
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIRECT PREFERENCE OPTIMIZATION FOR PRIMITIVE-
ENABLED HIERARCHICAL RL: A BILEVEL APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Hierarchical reinforcement learning (HRL) enables agents to solve complex, long-
horizon tasks by decomposing them into manageable sub-tasks. However, HRL
methods face two fundamental challenges: (i) non-stationarity caused by the evolv-
ing lower-level policy during training, which destabilizes higher-level learning, and
(ii) the generation of infeasible subgoals that lower-level policies cannot achieve.
To address these challenges, we introduce DIPPER, a novel HRL framework
that formulates goal-conditioned HRL as a bi-level optimization problem and
leverages direct preference optimization (DPO) to train the higher-level policy.
By learning from preference comparisons over subgoal sequences rather than
rewards that depend on the evolving lower-level policy, DIPPER mitigates the
impact of non-stationarity on higher-level learning. To address infeasible subgoals,
DIPPER incorporates lower-level value function regularization that encourages
the higher-level policy to propose achievable subgoals. We introduce two novel
metrics to quantitatively verify that DIPPER mitigates non-stationarity and in-
feasible subgoal generation issues in HRL. Empirical evaluation on challenging
robotic navigation and manipulation benchmarks shows that DIPPER achieves upto
40% improvements over state-of-the-art baselines on challenging sparse-reward
scenarios, highlighting the potential of preference-based learning for addressing
longstanding HRL limitations.

1 INTRODUCTION

Hierarchical Reinforcement Learning (HRL) offers a promising framework for tackling complex, long-
horizon tasks by decomposing them into manageable sub-tasks (Sutton et al., 1999; Harb et al., 2018).
In goal-conditioned HRL (Dayan & Hinton, 1992; Vezhnevets et al., 2017), a higher-level policy sets
subgoals for a lower-level policy (henceforth called the primitive policy), which executes lower level
primitive actions to achieve these subgoals. This decomposition enables temporal abstraction and
improves exploration efficiency (Nachum et al., 2019).

Challenges. However, HRL methods face two fundamental challenges, especially in sparse reward
settings: (i) Non-stationarity- The higher-level policy’s learning process becomes unstable due to
the evolving nature of the lower-level policy (Levy et al., 2018; Nachum et al., 2018). As the
lower-level policy updates, the higher-level reward function and transition dynamics shift, leading to
a non-stationary environment that hinders learning. (ii) Infeasible subgoal generation- The higher-
level policy might generate subgoals that are beyond the current capabilities of the lower-level
policy, resulting in suboptimal performance (Chane-Sane et al., 2021). These challenges stem from
the intertwined dependencies between the hierarchical levels. The higher-level policy’s rewards
and transitions depend on the lower-level policy’s behavior, while subgoals from the higher level
simultaneously shape the lower-level policy’s actions. This bidirectional dependency creates a
complex optimization landscape that traditional HRL approaches struggle to navigate effectively.

We argue the root cause is the lack of a principled formulation. We posit that a key reason for
these persistent challenges is the absence of a mathematically rigorous formulation that fully captures
the inter-dependencies between hierarchical policies. To address this, we model HRL as a bi-level
optimization problem, where the higher-level policy optimization constitutes the upper-level problem
and the lower-level policy optimization forms the lower-level problem. This unified framework

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Lower
primitive

Environment

Higher
Policy

RL

Lower Level
Replay Buffer

Vanilla HRL

Higher Level
Replay Buffer

RL
Lower

primitive

Higher
Policy

Primitive-regularized
DPO

Environment

Lower Level
Replay Buffer

RL

DIPPER

Higher level
Preference feedback

Maze

Push Kitchen

Pick and Place

Environments

Figure 1: DIPPER Overview: (left) In vanilla HRL, the higher level predicts subgoals gt and gets the
environment reward that depend on the lower primitive behavior, which causes non-stationarity in HRL. Also,
the higher level may predict infeasible subgoals that are too hard for lower primitive. (middle) In DIPPER, the
lower level value function VπL is leveraged to condition higher level policy into predicting feasible subgoals,
and direct preference optimization (DPO) is used to optimize higher level policy. Since this preference-based
learning approach does not depend on lower primitive, this mitigates non-stationarity. Note that since the
current estimation of value function is used to regularize the higher policy, it does not cause non-stationarity.
(right) Training environments: (i) maze navigation, (ii) pick and place, (iii) push, and (iv) franka kitchen
environment.

enables the joint optimization of both policies while explicitly modeling their inter-dependencies.
Thus, we propose a novel bi-level reformulation tailored to goal-conditioned HRL (Section 4.1).

A bi-level view clarifies the true sources of instability. While our bi-level formulation rigorously
models dependencies between hierarchical levels, fundamental challenges still remain: the higher-
level policy’s reward depends on the evolving lower-level policy, resulting in an unstable and
non-stationary learning signal. To address these limitations, we introduce DIPPER, a novel HRL
method that leverages direct preference optimization (DPO) (Rafailov et al., 2024b) to train the
higher-level policy on stationary preference datasets, collected from trajectories generated by a
behavior policy and labeled by human preferences. In DIPPER, preferences are generated by humans
on paired trajectories, which can be collected using any behavior policy (not necessarily the evolving
lower-level policy). This ensures the preference dataset remains stationary, as it is based on fixed
human judgments rather than the changing lower-level reward. By optimizing the higher-level policy
with DPO on this stationary dataset, we decouple higher-level learning from the non-stationary lower-
level reward signal, thus mitigating non-stationarity due to reward at the higher level and stabilizing
hierarchical training. Further, our bi-level formulation enables us to address the infeasible subgoal
generation problem at the higher level, by incorporating lower-level value function regularization
(a direct consequence of our bi-level formulation) that grounds the subgoal proposals in the lower
level’s value function, ensuring that the higher-level policy generates only feasible subgoals.

Our main contributions are as follows:
(i) Bi-level optimization framework for HRL: We provide a rigorous mathematical formulation
of HRL as a bi-level optimization problem, capturing the interdependencies between hierarchical
policies and laying the groundwork for principled solution development (Section 4).
(ii) Mitigation of non-stationarity and infeasible subgoal generation: By adopting a principled
bi-level approach, DIPPER leverages DPO to significantly reduce the effects of non-stationarity and
infeasible subgoal generation, as demonstrated through detailed analysis, ablation studies, and novel
metrics (Section 5 Figure 3).
(iii) Improved performance in complex robotics tasks: Extensive experiments across diverse
navigation and manipulation environments show that DIPPER achieves around 40% improvement
over state-of-the-art baselines in complex pick and place, push and franka kitchen tasks where other
methods typically struggle to make any progress (Section 5).

2 RELATED WORK

Hierarchical Reinforcement Learning (HRL). HRL offers the benefits of temporal abstraction
and improved exploration (Nachum et al., 2019), enabling agents to solve complex, long-horizon

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tasks by decomposing them into sub-tasks (Sutton et al., 1999; Barto & Mahadevan, 2003; Parr
& Russell, 1998). Despite these advantages, HRL methods are fundamentally challenged by non-
stationarity (Nachum et al., 2018; Levy et al., 2018) and the generation of infeasible subgoals. Prior
works have sought to mitigate non-stationarity by simulating optimal lower-level primitive behav-
ior (Levy et al., 2018), relabeling transitions in the replay buffer (Nachum et al., 2018; Singh &
Namboodiri, 2023b;a), or assuming access to privileged information such as expert demonstrations
or preferences (Singh et al., 2024; Singh & Namboodiri, 2023a;b). However, existing methods lack a
principled mathematical framework to explicitly model the bidirectional dependencies between hier-
archical policies, where the higher-level policy’s subgoal predictions influence lower-level behavior,
while the evolving lower-level policy simultaneously destabilizes higher-level learning. To address
this, we reformulate HRL as a bi-level optimization problem, explicitly decoupling and coordinating
the interdependent objectives of hierarchical policies through mathematical constraints.

Preference-based Learning (PbL). PbL applies reinforcement learning to human preference
data (Knox & Stone, 2009; Pilarski et al., 2011; Wilson et al., 2012; Daniel et al., 2015), pro-
viding a mechanism for guiding policy learning in the absence of explicit reward signals. Prior ap-
proaches (Christiano et al., 2017; Lee et al., 2021) first train a reward model from human preferences
and then optimize a policy based on this reward. Prior work (Singh et al., 2024) attempts to address
HRL non-stationarity by leveraging reinforcement learning from human feedback (RLHF) (Christiano
et al., 2017), by learning a reward function for the higher-level policy, avoiding direct dependence on
the non-stationary environment rewards.

More recently, direct preference optimization (DPO) methods (Rafailov et al., 2024b;a; Hejna et al.,
2023) have emerged, which directly optimize the policy using a KL-regularized maximum likelihood
objective, bypassing the need for an explicit reward model. Our work builds on advances in maximum
entropy RL (Ziebart, 2010) and DPO, deriving a DPO objective regularized by the lower-level policy’s
value function to address both non-stationarity and infeasible subgoal generation issues in HRL.
For a comprehensive review of related work, see Appendix A.3.

3 PROBLEM FORMULATION

3.1 HIERARCHICAL REINFORCEMENT LEARNING (HRL)

Hierarchical Setup: The hierarchical formulation consists of two levels: a higher-level policy and
a lower-level policy. Let L represent the overall task horizon, which is factorized as L = T ×K,
where T and K denote the horizons of the higher-level and lower-level policies, respectively. The
higher-level policy generates subgoals every K timesteps, while the lower-level policy executes
primitive actions to achieve these subgoals within the K-timestep window. Let t ∈ [1, T] and
k ∈ [1,K] denote the timesteps for the higher-level and lower-level policies, respectively. We denote
the timestep indexes for higher and lower levels separately for ease of representation.

Lower Level MDP: The lower level MDP is defined as (S,AL, pL, rL), where S is the state
space, and pL : S × AL → ∆(S) denotes the transition dynamics. The lower level action space
is denoted as AL. The lower-level policy πL : S × G → ∆(AL) generates primitive actions
ak ∼ πL(·|st+k, gt) conditioned on subgoals gt ∈ AH provided by the higher-level policy, and
st+k ∈ S is the current state. The lower-level policy is sparsely rewarded when it achieves the
subgoal gt: rL(st+k, ak, gt) = 1{|st+k−gt|2<ε}, with 1C as an indicator function returning 1 if
the condition C holds, indicating that the subgoal gt is achieved. In the lower-level replay buffer,
a transition is defined as (st+k, gt, ak, r

L(st+k, ak, gt), st+k+1). We adopt a maximum entropy
RL setting, where H(πL) denotes the entropy of the lower-level policy πL. To learn optimal
lower level policy, we maximize the expected lower level cumulative reward, formally defined as
πL
∗ := argmaxπL V L(πH), where

V L(πH) = Egt∼πH ,ak∼πL

[
K−1∑
k=0

rL(st+k, ak, gt) + λH(πL)

]
. (1)

Here gt ∼ πH(·|st, g∗) is the subgoal selected by the upper level for step t and expectation is
over the randomness induced by the environment transitions, lower level policy, and higher level
policy. For each step t, we have ak ∼ πL(·|st+k, gt), and for the current state st+k, the next state is
st+k+1 ∼ pL(st+k, ak, gt) where pL determines the environment dynamics, and is hence stationary.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Higher-Level MDP: The higher-level MDP is defined as (S,G,AH , pH , rH), where S is the state
space, and G is the goal space. AH is the higher-level action space, which we set as AH = G
(subgoals are drawn from the goal space). The environment reward for the higher level, rH :
S ×AH × G → R, encourages progress toward the final goal g∗. A higher-level transition is stored
in the replay buffer as (st, g∗, gt, rH(st, gt, g

∗), st+1). We adopt a maximum entropy RL setting,
where H(πH) denotes the entropy of the higher-level policy πH . The higher-level objective is
πH
∗ := argmaxπH JH(πH , πL(πH)), where

JH(πH , πL(πH)) := E

[
T−1∑
t=0

r(st, gt, g
∗) + λH(πH)

]
. (2)

Here, λ is the entropy weight-parameter. This objective can be expressed using the higher-level value
function V H(st, g

∗;πH , πL), which estimates the expected cumulative reward starting from state st
toward goal g∗, following policy πH at the higher level and πL at the lower level. The higher-level
Q-function QH(st, g

∗, gt;π
H , πL) estimates the expected cumulative reward for taking subgoal gt

in state st to achieve the final goal g∗.

Non-stationarity in HRL. For every subgoal gt ∼ πH(·|st, g∗) predicted by the higher-level policy,
the lower level policy πL is allowed to execute for k timesteps, after which the policy reaches state
st+k. The transition kernel pHπL(st, gt) models the distribution over next states st+k ∼ pHπL(st, gt)

depends explicitly on the lower-level policy πL (as the lower-level policy determines the sequence
of primitive actions executed to pursue gt over k steps). Since πL is updated throughout training,
both the higher-level reward rH (which depends on the achieved state st+k) and transition kernel
pHπL become non-stationary. This causes training instability in learning πH . Further, in off-policy RL,
since the lower level policy changes during training, prior transitions in the replay buffer become
obsolete, further exacerbating the non-stationarity issue.
We now enlist the challenges of standard HRL-based approaches.

Challenges of HRL:

While HRL offers advantages over RL, such as better sample efficiency through temporal abstraction
and enhanced exploration (Nachum et al., 2019), it faces two fundamental challenges:
C1: Non-stationarity. Vanilla off-policy HRL suffers from non-stationarity due to changing behavior
of the lower-level policy (Nachum et al., 2018; Levy et al., 2018), due to which the higher level
reward function and transition dynamics become non-stationary, thus causing RHL non-stationarity.
C2: Infeasible subgoal generation. Since the sub-optimality in the lower-level policy affects its
ability to reach a given subgoal, it consequently impacts the higher-level credit assignment during
subgoal generation. This causes the higher level to produce infeasible subgoals for the lower level
policy (Chane-Sane et al., 2021). Thus, despite its theoretical advantages, HRL often underperforms
in practice (Nachum et al., 2018).

Given these challenges, preference-based learning (PbL) methods emerge as a promising alternative
by incorporating stationary human feedback to guide policy optimization without direct dependence
on shifting rewards or transitions. PbL approaches, such as Reinforcement Learning from Human
Feedback (RLHF) (Christiano et al., 2017) and Direct Preference Optimization (DPO) (Rafailov et al.,
2024b), rank trajectories via pairwise preferences to train models in complex, reward-sparse tasks. In
what follows, we outline PbL fundamentals and the limitations of directly applying PbL approaches.

3.2 PREFERENCE BASED LEARNING (PBL)

Preference-based learning (PbL) methods such as RLHF (Christiano et al., 2017; Ibarz et al., 2018;
Lee et al., 2021) and DPO (Rafailov et al., 2024b) leverage preference data to solve complex tasks.

RL from human feedback (RLHF): In this setting, the agent behavior is represented as a T -length
trajectory denoted as τ of states and actions: τ = ((st, gt), (st+1, gt+1)...(st+T−1, gt+T−1)). The
learned reward model to be learned is denoted by r : S ×G → R, with parameters ϕ. The preferences
between two trajectories, τ1 and τ2, can be expressed through the Bradley-Terry model (Bradley &

Terry, 1952) Pϕ

[
τ1 ≻ τ2

]
=

exp
∑

t r(s
1
t ,g

1
t ,g

∗)∑
i∈{1,2} exp

∑
t r(sit,gi

t,g
∗)

, where τ1 ≻ τ2 implies that τ1 is preferred

over τ2. The preference dataset D has entries of the form (τ1, τ2, y), where y = (1, 0) when τ1

is preferred over τ2, y = (0, 1) when τ2 is preferred over τ1, and y = (0.5, 0.5) in case of no

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

preference. In RLHF, we first learn the reward function r (Christiano et al., 2017) using cross-entropy
loss along with Bradley-Terry model to yield the formulation:

L = −E(τ1,τ2,y)∼D

[
log σ

(T−1∑
t=0

r
(
s1t , g

1
t , g

∗)− T−1∑
t=0

r
(
s2t , g

2
t , g

∗))]. (3)

Direct Preference Optimization (DPO): Although RLHF provides an elegant framework for learning
policies from preferences, it involves RL training step which is often expensive and unstable in
practice. In contrast, DPO (Rafailov et al., 2024b) circumvents the need for RL step by using
a closed-form solution for the optimal policy of the KL-regularized RL problem (Levine, 2018):
π∗(a|s) = 1

Z(s)πref (a|s)er(s,a), where πref is the reference policy, π∗ is the optimal policy, and
Z(s) is a normalizing partition function. DPO directly optimizes policies from preferences, bypassing
explicit reward modeling, offering stable convergence (detailed in Section 5).

Challenges of directly applying PbL to HRL:

Directly using RLHF: Prior approaches leverage the advancements in PbL to mitigate HRL non-
stationarity (Singh et al., 2024) by utilizing the reward model rHϕ learned using the reward model
(corresponding to the preference dataset) as higher level rewards instead of environment rewards rHπL

used in vanilla HRL approaches, which depend on the sub-optimal lower primitive. However, such
approaches may lead to degenerate solutions by generating infeasible subgoals for the lower-level
primitive. Additionally, such approaches require RL as an intermediate step, which might cause
training instability (Rafailov et al., 2024b).
Directly using DPO: In temporally extended task environments like robotics, directly extending DPO
to the HRL framework is non-trivial due to three reasons: (i) such scenarios deal with multi-step
trajectories involving stochastic transition models, (ii) efficient pre-trained reference policies are
typically unavailable in robotics, (iii) similar to RLHF, such approaches may produce degenerate
solutions when higher level policy subgoal predictions are infeasible.

4 PROPOSED APPROACH

To address the dual challenges of non-stationarity (C1) and infeasible subgoal generation (C2) in
HRL, we introduce DIPPER: DIrect Preference Optimization for Primitive-Enabled Hierarchical
Reinforcement Learning. We first formulate HRL as a bi-level optimization problem to develop a
principled framework that fully captures the bi-directional dependence between hierarchical policies.
Subsequently, we explain our hierarchical framework DIPPER that employs Direct Preference
Optimization (DPO) (Rafailov et al., 2024b) to train the higher level policy and RL to train the
lower-level policy (Section 4.2). The preference dataset can be collected using trajectories from
any behaviour policy. Since the preference labels are provided by an external human, they remain
stationary with respect to the lower-level policy during training. This effectively decouples the
higher level policy training from the changing lower-level policy behavior, thereby mitigating non-
stationarity issue (C1) in higher-level rewards and stabilizing HRL training.

We also show that our principled bi-level formulation naturally yields a lower-level value function
based regularization which ensures that the generated subgoals remain feasible for the lower-level
policy, thus addressing the infeasible subgoal generation issue (C2) in HRL. Finally, we derive
DIPPER objective, analyze its gradient, and provide the final practical algorithm.

4.1 HRL: BI-LEVEL FORMULATION

We present our bi-level formulation by using equation 2 and representing it as a constrained optimiza-
tion problem assuming the lower level policy to be optimal:

max
πH ,πL

J (πH, πL
∗ (π

H)) s.t. πL
∗ (π

H)=argmaxπLV L(πH), (4)

where J (πH , πL
∗ (π

H)) is the higher level objective and V L(πH) is the lower level value function,
conditioned on higher level policy subgoals. Utilizing the recent advancements in the optimization
literature (Liu et al., 2022), we represent equation 4 by equivalent constrained optimization problem:

max
πH ,πL

J (πH, πL) s.t. V L(πH)− V L
∗ (πH) ≥ 0. (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where, V L
∗ (πH) = maxπL

V L(πH). Notably, since the left-hand side of the inequality constraint
is always non-positive due to the fact that V L(πH)− V L

∗ (πH) ≤ 0, the constraint is satisfied only
when V L(πH) = V L

∗ (πH). Although the constraint in equation 5 holds for all states s and subgoals
g, however, enforcing it globally would make the problem intractable. Therefore, we relax the
constraint by only considering the (st, gt) pairs traversed by the higher-level policy. Leveraging this
relaxed constraint and replacing J (πH, πL) from equation 2, we propose the following approximate
Lagrangian objective

max
πH ,πL

E
[T−1∑

t=0

(r(st, gt, g
∗) + λH(πH) + λ(V L(st, gt)− V L

∗ (st, gt))

]
. (6)

We can use equation 6 to solve the HRL policies for both higher and lower level, where (i) the
higher level policy learns to achieve the final goal and predict feasible subgoals to the lower level
policy, and (ii) the lower level policy learns to achieve the predicted subgoals. However, directly
optimizing equation 6 requires knowledge of higher level reward function rHπL which is a function
of πL, which is non-stationary. Further, using RL to optimize the objective may lead to unstable
learning (Rafailov et al., 2024b).

4.2 DIPPER

To overcome these challenges, we propose DIPPER, our hierarchical approach that leverages
primitive-regularized DPO objective to optimize the hierarchical policies. Using the objective in equa-
tion 6 to derive the reward-policy equivalence equation and replacing it in equation 3, we get the
following DIPPER objective:

LO = −E(τ1,τ2,y)∼D

[
log σ

(T−1∑
t=0

(
β log πH

∗
(
g1t |s1t , g∗

)
− β log πH

∗
(
g2t |s2t , g∗

)
− λ((V L(s1t , g

1
t)−V L

∗(s
1
t , g

1
t)− (V L(s2t , g

2
t)−V L

∗(s
2
t , g

2
t)))

))]
, (7)

where (τ1, τ2, y) ∼ D represents a preference pair sampled from the preference dataset D, σ
represents the sigmoid function, λ is regularization weight parameter, and β is entropy weight
parameter. The complete derivation of the DIPPER objective is provided in the Appendix A.1. This
DIPPER objective optimizes the higher-level policy using primitive regularized DPO, thus decoupling
the higher-level learning from non-stationary lower-level policy rewards.

Analyzing DIPPER gradient: We further analyze the DIPPER objective by interpreting the gradient
with respect to higher level policy πH

∗ , denoted as:

∇LO=−βE(τ1,τ2,y)∼D

[T−1∑
t=0

(
σ
(
r̂
(
s2t , g

2
t

)
−r̂

(
s1t , g

1
t

))︸ ︷︷ ︸
higher weight for wrong preference

·
(
∇ log πH

(
g1t |s1t , g∗

)︸ ︷︷ ︸
increase likelihood of τ1

−∇ log πH
(
g2t |s2t , g∗

)︸ ︷︷ ︸
decrease likelihood of τ2

))]
.

(8)
where r̂(st, gt, g

∗) = β log πH(gt|st, g∗) − λ(V L(st, gt)−V L
∗ (st, gt)), which acts as an implicit

reward model determined by the higher-level policy and the lower-level value function. This objective
increases the likelihood of preferred trajectories while decreasing the likelihood of dis-preferred ones.
Based on the strength of the KL constraint, the examples are weighted based on how inaccurately
the implicit reward model r̂(st, gt, g∗) ranks the trajectories. This implicit reward acts as a value
function regularizer that conditions the higher-level policy to generate feasible subgoals.

Practical algorithm: The DIPPER objective in Eqn. 7 requires calculation of optimal lower-
level value function V L

∗ (st, gt), which is computationally expensive. We accordingly consider an
approximation V L

m(st, gt) to replace V L
∗ (st, gt), where we update the value function V L

m(st, gt)
gradient m times for every policy update, to get the following objective:

LO = −E(τ1,τ2,y)∼D

[
log σ

(T−1∑
t=0

(
β log πH

∗
(
g1t |s1t , g∗

)
− β log πH

∗
(
g2t |s2t , g∗

)
− λ((V L(s1t , g

1
t)−V L

m(s1t , g
1
t)− (V L(s2t , g

2
t)−V L

m(s2t , g
2
t)))

))]
.

(9)

The pseudo-code for DIPPER is provided in the Appendix A.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen

Figure 2: Success Rate plots. This figure illustrates the success rates across four sparse-reward maze navigation
and robotic manipulation tasks, where the solid lines represent the mean, and the shaded areas denote the
standard deviation across 5 different seeds. We evaluate DIPPER against several baselines. Although HAC,
SAGA and RAPS outperform DIPPER in the easier maze task, they fail to perform well in other challenging
tasks, where DIPPER demonstrates strong performance and significantly outperforms the baselines.

5 EXPERIMENTS

In our empirical analysis, we ask the following questions:
(1) How well does DIPPER perform against baselines? How well does DIPPER perform in
complex robotics control tasks against prior hierarchical and non-hierarchical baselines?
(2) Does DIPPER mitigate HRL limitations? How well does DIPPER mitigate the issues of
non-stationarity (C1) and infeasible subgoal generation (C2) in HRL?
(3) What is the impact of our design decisions on the overall performance? Can we concretely
justify our design choices through extensive ablation analysis?

Task details: We assess DIPPER on four robotic navigation and manipulation environments: (i)
maze navigation, (ii) pick and place (Andrychowicz et al., 2017), (iii) push, and (iv) franka kitchen
environment (Gupta et al., 2019). These are formulated as sparse reward scenarios, where the agent
is only rewarded when it comes within a δ distance of the goal. Due to this, these environments are
hard where the agent must extensively explore the environment before coming across any rewards.
As an example: in franka kitchen task, the agent only receives a sparse reward after achieving the
final goal (e.g. successfully opening the microwave and then turning on the gas knob).
Environment details: We provide the implementation and environment details in Appendix A.7
and A.9, and the implementation code in the supplementary. We provide the preference data usage
and collection cost analysis in Appendix A.4 The main objective of our empirical analysis is to
evaluate our approach on complex sparsely rewarded long-horizon tasks. Hence, we re-formulate the
maze navigation task and increase its complexity by considering randomly generated mazes. Thus,
the agent has to learn to generalize across new mazes. In the franka kitchen task, the agent is sparsely
rewarded only when it completes the final task, e.g open the microwave and turn on the gas knob.
These nuances prohibit the prior baselines from performing well in these tasks, which makes these
test beds ideal scenarios for empirical evaluations. Unless otherwise stated, we maintain empirical
consistency across all baselines to ensure fair comparisons. Finally, for harder tasks such as pick and
place, push and franka kitchen, we assume access to one human demonstration and incorporate an
imitation learning objective at the lower level to accelerate learning. However, we apply the same
assumption consistently across all baselines to ensure fairness.

We employ DPO instead over standard policy gradient methods due to its superior optimization
properties in preference-based settings, including stable convergence without explicit reward modeling
or intermediate RL steps (detailed comparisons against policy gradient methods are provided in
Experiment section 5). We tune the hyper-parameters via grid search, with ablation studies showing
balanced values yield optimal performance without extreme sensitivity.

(1) How well does DIPPER perform against baselines?

In this section, we compare DIPPER against multiple hierarchical and non-hierarchical baselines.
Please refer to Figure 2 for success rate comparison plots and subsequent discussion. The solid line
and shaded regions represent the mean and standard deviation, averaged over 5 seeds.

Comparison with DPO Baselines.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

DIPPER-No-V baseline: This is an ablation of DIPPER without primitive regularization. The
primitive regularization approach in DIPPER regularizes the higher level policy to predict feasible
subgoals. We employ this baseline to highlight the critical role of generating feasible subgoals. As
shown in Figure 2, DIPPER outperforms this baseline, underscoring the critical role of feasible
subgoal generation in achieving superior performance.
DPO-FLAT baseline: This is a single-level DPO (Rafailov et al., 2024a) implementation. Note
that since we do not have access to a pre-trained model as a reference policy in robotics scenarios
like generative language modeling, we use a uniform policy as a reference policy, which effectively
translates to an additional objective of maximizing the entropy of the learnt policy. DIPPER is an
hierarchical approach which benefits from temporal abstraction and improved exploration, as seen in
Figure 2 which shows that DIPPER significantly outperforms this baseline.

Comparison with Hierarchical Baselines.

SAGA baseline: We compare DIPPER with SAGA (Wang et al., 2023), a hierarchical approach that
employs state conditioned discriminator network training to address non-stationarity, by ensuring
that the high-level generates subgoals that align with the current state of the low-level policy. We
find that although SAGA performs well in the maze task, it fails to solve harder tasks where DIPPER
significantly outperforms. This demonstrates that SAGA suffers from non-stationarity in harder long
horizon tasks, whereas DIPPER is able to better mitigate non-stationarity issue in such tasks.
PIPER baseline: This baseline (Singh et al., 2024) leverages RLHF to learn higher level reward
function to address HRL non-stationarity. To ensure fair comparison, we implement an ablation
of PIPER without HER (Andrychowicz et al., 2017). DIPPER is able to outperform this PIPER
ablation on all tasks, showing that our DPO based approach avoids training instability caused by RL,
and is able to better mitigate non-stationarity in HRL.
RAPS baseline: Here, we consider RAPS (Dalal et al., 2021) baseline, which employs behavior
priors at the lower level for solving the task. Although RAPS is an elegant framework for solving
robotic tasks where behavior priors are readily available, it requires considerable effort to construct
such priors and struggles to perform well in their absence, especially when dealing with sparse reward
scenarios. Indeed we empirically find this to be the case, since although RAPS performs exceptionally
well in maze navigation task, it fails to perform well in other sparse complex manipulation tasks.
HAC baseline: We also implement HAC (Levy et al., 2018) baseline that mitigates non-stationarity
in HRL by simulating optimal lower level primitive behavior. HIRO (Nachum et al., 2018) is another
such baseline that addresses non-stationarity, however since HAC has been found to outperform HIRO,
we chose to compare with HAC. Although HAC performs well in maze task, it struggles to perform
well in harder tasks. DIPPER outperforms this baseline in 3 out of 4 tasks.
HIER baseline: We also implement HIER, a vanilla HRL baseline implemented using SAC (Haarnoja
et al., 2018) at both hierarchical levels, but it fails to outperform DIPPER on any task.

Comparison with Non-Hierarchical Baselines.

DAC baseline: Discriminator Actor Critic (DAC) (Kostrikov et al., 2018) is a single-level baseline,
that we provide one demonstration in each task. However, despite having access to privileged
information, DAC still struggles to perform well.
FLAT baseline: We also implement a single-level SAC policy, but it fails to show any progress,
verifying that hierarchical abstraction is key to effective performance in complex tasks.

(2) Does DIPPER mitigate HRL limitations?

Prior work largely lacks principled metrics for quantifying non-stationarity (C1) and infeasible
subgoal generation (C2) in HRL. To address this gap, we introduce two novel metrics specifically
designed to measure these challenges. Using these metrics, we empirically demonstrate that DIPPER
effectively mitigates both non-stationarity (C1) and infeasible subgoal generation (C2) in HRL.
Subgoal Distance Metric. We compare DIPPER with DIPPER-No-V, HAC, RAPS, HIER
baselines on subgoal distance metric: the average distance between subgoals predicted by the higher
level policy and subgoals achieved by the lower level primitive. A low average distance value implies
that the predicted subgoals are feasible, thus inducing optimal lower level policy behavior (note that
the optimal, lower-level policy is stationary, and thus avoids non-stationarity). Figure 3 (Row 1) shows
that DIPPER consistently generates low average distance values, thus mitigating non-stationarity
(C1). Low average distance values imply that high-level policy in DIPPER generates achievable
subgoals for the lower primitive due to primitive regularization, thus addressing (C2).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen

(e) Maze navigation (f) Pick and place (g) Push (h) Kitchen

Figure 3: (Row 1) Subgoal Distance Metric. We compare DIPPER with DIPPER-No-V, HAC, RAPS,
HIER baselines, based on average distance between subgoals predicted by the higher level policy and subgoals
achieved by the lower level primitive. DIPPER consistently generates low average distance values, which implies
that in DIPPER, the higher level policy generates achievable subgoals that induce optimal lower primitive goal
reaching behavior. This shows that DIPPER is able to address non-stationary in HRL and generate feasible
subgoals. (Row 2) Lower Q-Function Metric. We compare DIPPER with DIPPER-No-V, HAC, RAPS,
HIER baselines, based on average lower level Q function values for the subgoals predicted by the higher level
policy. DIPPER consistently produces large Q-function values, thus inducing optimal lower policy behavior
thus mitigating non-stationarity and predicting feasible subgoals.

Lower Q-Function Metric. Here, we compare DIPPER on average lower level Q function values for
the subgoals predicted by the higher policy. High Q-values imply that the lower policy expects high
returns for the predicted subgoals. Such subgoals are feasible and induce optimal lower primitive
behavior. Figure 3 (Row 2) shows that DIPPER consistently leads to large Qvalues, showing that it
produces high-reward inducing and feasible subgoals, directly addressing both (C1) and (C2).

(3) What is the impact of our design choices?

We perform ablations to analyze our design choices. We first analyze the effect of varying regular-
ization weight λ hyper-parameter in Appendix A.6 Figure 4. λ controls the strength of primitive
regularization: if λ is too small, we lose the benefits of primitive regularization leading to infeasible
subgoals prediction. Conversely, if λ is too large, the higher-level policy might fail to achieve
the final goal by repeatedly predicting trivial subgoals. We also analyze the effect of varying β
hyper-parameter in Appendix A.6 Figure 5. Excessive β causes over-exploration, preventing optimal
subgoal prediction; whereas insufficient β limits exploration, risking suboptimal predictions.
Robustness to noise analysis. We performed a sensitivity analysis where a fixed proportion of the
preference labels in the training set were flipped at random. We evaluated DIPPER under synthetic
label noise rates of 0%, 10%, 30% label flips. The success rates for different noise rates are shown in
Appendix A.5. These results show DIPPER is robust to moderate label noises.

6 DISCUSSION

Limitations and future work. Our DPO-based hierarchical formulation raises an important question:
since DIPPER uses DPO for training the higher-level policy, does it generalize to out-of-distribution
states and actions better than reward-model-based RL? Comparing with hierarchical RLHF could
provide useful insights. Moreover, applying DIPPER to high-dimensional subgoal spaces remains
challenging. We leave these directions for future work.
Conclusion. In this work, we introduce DIPPER, a novel hierarchical approach that employs
primitive-regularized DPO to mitigate the issues of non-stationarity and infeasible generation in HRL.
DIPPER employs primitive-regularized token-level DPO objective to efficiently learn higher level
policy, and RL to learn the lower level primitive policy, thereby mitigating non-stationarity in HRL.
We formulate HRL as a bi-level optimization objective to insure that the higher level policy generates
feasible subgoals. Based on strong empirical results, we believe that DIPPER is an important step
towards learning effective control policies for solving complex robotics tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work introduces DIPPER, a hierarchical reinforcement learning framework that leverages direct
preference optimization for robotic navigation and manipulation tasks. We acknowledge several
ethical considerations inherent to this research. First, our approach relies on human preference data to
guide hierarchical policy learning, which raises concerns about potential biases in preference collec-
tion and annotation processes. The preferences used to train our higher-level policy may inadvertently
reflect the biases, cultural backgrounds, or limitations of the human annotators, potentially leading
to suboptimal or biased robotic behaviors in real-world deployments. Second, our experimental
evaluation focuses on robotic manipulation tasks (pick-and-place, push, kitchen environments) that
could have direct applications in automation systems, potentially affecting employment in certain
sectors. While our work aims to improve sample efficiency and learning stability in robotics, we
acknowledge the broader societal implications of advancing autonomous robotic capabilities. Third,
our methodology requires computational resources for training hierarchical policies across multiple
environments, contributing to environmental impact through energy consumption. We encourage
responsible deployment of our techniques with careful consideration of fairness, transparency, and
societal impact. Fourth, the datasets used in our experiments (robotic navigation and manipulation
environments) are used in accordance with their original licensing terms, and our preference-based
approach does not introduce additional privacy concerns beyond standard RL training procedures.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details and
experimental specifications. The complete mathematical formulation of our bi-level optimization
framework and the primitive-regularized DPO objective are detailed in Section 4.1, complete proof in
Appendix A.1 with algorithmic descriptions provided in Algorithm 1. All hyperparameter settings
for our experiments, including learning rates, batch sizes, regularization coefficients (λ, β), and
network architectures, are specified in Appendix Table 3. Our experimental setup covers four distinct
robotic environments (maze navigation, pick-and-place, push, and Franka kitchen manipulation),
with detailed environment configurations, reward structures, and evaluation protocols described
in Section 5 and Appendix A.7. The novel metrics we introduce for quantifying non-stationarity
(subgoal distance metric and value stability metric) include complete computational procedures in
Section 5. Implementation details for all baseline methods are provided in Appendix A.7 to ensure
fair comparison. We plan to release our complete codebase, including the bi-level optimization
implementation, preference data collection procedures, and evaluation scripts upon publication. All
statistical analysis methodologies, including significance testing procedures and confidence interval
calculations, are documented to support replication. Our computational infrastructure specifications
(hardware requirements, training times, memory usage) are detailed in Appendix A.4 to facilitate
reproduction across different computational setups.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. CoRR,
abs/1707.01495, 2017. URL http://arxiv.org/abs/1707.01495.

Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, 13:341–379, 2003.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39:324, 1952. URL https://api.semanticscholar.
org/CorpusID:125209808.

Zehong Cao, Kaichiu Wong, and Chin-Teng Lin. Human preference scaling with demonstrations for
deep reinforcement learning. arXiv preprint arXiv:2007.12904, 2020.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning with
imagined subgoals. In International Conference on Machine Learning, pp. 1430–1440. PMLR,
2021.

10

http://arxiv.org/abs/1707.01495
https://api.semanticscholar.org/CorpusID:125209808
https://api.semanticscholar.org/CorpusID:125209808

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Murtaza Dalal, Deepak Pathak, and Russ R Salakhutdinov. Accelerating robotic reinforcement
learning via parameterized action primitives. Advances in Neural Information Processing Systems,
34:21847–21859, 2021.

Christian Daniel, Oliver Kroemer, Malte Viering, Jan Metz, and Jan Peters. Active reward learning
with a novel acquisition function. Autonomous Robots, 39:389–405, 2015.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in neural information
processing systems, 5, 1992.

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decompo-
sition. CoRR, cs.LG/9905014, 1999. URL https://arxiv.org/abs/cs/9905014.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems, 34:
4028–4039, 2021.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018. URL http://arxiv.org/abs/1801.01290.

Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an option:
Learning options with a deliberation cost. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W Bradley Knox, and
Dorsa Sadigh. Contrastive prefence learning: Learning from human feedback without rl. arXiv
preprint arXiv:2310.13639, 2023.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

W Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The tamer
framework. In Proceedings of the fifth international conference on Knowledge capture, pp. 9–16,
2009.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tompson.
Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial imitation
learning. arXiv preprint arXiv:1809.02925, 2018.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training, 2021.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. In International Conference on Learning Representations, 2018.

Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made
easy: A simple first-order approach. Advances in neural information processing systems, 35:
17248–17262, 2022.

11

https://arxiv.org/abs/cs/9905014
http://arxiv.org/abs/1801.01290

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and Sergey Levine. Why does
hierarchy (sometimes) work so well in reinforcement learning? arXiv preprint arXiv:1909.10618,
2019.

Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Augmenting reinforcement learning with behavior
primitives for diverse manipulation tasks. CoRR, abs/2110.03655, 2021. URL https://arxiv.
org/abs/2110.03655.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. In M. Jordan,
M. Kearns, and S. Solla (eds.), Advances in Neural Information Processing Systems, volume 10.
MIT Press, 1998.

Patrick M Pilarski, Michael R Dawson, Thomas Degris, Farbod Fahimi, Jason P Carey, and Richard S
Sutton. Online human training of a myoelectric prosthesis controller via actor-critic reinforcement
learning. In 2011 IEEE international conference on rehabilitation robotics, pp. 1–7. IEEE, 2011.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to qˆ* : Your language model is
secretly a q-function. arXiv preprint arXiv:2404.12358, 2024a.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024b.

Utsav Singh and Vinay P Namboodiri. Crisp: Curriculum inducing primitive informed subgoal
prediction. arXiv preprint arXiv:2304.03535, 2023a.

Utsav Singh and Vinay P Namboodiri. Pear: Primitive enabled adaptive relabeling for boosting
hierarchical reinforcement learning. arXiv preprint arXiv:2306.06394, 2023b.

Utsav Singh, Wesley A Suttle, Brian M Sadler, Vinay P Namboodiri, and Amrit Singh Bedi. Piper:
Primitive-informed preference-based hierarchical reinforcement learning via hindsight relabeling.
arXiv preprint arXiv:2404.13423, 2024.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International Conference on Machine Learning, pp. 3540–3549. PMLR, 2017.

Vivienne Huiling Wang, Joni Pajarinen, Tinghuai Wang, and Joni-Kristian Kämäräinen. State-
conditioned adversarial subgoal generation. In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pp. 10184–10191, 2023.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. A bayesian approach for policy learning from
trajectory preference queries. Advances in neural information processing systems, 25, 2012.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

12

https://arxiv.org/abs/2110.03655
https://arxiv.org/abs/2110.03655

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Related Work 2

3 Problem Formulation 3

3.1 Hierarchical Reinforcement Learning (HRL) . 3

3.2 Preference Based Learning (PbL) . 4

4 Proposed Approach 5

4.1 HRL: Bi-Level Formulation . 5

4.2 DIPPER . 6

5 Experiments 7

6 Discussion 9

A Appendix 13

A.1 Derivation of the DIPPER Objective . 13

A.2 DIPPER Algorithm . 15

A.3 Related Work . 16

A.4 Preference Data Usage and Collection Cost Analysis 16

A.5 Analysis of robustness to noise . 17

A.6 Additional Ablation Experiments . 17

A.7 Implementation details . 17

A.7.1 Additional hyper-parameters . 18

A.8 Impact Statement . 19

A.9 Environment details . 19

A.9.1 Maze navigation task . 19

A.9.2 Pick and place and Push Environments 19

A.10 Environment visualizations . 19

A APPENDIX

A.1 DERIVATION OF THE DIPPER OBJECTIVE

Here, we provide the complete derivation of thee DIPPER objective.

1. Bi-level Objective:

Following Eqn (7) in the main text, the approximate Lagrangian for the bi-level HRL is represented
as:

max
πH ,πL

E

[
T−1∑
t=0

(
r(st, gt, g

∗) + λH(πH) + λ(V L(st, gt)− V L
∗ (st, gt))

)]
. (10)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

This equation is a direct consequence of the proposed bi-level formulation of the HRL problem
(Section 4.1). Here r(st, gt, g

∗) is the high level reward, H(πH) denotes the entropy with respect to
the higher level policy, V L(st, gt) is the lower level value function, V L

∗ (st, gt) represents the optimal
lower level value function, and λ is the weight hyper-parameter.

Let Rt := r(st, gt, g
∗) + λ(V L(st, gt)− V L

∗ (st, gt)), then we can rewrite equation 10 as:

max
πH ,πL

E
[T−1∑

t=0

Rt + λH(πH)

]
, (11)

2. Bellman Equation for High-Level Q-function: Using equation 11, and as originally explored
in Garg et al. (2021), the relationship between the optimal future return and the current timestep
return for the higher level policy is captured by the following bellman equation:

QH
∗ (st, g

∗, gt)=

{
Rt + V H

∗ (st+1, g
∗) if st+1 isn’t terminal,

Rt if st+1 is terminal.
(12)

In non-terminal cases, using the last equation we write:

Rt + V H
∗ (st+1, g

∗) = QH
∗ (st, g

∗, gt) (13)

We can reformulate he items in this equation to represent the reward as:

Rt = QH
∗ (st, g

∗, gt)− V H
∗ (st+1, g

∗). (14)

Thus, there is a bijection between the reward function Rt and the corresponding optimal Q-function
QH

∗ (st, gt, g
∗).

3. Trajectory-wise Expansion:

Inspired from Rafailov et al. (2024a), we consider the problem in a token-level MDP setting (for
trajectory τ). We consider equation 14 and take a summation over t ∈ [0, T − 1] to derive the
following:

T−1∑
t=0

Rt
(a)
=

T−1∑
t=0

(QH
∗ (st, g

∗, gt)− V H
∗ (st+1, g

∗)) (15)

Now, we add and substract V H
∗ (s0, g

∗) on the RHS:

T−1∑
t=0

Rt =

T−1∑
t=0

(QH
∗ (st, g

∗, gt)− V H
∗ (st+1, g

∗)) + V H
∗ (s0, g

∗)− V H
∗ (s0, g

∗). (16)

This can be re-arranged as:

T−1∑
t=0

Rt = V H
∗ (s0, g

∗) +

T−1∑
t=0

(QH
∗ (st, g

∗, gt)− V H
∗ (st, g

∗)). (17)

Now, by definition, the advantage function AH
∗ (st, g

∗, gt) is defined as: AH
∗ (st, g

∗, gt) =
QH

∗ (st, g
∗, gt)− V H

∗ (st, g
∗)

We can re-place the term QH
∗ (st, g

∗, gt)− V H
∗ (st, g

∗) in the last equation by AH
∗ (st, g

∗, gt) to yield:

T−1∑
t=0

Rt = V H
∗ (s0, g

∗) +

T−1∑
t=0

(AH
∗ (st, g

∗, gt)). (18)

Now, based on a result (Ziebart, 2010) for maximum entropy RL setting: AH
∗ (st, g

∗, gt) =
β log(πH

∗ (gt|st, g∗)), we replace the advantage term in last equation to yield:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

T−1∑
t=0

Rt = V H
∗ (s0, g

∗) +

T−1∑
t=0

(β log πH
∗ (gt|st, g∗)). (19)

Recall that we had defined Rt = r(st, gt, g
∗) + λ(V L(st, gt) − V L

∗ (st, gt)). Replacing Rt on the
LHS in the last equation yields:

T−1∑
t=0

(r(st, gt, g
∗) + λ(V L(st, gt)− V L

∗ (st, gt))) = V H
∗ (s0, g

∗) +

T−1∑
t=0

(β log πH
∗ (gt|st, g∗)). (20)

Re-arranging this term by bringing the λ weighted term from LHS to RHS, we get:

T−1∑
t=0

r(st, gt, g
∗) = V H

∗ (s0, g
∗)+

T−1∑
t=0

(
β log πH

∗ (gt|st, g∗)− λ(V L(st, gt)− V L
∗ (st, gt))

)
. (21)

4. Primitive-Regularized DPO Objective:

Finally, we use the LHS (
∑T−1

t=0 r(st, gt, g
∗)) derived in equation 21, and substitute it in equation 3

from the main paper, to yield our primitive regularized DPO objective LO as:

LO = −E(τ1,τ2,y)∼D

[
log σ

(T−1∑
t=0

(
β log πH

∗
(
g1t |s1t , g∗

)
− β log πH

∗
(
g2t |s2t , g∗

)
− λ((V L(s1t , g

1
t)−V L

∗(s
1
t , g

1
t)− (V L(s2t , g

2
t)−V L

∗(s
2
t , g

2
t)))

))]
. (22)

Note that terms V H
∗ (s0, g

∗) is the same for both trajectories and hence it cancels. This DIPPER
objective optimizes the higher-level policy using primitive regularized DPO.

A.2 DIPPER ALGORITHM

Here, we provide the DIPPER pseudo-code.

Algorithm 1 DIPPER

1: Initialize preference dataset D = {}.
2: Initialize lower level replay buffer RL = {}.
3: for i = 1 . . . N do
4: // Collect higher level trajectories τ using πH and lower level trajectories ρ using πL,
5: // and store the trajectories in D and RL respectively.
6: // After every m timesteps, relabel D using preference feedback y.
7: // Lower level value function update
8: for each gradient step in t=0 to k do
9: Optimize lower level value function V L to get V L

m .
10: // Higher level policy update using DIPPER
11: for each gradient step do
12: // Sample higher level behavior trajectories.
13: (τ1, τ2, y) ∼ D
14: Optimize higher level policy πH using equation 9.
15: // Lower primitive policy update using RL
16: for each gradient step do
17: Sample ρ from RL.
18: Optimize lower policy πL using SAC.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 RELATED WORK

Hierarchical Reinforcement Learning. HRL is an elegant framework that promises the intuitive
benefits of temporal abstraction and improved exploration (Nachum et al., 2019). Prior research
work has focused on developing efficient methods that leverage hierarchical learning to efficiently
solve complex tasks (Sutton et al., 1999; Barto & Mahadevan, 2003; Parr & Russell, 1998; Dietterich,
1999). Goal-conditioned HRL is an important framework in which a higher-level policy assigns
subgoals to a lower-level policy (Dayan & Hinton, 1992; Vezhnevets et al., 2017), which executes
primitive actions on the environment. Despite its advantages, HRL faces challenges owing to its
hierarchical structure, as goal-conditioned RL based approaches suffer from non-stationarity in
off-policy settings where multiple levels are trained concurrently (Nachum et al., 2018; Levy et al.,
2018). These issues arise because the lower level policy behavior is sub-optimal and unstable. Prior
works deal with these issues by either simulating optimal lower primitive behavior (Levy et al.,
2018), relabeling replay buffer transitions (Nachum et al., 2018; Singh & Namboodiri, 2023b;a), or
assuming access to privileged information like expert demonstrations or preferences (Singh et al.,
2024; Singh & Namboodiri, 2023a;b). In contrast, we propose a novel bi-level formulation to mitigate
non-stationarity and regularize the higher-level policy to generate feasible subgoals for the lower-level
policy.

Behavior Priors. Some prior work relies on hand-crafted actions or behavior priors to accelerate
learning (Nasiriany et al., 2021; Dalal et al., 2021). While these methods can simplify hierarchical
learning, their performance heavily depends on the quality of the priors; sub-optimal priors may lead
to sub-optimal performance. In contrast, ours is an end-to-end approach that does not require prior
specification, thereby avoiding significant expert human effort.

Preference-based Learning. A variety of methods have been developed in this area to apply
reinforcement learning (RL) to human preference data (Knox & Stone, 2009; Pilarski et al., 2011;
Wilson et al., 2012; Daniel et al., 2015), that typically involve collecting preference data from human
annotators, which is then used to guide downstream learning. Prior works in this area (Christiano
et al., 2017; Lee et al., 2021) first train a reward model based on the preference data, and subsequently
employ RL to derive an optimal policy for that reward model. More recent approaches have focused on
improving sample efficiency using off-policy policy gradient methods (Haarnoja et al., 2018) to learn
the policy. Recently, direct preference optimization based approaches have emerged (Rafailov et al.,
2024b;a; Hejna et al., 2023), which bypass the need to learn a reward model and subsequent RL step,
by directly optimizing the policy with a KL-regularized maximum likelihood objective corresponding
to a pre-trained model. In this work, we build on the foundational knowledge in maximum entropy
RL (Ziebart, 2010), and derive a token-level direct preference optimization (Rafailov et al., 2024b;a)
objective regularized by lower -level primitive, resulting in an efficient hierarchical framework
capable of solving complex robotic tasks.

A.4 PREFERENCE DATA USAGE AND COLLECTION COST ANALYSIS

Here, we quantify the amount of pair-wise comparisons and the preference collection cost.

1. Preference Data Volume:

In our experiments, we collected approximately 10,000 pairwise trajectory comparisons per environ-
ment, depending on task complexity and horizon length. We ensured that these pairwise comparisons
represented a diverse array of trajectories, including both near-optimal and suboptimal behaviors,
to provide meaningful supervision for the high-level policy. We present the amount of pairwise
comparisons (Pairs per Million Env Steps) as follows:

Environment Pairwise Comparisons Env Steps (M) Pairs per M Steps

Maze 10,000 1.35 7,407
Pick & Place 10,000 0.9 11,111
Push 10,000 0.775 12,903
Kitchen 10,000 0.45 22,222

Table 1: Pairwise comparisons and efficiency across environments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

2. Human/CPU Labeling Cost:

For human-labeled preferences, annotators required ∼3–5 seconds per comparison, including visual-
izing both trajectories and rendering the pairwise choice in the interface. Thus, annotating a batch
of 10,000 pairs requires approximately 8–14 human-annotator hours in total for a given task, often
spread across multiple sessions.

A.5 ANALYSIS OF ROBUSTNESS TO NOISE

2. Robustness to Noisy Preference Feedback: Sensitivity Study

We performed a sensitivity analysis where a fixed proportion of the preference labels in the training
set were flipped at random (i.e., the less-preferred trajectory was labeled as preferred and vice versa).
We evaluated DIPPER under synthetic label noise rates of 0%, 10%, 30% label flips. We provide the
success rate performance for different noise rates in the following table:

Environment 0% Noise Rate 10% Noise Rate 30% Noise Rate
Maze 0.48 0.37 0.23
Pick and Place 0.4 0.35 0.24
Push 0.38 0.33 0.29
Kitchen 0.81 0.76 0.61

Table 2: Noise rates across environments (adjust caption as needed).

These results are consistent with findings in recent DPO literature which show that direct preference
optimization methods can tolerate moderate label noise but suffer as the noise rate exceeds.

A.6 ADDITIONAL ABLATION EXPERIMENTS

Here, we provide additional ablations to analyze the effect of varying regularization weight λ
hyper-parameter and β hyper-parameter.

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen

Figure 4: Regularization weight ablation. This figure depicts the success rate performance for varying values
of the primitive regularization weight λ. When λ is too small, we loose the benefits of primitive-informed
regularization resulting in poor performance, whereas too large λ values can lead to degenerate solutions. Hence,
selecting appropriate λ value is essential for accurate subgoal prediction and enhancing overall performance.

A.7 IMPLEMENTATION DETAILS

We conducted experiments on two systems, each equipped with Intel Core i7 processors, 48GB of
RAM, and Nvidia Geforce GTX 1080 GPUs. The experiments included the corresponding timesteps
taken for each run. For the environments (i)− (iv), the maximum task horizon T is set to 225, 50,
50, and 225 timesteps, respectively, with the lower-level primitive allowed to execute for 15, 7, 7,
and 15 timesteps. We used off-policy Soft Actor Critic (SAC)(Haarnoja et al., 2018) to optimize
the RL objective, leveraging the Adam optimizer(Kingma & Ba, 2014). Both the actor and critic
networks consist of three fully connected layers with 512 neurons per layer. The total timesteps for
experiments in environments (i)− (iv) are 1.35e6, 9e5, 1.3E6, and 6.3e5, respectively.

For the maze navigation task, a 7-degree-of-freedom (7-DoF) robotic arm navigates a four-room
maze with its gripper fixed at table height and closed, maneuvering to reach a goal position. In the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen

Figure 5: Max-ent parameter ablation. This figure illustrates the success rate performance for different values
of the max-ent parameter β hyper-parameter. This parameter controls the exploration in maximum-entropy
formulation. If β is too large, the higher-level policy may perform extensive exploration but stay away from
optimal subgoal prediction, whereas if β is too small, the higher-level might not explore and predict sub-optimal
subgoals. Hence, selecting an appropriate β value is essential for enhancing overall performance.

pick-and-place task, the 7-DoF robotic arm gripper locates, picks up, and delivers a square block to
the target location. In the push task, the arm’s gripper must push the square block toward the goal.
For the kitchen task, a 9-DoF Franka robot is tasked with opening a microwave door as part of a
predefined complex sequence to reach the final goal. We compare our approach with the Discriminator
Actor-Critic (Kostrikov et al., 2018), which uses a single expert demonstration. Although this study
doesn’t explore it, combining preference-based learning with demonstrations presents an exciting
direction for future research (Cao et al., 2020).

To ensure fair comparisons, we maintain uniformity across all baselines by keeping parameters such
as neural network layer width, number of layers, choice of optimizer, SAC implementation settings,
and others consistent wherever applicable. In RAPS, the lower-level behaviors are structured as
follows: For maze navigation, we design a single primitive, reach, where the lower-level primitive
moves directly toward the subgoal predicted by the higher level. For the pick-and-place and push
tasks, we develop three primitives: gripper-reach, where the gripper moves to a designated position
(xi, yi, zi); gripper-open, which opens the gripper; and gripper-close, which closes the gripper. In
the kitchen task, we use the action primitives implemented in RAPS (Dalal et al., 2021).

A.7.1 ADDITIONAL HYPER-PARAMETERS

Here, we enlist the additional hyper-parameters used in DIPPER:

Table 3: Hyperparameter Configuration

Parameter Value Description
activation tanh activation for reward model
layers 3 number of layers in the critic/actor networks
hidden 512 number of neurons in each hidden layer
Q_lr 0.001 critic learning rate
pi_lr 0.001 actor learning rate
buffer_size int(1E7) for experience replay
clip_obs 200 clip observation
n_cycles 1 per epoch
n_batches 10 training batches per cycle
batch_size 1024 batch size hyper-parameter
reward_batch_size 50 reward batch size for DPO-FLAT
random_eps 0.2 percentage of time a random action is taken
alpha 0.05 weightage parameter for SAC
noise_eps 0.05 std of gaussian noise added to not-completely-random actions
norm_eps 0.01 epsilon used for observation normalization
norm_clip 5 normalized observations are cropped to this value
adam_beta1 0.9 beta 1 for Adam optimizer
adam_beta2 0.999 beta 2 for Adam optimizer

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.8 IMPACT STATEMENT

Our proposed approach and algorithm are not expected to lead to immediate technological ad-
vancements. Instead, our primary contributions are conceptual, focusing on fundamental aspects of
Hierarchical Reinforcement Learning (HRL). By introducing a preference-based methodology, we
offer a novel framework that we believe has significant potential to enhance HRL research and its
related fields. This conceptual foundation paves the way for future investigations and could stimulate
advancements in HRL and associated areas.

A.9 ENVIRONMENT DETAILS

A.9.1 MAZE NAVIGATION TASK

In this environment, a 7-DOF robotic arm gripper must navigate through randomly generated four-
room mazes. The gripper remains closed, and both the walls and gates are randomly placed. The
table is divided into a rectangular W ×H grid, with vertical and horizontal wall positions WP and
HP selected randomly from the ranges (1,W − 2) and (1, H − 2), respectively. In this four-room
setup, gate positions are also randomly chosen from (1,WP − 1), (WP + 1,W − 2), (1, HP − 1),
and (HP + 1, H − 2). The gripper’s height remains fixed at table height, and it must move through
the maze to reach the goal, marked by a red sphere.

For both higher and lower-level policies, unless Stated otherwise, the environment consists of
continuous State and action spaces. The State is encoded as a vector [p,M], where p represents the
gripper’s current position, and M is the sparse maze representation. The input to the higher-level
policy is a concatenated vector [p,M, g], with g representing the goal position, while the lower-level
policy input is [p,M, sg], where sg is the subgoal provided by the higher-level policy. The current
position of the gripper is treated as the current achieved goal. The sparse maze array M is a 2D
one-hot vector, where walls are denoted by a value of 1 and open spaces by 0.

In our experiments, the sizes of p and M are set to 3 and 110, respectively. The higher-level policy
predicts the subgoal sg, so its action space aligns with the goal space of the lower-level primitive.
The lower-level primitive’s action, a, executed in the environment, is a 4-dimensional vector, where
each dimension ai ∈ [0, 1]. The first three dimensions adjust the gripper’s position, while the fourth
controls the gripper itself: 0 indicates fully closed, 0.5 means half-closed, and 1 means fully open.

A.9.2 PICK AND PLACE AND PUSH ENVIRONMENTS

In the pick-and-place environment, a 7-DOF robotic arm gripper is tasked with picking up a square
block and placing it at a designated goal position slightly above the table surface. This complex
task involves navigating the gripper to the block, closing it to grasp the block, and then transporting
the block to the target goal. In the push environment, the gripper must push a square block towards
the goal position. The State is represented by the vector [p, o, q, e], where p is the gripper’s current
position, o is the block’s position on the table, q is the relative position of the block to the gripper,
and e contains the linear and angular velocities of both the gripper and the block.

The higher-level policy input is the concatenated vector [p, o, q, e, g], where g denotes the target goal
position, while the lower-level policy input is [p, o, q, e, sg], with sg being the subgoal provided by
the higher-level policy. The current position of the block is treated as the achieved goal. In our
experiments, the dimensions for p, o, q, and e are set to 3, 3, 3, and 11, respectively. The higher-level
policy predicts the subgoal sg , so the action and goal space dimensions align. The lower-level action
a is a 4-dimensional vector, where each dimension ai falls within the range [0, 1]. The first three
dimensions adjust the gripper’s position, and the fourth controls the gripper itself (0 for closed, 1 for
open). During training, the block and goal positions are randomly generated, with the block always
starting on the table and the goal placed above the table at a fixed height.

A.10 ENVIRONMENT VISUALIZATIONS

Here, we provide some visualizations of the agent successfully performing the task.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 6: Maze navigation task visualization: The visualization is a successful attempt at performing
maze navigation task

Figure 7: Pick and place task visualization: This figure provides visualization of a successful
attempt at performing pick and place task

Figure 8: Push task visualization: The visualization is a successful attempt at performing push task

Figure 9: Kitchen task visualization: The visualization is a successful attempt at performing kitchen
task

20

	Introduction
	Related Work
	Problem Formulation
	Hierarchical Reinforcement Learning (HRL)
	Preference Based Learning (PbL)

	Proposed Approach
	HRL: Bi-Level Formulation
	DIPPER

	Experiments
	Discussion
	Appendix
	Derivation of the DIPPER Objective
	DIPPER Algorithm
	Related Work
	Preference Data Usage and Collection Cost Analysis
	Analysis of robustness to noise
	Additional Ablation Experiments
	Implementation details
	Additional hyper-parameters

	Impact Statement
	Environment details
	Maze navigation task
	Pick and place and Push Environments

	Environment visualizations

