = sigmoid(Pσ(PXW1)W2), where P = (D+I)−1/2(A+I)(D+I)−1/2,
W1 and W2 denote the parameters of first and second layers. Further, Suppose ||X|| ≤ BX , ||W1|| ≤ BW , and
||W2|| ≤ BW , then we have

∥f (Gk)− f (Gl)∥F
= ∥sigmoid (Pkσ (PkXkW1)W2)− sigmoid (Plσ (PlXlW1)W2)∥F
≤ ∥Pkσ (PkXkW1)W2 −Plσ (PlXlW1)W2) ∥F
≤ ∥W2∥F ∥W1∥F (∥Xk −Xl∥F + ∥Pk −Pl∥F ∥X1∥F )
≤ B2

W ∥Xk −Xl∥F +B2
WBX ∥Pk −Pl∥F

≤ B2
WBX ∥Pk −Pl∥F +B2

W ∥Xk −Xl∥F .

(21)

For dH∆H(D̃k, D̃l), its supremum can be written as

dH∆H

(
D̃k, D̃l

)
= 2 sup

hk∈H,hl∈H

∣∣PrD̃k
[zk :hk(zk) ̸=hl (zk)]−PrD̃l

[zl :hk (zl) ̸=hl (zl)]
∣∣

= 2 sup
h∈H∆H

∣∣PrD̃k
[z : h (zk) = 1]− PrD̃l

[z : h (zl) = 1]
∣∣

= 2 sup
h∈H∆H

∣∣ED̃k
h (zk)− ED̃l

h (zl)
∣∣

(22)
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According to the inequality 0.5E[h(z)] ≤ E[f(z)] ≤ 0.5 + 0.5E[h(z)], it can be further derived

dH∆H

(
D̃k, D̃l

)
≤ 2 sup

f

∣∣0.5 + 0.5ED̃k
f (zk)− 0.5ED̃l

f (zl)
∣∣

≤ 1 + sup
f

∣∣ED̃k
f (zk)− ED̃l

f (zl)
∣∣ .

(23)

Further, the empiricalH-divergence is upper bounded as

d̂H∆H

(
D̃k, D̃l

)
= 1 + sup

f

∣∣∣∣∣∣ 1m
m∑
i

f (zk,i)−
1

m

m∑
j

f (zl,j)

∣∣∣∣∣∣
≤ 1 +

1

m
sup
f

∣∣∣∣∣
m∑
i

f (zk,i)− f (zl,i)

∣∣∣∣∣
≤ 1 +

1

m
sup
f

m∑
i

|f (zk,i)− f (zl,i)|

= 1 +
1

m
sup
f
∥f (Gk)− f (Gl)∥1,ele

≤ 1 +
Brank

m
sup
f
∥f (Gk)− f (Gl)∥F

(24)

Notably, the entrywise 1-norm ||A||1,ele adheres to

||A||F ≤ ||A||1,ele ≤
√
rank(A)||A||F . (25)

Brank =
√
rank(f(Gk)− f(Gl)) is a constant.

From Eq. (24), we can see that the upper bound of d̂H∆H(D̃k, D̃l) depends on supf ||f(Gk)− f(Gl)||F . Recall Eq. (21),
supf ||f(Gk)− f(Gl)||F is bounded by ||Pk −Pl||F . We further have

Pk −Pl

= D
−1/2
k AkD

−1/2
k −D

−1/2
l AlD

−1/2
l

= D
−1/2
k AkD

−1/2
k −D

−1/2
k AlD

−1/2
k

+D
−1/2
k AlD

−1/2
k −D

−1/2
l AlD

−1/2
l

= D
−1/2
k (Ak−Al)D

−1/2
k︸ ︷︷ ︸

T1

+D
−1/2
k AlD

−1/2
k −D−1/2

l AlD
−1/2
l︸ ︷︷ ︸

T2

(26)

Then, it can obtain
||Pk −Pl||F ≤ ||T1||F + ||T2||F . (27)

For ||T1||F and ||T2||F , we estimate their upper bound. Denote Dmin the minimum degree of Dk and Dl, then it has

∥T1∥F =
∥∥∥D−1/2

k (Ak −Al)D
−1/2
k

∥∥∥
F

∥T1∥2F =
∑
i,j

[
D

−1/2
kii

(Ak −Al)ij D
−1/2
kjj

]2
≤
(
D

−1/2
min

)4∑
i,j

(Ak −Al)
2
ij =

(
D

−1/2
min

)4
∥Ak −Al∥2F

=
1

D2
min

∥Ak −Al∥2F

(28)
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T2 = D
−1/2
k AlD

−1/2
k −D

−1/2
l AlD

−1/2
l

=
[
D

−1/2
k −D−1/2

l

]
AlD

−1/2
k +D

−1/2
l Al

[
D

−1/2
k −D−1/2

l

] (29)

Denote δi the (i, i)-th element of D−1/2
k −D

−1/2
l . With the Taylor extension, we have

δi = D
−1/2
kii

−D
−1/2
lii

≈ −1

2
D

−3/2
kii

(Dkii
−Dlii)

Dkii
−Dlii = −

1

2
D

−3/2
kii

∑
j

Akij −Alij .
(30)

Thus, it can be derived

|δi| ≤
1

2D
3/2
min

∣∣∣∣∣∣
∑
j

(
Akij

−Alij

)∣∣∣∣∣∣ (31)

For the (i, j)-th element of T2, we can obtain∣∣T2ij

∣∣ ≤ |δi| · ∣∣Alij

∣∣ ·D−1/2
kjj

+D
−1/2
lii

·
∣∣Alij

∣∣ · |δj | (32)

Since Alij ≤ 1 and the entries of D−1/2
k and D

−1/2
l are bounded by D−1/2

min , the following inequality holds:∣∣T2ij

∣∣ ≤ |δi| · ∣∣Alij

∣∣·D−1/2
kjj

+D
−1/2
lii

·
∣∣Alij

∣∣ · |δj |
=

1

2D
3/2
min

∣∣∣∣∣∑
k

(Akik
−Alik)

∣∣∣∣∣·1·D−1/2
min +D

−1/2
min ·1·

1

2D
3/2
min

∣∣∣∣∣∑
k

(
Akjk

−Aljk

)∣∣∣∣∣
=

1

2D2
min

(∣∣∣∣∣∑
k

(Akik
−Alik)

∣∣∣∣∣+
∣∣∣∣∣∑

k

(
Akjk

−Aljk

)∣∣∣∣∣
) (33)

Then, it follows that
∥T2∥2F =

∑
i,j

∣∣T2ij

∣∣2
≤
(

1

2D2
min

)2∑
i,j

(∣∣∣∣∣∑
k

(Akik
−Alik)

∣∣∣∣∣+
∣∣∣∣∣∑

k

(
Akjk

−Aljk

)∣∣∣∣∣
)2

≤
(

1

2D2
min

)2

2
∑
i,j

∣∣∣∣∣∑
k

(Akik
−Alik)

∣∣∣∣∣
2

+

∣∣∣∣∣∑
k

(
Akjk

−Aljk
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=

(
1

D2
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)2
1

2

∑
i

∣∣∣∣∣∑
k

(Akik
−Alik)
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2

m+
∑
j

∣∣∣∣∣∑
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(
Akjk
−Aljk

)∣∣∣∣∣
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(34)

Actually,
∑

i |
∑

k(Akik
−Alik)|2 =

∑
i |ψ|2 is the square of degree divergence between Ak and Al. Note that

∥Ak −Al∥2F =
∑
i,j

(
Akij −Alij

)2
∑
i

|ψ|2 ≤ mmax
i

(ψi)
2 ≤ m

(35)

According to Cauchy–Schwarz inequality, we have∣∣∣∣∣∑
k

(Akik
−Alik)

∣∣∣∣∣
2

=

[∑
k

(Akik
−Alik)

]2
≤ m

∑
k

(Akik
−Alik)

2 (36)
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Then, it has ∑
i

∣∣∣∣∣∑
k

(Akik
−Alik)

∣∣∣∣∣
2

=
∑
i

[∑
k

(Akik
−Alik)

]2
≤ m

∑
i

∑
k

(Akik
−Alik)

2

= m ∥Ak −Al∥2F

(37)

Hence, Eq. (34) turns out to be

∥T2∥2F ≤
(

1

D2
min

)2 [
m2 ∥Ak −Al∥2F

]
∥T2∥F ≤

m

D2
min

∥Ak −Al∥F
(38)

Thus, Eq. (27) is derived into

∥Pk −Pl∥F ≤ ∥T1∥F + ∥T2∥F

=
1

Dmin
∥Ak −Al∥F +

m

D2
min

∥Ak −Al∥F

=

(
Dmin +m

D2
min

)
∥Ak −Al∥F

(39)

So far, we can obtain the upper bound of dH∆H(D̃k, D̃l):

dH∆H

(
D̃k, D̃l

)
≤ 1+

Brank

m
sup
f
∥f (Gk)− f (Gl)∥F

≤ 1+
Brank

m
sup
f
B2

WBX ∥Pk −Pl∥F +B2
W ∥Xk−Xl∥F

≤ 1 + sup
f
B2

WBX

(
Dmin +m

D2
minm

)
∥Ak −Al∥F +

B2
W

m
∥Xk−Xl∥F

= 1 + sup
f
B2

WBX

(
1

Dminm
+

1

D2
min

)
∥Ak −Al∥F +

B2
W

m
∥Xk −Xl∥F

≤ 1 + sup
f
B2

WBX

(
1

Dminm
+

1

D2
min

)
(∥Ak∥F + ∥Al∥F ) +

B2
W

m
∥Xk −Xl∥F .

(40)

It can be seen that dH∆H(D̃k, D̃l) is bounded by ||Ak||F and ||Al||F . When the local causal subgraphs are explored,
the edge weights in the adjacency matrices are reduced from 1 to [0, 1], the Frobenious norms of ||Ak||F and ||Al||F
are decreased, then the bound of generalization error with respect to the global hypothesis can be shrunk. Hence, the
generalization ability of global model learned by the proposed FedATH is enhanced. The proof completes.

E. Performance with Increasing Client Number
We verify the performance of different methods as the number of clients increases in Fig. 6. First, the performance of all
algorithms degrades as the client number increases, this is because too many clients create fragmentation of information
and a disturbance to federated aggregation. Notably, the proposed FedATH consistently maintains the optimal. Second, for
different graph datasets, the performance of the algorithms degrades to varying degrees as the client number increases. The
reason is that different graph datasets have different levels of importance for the connectivity information, and the loss of
connectivity information affects model performance to different degrees.
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(a) Cora (b) WikiCS

Figure 6. The performance for all compared methods as the client number increases.

F. Convergence Verification
We verify the convergence property of the proposed FedATH compared to other federated learning algorithms in Fig. 7.
It can be observed that the performance of FedATH keeps steadily increasing at a faster rate and takes the lead after a
certain number of communication rounds. Notably, the convergence of some FGL methods is inferior due to the complex
computation process, e.g., FGSSL and FedPUB on PubMed dataset, while the proposed FedATH does not suffer from this
case, proving its superiority of convergence.

(a) PubMed (b) ogbn-arxiv (c) WikiCS (d) Roman-empire

Figure 7. The classification ACC curves as the increasing communication round for all compared algorithms, where the client number is
set as 10.

19


