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ABSTRACT

Hierarchical reinforcement learning (HRL) enables agents to solve complex, long-
horizon tasks by decomposing them into manageable sub-tasks. However, HRL
methods face two fundamental challenges: (i) non-stationarity caused by the evolv-
ing lower-level policy during training, which destabilizes higher-level learning, and
(ii) the generation of infeasible subgoals that lower-level policies cannot achieve.
To address these challenges, we introduce DIPPER, a novel HRL framework
that formulates goal-conditioned HRL as a bi-level optimization problem and
leverages direct preference optimization (DPO) to train the higher-level policy.
By learning from preference comparisons over subgoal sequences rather than
rewards that depend on the evolving lower-level policy, DIPPER mitigates the
impact of non-stationarity on higher-level learning. To address infeasible subgoals,
DIPPER incorporates lower-level value function regularization that encourages
the higher-level policy to propose achievable subgoals. We introduce two novel
metrics to quantitatively verify that DIPPER mitigates non-stationarity and in-
feasible subgoal generation issues in HRL. Empirical evaluation on challenging
robotic navigation and manipulation benchmarks shows that DIPPER achieves upto
40% improvements over state-of-the-art baselines on challenging sparse-reward
scenarios, highlighting the potential of preference-based learning for addressing
longstanding HRL limitations.

1 INTRODUCTION

Hierarchical Reinforcement Learning (HRL) offers a promising framework for tackling complex, long-
horizon tasks by decomposing them into manageable sub-tasks (Sutton et al., 1999; Harb et al., 2018).
In goal-conditioned HRL (Dayan & Hinton, 1992; Vezhnevets et al., 2017), a higher-level policy sets
subgoals for a lower-level policy (henceforth called the primitive policy), which executes lower level
primitive actions to achieve these subgoals. This decomposition enables temporal abstraction and
improves exploration efficiency (Nachum et al., 2019).

Challenges. However, HRL methods face two fundamental challenges, especially in sparse reward
settings: (i) Non-stationarity- The higher-level policy’s learning process becomes unstable due to
the evolving nature of the lower-level policy (Levy et al., 2018; Nachum et al., 2018). As the
lower-level policy updates, the higher-level reward function and transition dynamics shift, leading to
a non-stationary environment that hinders learning. (ii) Infeasible subgoal generation- The higher-
level policy might generate subgoals that are beyond the current capabilities of the lower-level
policy, resulting in suboptimal performance (Chane-Sane et al., 2021). These challenges stem from
the intertwined dependencies between the hierarchical levels. The higher-level policy’s rewards
and transitions depend on the lower-level policy’s behavior, while subgoals from the higher level
simultaneously shape the lower-level policy’s actions. This bidirectional dependency creates a
complex optimization landscape that traditional HRL approaches struggle to navigate effectively.

We argue the root cause is the lack of a principled formulation. We posit that a key reason for
these persistent challenges is the absence of a mathematically rigorous formulation that fully captures
the inter-dependencies between hierarchical policies. To address this, we model HRL as a bi-level
optimization problem, where the higher-level policy optimization constitutes the upper-level problem
and the lower-level policy optimization forms the lower-level problem. This unified framework
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Figure 1: DIPPER Overview: (left) In vanilla HRL, the higher level predicts subgoals gt and gets the
environment reward that depend on the lower primitive behavior, which causes non-stationarity in HRL. Also,
the higher level may predict infeasible subgoals that are too hard for lower primitive. (middle) In DIPPER, the
lower level value function VπL is leveraged to condition higher level policy into predicting feasible subgoals,
and direct preference optimization (DPO) is used to optimize higher level policy. Since this preference-based
learning approach does not depend on lower primitive, this mitigates non-stationarity. Note that since the
current estimation of value function is used to regularize the higher policy, it does not cause non-stationarity.
(right) Training environments: (i) maze navigation, (ii) pick and place, (iii) push, and (iv) franka kitchen
environment.

enables the joint optimization of both policies while explicitly modeling their inter-dependencies.
Thus, we propose a novel bi-level reformulation tailored to goal-conditioned HRL (Section 4.1).

A bi-level view clarifies the true sources of instability. While our bi-level formulation rigorously
models dependencies between hierarchical levels, fundamental challenges still remain: the higher-
level policy’s reward depends on the evolving lower-level policy, resulting in an unstable and
non-stationary learning signal. To address these limitations, we introduce DIPPER, a novel HRL
method that leverages direct preference optimization (DPO) (Rafailov et al., 2024b) to train the
higher-level policy on stationary preference datasets, collected from trajectories generated by a
behavior policy and labeled by human preferences. In DIPPER, preferences are generated by humans
on paired trajectories, which can be collected using any behavior policy (not necessarily the evolving
lower-level policy). This ensures the preference dataset remains stationary, as it is based on fixed
human judgments rather than the changing lower-level reward. By optimizing the higher-level policy
with DPO on this stationary dataset, we decouple higher-level learning from the non-stationary lower-
level reward signal, thus mitigating non-stationarity due to reward at the higher level and stabilizing
hierarchical training. Further, our bi-level formulation enables us to address the infeasible subgoal
generation problem at the higher level, by incorporating lower-level value function regularization
(a direct consequence of our bi-level formulation) that grounds the subgoal proposals in the lower
level’s value function, ensuring that the higher-level policy generates only feasible subgoals.

Our main contributions are as follows:
(i) Bi-level optimization framework for HRL: We provide a rigorous mathematical formulation
of HRL as a bi-level optimization problem, capturing the interdependencies between hierarchical
policies and laying the groundwork for principled solution development (Section 4).
(ii) Mitigation of non-stationarity and infeasible subgoal generation: By adopting a principled
bi-level approach, DIPPER leverages DPO to significantly reduce the effects of non-stationarity and
infeasible subgoal generation, as demonstrated through detailed analysis, ablation studies, and novel
metrics (Section 5 Figure 3).
(iii) Improved performance in complex robotics tasks: Extensive experiments across diverse
navigation and manipulation environments show that DIPPER achieves around 40% improvement
over state-of-the-art baselines in complex pick and place, push and franka kitchen tasks where other
methods typically struggle to make any progress (Section 5).

2 RELATED WORK

Hierarchical Reinforcement Learning (HRL). HRL offers the benefits of temporal abstraction
and improved exploration (Nachum et al., 2019), enabling agents to solve complex, long-horizon
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tasks by decomposing them into sub-tasks (Sutton et al., 1999; Barto & Mahadevan, 2003; Parr
& Russell, 1998). Despite these advantages, HRL methods are fundamentally challenged by non-
stationarity (Nachum et al., 2018; Levy et al., 2018) and the generation of infeasible subgoals. Prior
works have sought to mitigate non-stationarity by simulating optimal lower-level primitive behav-
ior (Levy et al., 2018), relabeling transitions in the replay buffer (Nachum et al., 2018; Singh &
Namboodiri, 2023b;a), or assuming access to privileged information such as expert demonstrations
or preferences (Singh et al., 2024; Singh & Namboodiri, 2023a;b). However, existing methods lack a
principled mathematical framework to explicitly model the bidirectional dependencies between hier-
archical policies, where the higher-level policy’s subgoal predictions influence lower-level behavior,
while the evolving lower-level policy simultaneously destabilizes higher-level learning. To address
this, we reformulate HRL as a bi-level optimization problem, explicitly decoupling and coordinating
the interdependent objectives of hierarchical policies through mathematical constraints.

Preference-based Learning (PbL). PbL applies reinforcement learning to human preference
data (Knox & Stone, 2009; Pilarski et al., 2011; Wilson et al., 2012; Daniel et al., 2015), pro-
viding a mechanism for guiding policy learning in the absence of explicit reward signals. Prior ap-
proaches (Christiano et al., 2017; Lee et al., 2021) first train a reward model from human preferences
and then optimize a policy based on this reward. Prior work (Singh et al., 2024) attempts to address
HRL non-stationarity by leveraging reinforcement learning from human feedback (RLHF) (Christiano
et al., 2017), by learning a reward function for the higher-level policy, avoiding direct dependence on
the non-stationary environment rewards.

More recently, direct preference optimization (DPO) methods (Rafailov et al., 2024b;a; Hejna et al.,
2023) have emerged, which directly optimize the policy using a KL-regularized maximum likelihood
objective, bypassing the need for an explicit reward model. Our work builds on advances in maximum
entropy RL (Ziebart, 2010) and DPO, deriving a DPO objective regularized by the lower-level policy’s
value function to address both non-stationarity and infeasible subgoal generation issues in HRL.
For a comprehensive review of related work, see Appendix A.3.

3 PROBLEM FORMULATION

3.1 HIERARCHICAL REINFORCEMENT LEARNING (HRL)

Hierarchical Setup: The hierarchical formulation consists of two levels: a higher-level policy and
a lower-level policy. Let L represent the overall task horizon, which is factorized as L = T ×K,
where T and K denote the horizons of the higher-level and lower-level policies, respectively. The
higher-level policy generates subgoals every K timesteps, while the lower-level policy executes
primitive actions to achieve these subgoals within the K-timestep window. Let t ∈ [1, T ] and
k ∈ [1,K] denote the timesteps for the higher-level and lower-level policies, respectively. We denote
the timestep indexes for higher and lower levels separately for ease of representation.

Lower Level MDP: The lower level MDP is defined as (S,AL, pL, rL), where S is the state
space, and pL : S × AL → ∆(S) denotes the transition dynamics. The lower level action space
is denoted as AL. The lower-level policy πL : S × G → ∆(AL) generates primitive actions
ak ∼ πL(·|st+k, gt) conditioned on subgoals gt ∈ AH provided by the higher-level policy, and
st+k ∈ S is the current state. The lower-level policy is sparsely rewarded when it achieves the
subgoal gt: rL(st+k, ak, gt) = 1{|st+k−gt|2<ε}, with 1C as an indicator function returning 1 if
the condition C holds, indicating that the subgoal gt is achieved. In the lower-level replay buffer,
a transition is defined as (st+k, gt, ak, r

L(st+k, ak, gt), st+k+1). We adopt a maximum entropy
RL setting, where H(πL) denotes the entropy of the lower-level policy πL. To learn optimal
lower level policy, we maximize the expected lower level cumulative reward, formally defined as
πL
∗ := argmaxπL V L(πH), where

V L(πH) = Egt∼πH ,ak∼πL

[
K−1∑
k=0

rL(st+k, ak, gt) + λH(πL)

]
. (1)

Here gt ∼ πH(·|st, g∗) is the subgoal selected by the upper level for step t and expectation is
over the randomness induced by the environment transitions, lower level policy, and higher level
policy. For each step t, we have ak ∼ πL(·|st+k, gt), and for the current state st+k, the next state is
st+k+1 ∼ pL(st+k, ak, gt) where pL determines the environment dynamics, and is hence stationary.
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Higher-Level MDP: The higher-level MDP is defined as (S,G,AH , pH , rH), where S is the state
space, and G is the goal space. AH is the higher-level action space, which we set as AH = G
(subgoals are drawn from the goal space). The environment reward for the higher level, rH :
S ×AH × G → R, encourages progress toward the final goal g∗. A higher-level transition is stored
in the replay buffer as (st, g∗, gt, rH(st, gt, g

∗), st+1). We adopt a maximum entropy RL setting,
where H(πH) denotes the entropy of the higher-level policy πH . The higher-level objective is
πH
∗ := argmaxπH JH(πH , πL(πH)), where

JH(πH , πL(πH)) := E

[
T−1∑
t=0

r(st, gt, g
∗) + λH(πH)

]
. (2)

Here, λ is the entropy weight-parameter. This objective can be expressed using the higher-level value
function V H(st, g

∗;πH , πL), which estimates the expected cumulative reward starting from state st
toward goal g∗, following policy πH at the higher level and πL at the lower level. The higher-level
Q-function QH(st, g

∗, gt;π
H , πL) estimates the expected cumulative reward for taking subgoal gt

in state st to achieve the final goal g∗.

Non-stationarity in HRL. For every subgoal gt ∼ πH(·|st, g∗) predicted by the higher-level policy,
the lower level policy πL is allowed to execute for k timesteps, after which the policy reaches state
st+k. The transition kernel pHπL(st, gt) models the distribution over next states st+k ∼ pHπL(st, gt)

depends explicitly on the lower-level policy πL (as the lower-level policy determines the sequence
of primitive actions executed to pursue gt over k steps). Since πL is updated throughout training,
both the higher-level reward rH (which depends on the achieved state st+k) and transition kernel
pHπL become non-stationary. This causes training instability in learning πH . Further, in off-policy RL,
since the lower level policy changes during training, prior transitions in the replay buffer become
obsolete, further exacerbating the non-stationarity issue.
We now enlist the challenges of standard HRL-based approaches.

Challenges of HRL:

While HRL offers advantages over RL, such as better sample efficiency through temporal abstraction
and enhanced exploration (Nachum et al., 2019), it faces two fundamental challenges:
C1: Non-stationarity. Vanilla off-policy HRL suffers from non-stationarity due to changing behavior
of the lower-level policy (Nachum et al., 2018; Levy et al., 2018), due to which the higher level
reward function and transition dynamics become non-stationary, thus causing RHL non-stationarity.
C2: Infeasible subgoal generation. Since the sub-optimality in the lower-level policy affects its
ability to reach a given subgoal, it consequently impacts the higher-level credit assignment during
subgoal generation. This causes the higher level to produce infeasible subgoals for the lower level
policy (Chane-Sane et al., 2021). Thus, despite its theoretical advantages, HRL often underperforms
in practice (Nachum et al., 2018).

Given these challenges, preference-based learning (PbL) methods emerge as a promising alternative
by incorporating stationary human feedback to guide policy optimization without direct dependence
on shifting rewards or transitions. PbL approaches, such as Reinforcement Learning from Human
Feedback (RLHF) (Christiano et al., 2017) and Direct Preference Optimization (DPO) (Rafailov et al.,
2024b), rank trajectories via pairwise preferences to train models in complex, reward-sparse tasks. In
what follows, we outline PbL fundamentals and the limitations of directly applying PbL approaches.

3.2 PREFERENCE BASED LEARNING (PBL)

Preference-based learning (PbL) methods such as RLHF (Christiano et al., 2017; Ibarz et al., 2018;
Lee et al., 2021) and DPO (Rafailov et al., 2024b) leverage preference data to solve complex tasks.

RL from human feedback (RLHF): In this setting, the agent behavior is represented as a T -length
trajectory denoted as τ of states and actions: τ = ((st, gt), (st+1, gt+1)...(st+T−1, gt+T−1)). The
learned reward model to be learned is denoted by r : S ×G → R, with parameters ϕ. The preferences
between two trajectories, τ1 and τ2, can be expressed through the Bradley-Terry model (Bradley &

Terry, 1952) Pϕ

[
τ1 ≻ τ2

]
=

exp
∑

t r(s
1
t ,g

1
t ,g

∗)∑
i∈{1,2} exp

∑
t r(sit,gi

t,g
∗)

, where τ1 ≻ τ2 implies that τ1 is preferred

over τ2. The preference dataset D has entries of the form (τ1, τ2, y), where y = (1, 0) when τ1

is preferred over τ2, y = (0, 1) when τ2 is preferred over τ1, and y = (0.5, 0.5) in case of no
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preference. In RLHF, we first learn the reward function r (Christiano et al., 2017) using cross-entropy
loss along with Bradley-Terry model to yield the formulation:

L = −E(τ1,τ2,y)∼D

[
log σ

( T−1∑
t=0

r
(
s1t , g

1
t , g

∗)− T−1∑
t=0

r
(
s2t , g

2
t , g

∗))]. (3)

Direct Preference Optimization (DPO): Although RLHF provides an elegant framework for learning
policies from preferences, it involves RL training step which is often expensive and unstable in
practice. In contrast, DPO (Rafailov et al., 2024b) circumvents the need for RL step by using
a closed-form solution for the optimal policy of the KL-regularized RL problem (Levine, 2018):
π∗(a|s) = 1

Z(s)πref (a|s)er(s,a), where πref is the reference policy, π∗ is the optimal policy, and
Z(s) is a normalizing partition function. DPO directly optimizes policies from preferences, bypassing
explicit reward modeling, offering stable convergence (detailed in Section 5).

Challenges of directly applying PbL to HRL:

Directly using RLHF: Prior approaches leverage the advancements in PbL to mitigate HRL non-
stationarity (Singh et al., 2024) by utilizing the reward model rHϕ learned using the reward model
(corresponding to the preference dataset) as higher level rewards instead of environment rewards rHπL

used in vanilla HRL approaches, which depend on the sub-optimal lower primitive. However, such
approaches may lead to degenerate solutions by generating infeasible subgoals for the lower-level
primitive. Additionally, such approaches require RL as an intermediate step, which might cause
training instability (Rafailov et al., 2024b).
Directly using DPO: In temporally extended task environments like robotics, directly extending DPO
to the HRL framework is non-trivial due to three reasons: (i) such scenarios deal with multi-step
trajectories involving stochastic transition models, (ii) efficient pre-trained reference policies are
typically unavailable in robotics, (iii) similar to RLHF, such approaches may produce degenerate
solutions when higher level policy subgoal predictions are infeasible.

4 PROPOSED APPROACH

To address the dual challenges of non-stationarity (C1) and infeasible subgoal generation (C2) in
HRL, we introduce DIPPER: DIrect Preference Optimization for Primitive-Enabled Hierarchical
Reinforcement Learning. We first formulate HRL as a bi-level optimization problem to develop a
principled framework that fully captures the bi-directional dependence between hierarchical policies.
Subsequently, we explain our hierarchical framework DIPPER that employs Direct Preference
Optimization (DPO) (Rafailov et al., 2024b) to train the higher level policy and RL to train the
lower-level policy (Section 4.2). The preference dataset can be collected using trajectories from
any behaviour policy. Since the preference labels are provided by an external human, they remain
stationary with respect to the lower-level policy during training. This effectively decouples the
higher level policy training from the changing lower-level policy behavior, thereby mitigating non-
stationarity issue (C1) in higher-level rewards and stabilizing HRL training.

We also show that our principled bi-level formulation naturally yields a lower-level value function
based regularization which ensures that the generated subgoals remain feasible for the lower-level
policy, thus addressing the infeasible subgoal generation issue (C2) in HRL. Finally, we derive
DIPPER objective, analyze its gradient, and provide the final practical algorithm.

4.1 HRL: BI-LEVEL FORMULATION

We present our bi-level formulation by using equation 2 and representing it as a constrained optimiza-
tion problem assuming the lower level policy to be optimal:

max
πH ,πL

J (πH, πL
∗ (π

H)) s.t. πL
∗ (π

H)=argmaxπLV L(πH), (4)

where J (πH , πL
∗ (π

H)) is the higher level objective and V L(πH) is the lower level value function,
conditioned on higher level policy subgoals. Utilizing the recent advancements in the optimization
literature (Liu et al., 2022), we represent equation 4 by equivalent constrained optimization problem:

max
πH ,πL

J (πH, πL) s.t. V L(πH)− V L
∗ (πH) ≥ 0. (5)
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where, V L
∗ (πH) = maxπL

V L(πH). Notably, since the left-hand side of the inequality constraint
is always non-positive due to the fact that V L(πH)− V L

∗ (πH) ≤ 0, the constraint is satisfied only
when V L(πH) = V L

∗ (πH). Although the constraint in equation 5 holds for all states s and subgoals
g, however, enforcing it globally would make the problem intractable. Therefore, we relax the
constraint by only considering the (st, gt) pairs traversed by the higher-level policy. Leveraging this
relaxed constraint and replacing J (πH, πL) from equation 2, we propose the following approximate
Lagrangian objective

max
πH ,πL

E
[ T−1∑

t=0

(r(st, gt, g
∗) + λH(πH) + λ(V L(st, gt)− V L

∗ (st, gt))

]
. (6)

We can use equation 6 to solve the HRL policies for both higher and lower level, where (i) the
higher level policy learns to achieve the final goal and predict feasible subgoals to the lower level
policy, and (ii) the lower level policy learns to achieve the predicted subgoals. However, directly
optimizing equation 6 requires knowledge of higher level reward function rHπL which is a function
of πL, which is non-stationary. Further, using RL to optimize the objective may lead to unstable
learning (Rafailov et al., 2024b).

4.2 DIPPER

To overcome these challenges, we propose DIPPER, our hierarchical approach that leverages
primitive-regularized DPO objective to optimize the hierarchical policies. Using the objective in equa-
tion 6 to derive the reward-policy equivalence equation and replacing it in equation 3, we get the
following DIPPER objective:

LO = −E(τ1,τ2,y)∼D

[
log σ

(T−1∑
t=0

(
β log πH

∗
(
g1t |s1t , g∗

)
− β log πH

∗
(
g2t |s2t , g∗

)
− λ((V L(s1t , g

1
t )−V L

∗(s
1
t , g

1
t )− (V L(s2t , g

2
t )−V L

∗(s
2
t , g

2
t )))

))]
, (7)

where (τ1, τ2, y) ∼ D represents a preference pair sampled from the preference dataset D, σ
represents the sigmoid function, λ is regularization weight parameter, and β is entropy weight
parameter. The complete derivation of the DIPPER objective is provided in the Appendix A.1. This
DIPPER objective optimizes the higher-level policy using primitive regularized DPO, thus decoupling
the higher-level learning from non-stationary lower-level policy rewards.

Analyzing DIPPER gradient: We further analyze the DIPPER objective by interpreting the gradient
with respect to higher level policy πH

∗ , denoted as:

∇LO=−βE(τ1,τ2,y)∼D

[T−1∑
t=0

(
σ
(
r̂
(
s2t , g

2
t

)
−r̂

(
s1t , g

1
t

))︸ ︷︷ ︸
higher weight for wrong preference

·
(
∇ log πH

(
g1t |s1t , g∗

)︸ ︷︷ ︸
increase likelihood of τ1

−∇ log πH
(
g2t |s2t , g∗

)︸ ︷︷ ︸
decrease likelihood of τ2

))]
.

(8)
where r̂(st, gt, g

∗) = β log πH(gt|st, g∗) − λ(V L(st, gt)−V L
∗ (st, gt)), which acts as an implicit

reward model determined by the higher-level policy and the lower-level value function. This objective
increases the likelihood of preferred trajectories while decreasing the likelihood of dis-preferred ones.
Based on the strength of the KL constraint, the examples are weighted based on how inaccurately
the implicit reward model r̂(st, gt, g∗) ranks the trajectories. This implicit reward acts as a value
function regularizer that conditions the higher-level policy to generate feasible subgoals.

Practical algorithm: The DIPPER objective in Eqn. 7 requires calculation of optimal lower-
level value function V L

∗ (st, gt), which is computationally expensive. We accordingly consider an
approximation V L

m(st, gt) to replace V L
∗ (st, gt), where we update the value function V L

m(st, gt)
gradient m times for every policy update, to get the following objective:

LO = −E(τ1,τ2,y)∼D

[
log σ

(T−1∑
t=0

(
β log πH

∗
(
g1t |s1t , g∗

)
− β log πH

∗
(
g2t |s2t , g∗

)
− λ((V L(s1t , g

1
t )−V L

m(s1t , g
1
t )− (V L(s2t , g

2
t )−V L

m(s2t , g
2
t )))

))]
.

(9)

The pseudo-code for DIPPER is provided in the Appendix A.2.
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(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen

Figure 2: Success Rate plots. This figure illustrates the success rates across four sparse-reward maze navigation
and robotic manipulation tasks, where the solid lines represent the mean, and the shaded areas denote the
standard deviation across 5 different seeds. We evaluate DIPPER against several baselines. Although HAC,
SAGA and RAPS outperform DIPPER in the easier maze task, they fail to perform well in other challenging
tasks, where DIPPER demonstrates strong performance and significantly outperforms the baselines.

5 EXPERIMENTS

In our empirical analysis, we ask the following questions:
(1) How well does DIPPER perform against baselines? How well does DIPPER perform in
complex robotics control tasks against prior hierarchical and non-hierarchical baselines?
(2) Does DIPPER mitigate HRL limitations? How well does DIPPER mitigate the issues of
non-stationarity (C1) and infeasible subgoal generation (C2) in HRL?
(3) What is the impact of our design decisions on the overall performance? Can we concretely
justify our design choices through extensive ablation analysis?

Task details: We assess DIPPER on four robotic navigation and manipulation environments: (i)
maze navigation, (ii) pick and place (Andrychowicz et al., 2017), (iii) push, and (iv) franka kitchen
environment (Gupta et al., 2019). These are formulated as sparse reward scenarios, where the agent
is only rewarded when it comes within a δ distance of the goal. Due to this, these environments are
hard where the agent must extensively explore the environment before coming across any rewards.
As an example: in franka kitchen task, the agent only receives a sparse reward after achieving the
final goal (e.g. successfully opening the microwave and then turning on the gas knob).
Environment details: We provide the implementation and environment details in Appendix A.7
and A.9, and the implementation code in the supplementary. We provide the preference data usage
and collection cost analysis in Appendix A.4 The main objective of our empirical analysis is to
evaluate our approach on complex sparsely rewarded long-horizon tasks. Hence, we re-formulate the
maze navigation task and increase its complexity by considering randomly generated mazes. Thus,
the agent has to learn to generalize across new mazes. In the franka kitchen task, the agent is sparsely
rewarded only when it completes the final task, e.g open the microwave and turn on the gas knob.
These nuances prohibit the prior baselines from performing well in these tasks, which makes these
test beds ideal scenarios for empirical evaluations. Unless otherwise stated, we maintain empirical
consistency across all baselines to ensure fair comparisons. Finally, for harder tasks such as pick and
place, push and franka kitchen, we assume access to one human demonstration and incorporate an
imitation learning objective at the lower level to accelerate learning. However, we apply the same
assumption consistently across all baselines to ensure fairness.

We employ DPO instead over standard policy gradient methods due to its superior optimization
properties in preference-based settings, including stable convergence without explicit reward modeling
or intermediate RL steps (detailed comparisons against policy gradient methods are provided in
Experiment section 5). We tune the hyper-parameters via grid search, with ablation studies showing
balanced values yield optimal performance without extreme sensitivity.

(1) How well does DIPPER perform against baselines?

In this section, we compare DIPPER against multiple hierarchical and non-hierarchical baselines.
Please refer to Figure 2 for success rate comparison plots and subsequent discussion. The solid line
and shaded regions represent the mean and standard deviation, averaged over 5 seeds.

Comparison with DPO Baselines.
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DIPPER-No-V baseline: This is an ablation of DIPPER without primitive regularization. The
primitive regularization approach in DIPPER regularizes the higher level policy to predict feasible
subgoals. We employ this baseline to highlight the critical role of generating feasible subgoals. As
shown in Figure 2, DIPPER outperforms this baseline, underscoring the critical role of feasible
subgoal generation in achieving superior performance.
DPO-FLAT baseline: This is a single-level DPO (Rafailov et al., 2024a) implementation. Note
that since we do not have access to a pre-trained model as a reference policy in robotics scenarios
like generative language modeling, we use a uniform policy as a reference policy, which effectively
translates to an additional objective of maximizing the entropy of the learnt policy. DIPPER is an
hierarchical approach which benefits from temporal abstraction and improved exploration, as seen in
Figure 2 which shows that DIPPER significantly outperforms this baseline.

Comparison with Hierarchical Baselines.

SAGA baseline: We compare DIPPER with SAGA (Wang et al., 2023), a hierarchical approach that
employs state conditioned discriminator network training to address non-stationarity, by ensuring
that the high-level generates subgoals that align with the current state of the low-level policy. We
find that although SAGA performs well in the maze task, it fails to solve harder tasks where DIPPER
significantly outperforms. This demonstrates that SAGA suffers from non-stationarity in harder long
horizon tasks, whereas DIPPER is able to better mitigate non-stationarity issue in such tasks.
PIPER baseline: This baseline (Singh et al., 2024) leverages RLHF to learn higher level reward
function to address HRL non-stationarity. To ensure fair comparison, we implement an ablation
of PIPER without HER (Andrychowicz et al., 2017). DIPPER is able to outperform this PIPER
ablation on all tasks, showing that our DPO based approach avoids training instability caused by RL,
and is able to better mitigate non-stationarity in HRL.
RAPS baseline: Here, we consider RAPS (Dalal et al., 2021) baseline, which employs behavior
priors at the lower level for solving the task. Although RAPS is an elegant framework for solving
robotic tasks where behavior priors are readily available, it requires considerable effort to construct
such priors and struggles to perform well in their absence, especially when dealing with sparse reward
scenarios. Indeed we empirically find this to be the case, since although RAPS performs exceptionally
well in maze navigation task, it fails to perform well in other sparse complex manipulation tasks.
HAC baseline: We also implement HAC (Levy et al., 2018) baseline that mitigates non-stationarity
in HRL by simulating optimal lower level primitive behavior. HIRO (Nachum et al., 2018) is another
such baseline that addresses non-stationarity, however since HAC has been found to outperform HIRO,
we chose to compare with HAC. Although HAC performs well in maze task, it struggles to perform
well in harder tasks. DIPPER outperforms this baseline in 3 out of 4 tasks.
HIER baseline: We also implement HIER, a vanilla HRL baseline implemented using SAC (Haarnoja
et al., 2018) at both hierarchical levels, but it fails to outperform DIPPER on any task.

Comparison with Non-Hierarchical Baselines.

DAC baseline: Discriminator Actor Critic (DAC) (Kostrikov et al., 2018) is a single-level baseline,
that we provide one demonstration in each task. However, despite having access to privileged
information, DAC still struggles to perform well.
FLAT baseline: We also implement a single-level SAC policy, but it fails to show any progress,
verifying that hierarchical abstraction is key to effective performance in complex tasks.

(2) Does DIPPER mitigate HRL limitations?

Prior work largely lacks principled metrics for quantifying non-stationarity (C1) and infeasible
subgoal generation (C2) in HRL. To address this gap, we introduce two novel metrics specifically
designed to measure these challenges. Using these metrics, we empirically demonstrate that DIPPER
effectively mitigates both non-stationarity (C1) and infeasible subgoal generation (C2) in HRL.
Subgoal Distance Metric. We compare DIPPER with DIPPER-No-V, HAC, RAPS, HIER
baselines on subgoal distance metric: the average distance between subgoals predicted by the higher
level policy and subgoals achieved by the lower level primitive. A low average distance value implies
that the predicted subgoals are feasible, thus inducing optimal lower level policy behavior (note that
the optimal, lower-level policy is stationary, and thus avoids non-stationarity). Figure 3 (Row 1) shows
that DIPPER consistently generates low average distance values, thus mitigating non-stationarity
(C1). Low average distance values imply that high-level policy in DIPPER generates achievable
subgoals for the lower primitive due to primitive regularization, thus addressing (C2).
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(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen

(e) Maze navigation (f) Pick and place (g) Push (h) Kitchen

Figure 3: (Row 1) Subgoal Distance Metric. We compare DIPPER with DIPPER-No-V, HAC, RAPS,
HIER baselines, based on average distance between subgoals predicted by the higher level policy and subgoals
achieved by the lower level primitive. DIPPER consistently generates low average distance values, which implies
that in DIPPER, the higher level policy generates achievable subgoals that induce optimal lower primitive goal
reaching behavior. This shows that DIPPER is able to address non-stationary in HRL and generate feasible
subgoals. (Row 2) Lower Q-Function Metric. We compare DIPPER with DIPPER-No-V, HAC, RAPS,
HIER baselines, based on average lower level Q function values for the subgoals predicted by the higher level
policy. DIPPER consistently produces large Q-function values, thus inducing optimal lower policy behavior
thus mitigating non-stationarity and predicting feasible subgoals.

Lower Q-Function Metric. Here, we compare DIPPER on average lower level Q function values for
the subgoals predicted by the higher policy. High Q-values imply that the lower policy expects high
returns for the predicted subgoals. Such subgoals are feasible and induce optimal lower primitive
behavior. Figure 3 (Row 2) shows that DIPPER consistently leads to large Qvalues, showing that it
produces high-reward inducing and feasible subgoals, directly addressing both (C1) and (C2).

(3) What is the impact of our design choices?

We perform ablations to analyze our design choices. We first analyze the effect of varying regular-
ization weight λ hyper-parameter in Appendix A.6 Figure 4. λ controls the strength of primitive
regularization: if λ is too small, we lose the benefits of primitive regularization leading to infeasible
subgoals prediction. Conversely, if λ is too large, the higher-level policy might fail to achieve
the final goal by repeatedly predicting trivial subgoals. We also analyze the effect of varying β
hyper-parameter in Appendix A.6 Figure 5. Excessive β causes over-exploration, preventing optimal
subgoal prediction; whereas insufficient β limits exploration, risking suboptimal predictions.
Robustness to noise analysis. We performed a sensitivity analysis where a fixed proportion of the
preference labels in the training set were flipped at random. We evaluated DIPPER under synthetic
label noise rates of 0%, 10%, 30% label flips. The success rates for different noise rates are shown in
Appendix A.5. These results show DIPPER is robust to moderate label noises.

6 DISCUSSION

Limitations and future work. Our DPO-based hierarchical formulation raises an important question:
since DIPPER uses DPO for training the higher-level policy, does it generalize to out-of-distribution
states and actions better than reward-model-based RL? Comparing with hierarchical RLHF could
provide useful insights. Moreover, applying DIPPER to high-dimensional subgoal spaces remains
challenging. We leave these directions for future work.
Conclusion. In this work, we introduce DIPPER, a novel hierarchical approach that employs
primitive-regularized DPO to mitigate the issues of non-stationarity and infeasible generation in HRL.
DIPPER employs primitive-regularized token-level DPO objective to efficiently learn higher level
policy, and RL to learn the lower level primitive policy, thereby mitigating non-stationarity in HRL.
We formulate HRL as a bi-level optimization objective to insure that the higher level policy generates
feasible subgoals. Based on strong empirical results, we believe that DIPPER is an important step
towards learning effective control policies for solving complex robotics tasks.
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ETHICS STATEMENT

This work introduces DIPPER, a hierarchical reinforcement learning framework that leverages direct
preference optimization for robotic navigation and manipulation tasks. We acknowledge several
ethical considerations inherent to this research. First, our approach relies on human preference data to
guide hierarchical policy learning, which raises concerns about potential biases in preference collec-
tion and annotation processes. The preferences used to train our higher-level policy may inadvertently
reflect the biases, cultural backgrounds, or limitations of the human annotators, potentially leading
to suboptimal or biased robotic behaviors in real-world deployments. Second, our experimental
evaluation focuses on robotic manipulation tasks (pick-and-place, push, kitchen environments) that
could have direct applications in automation systems, potentially affecting employment in certain
sectors. While our work aims to improve sample efficiency and learning stability in robotics, we
acknowledge the broader societal implications of advancing autonomous robotic capabilities. Third,
our methodology requires computational resources for training hierarchical policies across multiple
environments, contributing to environmental impact through energy consumption. We encourage
responsible deployment of our techniques with careful consideration of fairness, transparency, and
societal impact. Fourth, the datasets used in our experiments (robotic navigation and manipulation
environments) are used in accordance with their original licensing terms, and our preference-based
approach does not introduce additional privacy concerns beyond standard RL training procedures.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details and
experimental specifications. The complete mathematical formulation of our bi-level optimization
framework and the primitive-regularized DPO objective are detailed in Section 4.1, complete proof in
Appendix A.1 with algorithmic descriptions provided in Algorithm 1. All hyperparameter settings
for our experiments, including learning rates, batch sizes, regularization coefficients (λ, β), and
network architectures, are specified in Appendix Table 3. Our experimental setup covers four distinct
robotic environments (maze navigation, pick-and-place, push, and Franka kitchen manipulation),
with detailed environment configurations, reward structures, and evaluation protocols described
in Section 5 and Appendix A.7. The novel metrics we introduce for quantifying non-stationarity
(subgoal distance metric and value stability metric) include complete computational procedures in
Section 5. Implementation details for all baseline methods are provided in Appendix A.7 to ensure
fair comparison. We plan to release our complete codebase, including the bi-level optimization
implementation, preference data collection procedures, and evaluation scripts upon publication. All
statistical analysis methodologies, including significance testing procedures and confidence interval
calculations, are documented to support replication. Our computational infrastructure specifications
(hardware requirements, training times, memory usage) are detailed in Appendix A.4 to facilitate
reproduction across different computational setups.
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A APPENDIX

A.1 DERIVATION OF THE DIPPER OBJECTIVE

Here, we provide the complete derivation of thee DIPPER objective.

1. Bi-level Objective:

Following Eqn (7) in the main text, the approximate Lagrangian for the bi-level HRL is represented
as:

max
πH ,πL

E

[
T−1∑
t=0

(
r(st, gt, g

∗) + λH(πH) + λ(V L(st, gt)− V L
∗ (st, gt))

)]
. (10)
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This equation is a direct consequence of the proposed bi-level formulation of the HRL problem
(Section 4.1). Here r(st, gt, g

∗) is the high level reward, H(πH) denotes the entropy with respect to
the higher level policy, V L(st, gt) is the lower level value function, V L

∗ (st, gt) represents the optimal
lower level value function, and λ is the weight hyper-parameter.

Let Rt := r(st, gt, g
∗) + λ(V L(st, gt)− V L

∗ (st, gt)), then we can rewrite equation 10 as:

max
πH ,πL

E
[ T−1∑

t=0

Rt + λH(πH)

]
, (11)

2. Bellman Equation for High-Level Q-function: Using equation 11, and as originally explored
in Garg et al. (2021), the relationship between the optimal future return and the current timestep
return for the higher level policy is captured by the following bellman equation:

QH
∗ (st, g

∗, gt)=

{
Rt + V H

∗ (st+1, g
∗) if st+1 isn’t terminal,

Rt if st+1 is terminal.
(12)

In non-terminal cases, using the last equation we write:

Rt + V H
∗ (st+1, g

∗) = QH
∗ (st, g

∗, gt) (13)

We can reformulate he items in this equation to represent the reward as:

Rt = QH
∗ (st, g

∗, gt)− V H
∗ (st+1, g

∗). (14)

Thus, there is a bijection between the reward function Rt and the corresponding optimal Q-function
QH

∗ (st, gt, g
∗).

3. Trajectory-wise Expansion:

Inspired from Rafailov et al. (2024a), we consider the problem in a token-level MDP setting (for
trajectory τ ). We consider equation 14 and take a summation over t ∈ [0, T − 1] to derive the
following:

T−1∑
t=0

Rt
(a)
=

T−1∑
t=0

(QH
∗ (st, g

∗, gt)− V H
∗ (st+1, g

∗)) (15)

Now, we add and substract V H
∗ (s0, g

∗) on the RHS:

T−1∑
t=0

Rt =

T−1∑
t=0

(QH
∗ (st, g

∗, gt)− V H
∗ (st+1, g

∗)) + V H
∗ (s0, g

∗)− V H
∗ (s0, g

∗). (16)

This can be re-arranged as:

T−1∑
t=0

Rt = V H
∗ (s0, g

∗) +

T−1∑
t=0

(QH
∗ (st, g

∗, gt)− V H
∗ (st, g

∗)). (17)

Now, by definition, the advantage function AH
∗ (st, g

∗, gt) is defined as: AH
∗ (st, g

∗, gt) =
QH

∗ (st, g
∗, gt)− V H

∗ (st, g
∗)

We can re-place the term QH
∗ (st, g

∗, gt)− V H
∗ (st, g

∗) in the last equation by AH
∗ (st, g

∗, gt) to yield:

T−1∑
t=0

Rt = V H
∗ (s0, g

∗) +

T−1∑
t=0

(AH
∗ (st, g

∗, gt)). (18)

Now, based on a result (Ziebart, 2010) for maximum entropy RL setting: AH
∗ (st, g

∗, gt) =
β log(πH

∗ (gt|st, g∗)), we replace the advantage term in last equation to yield:

14
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T−1∑
t=0

Rt = V H
∗ (s0, g

∗) +

T−1∑
t=0

(β log πH
∗ (gt|st, g∗)). (19)

Recall that we had defined Rt = r(st, gt, g
∗) + λ(V L(st, gt) − V L

∗ (st, gt)). Replacing Rt on the
LHS in the last equation yields:

T−1∑
t=0

(r(st, gt, g
∗) + λ(V L(st, gt)− V L

∗ (st, gt))) = V H
∗ (s0, g

∗) +

T−1∑
t=0

(β log πH
∗ (gt|st, g∗)). (20)

Re-arranging this term by bringing the λ weighted term from LHS to RHS, we get:

T−1∑
t=0

r(st, gt, g
∗) = V H

∗ (s0, g
∗)+

T−1∑
t=0

(
β log πH

∗ (gt|st, g∗)− λ(V L(st, gt)− V L
∗ (st, gt))

)
. (21)

4. Primitive-Regularized DPO Objective:

Finally, we use the LHS (
∑T−1

t=0 r(st, gt, g
∗)) derived in equation 21, and substitute it in equation 3

from the main paper, to yield our primitive regularized DPO objective LO as:

LO = −E(τ1,τ2,y)∼D

[
log σ

(T−1∑
t=0

(
β log πH

∗
(
g1t |s1t , g∗

)
− β log πH

∗
(
g2t |s2t , g∗

)
− λ((V L(s1t , g

1
t )−V L

∗(s
1
t , g

1
t )− (V L(s2t , g

2
t )−V L

∗(s
2
t , g

2
t )))

))]
. (22)

Note that terms V H
∗ (s0, g

∗) is the same for both trajectories and hence it cancels. This DIPPER
objective optimizes the higher-level policy using primitive regularized DPO.

A.2 DIPPER ALGORITHM

Here, we provide the DIPPER pseudo-code.

Algorithm 1 DIPPER

1: Initialize preference dataset D = {}.
2: Initialize lower level replay buffer RL = {}.
3: for i = 1 . . . N do
4: // Collect higher level trajectories τ using πH and lower level trajectories ρ using πL,
5: // and store the trajectories in D and RL respectively.
6: // After every m timesteps, relabel D using preference feedback y.
7: // Lower level value function update
8: for each gradient step in t=0 to k do
9: Optimize lower level value function V L to get V L

m .
10: // Higher level policy update using DIPPER
11: for each gradient step do
12: // Sample higher level behavior trajectories.
13: (τ1, τ2, y) ∼ D
14: Optimize higher level policy πH using equation 9.
15: // Lower primitive policy update using RL
16: for each gradient step do
17: Sample ρ from RL.
18: Optimize lower policy πL using SAC.

15
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A.3 RELATED WORK

Hierarchical Reinforcement Learning. HRL is an elegant framework that promises the intuitive
benefits of temporal abstraction and improved exploration (Nachum et al., 2019). Prior research
work has focused on developing efficient methods that leverage hierarchical learning to efficiently
solve complex tasks (Sutton et al., 1999; Barto & Mahadevan, 2003; Parr & Russell, 1998; Dietterich,
1999). Goal-conditioned HRL is an important framework in which a higher-level policy assigns
subgoals to a lower-level policy (Dayan & Hinton, 1992; Vezhnevets et al., 2017), which executes
primitive actions on the environment. Despite its advantages, HRL faces challenges owing to its
hierarchical structure, as goal-conditioned RL based approaches suffer from non-stationarity in
off-policy settings where multiple levels are trained concurrently (Nachum et al., 2018; Levy et al.,
2018). These issues arise because the lower level policy behavior is sub-optimal and unstable. Prior
works deal with these issues by either simulating optimal lower primitive behavior (Levy et al.,
2018), relabeling replay buffer transitions (Nachum et al., 2018; Singh & Namboodiri, 2023b;a), or
assuming access to privileged information like expert demonstrations or preferences (Singh et al.,
2024; Singh & Namboodiri, 2023a;b). In contrast, we propose a novel bi-level formulation to mitigate
non-stationarity and regularize the higher-level policy to generate feasible subgoals for the lower-level
policy.

Behavior Priors. Some prior work relies on hand-crafted actions or behavior priors to accelerate
learning (Nasiriany et al., 2021; Dalal et al., 2021). While these methods can simplify hierarchical
learning, their performance heavily depends on the quality of the priors; sub-optimal priors may lead
to sub-optimal performance. In contrast, ours is an end-to-end approach that does not require prior
specification, thereby avoiding significant expert human effort.

Preference-based Learning. A variety of methods have been developed in this area to apply
reinforcement learning (RL) to human preference data (Knox & Stone, 2009; Pilarski et al., 2011;
Wilson et al., 2012; Daniel et al., 2015), that typically involve collecting preference data from human
annotators, which is then used to guide downstream learning. Prior works in this area (Christiano
et al., 2017; Lee et al., 2021) first train a reward model based on the preference data, and subsequently
employ RL to derive an optimal policy for that reward model. More recent approaches have focused on
improving sample efficiency using off-policy policy gradient methods (Haarnoja et al., 2018) to learn
the policy. Recently, direct preference optimization based approaches have emerged (Rafailov et al.,
2024b;a; Hejna et al., 2023), which bypass the need to learn a reward model and subsequent RL step,
by directly optimizing the policy with a KL-regularized maximum likelihood objective corresponding
to a pre-trained model. In this work, we build on the foundational knowledge in maximum entropy
RL (Ziebart, 2010), and derive a token-level direct preference optimization (Rafailov et al., 2024b;a)
objective regularized by lower -level primitive, resulting in an efficient hierarchical framework
capable of solving complex robotic tasks.

A.4 PREFERENCE DATA USAGE AND COLLECTION COST ANALYSIS

Here, we quantify the amount of pair-wise comparisons and the preference collection cost.

1. Preference Data Volume:

In our experiments, we collected approximately 10,000 pairwise trajectory comparisons per environ-
ment, depending on task complexity and horizon length. We ensured that these pairwise comparisons
represented a diverse array of trajectories, including both near-optimal and suboptimal behaviors,
to provide meaningful supervision for the high-level policy. We present the amount of pairwise
comparisons (Pairs per Million Env Steps) as follows:

Environment Pairwise Comparisons Env Steps (M) Pairs per M Steps

Maze 10,000 1.35 7,407
Pick & Place 10,000 0.9 11,111
Push 10,000 0.775 12,903
Kitchen 10,000 0.45 22,222

Table 1: Pairwise comparisons and efficiency across environments.
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2. Human/CPU Labeling Cost:

For human-labeled preferences, annotators required ∼3–5 seconds per comparison, including visual-
izing both trajectories and rendering the pairwise choice in the interface. Thus, annotating a batch
of 10,000 pairs requires approximately 8–14 human-annotator hours in total for a given task, often
spread across multiple sessions.

A.5 ANALYSIS OF ROBUSTNESS TO NOISE

2. Robustness to Noisy Preference Feedback: Sensitivity Study

We performed a sensitivity analysis where a fixed proportion of the preference labels in the training
set were flipped at random (i.e., the less-preferred trajectory was labeled as preferred and vice versa).
We evaluated DIPPER under synthetic label noise rates of 0%, 10%, 30% label flips. We provide the
success rate performance for different noise rates in the following table:

Environment 0% Noise Rate 10% Noise Rate 30% Noise Rate
Maze 0.48 0.37 0.23
Pick and Place 0.4 0.35 0.24
Push 0.38 0.33 0.29
Kitchen 0.81 0.76 0.61

Table 2: Noise rates across environments (adjust caption as needed).

These results are consistent with findings in recent DPO literature which show that direct preference
optimization methods can tolerate moderate label noise but suffer as the noise rate exceeds.

A.6 ADDITIONAL ABLATION EXPERIMENTS

Here, we provide additional ablations to analyze the effect of varying regularization weight λ
hyper-parameter and β hyper-parameter.

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen

Figure 4: Regularization weight ablation. This figure depicts the success rate performance for varying values
of the primitive regularization weight λ. When λ is too small, we loose the benefits of primitive-informed
regularization resulting in poor performance, whereas too large λ values can lead to degenerate solutions. Hence,
selecting appropriate λ value is essential for accurate subgoal prediction and enhancing overall performance.

A.7 IMPLEMENTATION DETAILS

We conducted experiments on two systems, each equipped with Intel Core i7 processors, 48GB of
RAM, and Nvidia Geforce GTX 1080 GPUs. The experiments included the corresponding timesteps
taken for each run. For the environments (i)− (iv), the maximum task horizon T is set to 225, 50,
50, and 225 timesteps, respectively, with the lower-level primitive allowed to execute for 15, 7, 7,
and 15 timesteps. We used off-policy Soft Actor Critic (SAC)(Haarnoja et al., 2018) to optimize
the RL objective, leveraging the Adam optimizer(Kingma & Ba, 2014). Both the actor and critic
networks consist of three fully connected layers with 512 neurons per layer. The total timesteps for
experiments in environments (i)− (iv) are 1.35e6, 9e5, 1.3E6, and 6.3e5, respectively.

For the maze navigation task, a 7-degree-of-freedom (7-DoF) robotic arm navigates a four-room
maze with its gripper fixed at table height and closed, maneuvering to reach a goal position. In the
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(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen

Figure 5: Max-ent parameter ablation. This figure illustrates the success rate performance for different values
of the max-ent parameter β hyper-parameter. This parameter controls the exploration in maximum-entropy
formulation. If β is too large, the higher-level policy may perform extensive exploration but stay away from
optimal subgoal prediction, whereas if β is too small, the higher-level might not explore and predict sub-optimal
subgoals. Hence, selecting an appropriate β value is essential for enhancing overall performance.

pick-and-place task, the 7-DoF robotic arm gripper locates, picks up, and delivers a square block to
the target location. In the push task, the arm’s gripper must push the square block toward the goal.
For the kitchen task, a 9-DoF Franka robot is tasked with opening a microwave door as part of a
predefined complex sequence to reach the final goal. We compare our approach with the Discriminator
Actor-Critic (Kostrikov et al., 2018), which uses a single expert demonstration. Although this study
doesn’t explore it, combining preference-based learning with demonstrations presents an exciting
direction for future research (Cao et al., 2020).

To ensure fair comparisons, we maintain uniformity across all baselines by keeping parameters such
as neural network layer width, number of layers, choice of optimizer, SAC implementation settings,
and others consistent wherever applicable. In RAPS, the lower-level behaviors are structured as
follows: For maze navigation, we design a single primitive, reach, where the lower-level primitive
moves directly toward the subgoal predicted by the higher level. For the pick-and-place and push
tasks, we develop three primitives: gripper-reach, where the gripper moves to a designated position
(xi, yi, zi); gripper-open, which opens the gripper; and gripper-close, which closes the gripper. In
the kitchen task, we use the action primitives implemented in RAPS (Dalal et al., 2021).

A.7.1 ADDITIONAL HYPER-PARAMETERS

Here, we enlist the additional hyper-parameters used in DIPPER:

Table 3: Hyperparameter Configuration

Parameter Value Description
activation tanh activation for reward model
layers 3 number of layers in the critic/actor networks
hidden 512 number of neurons in each hidden layer
Q_lr 0.001 critic learning rate
pi_lr 0.001 actor learning rate
buffer_size int(1E7) for experience replay
clip_obs 200 clip observation
n_cycles 1 per epoch
n_batches 10 training batches per cycle
batch_size 1024 batch size hyper-parameter
reward_batch_size 50 reward batch size for DPO-FLAT
random_eps 0.2 percentage of time a random action is taken
alpha 0.05 weightage parameter for SAC
noise_eps 0.05 std of gaussian noise added to not-completely-random actions
norm_eps 0.01 epsilon used for observation normalization
norm_clip 5 normalized observations are cropped to this value
adam_beta1 0.9 beta 1 for Adam optimizer
adam_beta2 0.999 beta 2 for Adam optimizer
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A.8 IMPACT STATEMENT

Our proposed approach and algorithm are not expected to lead to immediate technological ad-
vancements. Instead, our primary contributions are conceptual, focusing on fundamental aspects of
Hierarchical Reinforcement Learning (HRL). By introducing a preference-based methodology, we
offer a novel framework that we believe has significant potential to enhance HRL research and its
related fields. This conceptual foundation paves the way for future investigations and could stimulate
advancements in HRL and associated areas.

A.9 ENVIRONMENT DETAILS

A.9.1 MAZE NAVIGATION TASK

In this environment, a 7-DOF robotic arm gripper must navigate through randomly generated four-
room mazes. The gripper remains closed, and both the walls and gates are randomly placed. The
table is divided into a rectangular W ×H grid, with vertical and horizontal wall positions WP and
HP selected randomly from the ranges (1,W − 2) and (1, H − 2), respectively. In this four-room
setup, gate positions are also randomly chosen from (1,WP − 1), (WP + 1,W − 2), (1, HP − 1),
and (HP + 1, H − 2). The gripper’s height remains fixed at table height, and it must move through
the maze to reach the goal, marked by a red sphere.

For both higher and lower-level policies, unless Stated otherwise, the environment consists of
continuous State and action spaces. The State is encoded as a vector [p,M], where p represents the
gripper’s current position, and M is the sparse maze representation. The input to the higher-level
policy is a concatenated vector [p,M, g], with g representing the goal position, while the lower-level
policy input is [p,M, sg], where sg is the subgoal provided by the higher-level policy. The current
position of the gripper is treated as the current achieved goal. The sparse maze array M is a 2D
one-hot vector, where walls are denoted by a value of 1 and open spaces by 0.

In our experiments, the sizes of p and M are set to 3 and 110, respectively. The higher-level policy
predicts the subgoal sg, so its action space aligns with the goal space of the lower-level primitive.
The lower-level primitive’s action, a, executed in the environment, is a 4-dimensional vector, where
each dimension ai ∈ [0, 1]. The first three dimensions adjust the gripper’s position, while the fourth
controls the gripper itself: 0 indicates fully closed, 0.5 means half-closed, and 1 means fully open.

A.9.2 PICK AND PLACE AND PUSH ENVIRONMENTS

In the pick-and-place environment, a 7-DOF robotic arm gripper is tasked with picking up a square
block and placing it at a designated goal position slightly above the table surface. This complex
task involves navigating the gripper to the block, closing it to grasp the block, and then transporting
the block to the target goal. In the push environment, the gripper must push a square block towards
the goal position. The State is represented by the vector [p, o, q, e], where p is the gripper’s current
position, o is the block’s position on the table, q is the relative position of the block to the gripper,
and e contains the linear and angular velocities of both the gripper and the block.

The higher-level policy input is the concatenated vector [p, o, q, e, g], where g denotes the target goal
position, while the lower-level policy input is [p, o, q, e, sg], with sg being the subgoal provided by
the higher-level policy. The current position of the block is treated as the achieved goal. In our
experiments, the dimensions for p, o, q, and e are set to 3, 3, 3, and 11, respectively. The higher-level
policy predicts the subgoal sg , so the action and goal space dimensions align. The lower-level action
a is a 4-dimensional vector, where each dimension ai falls within the range [0, 1]. The first three
dimensions adjust the gripper’s position, and the fourth controls the gripper itself (0 for closed, 1 for
open). During training, the block and goal positions are randomly generated, with the block always
starting on the table and the goal placed above the table at a fixed height.

A.10 ENVIRONMENT VISUALIZATIONS

Here, we provide some visualizations of the agent successfully performing the task.
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Figure 6: Maze navigation task visualization: The visualization is a successful attempt at performing
maze navigation task

Figure 7: Pick and place task visualization: This figure provides visualization of a successful
attempt at performing pick and place task

Figure 8: Push task visualization: The visualization is a successful attempt at performing push task

Figure 9: Kitchen task visualization: The visualization is a successful attempt at performing kitchen
task
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