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A sign that says 'Deep 
Learning'.

A tiger in a lab coat with 
a 1980s Miami vibe.
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A pink oven and a 
green motorcycle.

Color:
a photo of a sports ball 
right of an umbrella.

Position:
a photo of a 

skateboard and a cake.

Object co-occurrence:

Figure 1: The qualitative results of W2SD. Here we set Juggernaut-XL as strong model and SDXL
as weak model. We present more cases in Appendix D.2.

ABSTRACT

The goal of diffusion generative models is to align the learned distribution with
the real data distribution through gradient score matching. However, inherent lim-
itations in training data quality, modeling strategies, and architectural design lead
to inevitable gap between generated outputs and real data. To reduce this gap,
we propose Weak-to-Strong Diffusion (W2SD), a novel framework that utilizes
the estimated difference between existing weak and strong models (i.e., weak-to-
strong difference) to bridge the gap between an ideal model and a strong model.
By employing a reflective operation that alternates between denoising and in-
version with weak-to-strong difference, we theoretically understand that W2SD
steers latent variables along sampling trajectories toward regions of the real data
distribution. W2SD is highly flexible and broadly applicable, enabling diverse
improvements through the strategic selection of weak-to-strong model pairs (e.g.,
DreamShaper vs. SD1.5, good experts vs. bad experts in MoE). Extensive ex-
periments demonstrate that W2SD significantly improves human preference, aes-
thetic quality, and prompt adherence, achieving SOTA performance across various
modalities (e.g., image, video), architectures (e.g., UNet-based, DiT-based, MoE),
and benchmarks. For example, Juggernaut-XL with W2SD can improve with the
HPSv2 winning rate up to 90% over the original results. Moreover, the perfor-
mance gains achieved by W2SD markedly outweigh its additional computational
overhead, while the cumulative improvements from different weak-to-strong dif-
ference further solidify its practical utility and deployability. The code is publicly
available at github.com/xie-lab-ml/Weak-to-Strong-Diffusion-with-Reflection.

1 INTRODUCTION

In probabilistic modeling, the estimated density represents model-predicted distributions while the
ground truth density reflects actual data distributions. Diffusion models (Song et al.), known for its
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Weak-to-Strong Generation : Motivation

Can we obtain a ideal model from the combination of a strong model and a weak model?

Weak Model Strong Model Ideal Model

∆1= weak-to-strong difference ∆2= strong-to-ideal difference

Figure 2: W2SD leverages the gap between
weak and strong models to bridge the gap be-
tween strong and ideal models.
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Figure 3: Visualizing the effectiveness of
W2SD. When the weak-to-strong difference
closely bridges the strong-to-ideal difference (e.g.,
∆2(t)−∆1(t) is small), the refined latent variable
x̃t converges to the ideal latent variable xgt

t .

powerful generative capabilities and diversity, estimate the gradient of the log probability densities in
perturbed data distributions by optimizing a score-based network, which has become a mainstream
paradigm in many generative tasks (Podell et al.; Guo et al., 2023).

To bridge the gap between the learned and real data distributions in diffusion models, extensive re-
search has focused on improving gradient alignment of log probability densities between estimated
results and ground truth through various strategies (Karras et al., 2022; Song & Ermon, 2020; Ho
et al., 2022). However, constrained by practical limitations including architectural design and dataset
quality issues, existing diffusion models inevitably exhibit gradient estimation errors, leading to a
gap between the learned and real data distributions. Depending on the magnitude of this gap, we
can classify them as either “strong” or “weak” diffusion models. Specifically, due to the inaccessi-
bility of the real data distribution, we cannot establish direct methodologies to measure this gap and
effectively reduce it.

In this work, we demonstrate that the gap between the strong and weak models can be used to em-
pirically bridge the gap between the ideal and strong models. In Figure 2, we propose to use the
estimated weak-to-strong difference ∆1 to bridge the inaccessible strong-to-ideal difference ∆2,
thereby enhancing the strong model toward the ideal model. We note this weak-to-strong concept
has been widely applied in training processes of machine learning, with early instances such as Ad-
aBoost (Schapire, 2013), where the ensembling of weak models enhances the performance of strong
models. Also, Burns et al. (2023) have demonstrated that weak models can serve as supervisory
signals to assist in the alignment during the training of large LLMs.

To empirically estimate the weak-to-strong difference, we draw upon reflective mechanisms, the
process of modifying generated outputs based on prior states, which have been extensively studied
in the field of LLMs (Gou et al.; Madaan et al., 2024; Shinn et al., 2024). Specifically, we propose
Weak-to-Strong Diffusion (W2SD), a novel framework that leverages weak-to-strong difference to
bridge the strong-to-ideal difference. By incorporating a reflective operation that alternates between
denoising and inversion based on the weak-to-strong difference, we theoretically understand in Sec-
tion 2.1 that W2SD guides latent variables along sampling trajectories, effectively steering them
toward regions of the real data distribution. And we provide qualitative results in Figure 1.

We emphasize that W2SD can be generalized to diverse application scenarios. Notably, in Ap-
pendix F.2 we demonstrate existing inference enhancement methods including Re-Sampling (lug,
2022), Z-Sampling (Bai et al., 2024), FreeDom (Yu et al., 2023) and TFG (Ye et al., 2024) can
be reinterpreted as specialized instances of W2SD. Users can define “weak-to-strong” model pairs
based on their specific needs. Depending on the type of the model pair (e.g., DreamShaper vs.
SD1.5, good experts vs. bad experts in MoE), different effects of improvements can be achieved.
We provide further application analysis in Section 3 to demonstrate the broad applicability of W2SD.

The contributions can be summarized as follows.

First, we introduce the weak-to-strong concept into the inference enhancement of diffusion models,
demonstrating that the gradient difference of estimated log probability densities between weak and
strong diffusion models can approximate the difference between strong and ideal models, conse-
quently bridging the gap between the learned and real data distribution.
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Second, to estimate the weak-to-strong difference, we propose a novel inference framework
called W2SD, with theoretical understanding that implicitly estimates the weak-to-strong difference
through iterative reflection, effectively steering latent variables along sampling trajectories toward
regions corresponding to the real data distribution.

Third, extensive experiments validate the effectiveness and broad applicability of W2SD across
various generation tasks (e.g., image, video), architectures (e.g., UNet-based, DiT-based), and eval-
uation metrics. By defining various weak-to-strong model pairs, W2SD achieves diverse improve-
ments effects, such as human preference, prompt adherence, and personalization. Importantly, these
improvements effects can be cumulative in parallel, further enhancing the quality of the generation.
In efficiency evaluations, W2SD’s improvements surpass its overhead, maintaining superior quality
over the baseline under equal time constraints, suggesting its strong versatility and applicability.

2 METHOD

In this section, we proposed Weak-to-Strong Diffusion and discuss its mechanism.

2.1 WEAK-TO-STRONG DIFFUSION

In this subsection, we integrate the weak-to-strong concept into diffusion model inference, introduce
the W2S algorithm, and establish its theoretical understanding.

Gradient Difference of Log Probability Densities In diffusion models, the goal is to minimize
the gradients difference of log probability densities between estimated results and ground truth.
However, due to the real data distribution is inaccessible, this difference cannot be directly quan-
tified. To tackle this issue, we consider models of varying capacities: a strong model (with its
corresponding denoising process denoted as Ms and the estimated density as ps) and a weak model
(similarly, Mw and pw).

As shown in Figure 2, we define the weak-to-strong difference as ∆1 = ∇ log ps−∇ log pw, and the
strong-to-ideal difference as ∆2 = ∇ log pgt −∇ log ps. By approximating ∆2 using the estimable
∆1, we indirectly reduce the gap between existing diffusion models and the ideal model, bringing
the learned distribution closer to the real data distribution. In the next subsection, we introduce how
to achieve this approximation from a reflective perspective.

W2SD Consider a strong model Ms and a weak model Mw, we can optimize the sampling trajec-
tories using the reflection operator Mw

inv(Ms(·)), as outlined in Algorithm 1. Through the iterative
integration of strong model denoising and weak model inversion, we achieve a step-by-step reflective
process during sampling process, refining the latent variable xt into an improved x̃t.

Algorithm 1 W2SD

Input: Strong Model Ms, Weak
Model Mw, Total Inference Steps:
T , optimization steps: λ
Output: Clean Data x0

Sample Gaussian noise xT

for t = T to 1 do
if t > T − λ then

#W2SD with Reflection
x̃t = Mw

inv(Ms(xt, t), t)
end if
xt−1 = M s(x̃t, t)

end for

Importantly, the choice of Ms and Mw significantly
affects the direction of improvements effects. We sum-
marize some promising weak-to-strong model pairs
in Table 7 of Appendix C.3. And in Section 3
we present extensive application analyses and experi-
ments, highlighting the powerful capabilities and flex-
ibility of the proposed framework.

In Theorem 1, we demonstrate that W2SD refines
latent variable xt toward the direction defined by
the estimated weak-to-strong difference ∆1(t). As
shown in Figure 3, when the weak-to-strong dif-
ference closely bridges the strong-to-ideal difference
(i.e., ∆2(t) − ∆1(t) is small), the reflection mecha-
nism of W2SD drives xt closer to the ideal xgt

t . The
visualization analysis in Section 2.2 validates the cor-
rectness of our theory, and we provide a detailed proof
in Appendix E.1.
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Theorem 1 (Theoretical Understanding of W2SD) Suppose xt is the latent variable at time t, let
pst and pwt denote the probability density estimates derived from Ms and Mw, respectively. The
reflective operator Mw

inv(Ms(·)) refines xt to x̃t as

x̃t = xt + σ2t∆t(∇xt log p
s
t(xt)−∇xt log p

w
t (xt)), (1)

where ∆1(t) = ∇xt log p
s
t(xt) − ∇xt log p

w
t (xt) represents the weak-to-strong difference between

Ms and Mw at time t.

It is noted that Karras et al. (2024) proposed Auto-guidance, which employs a simplistic interpola-
tion approach using a degraded model version to refine latent variables. While Equation (1) shares a
similar high-level concept, W2SD introduces fundamentally distinct mechanisms, delivering signif-
icantly stronger performance and broader applicability. Comprehensive quantitative and qualitative
analyses are provided in Appendix F.3.

2.2 VISUALIZATION AND EXPLANATION IN VARIOUS SETTINGS

In this subsection, we validate the theory presented in Section 2.1 using both synthetic Gaussian
mixture data and real-world image data, providing intuitive visual evidence.

1-D Gaussian Mixture Data We begin by analyzing the 1-D Gaussian data scenario. In Figure 2,
the diffusion model is designed to generate data with two distinct peaks at “-4” and “4”. Adjusting
the proportion of these two peaks in the training dataset, we obtain Ms and Mw. Although both
models effectively generate samples near the right peak, their performance differs significantly for
the left peak.

In Figure 4, we visualize the denoising trajectories under three different settings (weak model, strong
model, W2SD). Through the reflective operator Mw

inv(Ms(·)), the latent variable is progressively
drawn closer to the left peak. In contrast, for both strong and weak models, the generated samples
are predominantly concentrated around the right peak.

2-D Gaussian Mixture Data We also visualize the mechanism of W2SD on 2D scenario. In Fig-
ure 5 (first row), we modulate the proportion of the training data to obtain Ms and Mw. W2SD
balances the distribution by exploiting the discrepancy between Ms and Mw (the region in the
bottom-left corner, denoted as ∆1) to bridge the unattainable strong-to-ideal difference ∆2, and
boost the chances of sampling toward the bottom-left region. In Figure 5 (second row), we visualize
the denoising trajectories under different settings, further validating the effectiveness of W2SD.
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1D Diffusion trajectories via different sampling strategies
Weak Operation
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Start Point
End Point

Figure 4: Denoising trajectories across differ-
ent settings (1-D Gauss). The weak model
(blue) generates only right-peak data due to miss-
ing left-peak training samples, while the strong
model (red) produces data between both peaks.
W2SD balances the distribution by leveraging
the reflective operator Mw

inv(Ms(·)).

Strong Model Weak Model W2SD (Ours)

Figure 5: Probability contour plot and denoising
trajectories across different settings (2-D Gauss).
W2SD balances the learned distribution, bring-
ing it closer to the real data distribution.

4



Published as a DeLTa Workshop Paper at ICLR 2025

Real Image Data Furthermore, we investigate the performance of W2SD on real image data. For
ease of analysis, we select two classes from CIFAR-10 (Krizhevsky et al., 2009): car and horse.
Specifically, we train the weak and strong diffusion models on distinct datasets. For Ms, the dataset
consists of 5,000 horse images and 2,500 car images. For Mw, it comprises 5,000 horse images and
500 car images. In this scenario, due to the imbalance in training dataset, both Mw and Ms are
more inclined to generate horses. Moreover, since Mw is trained on a limited number of car images,
it rarely generates cars.

In Figure 6, we note that W2SD can help balance the image categories, enhancing inference process
to increase the probability of generating cars. In Figure 7, we also perform a t-SNE dimensionality
reduction (Van der Maaten & Hinton, 2008) on the CLIP features of the generated images. W2SD
effectively disentangles the representations of “car” and “horse” in the 2D space. Notably, the
ratio of “horse” to “car” under W2SD approaches 1:1. In contrast, applying the negative reflection
operator Ms

inv(Mw(·)) worsens the data imbalance, validating the effectiveness of our method.

ℳ𝑠

ℳ𝑤

W2SD

(Ours)

S2WD

Figure 6: Qualitative results of W2SD based on dataset
differences (CIFAR-10). Our method enhances the
probability of generating “cars” and promote a more
balanced generation distribution.

(a) Strong Model (b) Weak Model

(c) W2SD (d) S2WD

Figure 7: The CLIP feature correspond-
ing to the generated image (32×32×3)
is projected into a 2D space.

3 EMPIRICAL ANALYSIS

In this section, we justify our design choices in Section 2 and illustrate the wide applicability of
W2SD across diverse combinations of Ms and Mw.

Due to page limitations, here we validate the effectiveness of W2SD using Pick-a-Pic
Dataset (Kirstain et al., 2023). In Appendix C, we provide a detailed description of the experimental
settings. And in Appendix D, we conduct more extensive quantitative and qualitative results across
diverse benchmarks (e.g., Drawbench (Saharia et al., 2022)) and modalities (e.g., video generation),
demonstrating the broad applicability of our method.

3.1 WEIGHT DIFFERENCE

The capability differences between models can be directly captured by their parameter weights.
And W2SD leverages this weight difference to empirically estimate the weak-to-strong difference,
enabling effective reflective operations.

Full Parameter Fine-tuning We first select the full parameter fine-tuned models (e.g.,
DreamShaper, Juggernaut-XL) that align more closely with human preferences as Ms, and the cor-
responding standard models as Mw (e.g., SD1.5 (Rombach et al., 2022), SDXL (Podell et al.)). We
evaluate our method with various metrics, as shown in Table 1, W2SD based on weight difference
shows significant improvements in human preference metrics such as HPS v2 (Wu et al., 2023b) and
PickScore (Kirstain et al., 2023).

LoRA Mechanism Furthermore, W2SD is also applicable to efficiently fine-tuned model. we se-
lect the personalized models derived through the LoRA mechanism (Hu et al.) as Ms, and employ
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Clothing Character

Style DetailA dog in a batman costume. Bulma is biking, pink dress, blue hair.

A sandwich styled in the manner of a parchment scroll. mechanical bee flying in nature, electronics, motors.

Figure 8: Qualitative comparisons with weak model (left), strong model (middle) and W2SD based
on weight difference (right). Our method utilizes the differences between chosen strong and weak
models (e.g., high-detail LoRA vs. standard model) to deliver improvements in various dimensions.
We provide detail settings in Appendix D.2 (weight difference).

Method HPS v2 ↑ AES ↑ PickScore ↑ MPS ↑
SD1.5 24.9558 5.5003 20.1368 -

DreamShaper 30.1477 6.1155 21.5035 46.8705
W2SD 30.4924 6.2478 21.5727 53.1304

SDXL 29.8701 6.0939 21.6487 -

Juggernaut-XL 31.6412 5.9790 22.1903 45.7397
W2SD 32.0992 6.0712 22.2434 54.2634

Table 1: Quantitative results of W2SD based
on a full parameter fine-tuning strategy. Our
method generates results better aligned with hu-
man preferences. Datasets: Pick-a-Pic.

Method DINO ↑ CLIP-I ↑ CLIP-T ↑
SD1.5 27.47 52.08 20.14

Personalized LoRA 48.03 64.37 25.99
W2SD 51.58 68.04 27.66

Table 2: Quantitative results of W2SD based
on personalized LoRA model. Here, the
weight difference between Mw (SD1.5) and
Ms (SD1.5 +LoRA) biases the generated re-
sults towards a more personalized direction.

W2SD to attain a more robust and customized personalization effect. We test 20 LoRA check-
points across object, person, animal, and style categories, with details in Appendix C.3. Table 2
demonstrates that W2SD results in significant improvements across multiple personalization metrics
(e.g., Clip-T and Clip-I). And we present the qualitative results in Figure 8, with more visual cases
provided in Appendix D.2.

Method IS ↑ FiD ↓ AES ↑ HPS v2 ↑
DiT-MoE-S 45.4437 15.1032 4.4755 20.0486

W2SD 55.5341 9.1001 4.5053 22.3225

Table 3: Quantitative results of W2SD based on
MoE Mechanism. Datasets: ImageNet 50K.

Method HPS v2 ↑ AES ↑ PickScore ↑ MPS ↑
SD1.5 24.9558 5.5003 20.1368 42.1101
W2SD 25.5069 5.5073 20.2443 57.8903

SDXL 29.8701 6.0939 21.6487 43.9425
W2SD 31.2020 6.0970 21.7980 56.0608

Table 4: Quantitative results of W2SD based
on guidance difference. Datasets: Pick-a-Pic.

MoE Mechanism We also note that a weak-to-strong difference can be induced by controlling the
expert selection strategy within the MoE mechanism. Specifically, we focus on DiT-MoE (Fei et al.,
2024), a novel architecture that integrates multiple experts and selects the two highest-performing
experts during each denoising step to optimize generation quality. Based on this framework, we use
DiT-MoE-S as Ms and define Mw as the two lowest-performing experts in each denoising step,
thereby establishing a quantifiable weight difference.

In Table 3, we show that W2SD reduces FiD (Seitzer, 2020) from 15.1032 to 9.1001, aligning
the learned distribution closer to the real data distribution. Additionally, as shown in Figure 15,
although the limited capacity of MoE-DiT-S (with only 71M active parameters) often results in
image degradation and distortion (the first row in Figure 15), the application of W2SD significantly
enhances the image quality.
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3.2 CONDITION DIFFERENCE

Here we demonstrate that the weak-to-strong difference applies not only across different weights
but also within the same diffusion model under the weak-to-strong conditions.

Semantics of Prompts We demonstrate that the semantic differences within the condition prompts
themselves can be leveraged to enhance generation quality through the reflection process.

Prompt Type HPS v2 ↑ AES ↑ PickScore ↑ MPS ↑
Raw Prompt 25.3897 5.4454 20.7144 -

Refined Prompt 28.5698 5.7714 21.6350 45.7719
W2SD 29.4023 5.8812 21.8053 54.2275

Table 5: Quantitative results of W2SD based on
semantic differences between prompts. Model:
SDXL. Datasets: GenEval.

Weight Difference Condition Difference HPS v2 ↑ Winning Rate ↑
× × 31.6412 -
× ✓ 32.8217 84%
✓ × 32.0992 76%
✓ ✓ 32.9623 90%

Table 6: The improvements effects from dif-
ferent model differences can be cumulative.
Datasets: Pick-a-Pic.

Specifically, we select a total of 533 text prompts from the GenEval (Ghosh et al., 2024) for Mw,
with an average length ranging from 5 to 6 words and minimal contextual complexity. Additionally,
we leverage LLM (here we use Qwen-Plus (Yang et al., 2024)) to enrich and refine these prompts
with additional details for Ms. resulting in weak-to-strong prompt pairs.

We report the quantitative results in Table 5, which relies solely on the semantic differences between
prompts, achieves improvements across all metrics. And in Figure 16 of Appendix D.2 we illustrate
that W2SD is capable of more precisely capturing the intricate details based on the differences in
prompt pairs. Notably, Table 4 demonstrates that the classifier-free guidance mechanism can also be
applied in W2SD, with detailed information provided in the Appendix D.1.

3.3 SAMPLING PIPELINE DIFFERENCE

Extensive works (Si et al., 2024; Chefer et al., 2023; Zhang et al., 2023) have been devoted to
design advanced inference pipelines to improve the quality of diffusion generation results. We
demonstrate that W2SD can enhance the inference process by leveraging the difference derived
from these powerful existing pipelines. Here we define those enhanced sampling methods as Ms,
while Mw represents the standard sampling (Song et al., 2020; Lu et al., 2022).

We first select ControlNet (Zhang et al., 2023) as Ms, which incorporates additional network struc-
tures into the pipeline. By utilizing reference images (e.g., edge maps), it facilitates controllable
image generation. As shown in Figure 9, the images generated by W2Sd exhibit a stronger align-
ment with the provided edge maps. We also present visualization cases of other pipelines (e.g.,
Ip-adapter (Ye et al., 2023)) as strong models in Figure 17 of Appendix D.2.

3.4 CUMULATIVE EFFECTS OF DIFFERENT MODEL DIFFERENCES

Finally, it is important to note that the improvements effects of W2SD, derived from different type
of differences, can be even cumulative. Here we apply the weight difference and the condition
difference simultaneously, where Ms represents the fine-tuned model Juggernaut-XL with high
guidance scale at 5.5, while Mw represents the standard model SDXL with low guidance scale at
zero. As shown in Table 6, the combination of guidance difference and condition difference leads to
a substantial improvement in Pick-a-Pic Dataset compared to Ms, achieving a winning rate of up to
90% on HPS v2.

4 MORE DETAILED ANALYSIS

In this section, we perform more studies on W2SD, to validate the effectiveness of our theory.

Due to page limitations, further details are provided in: Appendix F.1 analysis the impact of inversion
approximation errors on performance improvement; Appendix F.2 analyzes the connections between
W2SD, Re-Sampling (lug, 2022), and other inference methods; Appendix F.4 demonstrates that
W2SD consistently outperforms standard sampling in terms of time cost, offering high efficiency.
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A little blue sprite is laughing.

Two purple oranges.

Edge Map ControlNet W2SD (Ours)

Figure 9: Qualitative results of W2SD based
on pipeline difference. We set ControlNet as
Ms, DDIM as Mw. W2SD improves align-
ment with reference images.

Base model Guidance Difference = -3 Guidance Difference = 0 Guidance Difference = 3

Base model LoRA Difference = -2 LoRA Difference = 0 LoRA Difference = 2

Figure 10: When the weak-to-strong difference
is greater than 0, W2SD yields positive gains.
When it equals 0, the process degenerates into
standard sampling. When it is less than 0, nega-
tive gains occurs, resulting in poor image quality.
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Figure 11: The magnitude of weak-to-strong
difference is a key factor impacting the effects
of improvements. The horizontal axis shows
the magnitude of the weak-to-strong difference,
while the vertical axis shows the average HPS
v2 on the Pick-a-Pic. When Ms is weaker than
Mw, W2SD results in negative gains.
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Time Spent per Image (s)

28.5

29.0
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30.0

30.5
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31.5

32.0
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S 

v2

Standard Sampling
W2SD

Figure 12: W2SD outperforms standard sam-
pling with identical time costs. The horizon-
tal axis denotes the average generation time per
image, the vertical axis represents the HPS v2
on Pick-a-Pic. We provide more details in Ap-
pendix F.4.

The Magnitude of Weak-to-Strong Difference Here we explore how the magnitude of weak-to-
strong difference affects the improvements effects. To quantify the difference between Ms and Mw,
we first consider the LoRA-based W2SD approach. We fix the LoRA scale of Ms at 0.8 and adjust
the LoRA scale of Mw (e.g., from -3.5 to 3.5) to observe its impact on the effects of improvements.
As shown in Figure 11 (left), when the LoRA scale of Ms exceeds that of Mw, W2SD improves
performance. However, when Ms is weaker than Mw (i.e., the LoRA scale difference is negative),
the improvements effects diminish or even result in the negative gains. In Figure 10, we present a
qualitative analysis showing that the magnitude of the weak-to-strong difference is a key factor that
influences the quality of generation results.

5 CONCLUSION

To the best of our knowledge, this work is the first to systematically integrate the weak-to-strong
mechanism into the inference enhancement of diffusion models. We theoretically and empirically
understand that the estimated weak-to-strong difference can effectively bridge the strong-to-ideal
difference, enhancing the alignment between the learned distributions from existing diffusion mod-
els and the real data distribution. Building on this concept, we propose W2SD, which utilizes the
estimated difference in density gradients to optimize sampling trajectories via reflective operations.
W2SD demonstrates its effectiveness as a general-purpose framework through its cumulative perfor-
mance improvements, flexible definition of weak-to-strong model pairs, and efficient performance
gains with minimal computational overhead.
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A RELATED WORK

In this section, we review existing works relevant to W2SD.

Weak-to-Strong Mechanism The concept of improving weak models into strong models origi-
nates from the AdaBoost (Høgsgaard et al., 2023), which constructs a more accurate classifier by ag-
gregating multiple weak classifiers. Building upon this, Green Larsen & Ritzert (2022); Høgsgaard
et al. (2023) introduced a provably optimal weak-to-strong learner, establishing a robust theoretical
foundation for this weak-to strong paradigm. In the field of LLMs, several studies (Chen et al.; Burns
et al., 2023) have utilized weak models as supervisory signals to facilitate the alignment of LLMs.
This paradigm of weak-to-strong generation during training has similarly been investigated in the
context of diffusion model training (Chen et al., 2025). And Sugiyama et al. (2013) recommended
directly estimating the density difference between weak and strong models instead of separate esti-
mations. In this work, we propose W2SD, a general framework that, for the first time, implements
weak-to-strong enhancement in diffusion inference through a reflective mechanism.

Diffusion Inference Enhancement The study of inference scaling laws in diffusion models has
recently become a prominent focus within the research community (Ma et al., 2025; Ye et al.; Liu
et al., 2024). This line of work can be traced back to Re-Sampling (lug, 2022), which iteratively
refines latent variables by injecting random Gaussian noise, effectively reverting the noise level to
a previous scale. This iterative paradigm has been utilized in subsequent works, including univer-
sal conditional control (Bansal et al., 2023), video generation (Wu et al., 2023a), and protein de-
sign (Jumper et al., 2021), to enhance inference performance. However, it has primarily been treated
as a heuristic trick, with its underlying mechanisms remaining underexplored. Z-Sampling (Bai
et al., 2024) extended this paradigm by replacing random noise injection with inversion operations
and identified the guidance difference between denoising and inversion as a critical factor. This phe-
nomenon has also been validated in subsequent studies (Zhou et al., 2024; Shao et al., 2024; Ahn
et al., 2024). In our work, we systematically unify these inference enhancement methods, demon-
strating that their essence lies in approximating the strong-to-ideal difference via the weak-to-strong
difference, and integrate them into a unified reflective framework, W2SD, through theoretical and
empirical analysis.

B PRELIMINARIES

In this section, we present preliminaries about denoising and inversion operation in diffusion mod-
els (Song et al.; Ho et al., 2020). Due to page limitations, we introduce the related work in Ap-
pendix A.

Given the random Gaussian noise zt, we denote the forward process of diffusion models as xt =
xt−∆t+σt

√
∆tzt, where t ∈ [0, 1], and σ represents the predefined variance. We denote the ground

truth density of real data distribution as pgt0 , After noise addition at time t, the resulting density is
represented as pgtt .

Following Song et al. (2020), we can obtain the denoised results xt−∆t from noisy data xt through
the process of an ordinary differential equation as

xt−∆t = M(xt, t) (2)

= xt + σ2tsθ(xt, t)∆t, t ∈ [0, 1]. (3)

where sθ(·, ·) represents the trained score network, utilized to predict the score at the time t. Simi-
larly, we can invert Equation (3) to transform xt−∆t back to a new x̃t as

x̃t = Minv(xt−∆t, t), (4)

= xt−∆t − σ2tsθ(xt, t)∆t, (5)

≈ xt−∆t − σ2tsθ(xt−∆t, t)∆t, t ∈ [0, 1]. (6)

In practice, we often approximate the score value predicted at time t with time t − ∆t along the
inversion process, i.e., sθ(xt, t) ≈ sθ(xt−∆t, t) in Equation (6). Given that the approximation
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error is negligible and the same socre netowrk sθ, M and Minv can be treated as mutually inverse
mappings, thereby satisfying Minv(M(xt, t), t) = xt. In Appendix F.1, we conduct a detailed
analysis of the impact caused by this approximation error.

C EXPERIMENT SETTINGS

In this section, we introduce the details of hyperparameters, metrics and datasets used in the experi-
ments.

C.1 HYPERPARAMETERS

Weight Difference For the W2SD based on weight difference, we consider full-parameter tuning,
LoRA-based efficient tuning, and the MoE mechanism.

For the full-parameter tuning, we first set SD1.5 (Rombach et al., 2022) as the weak model and
the fine-tuned DreamShaper v8 as the strong model, which demonstrates superior performance in
terms of human preference and achieves high-quality generation results. Similarly, we also use
SDXL (Podell et al.) as the weak model and Juggernaut-XL as the strong model to further evaluate
W2SD’s performance under weight differences.

For the efficient tuning, we distinguish strong and weak models by adjusting the LoRA scale. First,
we use the xlMoreArtFullV1 LoRA checkpoint to test W2SD’s ability to enhance overall image
quality. Additionally, to validate the ability of W2SD to improve personalization, we select a series
of personalized LoRAs, as detailed in Appendix C.3. For the strong model, the LoRA scale is set to
0.8, while for the weak model, it is set to -1.5.

Following the default settings (Bai et al., 2024), we set the denoising steps T = 50, and the guidance
scale to 5.5. Reflection operations steps λ = T − 1. Notably, to eliminate influence from guidance
differences, the guidance scale of M s and Mw are both set to 1.0 during reflection, ensuring the
guidance difference is zero.

For the MoE (Mixture of Experts) mechanism, we select DiT-MoE-S (Fei et al., 2024) as the strong
model, which routes the top 2 optimal experts out of 8 during the inference process. The weak
model, in contrast, is configured to route the 2 least optimal experts out of 8. Following the default
settings, the denoising steps T = 50, and the guidance scale is set to 1.5.

Condition Difference In the W2SD research based on condition differences, we focus on analyz-
ing the differences caused by two mechanisms: guidance scale and prompt semantics.

By adjusting the guidance scale to distinguish the strong and weak model, we adapt the same settings
as Z-Sampling (Bai et al., 2024): the guidance scale of Ms was set to 5.5, and the guidance scale of
Mw is set to 0. The diffusion model used is SDXL.

For semantic differences, we set Mw to use the GenEval prompt, which is short (4-5 words), am-
biguous, and coarse, often resulting in uncontrolled outputs. In contrast, Ms uses refined prompts
enhanced by QWen-Plus (Yang et al., 2024), providing greater detail and semantic richness. Dur-
ing the reflection process, the guidance scale was set to 1.0 to eliminate the influence of guidance
differences on the results.

Similar to the weight difference setup, we set T = 50, λ = T − 1, and the denoising guidance scale
to 5.5.

Sampling Pipeline Difference We demonstrate that W2SD can also generalize to capability dif-
ferences across different diffusion pipelines. Specifically, we select ControlNet (Zhang et al., 2023)
as Ms, with the control scale set to the default value of 1.0. The standard sampling pipeline (Song
et al., 2020) is chosen as the weak model. Consistent with the weight difference setup, we configure
T = 50, λ = T − 1, and guidance scale of 5.5. During reflection operation, the guidance scale for
both Ms and Mw are set to 0.5 to eliminate the influence of guidance differences.
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C.2 METRICS

AES. AES (Schuhmann et al., 2022) is an evaluation metric that assesses the visual quality of
generated images by analyzing key aesthetic attributes such as contrast, composition, color, and
detail, thereby measuring their alignment with human aesthetic standards.

PickScore. PickScore (Kirstain et al., 2023) is a CLIP-based metric model trained on a compre-
hensive open dataset containing text-to-image prompts and corresponding real user preferences for
generated images, specifically designed for predicting human aesthetic preferences.

HPS v2. Building upon the Human Preference Dataset v2 (HPD v2), a comprehensive collection
of 798,090 human preference judgments across 433,760 image pairs, (Wu et al., 2023b) developed
HPS v2 (Human Preference Score v2) through CLIP fine-tuning, establishing a more accurate pre-
dictive model for human preferences in generated images.

MPS. MPS (Zhang et al., 2024) is a metric for text-to-image model evaluation, trained on the
MHP dataset containing 918,315 human preference annotations across 607,541 images. This novel
metric demonstrates superior performance by effectively capturing human judgments across four
critical dimensions: aesthetic quality, semantic alignment, detail fidelity, and overall assessment.

C.3 DATASETS

Pick-a-Pic. The Pick-a-Pic dataset (Kirstain et al., 2023), collected through user interactions with
a dedicated web application for text-to-image generation, systematically records each comparison
with a prompt, two generated images, and a preference label (indicating either a preferred image or
a tie when no significant preference exists). Following Bai et al. (2024), we utilize the initial 100
prompts as a representative test set, which provides adequate coverage to assess model performance.

Drawbench. DrawBench (Saharia et al., 2022) is a comprehensive evaluation benchmark for text-
to-image models, featuring approximately 200 text prompts across 11 distinct categories that assess
critical capabilities including color rendering, object counting, and text generation.

GenEval. Geneval (Ghosh et al., 2024) is an object-focused framework that evaluates image com-
position through object co-occurrence, position, count, and color. Using 553 prompts, it achieves
83% agreement with human judgments on image correctness.

VBench VBench (Huang et al., 2024) is a comprehensive benchmark for video generation models,
featuring a hierarchical evaluation framework across multiple quality dimensions. It supports both
automatic and human assessment, with VBench++ extending to text-to-video and image-to-video
tasks while incorporating trustworthiness evaluation.

Peronalization Dataset To evaluate the performance gains of W2SD in personalized generation,
we selected 20 LoRA checkpoints from the Civitai platform, covering a diverse range of categories,
including persons (e.g. Anne Hathaway, Scarlett Johansson), animals (e.g., Scottish Fold cat, pre-
historic dinosaur), styles (e.g., Disney style, parchment style), anime characters (e.g. Sun Wukong,
Bulma) and objects (e.g. cars).

D SUPPLEMENTARY EXPERIMENTAL RESULTS

In this section, we present more quantitative and qualitative results of W2SD.

D.1 QUANTITATIVE RESULTS

Results of W2SD in other benchmarks To further validate the effectiveness of W2SD, we also
conducted experiments on Drawbench (Saharia et al., 2022). For clarity, we have systematically
organized and summarized these experiments in Table 7. In Drawbench, we report results based on
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Table 7: Different types of model differences lead to improvements effects in different directions.

Model Difference Ms Mw Results

Weight Difference

Finetune Mechanism SDXL/SD1.5 Tables 1 and 8

LoRA Mechanism SDXL/SD1.5 Tables 2, 10 and 11

Strong Experts (MoE) Weak experts (MoE) Table 3

Condition Difference
High CFG Low CFG Tables 4 and 9

Refined Prompt Raw Prompt Table 5

Sampling Pipeline Difference
ControlNet Standard Pipeline (DDIM) Figure 9

IP-Adapter Standard Pipeline (DDIM) Figure 17

Table 8: Quantitative results of W2SD based
on a full parameter fine-tuning strategy. Our
method generates results better aligned with hu-
man preferences. Datasets: Drawbench.

Method HPS v2 ↑ AES ↑ PickScore ↑ MPS ↑
SD1.5 25.3601 5.2023 21.0519 -

DreamShaper 28.7845 5.7047 21.8522 47.8813
W2SD 28.7901 5.7847 21.9057 52.1192

SDXL 28.5536 5.4946 22.2464 -

Juggernaut-XL 28.9085 5.3455 22.4906 47.5648
W2SD 29.3246 5.4261 22.5803 52.4358

Table 9: Quantitative results of W2SD based on
guidance difference. Model: SDXL. Datasets:
DrawBench.

Method HPS v2 ↑ AES ↑ PickScore ↑ MPS ↑
SD1.5 25.3601 5.2023 21.0519 47.7075
W2SD 25.8234 5.2157 21.2079 52.2934

SDXL 28.5536 5.4946 22.2464 40.9590
W2SD 30.1426 5.6600 22.4434 59.0415

Table 10: Quantitative results of W2SD based
on human preference LoRA model. Our method
generates results better aligned with human
preferences. Datasets: Pick-a-Pic.

Method HPS v2 ↑ AES ↑ PickScore ↑ MPS ↑
SD1.5 24.9558 5.5003 20.1368 -

Dpo-Lora 25.5678 5.5804 20.3514 44.2889
W2SD 26.0825 5.6567 20.5096 55.7106

SDXL 29.8701 6.0939 21.6487 -

xlMoreArtFullV1 32.8040 6.1176 22.3259 48.2224
W2SD 33.5959 6.2252 22.3644 51.7770

Table 11: Quantitative results of W2SD based
on human preference LoRA model. Our method
generates results better aligned with human
preferences. Datasets: DrawBench.

Method HPS v2 ↑ AES ↑ PickScore ↑ MPS ↑
SD1.5 25.3601 5.2023 21.0519 -

Dpo-Lora 25.8896 5.2895 21.2308 49.3617
W2SD 25.9431 5.3553 21.2589 50.6399

SDXL 28.5536 5.4946 22.2464 -

xlMoreArtFullV1 31.2727 5.5487 22.7721 47.0396
W2SD 32.34857 5.7595 22.8301 52.9588

weight difference (see Tables 8 and 11) and guidance difference (see Table 9). Additionally, in Pick-
a-Pic, we report results based on weight difference (see Table 10). Notably, W2SD demonstrates
consistent improvements across all evaluated metrics.

Results of W2SD in Video Generation Task We also validate the performance of W2SD on
video generation task to demonstrate its broad applicability. We randomly select 200 prompts from
VBench (Huang et al., 2024) as test prompt cases and focus on analyzing the AnimateDiff (Guo
et al.) as video generation model.

For the strong model Ms, we employ AnimateDiff with Juggernaut-XL using guidance scale of 3.0,
while the weak model Mw utilizes AnimateDiff with SDXL at guidance scale of 1.0. This setup
introduces both weight and guidance differences, meeting the conditions required by W2SD.

In Table 12, W2SD achieves significant improvements across different dimensions such as Subject
Consistency, Background Consistency, Aesthetic Quality and mage Quality, confirming its effec-
tiveness in video generation task. Notably, in the Motion Smoothness dimension, W2SD exhibits
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Table 12: Quantitative results of W2SD on the video generation task. Model: AnimateDiff.
Datasets: VBench.

Method Subject Consistency ↑ Background Consistency ↑ Motion Smoothness ↑ Dynamic Degree ↑ Aesthetic Quality ↑ Image Quality ↑
AnimateDiff (SDXL) 91.4152% 95.8491% 94.1647% 45.0000% 55.3108% 58.4293%

AnimateDiff (Juggernaut-XL) 96.0820% 97.5463% 96.8834% 13.0653% 57.7097% 64.1674%

W2SD 97.1398% 97.9386% 96.8706% 8.0000% 59.3736% 64.6987%

a performance degradation due to Juggernaut-XL’s inherent limitations compared to SDXL. This
observation further validates our theory in Section 2.1.

Results of W2SD based on Guidance Scale The classifier-free guidance mechanism (Ho & Sal-
imans, 2021) extrapolates between conditional and unconditional noise predictions, adjusting the
guidance scale to control the semantic attributes of the generated images. To apply W2SD, diffusion
models under high guidance scale can be viewed as Ms, those under low or even negative guidance
scale can be treated as Mw. This guidance scale discrepancy constructs a weak-to-strong differ-
ence that aligns the learned generated distribution more closely with the semantic conditions of the
prompt.

We note that Z-Sampling (Bai et al., 2024) is a specific instance of W2SD under the guidance
difference. In Table 4, our method significantly enhances human preference (e.g., HPS v2) and
aesthetic characteristics (e.g., AES) in mainstream models such as SDXL and SD1.5.

D.2 QUALITATIVE RESULTS

Weight Difference In Figure 13, we present visualization results of W2SD based on weight differ-
ence. Specifically, to enhance human preference for generated images, we select xlMoreArtFullV1
as the strong model and SDXL as the weak model.

Additionally, by setting the LoRA-based personalized model as strong model and the un-finetuned
base model as weak model, Figure 14 showcases the improvement of W2SD in personalized gener-
ation effectiveness.

Finally, in Figure 8 we set SDXL as weak model, and we provide the links to the personalized
LoRAs mentioned in Figure 8, which are as follows:

• Clothing: Batman 1989.
• Character: Bulma.
• Style: Parchartxl.
• Detail: xlMoreArtFullV1.

Condition Difference In Figure 16, we present the visualization results of W2SD based on con-
dition differences. When the strong model utilizes detailed and semantically rich prompts, while the
weak model relies on simple prompts (containing only 4–5 words), W2SD effectively captures fine-
grained conditional features. Notably, Z-Sampling (Bai et al., 2024) is a special case of W2SD based
on guidance differences, with extensive visual evidence already provided; thus, we omit additional
visualizations here.

Sampling Pipeline Difference In Figure 17, we present the visualization results of W2SD based
on the differences in the sampling pipeline. By incorporating reference image information through
Ip-adapter during the denoising process and employing standard DDIM for inversion, W2SD ensures
that the generated image adheres more closely to the given stylistic conditions, resulting in higher-
quality results.
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Figure 13: Qualitative results of W2SD based on weight differences (human preference). Here we
select xlMoreArtFullV1 as the strong model and SDXL as the weak model. W2SD can effectively
enhance the performance of human preference.
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Figure 14: Qualitative results of W2SD based on weight differences (personalization). Here we set
LoRA-based personalized model as strong model and the standard model as weak model
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Figure 15: Quantitative Results of W2SD Based on the MoE Mechanism. The first row shows the
results for DiT-MoE-S, while the second row presents W2SD. W2SD achieves significant improve-
ments, even with small models featuring 71M activated parameters.

SDXL

W2SD
(positive gains)

S2WD
(negative gains)

SDXL

W2SD
(positive gains)

S2WD
(negative gains)

Raw Prompt: a photo of a black teddy bear.

Refined Prompt:  A heartwarming photograph captures the 
endearing image of a plush black teddy bear, its soft, velvety 
fur glistening subtly under the gentle light, with large, 
soulful eyes that seem to hold a world of stories and dreams.

Raw Prompt: a photo of two clocks.

Refined Prompt:  A vintage photograph captures the intricate 
beauty of two antique clocks, their ornate faces and polished 
brass casings reflecting the soft, each ticking in a synchronized 
dance of time that seems to whisper the secrets of the past.

Figure 16: Qualitative results of W2SD based on semantic differences between prompts, which
refines the generation process by placing greater emphasis on the fine-grained details.

Reference Image

W2SD(Ours)IP-Adapter

A moon on the sea.

Reference Image

W2SD(Ours)IP-Adapter

A old man.

Figure 17: Qualitative results of W2SD based on sampling pipeline difference. When the strong
model employs Ip-adapter and the weak model utilizes DDIM , W2SD can enhance the alignment
of the generated results with the reference image (e.g., style).
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E PROOFS

In this section, we provide the proofs for Theorem 1 presented in this work.

E.1 PROOF OF THEOREM 1

We first establish the relationship between the latent variable xt and the refined latent variable x̃t

through the reflection operation, proving that the core mechanism of W2SD is to optimize xt in the
direction of the weak-to-strong difference.

Proof 1 At a given time t, the W2SD reflection operation applies the operator Mw
invMs(·) to the

latent variable xt.

Specifically, we first denoise xt using the strong model Ms according to Equation (3), obtaining
xt−∆t as

xt−∆t = xt + σ2tssθ(xt, t)∆t, (7)

where ssθ denotes the score predicted by Ms, which is equivalent to the gradient of the log probability
density log pst, so, Equation (7) can be rewritten as

xt−∆t = xt + σ2t∇xt log p
s
t(xt)∆t. (8)

After obtaining xt−∆t, we apply the weak model Mw to invert xt−∆t back to the noise level at time
t according Equation (6), thereby completing the reflection process as

x̃t ≈ xt−∆t − σ2tswθ (xt−∆t, t)∆t, (9)

where swθ denotes the score predicted by Mw. Since ∆t is typically small, we neglect the approxi-
mation error in the diffusion inversion process which implies that swθ (xt−∆t, t) is equivalent to the
gradient of the log probability density log pwt . Hence we can reformulate Equation (9) as

x̃t = xt−∆t − σ2t∇xt log p
w
t (xt)∆t. (10)

Combining Equation (8) and Equation (10), we obtain x̃t as

x̃t = xt−∆t − σ2t∇xt log p
w
t (xt)∆t (11)

= xt + σ2t∇xt
log pst (xt)∆t− σ2t∇xt

log pwt (xt)∆t (12)

= xt + σ2t∆t(∇xt log p
s
t (xt)−∇xt log p

w
t (xt)︸ ︷︷ ︸

weak-to-strong difference∆1(t)

). (13)

From Equation (13), we observe that for the latent variable xt, the reflection operator Mw
inv(Ms(·))

in W2SD perturbs xt along the direction of ∆1(t), producing the refined variable x̃t. When the
weak-to-strong difference ∆1 closely bridges the unattainable strong-to-ideal difference ∆2(t), the
resulting x̃t becomes more aligned with the ground truth ideal distribution.

F FURTHER ANALYTICAL EXPLORATION

F.1 THE IMPACT OF APPROXIMATION ERROR IN THE INVERSION PROCESS

In Appendix B, we assume that the inversion and denoising process are reversible, meaning that
for the same generative model (including the same guidance scale, etc.), Minv(M(xt, t), t) = xt.
However, in practice, the inversion process inevitably introduces errors. Specifically, for xt at time
t, the inversion process actually used in the algorithm implementation is as

x̃t = xt−∆t − σ2tsθ(xt−∆t, t)∆t (14)

= xt−∆t − σ2t(sθ(xt−∆t, t)− sθ(xt, t)︸ ︷︷ ︸
Inversion Error Et

+sθ(xt, t))∆t, (15)
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Table 13: As the magnitude of the approxi-
mation error in inversion process increases, the
gains from W2SD diminish. Model :xlMore-
ArtFullV1. Datasets: Pick-a-Pic. The type of
W2SD: weight difference.

Method HPS v2 ↑ AES ↑ PickScore ↑ MPS ↑
SDXL 29.8701 6.0939 21.6487 -

xlMoreArtFullV1 32.8040 6.1176 22.3259 48.2224

W2SD (k=0) 33.5959 6.2252 22.3644 51.7770
W2SD (k=0.005) 32.9341 6.3228 22.3221 46.7130
W2SD (k=0.010) 19.5277 4.3949 17.9267 1.3440

Table 14: By selecting Gaussian noise dur-
ing the Re-Sampling process, the advanced Al-
gorithm 3 achieves superior performance in
the sampling process, demonstrating that Re-
Sampling is a specific instance of W2SD.
Model: SDXL. Datasets: Pick-a-Pic. The type
of W2SD: guidance difference.

Method HPS v2 ↑ AES ↑ PickScore ↑ MPS ↑
SDXL 29.8701 6.0939 21.6487 -

Re-Sampling (sim score<0) 30.2797 6.0744 21.6894 48.4793
Re-Sampling (sim score>0) 30.7844 6.0555 21.8620 51.5210

W2SD 31.2020 6.0970 21.7980 56.0608

And the effect of W2S on the latent variable in Theorem 1 can also be expressed as

x̃t = xt + σ2t∆t(∇xt log p
s
t(xt)−∇xt log p

w
t (xt)− Et), (16)

where Inversion Error Et represents the approximation error in the inversion process at time t. Since
∆t is very small, sθ(xt, t) and sθ(xt−∆t, t) are assumed to be approximately equal by default, i.e.,
Et ≈ 0.

To further analyze the impact of Et on the W2SD, we simplify the analysis by replacing Et with
Gaussian noise of controllable magnitude as

x̃t = xt + σ2t∆t(∇xt log p
s
t(xt)−∇xt log p

w
t (xt)− kϵ). (17)

By varying the value of k, we adjust the magnitude of the error Et to study its effect on the generated
results. We analyze W2SD based on weight differences, with the strong model using xlMoreArt-
FullV1 and the weak model using SDXL.

In Table 13, as k increases, indicating a larger approximation error Et, the gains from W2SD dimin-
ish. This finding is consistent with Bai et al. (2024)’s results, demonstrating that this phenomenon
occurs in both guidance difference and weight difference scenarios, indicating that minimizing the
approximation error in inversion process is crucial.

: ℳ���
� (∙) in �2��

��−��

��

:  ��� �������
( sim_score<0)

:  ���� �������
( sim_score>0)

Figure 18: Re-Sampling, which can be consid-
ered a specific instance of W2SD, demonstrates
improved performance when the randomly sam-
pled Gaussian noise aligns closely with the per-
turbation vector introduced by the W2SD reflec-
tion mechanism (e.g., cosine similarity > 0)

Bad ReNoise
(sim_score < 0)

 SDXL
(base model) 

Good ReNoise 
(sim_score > 0)

Figure 19: Qualitative results of advanced Re-
Sampling demonstrate that the improvements
effects vary depending on the strategy used to
select Gaussian noise for Re-Sampling. It can
be considered a specific instance of W2SD.

F.2 RELATIONSHIP WITH RE-SAMPLING

Re-Sampling (lug, 2022) is the earliest and most classic iterative algorithm of its kind proposed in
diffusion models. As illustrated in Algorithm 2, it introduces randomly sampled Gaussian noise into
the latent variable xt, followed by repeated denoising processes.
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We confirm that Re-Sampling is generally a specific instance of W2SD, which can be interpreted
within the framework of our theory in Theorem 1. In Figure 18, we note that Re-Sampling performs
better when the randomly sampled Gaussian noise in Re-Sampling is similar to the perturbation
vector introduced by the W2SD reflection mechanism (e.g., cosine similarity > 0). Additionally,
we propose an advanced version of Re-Sampling (see Algorithm 3), which evaluates whether the
similarity score, sim score(ϵw2s, ϵ), exceeds 0 to determine whether the Gaussian noise ϵ should be
accepted for the ReNoise operation.

We validate the effectiveness of Algorithm 3 in Table 14. When consistently selecting favorable
random noise (i.e., ϵw2s, ϵ) > 0), advanced Re-Sampling demonstrates improved performance. Con-
versely, when consistently selecting unfavorable random noise (i.e., sim score(ϵw2s, ϵ) < 0), the
performance of Re-Sampling deteriorates. We also present the visualization results in Figure 19,
further demonstrating that Re-Sampling can be incorporated into the W2SD framework, validating
the correctness of our theory in Theorem 1.

Similarly, many subsequent research, such as FreeDoM (Yu et al., 2023), UGD (Bansal et al., 2023),
MPGD (He et al., 2023), and TFG (Ye et al., 2024), follow the same approach as Re-Sampling
by utilizing random Gaussian noise for iterative optimization. Therefore, these inference enhance-
ment methods can be regarded as specific instances of W2SD. The primary distinction among these
methods lies in the specific strong model Ms they employ. For instance, TFG utilizes a more refined
parameter search mechanism, resulting in a strong model that exhibits greater robustness and perfor-
mance compared to algorithms such as FreeDoM and UGD. As a consequence, under the condition
of the same weak model (i.e., the addition of random Gaussian noise), TFG demonstrates signifi-
cantly enhanced performance. However, these studies collectively overlook a fundamental aspect:
the weak-to-strong difference constitutes the core principle that fundamentally drives the efficacy of
such algorithms.

Algorithm 2 Vanilla Re-Sampling

Input: Strong Model Ms, Total Inference
Steps: T , Optimization Steps: λ
Output: Clean Data x0

Sample Gaussian noise xT

for t = T to 1 do
if t > T − λ then
xt−1 = Ms(xt, t)
Initialize ϵ ∼ N (0, 1)
xRe
t = Add Noise(xt, ϵ, t)

end if
xt−1 = Ms(xRe

t , t)
end for

Algorithm 3 Advanced Re-Sampling

Input: Strong Model Ms, Weak Model Mw,
Total Inference Steps: T , Optimization Steps:
λ
Output: Clean Data x0

Sample Gaussian noise xT

for t = T to 1 do
if t > T − λ then

xt−1 = Ms(xt, t)
x̃t = Mw

inv(xt−1, t)
ϵw2s = x̃t − xt

Calculate ϵw2s based on Equation (1)
#Select Optimal ReNoise
Initialize ϵ ∼ N (0, 1)
while similarity score (ϵw2s, ϵ) < 0 do

Initialize ϵ ∼ N (0, 1)
end while
xRe
t = Add Noise(xt, ϵ, t)

end if
xt−1 = Ms(xRe

t , t)
end for

F.3 RELATIONSHIP WITH AUTO-GUIDANCE

We note that in the weak-to-strong framework, Auto-guidance (Karras et al., 2024) employs a pre-
trained diffusion model along with a corrupted version of it (typically achieved by adding perturba-
tions or reducing training iterations through training from scratch). It directly enhances performance
by interpolating in the latent space. And here we clarify the contributions of W2SD in relation to it.
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W2SD
(Ours)

Auto-
Guidance

Figure 20: Compared with Auto-guidance, W2SD achieves superior performance with enhanced
robustness, effectively addressing critical issues such as oversaturation and optimization failure.

Different mechanisms W2SD employs an reflection mechanism, while Auto-guidance utilizes an
interpolation-based method. For comparison with W2SD, we set w=1 in Auto-guidance. When
using Strong Model (human preference model) vs Weak Model (SDXL), in Table 15, we show that
W2SD achieves notably higher scores on human preference metrics including PickScore and HPS
v2. However, in this setting, direct interpolation in Auto-guidance leads to performance degradation
in certain metrics, manifesting as oversaturation and artifacts. Actually, the auto-guidance mecha-
nism similarly utilizes the following operations as

xt → xgood
t−1 (18)

xt → xbad
t−1 (19)

xnew
t−1 = xgood

t−1 + w · (xgood
t−1 − xbad

t−1). (20)
When w is too large, applying Equation (20) roughly refines the distribution of the latent variables,
leading to an unnatural shift in the data distribution (Sadat et al., 2024; Lou & Ermon, 2023). When
w is too small, it fails to produce sufficient refinement.

Table 15: Performance comparison between Auto-
guidance’s interpolation and W2SD’s reflection mech-
anism in latent variable refinement.

Method HPS v2 ↑ AES ↑ PickScore ↑
SDXL 29.8701 6.0939 21.6487

xlMoreArtFullV1 32.8040 6.1176 22.3259
Auto-guidance 32.1650 6.1187 22.0177

W2SD 33.5959 6.2252 22.3644

In W2SD’s process, xt → xt−1 → xt, the refinement operation (marked in red) is implicitly per-
formed by score network’s internal transformation which avoids common artifacts like distortion
and over-saturation, please see Figure 20.

On the other hand, we note W2SD generalizes the concept of weak/strong model pairs—where
the ”weak” model is not limited to underperforming variants created through reduced capacity or
training strategies (e.g., data corruptions or degradations as in Auto-guidance). We propose that
differences in semantic interpretation of prompts or sampling methodologies (e.g., MoE routers,
ControlNet adaptations) can equally constitute valid weak-strong pairings. This expanded paradigm
demonstrates significantly greater practical utility, as it accommodates real-world deployment sce-
narios where model capabilities vary along multiple axes.
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F.4 TIME EFFICIENCY COMPARISON

Assuming standard sampling and W2SD require Tstd and Tw2s denoising steps, respectively, the
score predictions needed are Tstd and Tw2s+2λ. To ensure a fair comparison, we set Tw2s = ⌊ 1

2Tstd⌋
and λ = ⌊ 1

2Tw2s⌋, matching the runtime for generating the same image. In this setting, as shown
in Figure 12, W2SD consistently outperforms standard sampling, demonstrating that the gains from
reflection operations far outweigh the additional computational cost, validating the time efficiency
of our method.
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