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Abstract

Deep neural networks are increasingly applied in automated histopathology. Yet,
whole-slide images (WSIs) are often acquired at gigapixel sizes, rendering them
computationally infeasible to analyze entirely at high resolution. Diagnostic labels
are largely available only at the slide-level, because expert annotation of images
at a finer (patch) level is both laborious and expensive. Moreover, regions with
diagnostic information typically occupy only a small fraction of the WSI, mak-
ing it inefficient to examine the entire slide at full resolution. Here, we propose
SASHA - Sequential Attention-based Sampling for Histopathological Analysis — a
deep reinforcement learning approach for efficient analysis of histopathological
images. First, SASHA learns informative features with a lightweight hierarchical,
attention-based multiple instance learning (MIL) model. Second, SASHA samples
intelligently and zooms selectively into a small fraction (10-20%) of high-resolution
patches to achieve reliable diagnoses. We show that SASHA matches state-of-the-
art methods that analyze the WSI fully at high resolution, albeit at a fraction of
their computational and memory costs. In addition, it significantly outperforms
competing, sparse sampling methods. We propose SASHA as an intelligent sam-
pling model for medical imaging challenges that involve automated diagnosis with
exceptionally large images containing sparsely informative featuresﬂ

1 Introduction

Deep learning models have emerged as a major frontier in automated medical imaging diagnosis. For
example, such models accurately identify tumorous tissue in whole-slide histopathological images
(WSI) [14}110,[12,[19]. Yet, hardware and memory bottlenecks render it impractical to analyze WSIs
acquired at gigapixel sizes. Moreover, analyzing WSI-s at high resolution is inefficient because
regions with diagnostic information (e.g., tumor cells) make up only a small fraction of the entire
image, and are not clearly identifiable at low resolutions. As a result, methods that predict slide-level
labels from low-resolution WSIs suffer from performance bottlenecks [29}16]. By contrast, methods
that incorporate fine-grained “patch-level” information perform better [28| [37]]. Yet, these latter
methods require significant resources and expert annotations of WSIs at the patch level.

The Multiple Instance Learning (MIL) framework [5]], addresses these limitations elegantly. In
MIL, the WSI is divided into non-overlapping patches, with each patch being encoded into a high-
dimensional feature vector. The feature vectors are aggregated using simple methods, like max- or
mean-pooling, and this “bag” of features is slide-level labels. Furthermore, diagnostic regions can be
identified with weighted aggregation methods, like Attention-Based deep Multiple Instance Learning
(ABMIL) [[15], which assigns patch-level attention scores, based on their relevance.

"Model implementation is available at: https://github.com/coglabiisc/SASHA
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Figure 1: SASHA: An attention-augmented deep RL model. Starting with low-resolution WSI
features Sy € RV >4, at each time step ¢, the deep RL agent selects a patch a; (red outline) to zoom in
at high-resolution, based on policy 7(a|S;). High-resolution features V' (a;) € R? are extracted and
aggregated using a Heirarchical Attention-based Feature Distiller (HAFED, Section[3.2). The states
S, of patches with features similar to a, are updated with a Targeted State Updater (TSU, Section[3.3).
At the end of each episode, the classifier (Section @ predicts the presence or type of cancer.

Nonetheless, a major limitation of MIL-based approaches is the need to process most WSI patches at
high resolution. Because tumors typically occupy only a small portion of the slide, feature extraction
for the majority of non-tumor patches becomes computationally inefficient, increasing inference
time and memory usage. To address this, Zhao et al. [40] proposed a deep reinforcement learning
(RL)-based approach — RLogist, that first examines WSIs at low resolution and then selectively zooms
into diagnostically relevant high-resolution patches to predict slide-level labels.

Although reportedly much faster (~4x) than conventional MIL approaches at inference time [40],
RLogist suffers from major drawbacks: i) Poor accuracy: Because RLogist samples only a fraction
of the whole slide, it lags current sota models that sample the whole WSI at high resolution by
~10-15%; ii) Weakly diagnostic features: Image features are extracted with a generic ResNet-50 [[13]]
model pretrained on ImageNet [6], thereby rendering these features poorly diagnostic of pathology;
iii) Training inefficiency: The RL agent training suffers from bottlenecks, such as convergence issues
arising from the RL policy network being trained concurrently with the classification network.

Here, we address these limitations by combining RL with multi-attention MIL in a framework we
call SASHA - Sequential Attention-based Sampling for Histopathological Analysis (Fig.[I). Our
study makes the following key contributions:

* We design an attention-augmented deep RL agent that scans WSI patches at low resolution, and
zooms into selected patches to extract meaningful, high-resolution features.

» To improve diagnostic accuracy, we propose a Hierarchical Attention-based FEature Distiller
(HAFED), which uses multiple attention heads to generate label-informed MIL features.

* For stable convergence of the RL policy, we train a slide-level label classifier as part of the HAFED
model, and freeze the classifier during RL training.

* For faster training and inference, we exploit similarities among patch features to perform a concerted
state update of correlated instances with a targeted state updater (TSU).

We show that SASHA achieves state-of-the-art performance on two cancer benchmarks [3 26],
comparable to models that analyze the entire WSI at high resolution, while requiring only ~ 6% of
their memory for WSI representation and with upto 8 x faster inference times.

2 Related Work

Deep learning approaches for automated histopathology have a rich and detailed history (reviewed in
[34] 27]). Here, we review specifically those methods that inspire key aspects of our solution and,
therefore, form benchmarks for performance comparisons.

Multiple Instance Learning (MIL). MIL is a weakly supervised learning paradigm widely applied
in WSI analysis. Unlike fully supervised learning, where each instance is associated with a label,
MIL involves dividing the slide into a “bag” of instances (patches); the model is then trained with



bag-level labels. MIL is, therefore, suitable for classification problems where slide-level, but not
patch-level, labels are available. Early MIL approaches relied on instance selection to identify the
most relevant patches within a bag ([9]]). Recent models, such as attention-based MIL (ABMIL) [15],
assign importance weights to patches, allowing the model to focus on diagnostically relevant regions.

Advances in attention-based MIL. A key limitation of these approaches is that each patch is
treated independently of the others, even though many may share strong feature correlations. Recent
models exploit correlations among instance representations using a self-attention mechanism (e.g.,
TransMIL [32]]). Other approaches cluster instances based on their attention scores [22]. Yet, these
attention mechanisms may capture only some types of diagnostic features, leading to overfitting
and lack of generalization. To overcome this, Attention-Challenging Multiple Instance Learning
(ACMIL) [39] employs multiple attention blocks, each focusing on distinctive diagnostic features.
Inspired by these approaches, our model incorporates multiple attention heads for diagnostically
relevant feature extraction and a correlation-based state update rule for efficient feature updates.
Moreover, earlier approaches largely process every patch at high resolution, which is computationally
inefficient. ZoomMIL [36] addresses this by recursively sampling a fixed number of patches per
resolution based on top-k attention scores. However, its sampling strategy depends on predefined
attention criteria, which motivates the use of adaptive and context-aware patch selection methods.

Deep Reinforcement Learning (DRL) in medical imaging. Conventional RL learns a policy for
actions that maximizes the expected reward in novel, unstructured environments. DRL augments
RL with the representational power of deep neural networks. The power of DRL was originally
demonstrated in challenging strategy and video games (e.g., Deep-Q, AlphaGo), [25,133]. DRL is
particularly useful in domains with limited annotations, such as automated medical diagnosis, and
has been successfully applied to various medical imaging tasks, including localization of anatomical
landmarks in medical scans [1], lesion detection [23| 35]], 3D image segmentation of MRI scans [20]
and tumor classification in WSIs [40,/41]]. In such tasks, a DRL agent learns an optimal search strategy
by exploring different portions of the environment (here, image) and receiving sparse feedback in the
form of classification accuracy, without the need for analyzing the entire image at high resolution.

DRL for histopathology. Diagnosis of WSIs by human histopathologists involves viewing the slide —
at a low (“scanning”) resolution — and zooming into suspected tumor regions — at high resolution —
for reliable diagnosis. In this context, a recent approach, RLogist [40], models the scanning process
of histopathologists as a Markov Decision Process (MDP) using an RL agent. The agent learns
an efficient observation strategy, selectively zooming into only a few high-resolution WSI patches
before making a classification decision, thereby reducing computational overhead and inference time.
Similarly, PAMIL [41] addresses the shortcomings of instance-based clustering methods using an RL
agent to form pseudo-bags (aggregates) of related instances from high-resolution WSIs. It models
pseudo-bag formation as an MDP, forming new pseudo-bags based on past knowledge from the
previously formed bags, informed by the label error arising from bag-level predictions.

Feature extraction for histopathology. Deep neural networks such as ResNet [13]] and Vision
Transformers (ViT) [[7], pre-trained on ImageNet [6], are commonly used for feature extraction in
computer vision tasks. Their exposure to millions of natural images enables them to identify generic,
relevant features, for specialized downstream tasks. Yet, pretraining on natural images is not ideal
for medical image diagnosis. [2]. For instance, histopathology images lack a canonical orientation,
exhibit low color variation due to standardized staining protocols, and their diagnostic information
varies with magnification. To address this, Kang et al. [17] introduced ResNet-50 and ViT-S models
with self-supervised pretraining on large WSI datasets (e.g., TCGA, TULIP).

3 Model description

Our framework combines multi-attention multiple instance learning (MIL) with reinforcement
learning (RL), to identify diagnostic patches in the WSI. We also employ a targeted update rule that
exploits correlations among instances to efficiently update the state. Each step in the model — and
how it addresses shortcomings with existing methods — is described subsequently.

3.1 Problem Statement and Overview

For our task, the model seeks to predict binary target labels Y € {0,1} for a given Whole Slide
Image (WSI) X. The latter is a 3-channel RGB image that is available in the dataset at multiple
different levels of magnification, whereas the former either indicates the presence (versus absence) of
cancer or indicates one of two subtypes. We notate the size (in pixels) of the image at magnification



(a) HAFED (b) TSU

U e RNxkxd [ patch selected atrandom === similar patches
= . ® concatenate A\ Feat. Agg. Output
h=a,V,e R
k ) - = > e 5| I > —
N Y—d— @ € R’J oy !
2 '[ — S MSE
:-th T_ T Attn-2 — ! t
i — Ni (M) —d— : R
CC | e = 4
O |k —d— v E
U; € R4 | a; eRV* V =a,U c Yi=1 @3
v e Rixa | %2 M Atten. _, Feat. :
Highres o scores A ] - Agg. _’m ____________ i
Feature Aggregator (FA) Classifier Zoomed - in

Figure 2: Components of SASHA. (a) HAFED. During training, features from each patch in each
WSI are extracted and aggregated with a hierarchical, attention-based feature distiller (HAFED).
High-resolution input U € RN***d yndergoes two levels of attentional filtering, first operating
across the k high resolution patches in each low resolution patch a; € RV** and then operating
across the N low resolution patches az € R” to produce the final classifier prediction Y. During
inference, only the sampled patch’s high-resolution features are analyzed. (b) TSU. Following this
the state of all patches whose features are correlated with the sampled patch are concurrently updated,
with a targeted state updater (TSU) (see sections @ and @ for details).

level m € {1,2,3} as G™. The goal of our approach is to scan the image at the lowest resolution
G3, which we call the “scanning-level” as in [40], while zooming into and analyzing only select
portions of the image at a higher resolution G''. For this, each WSI at G? is divided into multiple
non-overlapping patches, such that a given WSI X is represented as X = {x1,...,2x}, where N is
the total number of patches at low resolution G*; note that N can vary across different WSI images.
Now, when zoomed in, these patches are magnified to a high-resolution; for this, we choose the
highest resolution G in all datasets tested. Therefore, each patch z; at the low-resolution comprises
of k patches at the high-resolution; we denote these as {1, ...,z }.

Given these definitions, the three main components of the algorithm are as follows (Fig. [I):

Hierarchical Feature Distiller: This hierarchical attention-based network extracts diagnostic features
from the k high-resolution patches for each low-resolution patch and creates a d dimensional feature
representation for it. The output of this network is used to update WSI “state” and to train a
downstream WSI label classifier; see Section[3.2]for details.

Targeted State Updater: This network maintains a state of the entire WSI, comprising a d di-
mensional feature representation for each low-resolution patch. As each patch is zoomed in to
high-resolution, the state vector is updated, but only for instances whose features are correlated with
those of the sampled patch; see Section [3.3]for details.

Deep RL Agent: This agent comprises a policy network and a value network. Based on the
current state, the former network produces a probability distribution over a set of actions from
which the agent selects the next patch to zoom in, whereas the latter network is used to compute a
generalized advantage estimate for each state-action combination. Both networks are optimized using
the Proximal Policy Optimization (PPO) algorithm; see Section [3.4] for details.

Preprocessing and Feature Extraction. Prior to training and testing, we preprocess the WSI and
extract features using a pre-trained model, as follows: To isolate histopathological tissue from the
glass slide background on the WSI we apply established segmentation methods [22] at low resolution.
The extracted tissue is then divided into non-overlapping patches of size (256 x 256 x 3), again at
both resolutions; these operations were performed using the code provided as part of the CLAM
[22] GitHub repository. For the first level of feature extraction, we utilize a pre-trained ViT-based
encoder [7]], as described in the Related Work (Section [2). Each input patch is encoded into a
feature embedding vector of dimension d. We denote the input feature representation of a WSI at
low-resolution as Z € RV*?_and at high-resolution as U € RN *kxd,

3.2 Hierarchical Attention-based Feature Distiller (HAFED)

A key first step with diagnosis of large WSIs is to learn informative, yet parsimonious, feature
representations for the high-resolution patches. Such representations are critical for the RL agent
to update WSI state, as it makes decisions about which patch to visit next, as well as for the



final classification. Recent advances in attention-based MIL models compute such informative
representations for high-resolution whole-slide images (WSIs) [15]. However, in an RL setting, the
state representation for the WSI at each time step comprises a mix of information both at low and
high-resolutions, depending on the specific patches zoomed in (see next). It is, therefore, desirable for
both the low-resolution and high-resolution feature representations to have matched dimensionality;
such a design choice considerably simplifies downstream computations (e.g., classification). To
achieve this, we propose a Hierarchical Attention-based FEature Distiller (HAFED) (Fig. E}a).

HAFED is a two-stage attention-based model designed to operate directly on high-resolution feature
patches while producing representations compatible with low-resolution patches. In the first stage
(Fig. [2h, Feature Aggregator), the model takes as input high-resolution features U € RN*#xd,
and learns to estimate attention scores for each of the k sub-patches, reflecting the latter’s relative
importance in each of the N low resolution patches; a stochastic instance masking strategy is applied
to avoid over-fitting [39]]. A weighted aggregation of the sub-patches based on these attention scores
produces a compressed feature representation V' € RN *?, thereby reducing the dimensionality of
the high-resolution features and aligning them with the dimensionality of the low-resolution features
Z € RV*4_In the second stage (Fig. [2h, Classifier), a second attention mechanism operates across
the N patch-level features in V' to identify diagnostically important patches at the slide level. A
weighted aggregation of the N features, guided by the second-stage attention scores, yields a final
slide-level embedding h € R? that summarizes the entire WSI. This d-dimensional embedding is
then used for downstream WSI classification. We employed multiple (/) attention branches, and the
model is trained with the sum of three losses [39]]: i) a similarity loss to learn distinct attention weight
patterns in each branch, ii) the label loss associated with each branch, and iii) overall label loss.

During training, both stages of the model are trained end-to-end by visiting all of the NV patches at
high resolution. Thus, attention weights, and feature representations, in both the first and second stage
of the model are learned in a “label-aware” manner using the ACMIL loss (classifier and dissimilarity
losses). During inference, a single high-resolution patch a; is visited at each timestep ¢ and its
compressed feature representation V' (a;) € R? is used to update the slide state. While previous
approaches [40]] employ generic, label-agnostic feature extractors HAFED identifies important regions
at both the sub-patch (first-stage) and patch (second-stage) levels, which enables efficient learning of
diagnostically-relevant and parsimonious feature representations from high-resolution WSIs.

3.3 Targeted State Updater (TSU)

In our deep RL model, each WSI is represented by a “state” S; € R™*¢ at each timestep ¢ in an
episode. The RL agent makes sequential decisions of which patch to visit based on S;. We describe,
here, how this state is computed and updated over successive time steps: Scanning begins with the
low-resolution feature representation Z, which serves as the initial state Sy. While Z provides a
coarse global view of the WSI, it often lacks the fine-grained diagnostic details necessary for accurate
classification. Obtaining high-resolution features for all patches is computationally expensive; thus, at
each step ¢, we selectively zoom into a single patch at high resolution to gather additional information.
The selected patch, denoted as a;, yields k high-resolution sub-patches, which are processed through
the first attention model of HAFED. A weighted aggregation of the sub-patches produces a refined
high-resolution feature vector V (a;) € R? that captures detailed local information.

The challenge then is how to effectively integrate this newly acquired high-resolution information into
the overall state representation S; without corrupting previously acquired information. One possible
approach (e.g., Zhao et al. [40]) involves concatenating V' (a;) with every patch in Sy, training an
MLP (multi-layer perceptron) with this augmented state as input to produce an updated global state
representation S;;; that gradually converges toward the feature representation obtained from all
high-resolution patches. We argue that such a global state update is far from ideal. Because only one
high resolution patch is observed in each time step, updating instances globally risks corrupting the
state, especially when instances unrelated to the sampled patch are concurrently updated. Moreover,
information from the sampled patch is likely to be relevant, primarily, for updating instances that
share features similar to it [32, 22].

To exploit these correlations, we propose a targeted, similarity-based state update (TSU) model
(Fig. ). For the selected patch a;, we compute the cosine similarity between S;(a;) and all other
patch representations in S;. We then define a set C' containing the indices of patches whose cosine
similarity with S;(a;) exceeds a threshold (7, a hyperparameter), excluding a; itself. Only the patches
in C are updated: V (a;) is concatenated with the representations of patches in C' and passed through



Algorithm 1 Agent-Environment Loop at Time Step ¢

Input: Current state S; € RV*4; Set [ of  7: V(a;) « fu(Ua,;0n) {extract features
sampled patch indices, upto time ¢ V(a;) € R from high-resolution zoomed
Parameters: Policy network g, ; HAFED fea- in features, U,, R**? of the sampled patch,
ture aggregator model fg(.;0x) and classifier with the HAFED model}

fe(;8c); TSU state update model fs(.; 0s) 8: Sir1(ar) < V(at) {update the sampled

Output: Updated state S¢41 and action a;41 patch with its high-resolution feature repre-
attime t + 1 sentation}
1: ay ~ mp, (. | S;) {Sample patch index a;  9: C « {i : cos Z(S¢(i), Se(ar)) > 7} {iden-
from the policy distribution} tify set of patch indices whose cosine similar-
2: I+ I'U{a:} {Store selected patch index} ity with S;(a;) exceeds a threshold}
3: if training then 10: for each patch index ¢ in C'\ I do
4 g < fo(St; 0c) {predict WSI label with  11:  Sypq(4) « fs([S:(i), Se(ar), V(ar)]; 0s)
HAFED classifier} {targeted update of similar patches with the
5:  Update mg with a PPO algorithm; interme- TSU model}
diate reward 7, = —CE(y, ;) 12: end for
6: end if 13: return Siyq1, 0441

an MLP trained to minimize the MSE loss against the corresponding entries in V' (C). Additionally,
S¢(ay) is directly replaced with V' (a;) because its exact high-resolution representation is available.
In the next time step, the patch a; is masked out, and future actions are sampled from the remaining
unmasked patches; this strategy is applied during both the training and evaluation stages. With
ablation studies (Table[2), we show that this selective update strategy outperforms naive approaches.

3.4 Sequential Attention-based Sampling for Histopathological Analysis

We train a reinforcement learning (RL) agent to select which patches to zoom into, leveraging
feature distillation with the HAFED model and state update with the TSU model. We formulate the
patch selection process as a sequential decision-making problem, where an agent interacts with a
slide-specific environment over multiple steps (Algorithm[I)). During each training episode, at each
timestep ¢, the agent observes the WSI state S;, which is initialized with the low-resolution feature
So = Z. Based on Sy, the policy network 7y produces a probability distribution over a set of actions
from a discrete action space {1, 2, ..., N}. The agent samples an action a;, corresponding to the next
low-resolution patch to zoom in, according to the current policy 7y, (- | S¢) with a stochastic sampling
rule. The zoomed-in patch is passed through HAFED to obtain its high-resolution representation
V(a;). This representation is then used by the TSU to selectively refine the current state S;, by
modifying only those patches that are similar to a, in the feature space. This produces an updated
state S;41. The classifier trained together with HAFED then uses the updated state S;11 to produce a
slide-level prediction g;. This prediction is compared against the ground truth label y to compute
a time-step-wise reward, based on a negative cross-entropy (CE) loss. This feedback is used to
update the policy network using Proximal Policy Optimization (PPO) [31]] algorithm. We employed
Generalized Advantage Estimation (GAE) in computing the advantage function [30]], whose output
was trained to predict the reward until the end of the episode. Both the policy and value network were
modeled on standard architectures [[15] (details in Appendix A.2.3). The same steps were followed
during evaluation, except that the action with the highest probability based on the policy network’s
output was chosen deterministically.

4 Experiments
4.1 Dataset and implementation details

We evaluate the effectiveness of SASHA with two publicly available benchmark datasets CAME-
LYON16 breast cancer [3] and TCGA-NSCLC lung cancer dataset [26]]. While the CAMELYON16
labels correspond to normal versus pathological WSIs, TCGA-NSCLC labels correspond to dis-
tinguishing two different types of cancers, adenocarcinoma versus squamous cell carcinoma. We
followed standardized train-test splits for both datasets. In addition, we also evaluate SASHA on
multi-class classification tasks using the BRACS and Camelyon+ datasets. Further details on the
datasets, hyperparameter selection, implementation, and training are in Appendices A.1 and A.2.



CAMELYON16 TCGA - NSCLC

Method Accuracy AUC F1 Accuracy AUC F1
Max Pooling 0.933 £0.007 0.971+£0.001  0.911+£0.008  0.881+0.010  0.952+0.008  0.882+0.010
§ ABMIL 0.947+0.008  0.958+0.016  0.928+0.011  0.883+0.045  0.9474+0.021  0.884+0.045
S CLAM_SB 0.9494+0.012  0.976+0.008  0.931+0.015  0.905+0.019  0.961+0.009  0.907+0.018
o TransMIL 0.936+0.006  0.953+0.008 0.912+0.008  0.898+0.015  0.964+0.004  0.899+0.016
g* DTFD 0.94440.014  0.977+0.008  0.944+0.014 0.911+0.012  0.962+0.010  0.911+0.022
& ACMIL 0.9414+0.015  0.9704+0.011  0.924+0.017  0.906+£0.025  0.959+0.006  0.907+0.026
HAFED (ours) 0.963+0.008  0.980+0.003  0.951+0.011  0.923+0.011  0.966+0.015  0.925+0.010
~  Zoom-MIL (k=300) 0.780 +£0.017 0.700 +£0.029 0.738 +£0.015 0.908 +£0.004 0.967 +0.004 0.908 +0.004
¥ RLogist-0.1 0.824 0.829 - 0.828 0.892 -
S Zoom-MIL (k=80) 0.753+0.02  0.743£0.007  0.743+£0.012  0.907£0.002  0.969+0.012  0.907+0.002
SASHA-0.1 (ours) 0.901+0.021 0.918+0.014 0.856+0.031 0.897+0.023  0.956+0.023  0.898+0.024
¥ RLogist-0.2 0.862 0.879 - 0.839 0.903 -
&  Zoom-MIL (k=160) 0.7594+0.001  0.79440.001  0.755+£0.001  0.912+0.005 0.97040.001  0.91240.005

SASHA-0.2 (ours) 0.953+£0.017  0.979+£0.008  0.937+0.024  0.9121+0.010  0.963+0.014  0.914+0.011

Table 1: Performance comparison on the CAMELYON16 and TCGA-NSCLC datasets. The top
7 rows reflect models that process all patches at high resolution (“Sample 100%”). Underlined
values indicate the best performance among these methods. Rows 9-11 and 12-14 reflect models that
selectively sample either “10%” or “20%” of the patches, respectively. Bold values indicate the best
performance among these methods at the respective sampling fraction.

4.2 Baselines and Metrics

We evaluate and compare the performance of our model against two types of baselines. First, we
evaluate a range of different sota methods that analyze all patches in the WSI at high resolution,
including MaxPooling, ABMIL [15], CLAM [22], TransMIL [32], DTFD [38]], and ACMIL [39]. We
also include comparisons with our hierarchical attention-based (HAFED) model (Section @]) with
the full-resolution WSI. Yet, these methods serve only as an upper bound on achievable performance.

For a fair comparison, we also evaluate models that sample only a fraction of the WSI. Specifically,
we compare our approach with RLogist [40]] when trained to sample exactly 10% and 20% of patches
at high resolution, under identical experimental settings. We also compare with a non-RL-based
Zoom-MIL [36]] model that samples exactly k£ = 80, 160, or 300 patches at low resolution (5x —
20x). The choice of k values aligns with the patch statistics of the dataset: WSIs contain ~800
low-resolution patches on average; thus, k = 80 and k = 160 correspond to 10% and 20% of the
available patches, on average, providing a fair comparison with the RLogist-0.1/SASHA-0.1 and
RLogist-0.2/SASHA-0.2 settings, respectively. k£ = 300 follows the default configuration used in the
original Zoom-MIL paper [36]. This setup allows us to systematically analyze the effect of varying
observation budgets on model performance. In addition, we also compare against ACMIL and DTFD
under the same observation budgets, with random sampling of high-resolution patches (Table [2);
details in Appendix A.3. Models were trained with the official codebase provided by the respective
studies, except for RLogist. The RLogist codebase is insufficient for replication; therefore, we report
the performance metrics as is from the original study [40].

Our performance metrics include Accuracy, AUC, and F1 scores for normal versus pathological tissue
classification (CAMELYONI16) or for classifying between the different tumor types (TCGA-NSCLC).
In addition, we expect that selective sampling models, such as ours, would exhibit significantly
faster inference times compared to models that examine all patches at high resolution; therefore, we
also evaluate and compare inference times (Fig.[3c) . Finally, we also compute a metric of “WSI
compressibility”. We define this as a ratio of the original WSI image size, at full resolution, to the
size the of WSI representation used by each model’s classifier to make a final decision. This metric
has important real-world implications in terms of efficient archival and storage of WSI images. We
compare models of comparable complexity and performance (CLAM, TransMIL, ACMIL, DTFD,
SASHA) in terms both WSI compressibility and overall model size.

4.3 Classification Performance, Inference Time and Compressibility

Classification Performance. SASHA consistently outperforms the sota competing deep RL model —
RLogist — by a large margin, for both the 10% and 20% observation budgets (Table[I] SASHA-0.1 and
SASHA-0.2, vs RLogist-0.1 and RLogist-0.2, respectively). Improved classification performance was
reflected in all 3 metrics quantified: Accuracy, AUC, and F1-score. Zoom-MIL performed comparably
with SASHA-0.2 for the TCGA benchmark, but underperformed heavily for CAMELYON-16.
Moreover, our HAFED model performed on par with the best sota models (e.g. ACMIL, DTFD) that
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Figure 3: (a-b) Patch selection and update strategy by SASHA’s RL agent. Box color corresponds to
time fraction in episode. (c-d, h) Inference time, compressibility and expected calibration error (ECE)
for SASHA and HAFED compared to other models. S-10% and S-20% refer to SASHA-0.1 and
-0.2 models, respectively. (e) Tumor fraction in patches sampled by SASHA’s RL agent (S) versus
non-sampled patches (NS). (f-g) Top-k attention score overlap fraction and average attention score
for patches sampled by SASHA’s RL agent versus a random policy (Rnd). In (e-g) left and right pairs
of bars reflect 10% and 20% observation budgets, respectively. *** indicates p < 0.001.

analyze the full, high-resolution WSI (Table[T] underlined). Interestingly, even with sampling 5x
fewer patches, SASHA-0.2 nears ceiling performance achievable with HAFED, when all 100% of
patches are sampled at high resolution (Table[I} compare SASHA-0.2 with HAFED).

Inference time. The average inference time per WSI for the CAMELYON16 dataset, including both
pre-processing and feature extraction time, was ~117 seconds, using HAFED (Fig. [Bc). Other sota
attention-based methods like ACMIL and DTFD also exhibited similar average inference times per
WSI. The most expensive operation was feature extraction for each of the high resolution patches. By
contrast, our model samples only a few patches at high-resolution, thereby leading to a substantial
decrease in overall inference time, ~14 seconds and ~26 seconds per WSI for SASHA-0.1 and
SASHA-0.2 — an 8x and 4 x speedup, respectively — compared to the second fastest model (Fig. 3f).

WSI compressibility. Similarly, a comparison of the WSI compressibility revealed a significant
(> 16x) improvement, compared to models that examine the entire slide at high resolution (Fig. 3{).
The main reason for this saving is the fact that our HAFED model encodes features for both low- and
high-resolution patches in a uniform /N x d dimensional space; by contrast, other models encode high-
resolution features in a N x k x d dimensional space, where k reflects the ratio of the zoomed-in to
the scanning resolution size. The full set of results is shown in Appendix A.4. These results highlight
the efficiency of our method in balancing performance with computational and representational costs.

4.4 Ablation Study and Limited Sampling

We performed a systematic ablation study removing each component of the model in turn — or
replacing it with a naive variant — and evaluating it with the CAMELYON16 dataset. These included:
a) replacing the WSI-pretrained ViT with a ResNet50, used commonly for feature extraction [41} 40],
b) replacing ViT with the CONCH medical image-encoder[24]], pretrained on 1.17M image caption
pairs, c¢) replacing multi-branch attention with single branch in the Classifer [[15]], d) replacing the
targeted state update policy with a global state update [40], e) removing the TSU and updating the
state only of the sampled (local, high-resolution) patch, and f) and selecting an action based on
a random policy (see “Variant”s in Table 2)). In every case, we observed sharp drops in accuracy,
ranging from 7-45%, relative to the baseline SASHA model; similar drops occurred in AUROC
and F1 scores Table[2] The strongest impact occurred when changing the RL policy (Table 2] f).
The next strongest impact occurred when changing the feature extractor to ResNet-50 (a), but this
impact was mitigated when using the CONCH encoder (b). Intermediate levels of impact occurred
when changing the classifier to single-branch attention (c) or altering the state update method (d-e).



Variant Feature Classifier TSU RL Policy Accuracy AUC F1

SASHA Default v v v v 0.964 0.980 0.953
(a) ResNet-50 * v v v 0.860 0.817 0.780
(b) CONCH * v v v 0.930 0.950 0.905
(c) 1° Att. Branch v * v v 0.899 0964 0.851
(d) Global Update v v * v 0.837 0.824 0.779
(e) Local Update v v * v 0.860 0.901 0.800
(f) Random Policy v v v * 0.516 0.550 0.553
(g) ACMIL-0.2 (Rnd.) v v * * 0.838 0.857 0.773
(h) DTFD-0.2 (Rnd.) v v * * 0.862 0.878 0.862

Table 2: Ablation study on CAMELYON16 with the SASHA-0.2 setup using 20% high-res patches.
v denotes the default, * the altered component.

Additional ablation experiments are described in Appendix A.3. These results indicate that every
component of our model was critical for achieving high performance, comparable to sota models.

Finally, we examined the effect of imposing a limited observation budget on other sota models, and
compared the performance of SASHA under the same budget. Specifically, ACMIL and DTFD
were trained and tested with a random selection of high-resolution patches under a 20% observation
budget for each WSI. In this case also we observed substantial drops in performance relative to
the default SASHA model (Table 2] g-h). In other words, randomly sampling a limited fraction of
high-resolution patches, even with the best models, failed to outperform SASHA.

4.5 Patch selection strategy: Explainability

When deploying deep RL models in medical settings, it is essential that they learn not only an effective,
but also an explainable action policy. For this, we explore whether SASHA’s RL agent exhibits
a meaningful patch selection strategy prior to classifying WSI images (Fig. [Bp and Fig. 3p). We
propose that such a strategy must satisfy at least two important requirements: i) In WSIs containing
tumor tissue, the RL agent must preferentially sample patches with a large fraction of tumor tissue for
high-resolution scans, and ii) an effective RL policy should preferentially sample patches afforded a
high attention score by sota models that examine the entire WSI at high resolution. We evaluated
each of these criteria in the data. Indeed, the tumor fraction in patches sampled by the RL agent
at high resolution (10% with SASHA-0.1 or 20% with SASHA-0.2) significantly exceeds that in a
corresponding number of randomly chosen patches, among those not sampled by the agent (Fig. [3g,
p<0.001). Moreover, the RL policy guides the agent to preferentially samples patches afforded a high
attention score by sota models: both the average attention score (Fig. [3g, p<0.001) and the fraction of
top-k patches sampled under the RL policy were statistically significantly greater than the fraction of
patches sampled by a random policy (Fig. 3f, p<0.001). In other words, our RL agent’s sampling
actions were guided by an efficient, intuitive and explainable policy.

4.6 Effect of observation budget: Calibration

We have shown that SASHA achieves near-sota performance at a fraction of the inference time, even
with sampling 10% or 20% of the patches at high resolution. Is there any advantage to sampling more
patches, other than achieving a marginal improvement accuracy, especially when the inference time
increases almost linearly with the proportion of high-resolution patches sampled. Here, we show
empirically that sampling a higher fraction of patches yields better calibrated predictions. With well
calibrated models, the model’s confidence in its prediction (e.g., predictive uncertainty) is a useful
indicator for when referral to a specialist is warranted [8]. We quantified the expected calibration error
(ECE) [IL1] as a measure of the degree of calibration of the models. The ECE decreased systematically
at the proportion sampled patches increased from 10% (SASHA-0.1) to 20% (SASHA-0.2) to 100%
(HAFED). This pattern occurred possibly because providing the model more timesteps to sample the
WSI in each RL episode enabled the model to recover from sub-optimal sampling actions in the early
timesteps, and to sample the relevant portions of the WSI in the later timesteps. Surprisingly, ECE
with SASHA-0.2 was lower than that of even sota attention-based models like ACMIL and DTFD
(Fig.[3h). In other words, while a shorter observation budget encouraged efficient learning, a longer
budget produced better calibrated predictions.



5 Conclusions and Limitations

We show that an attention-augmented deep RL agent outperforms or performs on par with sota models
on WSI classification, albeit at a fraction of their memory and computational costs. Key limitations
of the model include a significant impact of the observation budget on model calibration, and the
need to train the model with all high resolution patches, which significantly increases training time;
other limitations are discussed in Appendix A.6. Nonetheless, we demonstrate explainable, reliable,
and calibrated predictions, which could enhance clinicians’ trust in model predictions.
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paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction summarize the paper’s contribution by differen-
tiating previous approaches from our method. We concisely describe key components of
our method — HAFED, TSU and RL Agent — and outline the key role of each component in
Section [T}
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made in the paper.
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* The claims made should match theoretical and experimental results, and reflect how
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Guidelines:
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. Experimental result reproducibility
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to make their results reproducible or verifiable.
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dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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material?

Answer: [Yes]

Justification: The datasets used in experiments study CAMELYON16, TCGA-NSCLC
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A.2. The implementation of SASHA is publicly available at !.
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* The instructions should contain the exact command and environment needed to run to
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proposed method and baselines. If only a subset of experiments are reproducible, they
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6. Experimental setting/details
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Answer: [Yes]
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eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
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human subjects.
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Sequential Attention-based Sampling for
Histopathological Analysis

A Appendix

A.1 Dataset details

The CAMELYONI16 dataset comprises 399 whole-slide images (WSIs) of lymph node sections. After
pre-processing and segmentation, we generated non-overlapping patches of size 256 x 256 (x3 RGB
channels). On average, this resulted in, on average, ~800 patches per WSI at a scanning resolution
of 5, and ~12,500 patches at a high resolution of 20 x. We used the official test set for evaluation
[3]]. The training set was further divided to create a validation set (10%) while maintaining a similar
proportion of normal and tumor slides in each subset.

The TCGA-NSCLC dataset comprises 1,054 whole-slide images (WSIs) obtained from the TCGA-
NSCLC repository under the TCGA-LUSC and TCGA-LUAD projects. Ten low-quality slides
without magnification information were discarded, and three slides with errors were ignored. We
followed the same test split as in DSMIL [18]]. The test set comprised a total of 213 slides: 104 from
TCGA-LUAD and 109 from TCGA-LUSC. Following preprocessing, we obtained, on average, ~212
patches per WSI at 5x magnification and ~3,393 patches at 20 x magnification. The training set was
further divided to create a validation (20%) set while maintaining a similar proportion of labels in
each subset.

Train Val Test
Dataset Task
Class1 Class2 Class1l Class2 Class1 Class2
CAMELYONI16 Classity tumor 140 102 18 9 80 49
TCGA-NSCLC  Classify sub-type 339 319 86 81 104 109

Table 3: Summary of datasets used in this study. CAMELYON16 involves binary classification of
normal versus tumor slides, while TCGA-NSCLC involves distinguishing between adenocarcinoma
(LUAD) and squamous cell carcinoma (LUSC). The table shows the number of WSIs for each class
in the training, validation, and test sets. Here, “Class 1” refers to Normal (for CAMELYON16) and
LUAD (for TCGA-NSCLC), while “Class 2” refers to Tumor (for CAMELYON16) and LUSC (for
TCGA-NSCLO).

The CamelyonPlus dataset[21], comprises 1,347 whole-slide images (WSIs) derived from the curated
CAMELYON16 and CAMELYON17 collections, after removal of low-quality slides and re-labeling.
It involves a four-class classification. We created training, validation, and test splits to ensure class
balance across all four labels. A summary of the splits and labels can be found in Table 4]

Train Val Test
Neg. Mi-m. Ma-m. ITC Neg. Mi-m. Ma-m. ITC Neg. Mi-m. Ma-m. ITC

Dataset

Camelyon+ 608 122 174 36 130 26 38 9 131 26 38 9

Table 4: Summary of Camelyon+ dataset. The WSIs have the following 4-class slide-level labels:
Negative (Neg.), Micro-metastasis (Mi-m.), Macro-metastasis (Ma-m.), and Isolated Tumor Cells
(ITC). The table shows the number of WSIs for each class in the training, validation, and test sets.

The BRACS (BReAst Carcinoma Subtyping) dataset comprises 547 labeled WSIs obtained from
the public repository [4]. This dataset involves a 7-class classification task, characterizing each
tumor as one of three benign (BT), two atypical (AT), or two malignant (MT) sub-types. We ignored
the “normal” subtype in the benign (BT) class, and each set of subtypes within BT, AT, and MT
was grouped into its respective class. Additionally, a small number of slides (7/503) that lacked all
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relevant levels of magnification were excluded. After preprocessing, we use the official dataset split
across train, validation, and test split with details outlined in Table E}

Benign (BT) Atypical (AT) Malignant (MT)

Train 171 52 135
Val 16 14 21
Test 25 23 16

Table 5: BRACS dataset distribution for 3-class classification (Benign, Atypical, Malignant) across
training, validation, and test splits.

A.2 Implementation and Hyper-parameter Selection
A.2.1 Patch feature distillation with HAFED

The first step of SASHA involves feature extraction and aggregation of high-resolution patch fea-
tures, which specifies the RL agent’s state S(t). We use a Vision Transformer (ViT) pretrained on
histopathological images to extract features from each zoomed in, high-resolution patch [17]]. This
ViT was used as is without any additional fine tuning, and its output — a 384 dimensional embedding
per patch — was provided as input to a hierarchical attention-based feature aggregator and distiller
(HAFED).

Layer name Input Dim Output Dim Input Batch Output Batch

Layer—l 384 128 Ui = {Ui17Ui2a---7Uik} Ai = {ail,aig,...,aik}

Layer—2 384 128 Uz = {Uilan27~'~7Uik} Bz = {bilabﬂw”»bik}

Layer-3 128 1 sigmoid(A) - tanh(B) a’ e RF

Vi=aa' U, V;eR?

Layer-4 384 128 V={W"nVs,...,Vn} C={c1,co,...,cn}

Layer-5 384 128 V={W,Vo,...,Vn} D ={di,da,...,dn}

Layer-6 128 M (5) sigmoid(C') - tanh(D) g € RVXM
a:ﬁzjﬂilagu‘)? acRY;, h=a-V, heR?

Layer-7 384 2 h logits

Table 6: Architecture of the HAFED model. Layers 1-3 correspond to the feature aggregator (FA)
and layers 4-7 correspond to the classifier. N (~800 for camelyon-16) is the number of patches
in low-resolution WSI, k£ (16) is the number of sub-patches in high-resolution per one patch in
low-resolution, d (384) feature embedding dimension of one patch. U; € R16%384 4, ¢ R16%128
Bi c R16X128, C e ]RNX128, De RNX128’ h e R384.

As described in Section[3.2] the first stage of HAFED acts as a feature aggregator (FA); the architecture
of this network is shown in Table [f] We employed a single attention branch, which takes high
resolution features U € RY***d and assigns attention scores for each of the k sub patches. The inner
product between the attention scores and U produces V' € RV *?, which is in same dimensionality
as the low-resolution features (Z € RN*4). The second stage of HAFED acts as a classifier,
which is trained end-to-end with the feature aggregator. Here, we use five attention branches for
the CAMELYON16 dataset and one for the TCGA-NSCLC dataset; the number of branches was
determined as a hyperparameter based on the respective validation set (Table[7). This stage takes V'
as input, assigns attention scores across the N patches, and computes the inner product between the
scores and V' to produce a 384-dimensional embedding representing the entire WSI. The architecture
of this network is shown in Fig. Zh. We applied masking to the top four and top eight patches with a
probability of 0.4 in the first and second stages, respectively (Table[7).

HAFED is trained with an annealed learning rate schedule starting at 4 x10~%, with the AdamW
optimizer and a weight decay of 1 x10~*. The HAFED module is trained end-to-end using the
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following loss components: (1) a cross-entropy loss between the final predicted label and the ground
truth label, (2) a cross-entropy loss applied independently to the predictions from each attention
branch in second stage and ground truth label, and (3) a dissimilarity loss that encourages diversity
among the attention scores of the different branches in the second stage. This dissimilarity loss
encourages each branch to focus on distinct tumor features, thereby improving the model’s ability to
capture complementary diagnostic features[39].

During inference, at each time step, the first stage of HAFED (FA), receives as input k zoomed-in
sub-patch images corresponding to the selected action. It assigns attention scores to estimate the
relative importance of each sub-patch and aggregates their features by computing a weighted sum
based on these scores; this is then used to update the state (see next subsection, Appendix [A.2.2).
In the final time step, the second stage of HAFED (classifier), takes the state representation St and
predicts the label ¢. In addition to the final classification, the second stage is also used to assign
rewards during SASHA’ RL agent training (see subsection Appendix [A.2.3).

Model Hyper-parameters Selection Criterion SASHA - 0.1/0.2

CAMELYON16 TCGA-NSCLC

Range Values Range Values

Attn-2 in HAFED (M) Validation 1-5 5 1-5 1

HAFED Attn -1 Masking Probability Validation 0.4-0.6 0.4 0.4-0.6 0.4
Attn -2 Masking Probability Validation 0.4-0.6 0.4 0.4-0.6 0.4

TSU Cosine Threshold in TSU (1) Validation 0.88-0.98 0.9/095 08-092 0.9/0.9
Discount Factor Validation 0.8-1.0 1.0 0.8-1.0 1.0
. Clipping Parameter Default - 0.1 - 0.1

Actor & Critic Entropy Regularization Coefficient Default - 0.001 - 0.001
Gradient Clipping Threshold Default - 0.5 - 0.5

Table 7: Hyperparameters for the CAMELYON16 and TCGA-NSCLC datasets. In the Values column,
entries separated by a slash (/) represent values for SASHA-0.1 and SASHA-0.2 models respectively;
a singleton entry reflects the same value across both SASHA variants.

A.2.2 Updating WSI state with TSU

The second step of SASHA involves updating the RL agent’s state with the high-resolution patch
representation extracted with HAFED. During training, the states of similar patches are concurrently
updated with a targeted state update (TSU) rule. Specifically, this included all patches whose low-
resolution representation’s similarity to the currently selected patch, exceeded a threshold value (7),
based on cosine similarity; 7 was tuned as a hyperparameter (Table

The architecture of this TSU network is shown in Table[§] For each patch a, that crosses the similarity
threshold, the TSU model takes as input a concatenated vector comprising (i) its low-resolution
features Z,_ € R4, (ii) the low-resolution feature representation of the selected patch a;, Z,, € R4
and (iii) the high-resolution feature representation of the selected patch V,, € R?. Note that while
(i-ii) are obtained directly from pretrained ViT, (iii) is obtained from the FA output of the HAFED
model. Concatenating these 3 features results in a 3d-dimensional input (3 x 384 = 1152), based on
which the model predicts a d-dimensional high-resolution feature of the patch a, VGT. The state of
the selected patch alone is updated by directly copying its high-resolution HAFED (FA) output V/,,,
into its (corresponding) entry in the WSI state S(¢). In this manner, the TSU integrates information
from the low-resolution representation of patches similar to the currently visited patch, with the
high-resolution representation of visited patches to update the WSI state.

During training the TSU network is trained by sampling patches randomly, and updating their states
based on the predicted high-resolution feature of each patch (V) and its actual high-resolution feature
(V) obtained from HAFED’s feature aggregator. Once a patch state is updated — either directly, by
visiting it, or indirectly, by the similarity-based rule — its index is masked out, and it is no longer
visited during training. The TSU model is trained for 500 epochs with an Adam optimizer and a
learning rate of 1 x10~*. The best model was chosen based on the minimum of the validation loss.

During inference, the low-resolution patch to visit at each time step a; is selected by RL agent. The
state of patches similar to the currently visited patch are updated with the same sequence of steps as
described for the training. A key difference is that, in this case, only the directly visited patch indices
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are masked out, and the RL agent is free to select, for its action in the next time step (¢ + 1), any of

the patches that have not been visited directly in the previous time steps (0, . . ., ?).
Layer Input Dim OQutput Dim # Parameters
FC-1 1152 768 885,504
FC-2 768 384 295,296
Layer Norm - 384 384

Table 8: Architecture of the TSU model. The input is a 3d = 1152 dimensional vector (d = 384; see
text for details). The final output is d-dimensional. FC: fully connected layer with bias.

A.2.3 Actor and Critic

The final component of SASHA is a reinforcement learning (RL) agent responsible for sampling,
sequentially, the most relevant patches for high-resolution analysis. This selection is formulated as a
sequential decision-making problem, where the agent learns to identify diagnostically informative
regions within each slide. We adopt the Actor-Critic framework and train the agent using the Proximal
Policy Optimization (PPO) algorithm, a widely used on-policy method known for its stability and
effectiveness in complex RL tasks [31].

The purpose of the actor network is to learn a policy — a conditional probability distribution over
actions given the current state S;. In our setup, the environment is described as, the state is initialized
with low-resolution features (Z € RY*9), the action is selected from a discrete action space
A€ {1,2,...,N} (indices of low-resolution patches), and the reward function is specified as the
negative of cross-entropy (CE) loss between the predicted WSI label, at time step ¢, and the ground
truth. Given the definitions of state, action and reward, the actor and critic networks are designed as
follows.

The Actor network follows the same architecture as Layers 1-3 in Table[6] A softmax is applied to
the output attention scores to obtain a categorical distribution (i.e., the policy) over the N patches,
from which an action a; (i.e., a patch index) is sampled during training. To reduce redundancy, once
a patch is selected, its index is masked in all subsequent time steps — by setting its corresponding logit
to negative infinity — effectively removing it from consideration for future visits. the rationale behind
this policy is that zooming into the same patch multiple times will not yield additional information, as
the patch content remains unchanged. After selecting a;, the Target State Updater (TSU) module is
invoked to update the current state .S; to the next state Sy 1, thereby incorporating the high-resolution
information from the selected patch into the state representation.

The Critic network also mirrors the backbone of actor network i.e architecture of Layers 1-3 in
Table [] with an additional final layer that takes the aggregated state representation (« - S;), and
predicts the reward-to-go or expected return given the current state .S;. The reward-to-go is used in
calculating the generalized advantage estimate (GAE, [30]). During training the actual reward-to-go
from the given state is known, and the critic network is trained by minimizing MSE loss between the
predicted and actual value.

Both networks are trained for 15 epochs using the AdamW optimizer with an annealing learning rate
starting from 1 x 10~ and a weight decay of 1 x 10~3. Network hyperparameters are reported in
Table[7] During training of the Actor and Critic networks, all other components of SASHA are frozen
(i.e., HAFED, TSU), and only the actor and critic networks are updated. We select the best policy
across epochs as the one that minimizes the validation loss while simultaneously maximizing the sum
of the validation AUROC and F1 scores (min,[Loss + 2 — (AUROC + F1)]). This formulation
ensures that the selected policy balances both accuracy (AUROC and F1) and calibration (validation
loss).

During inference, given the current state .Sy, the Actor network outputs a policy in the form of a
categorical probability distribution over the NV patches. The action a; is then selected deterministically
as the patch index with the highest probability. In a later section (Appendix [A.3.3)) we explore the
effect of alternative, stochastic selection policies during inference.
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A.3 Additional Control Experiments
A.3.1 Multiclass Classification Performance of SASHA

We extended the SASHA framework to evaluate its performance on multiclass classification tasks
using the Camelyon+ and BRACS datasets (see Appendix [A.T|for a description of the datasets).

For both datasets, the SASHA framework was trained using experimental settings identical to those
of the binary classification tasks. The same patch-level sampling strategy and aggregation mechanism
were employed to ensure consistency in evaluation. To mitigate class imbalance, we employed a
resampling mechanism that oversamples minority classes (e.g., ITC for the Camelyon+ dataset)
during training.

The performance comparison (Table [0) shows that the methods (HAFED, SASHA) perform com-
parably with other sota methods, even in this multiclass setting. As before, sampling only 20% of

the patches (SASHA-0.2) achieves performance that is comparable to methods that sample all of the
WSI patches at high resolution (e.g., DTFD, ACMIL).

Method CAMELYON+ BRACs
Accuracy AUC F1 Accuracy AUC F1
 DTFD 0.8484+0.022  0.921+0.023  0.8044+0.04  0.570£0.035 0.7824+0.032  0.5704-0.035
S ACMIL 0.8324+0.013  0.898+0.005 0.786+0.023 0.534+0.046 0.749+0.014  0.5964-0.059
—  HAFED (ours) 0.866+0.014  0.934+0.01  0.847+0.015 0.544+0.03  0.747+0.01  0.57540.036

SASHA-0.1 (ours) 0.869+0.008 0.905+0.003 0.848+0.013 0.596+0.001 0.729+0.001  0.5324+0.010
SASHA-0.2 (ours) 0.871+0.005 0.9354+0.006 0.852+0.006 0.598+0.016 0.762+0.010 0.533+0.079

Table 9: Comparison of multiclass classification performance of different methods on the Camelyon+
and BRACS datasets. Reported metrics include weighted-averaged Accuracy, AUC, and F1-score.

A.3.2 Alternative Models under an Observation Budget

We compared the performance of SASHA with competing sota models like ACMIL [39] and DTFD
[38] under the same observation budget of either 10% or 20%. That is, we predicted slide labels by
having these sota models examine only a limited fraction of patches in each WSI at high resolution,
matching the fraction of the WSI sampled by SASHA.

Each model was trained with a combination of low-resolution and high-resolution patch features and
tested, similarly, with a combination of high and low resolution patch features in the same proportion
as of training. Specifically, for a given slide, if IV is the total number of low-resolution patches and
each low-resolution patch corresponds to k high-resolution patches, then for that slide, the input
comprised of a total of Nj, + Ny patches comprising N;, = (N — [f - N|) low-resolution and
Ny = [f - N] -k high-resolution patches, where f € {0.1,0.2}. Because low and high-resolution
patches were of the same pixel dimensionality (256, 256, 3), the pretrained ViT model (Section
was used to extract features from each such patch; this yielded a feature vector W e R(Nz+Nu)xd
which was provided as input to each model for label prediction, both during training and evaluation.

We tested these models on the CAMELYON16 dataset. First, we created five random splits of the
train and validation sets of the dataset. For each dataset split, we performed random patch sampling
with three different random seeds. Then, for each model, we computed the average performance
across these 15 (5 splits x 3 seeds) model combinations. In each case, the sum of validation accuracy
and F1 scores was used to determine the model for evaluation.

As shown in Table such a strategy of sparsely sampling patches substantially reduced the
performance of ACMIL and DTFD models. In each case, SASHA sampling either 10% (0.1 fraction)
or 20% (0.2 fraction) of the patches at high resolution outperformed the sota models with the
corresponding, identical observation budget. In other words, competing sota models failed to live up
to SASHA'’s performance under a comparable observation budget for high-resolution patches.

A.3.3 Alternative Action Policies during Inference

In the current SASHA implementation, the inference strategy follows a deterministic, greedy policy
wherein, for a given state, the action with the highest probability is always selected. This means the
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Model Accuracy AUC F1

ACMIL - 0.1 0.841+0.036 0.82840.034 0.773+0.038
DTFD - 0.1 0.829+0.013  0.835+£0.039 0.82940.013
SASHA - 0.1  0.901+0.021 0.9184+0.014 0.856+0.031
ACMIL - 0.2 0.838+0.035 0.8574+0.030 0.77340.043
DTFD - 0.2 0.862+0.027 0.878+£0.030 0.86240.027
SASHA - 0.2 0.953+0.017 0.979+0.008 0.937-+0.024

Table 10: Performance of ACMIL (rows 1, 4), DTFD (rows 2, 5) and SASHA (rows 3, 6) models
under a limited observation budget of 10% (-0.1) or 20% (-0.2) for high-resolution patches per WSI
(see text for details). Values represent averages and standard deviations on the CAMELYON16
dataset across 15 model combinations (5 random data splits X 3 random seeds for sampling per split).

agent always picks the most likely action as per the learned policy distribution during inference (but
not during training, see Appendix[A.2.3).

We evaluate the effectiveness of this policy over other stochastic policies, similar to the ones used dur-
ing learning. Specifically, we introduce more exploration by considering stochastic policy variation,
where the agent samples actions from the entire probability distribution over actions given a state.

We explore two different variants — top-k sampling and top-p sampling. In top-k sampling, where
only the top k actions with the highest probabilities are retained as candidates for stochastic selection,
and the remaining actions are are masked out (assigned zero probability). The agent then samples
from this limited distribution, following renormalization. In top-p sampling, actions are sorted in
descending order of their probability, and we identify the smallest set of actions such that their
cumulative probability exceeds a predefined threshold p. Sampling is then done from this subset,
ensuring a balance between diversity and confidence in action selection.

Comparison of different sampling strategies is shown in Table [IT] Interestingly, the default deter-
ministic policy of SASHA — a greedy strategy of selecting the action with the highest probability
— outperformed all other stochastic policies. This behavior was observed empirically, where the
agent consistently selects action with highest probability given current state S, resulting in more
informative state transitions from S; to S;1 and improved classification performance, as shown in
Table[T1]. In addition, the stochastic policy that had the greatest degree of freedom for sampling
(Stochastic - full distribution) outperformed, by and large, the other policies (top-k and top-p);
this was understandable because the latter policies impose more constraints on the action space for
sampling.

Inference Policies Accuracy AUC F1

Stochastic - full distribution 0.884 0.846 0.831
Stochastic - top-k (k = 3) 0.876 0.826 0.814
Stochastic - top-k (k = 5) 0.868 0.823  0.805
Stochastic - top-p (p = 0.9) 0.876 0.859 0.818
Stochastic - top-p (p = 0.8) 0.868 0.851 0.795
Deterministic (SASHA default) 0.953 0.979 0.937

Table 11: Comparison of different stochastic policies (top 5 rows), with SASHA’s default deter-
ministic policy, during inference. Values denote the performance of the SASHA-0.2 model on the
CAMELYON16 dataset. Bold and underlined: best and second best performing policies, respectively.

A.3.4 Alternative Reward Schedules during Training

The default SASHA model employs a step-wise reward during training, where the agent receives a
reward at every time step of the episode associated with the label prediction loss at that time step
(see Appendix[A.2.3). In contrast, a previous competing model (RLogist [40]]) employed a terminal
reward strategy, providing feedback only at the end of each episode.
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We tested this alternative reward schedule employing only a terminal reward at the end of each
episode, both during training and inference. As shown in Table[T2] the RL agent trained with reward
at each time step significantly outperformed an agent trained using terminal rewards. We propose that
this occurs because our reward formulation — which is designed to minimize the classification loss
at each time step — encourages the model to sample more tumor-relevant patches during inference.
Confirming this prediction SASHA’s default reward schedule sampled, on average, more patches
with a high attention (relevance) score, as compared to the terminal reward schedule (Table ['1;2])

Top-k attention score Avg attention
Reward Schedule Accuracy AUC F1 patches N RL actions score of RL actions
Last time step (Terminal) 0.892 0.941 0.862 15.5 0.0020
Each time step (SASHA default) 0.953 0.979 0.937 24.25 0.0032

Table 12: Comparison of a terminal reward schedule (row 1) with SASHA’s default schedule of
reward at each time step (row 2), during training (see text for details). Column 5 tells the average
patches per slide that are selected by RL agent are in top-k according to the attention score given by
HAFED model. Column 6 tells the average attention score of the selected patches by RL agent. (see
Fig. Bff-g for details). Values denote the performance of the SASHA-0.2 model on the CAMELYON16
dataset. Bold: the best performing reward schedule.

A.3.5 Analysis of RL Agent Behavior

Tumor Pred. Prob. === Entropy Hit Ratio
Correctly classified TS Mis-classified TS
TF<0.1 0.1 <TF<0.6 0.6 <TF TF<0.1
1.00
0.75
0.50
0.25
-~——— OO O
0.00 = =
0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1
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0.75 //—/
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0.25 1 "“—\—-’__/_\
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0.00 e
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(b) SASHA -0.2

Figure 4: Evaluation of model performance on tumor slides from the test set, categorized into four
groups. The first three columns correspond to correctly classified tumor slides (TS) by both SASHA
and HAFED across increasing tumor fraction (TF) ranges, while the fourth column represents TS
misclassified by SASHA but correctly predicted by HAFED. The x-axis denotes the visited patch
fraction, binned with a width of 0.005. For each slide, we compute the average entropy, average
tumor class prediction probability, and maximum cumulative tumor patch hit ratio (Eq. (I))) within
each bin. These metrics are then averaged across all slides, with solid lines indicating the mean and
shaded regions representing the standard deviation.

To better understand the behavior of the RL agent, we perform two additional analyses.

First, we asked: how quickly does the RL agent visit tumor patches, and how does the model’s
confidence evolve over time steps in an episode? We first performed this analysis for slides that were
correctly classified by SASHA, separately for 3 classes of WSIs with varying tumor fractions (TF,
Fig. @ columns 1-3). For this, we defined a cumulative tumor patch Hit Ratio using

Number of tumor patches sampled up to time ¢
min (Observation Budget, Total Tumor Patches in WSI)

Hit Ratio(t) = (1
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In other words, the cumulative hit ratio begins at 0.0 at the start of each episode and would linearly
reach 1.0 at the end of each episode for the most efficient sampling strategy, i.e. if every patch
sampled by the agent were a tumor patch.

For both variants of the model (SASHA-0.1 and SASHA-0.2), on the slides with very sparse tumor
regions (TF<0.1), the classifier’s output favoring the tumor class reaches a high value (~0.8-1.0)
even before it vists 5% of all patches at high-resolution (Fig. ] column 1, green trace). In addition,
its predictive entropy drops progressively as more patches are sampled (Fig. 4] column 1, green
trace). Surprisingly, even though the peak of the classifier output is reached earlier for SASHA-0.1 as
compared to the SASHA-0.2 model, a longer observation budget produces higher accuracies, as well
as better calibrated predictions, as shown in the main text Table |I| and Fig. @h.

As the budget increases from 10% to 20%, the tumor hit ratio improves correspondingly. With a
10% budget, SASHA tends to misclassify slides with small tumor regions (see F1 score in Table[T)),
highlighting the importance of increasing the sampling budget. At 20%, SASHA correctly classifies
nearly all slides that were correctly predicted by HAFED, demonstrating improved robustness across
varying tumor fractions.

As the fraction of tumor patches increases (0.1<TF<0.6 and TF>0.6), the model output favoring the
tumor class reaches peak upon visiting progressively miniscule fractions of high-resolution patches
(<0.025% or 0.01%, Fig. [ columns 2-3, green traces). The predictive entropy also goes to near zero
at these fractions indicating confident model predictions with very few samples.

For Fig. [ column 2—where the tumor fraction (TF) lies in the range 0.1 < TF < 0.6—the tumor
hit ratio increases slightly as the budget increases. However, the improvement is minimal because
most tumor patches are already captured within the initial 10% of patches selected by the RL agent.
This suggests that for WSIs with moderate tumor presence, visiting just 10% of the patches is often
sufficient.

Second, we asked: Is the agent able to localize tumor regions even in slides that are ultimately
misclassified? Answering this question is important, because robust tumor localization ability
could potentially assist histopathologists by prioritizing regions for first-pass analysis in clinical or
laboratory settings. For this analysis, we considered slide that were misclassified by SASHA but
correctly classified by HAFED.

We illustrate this with an example slide Fig.[5] For this slide, the RL agent successfully identifies
tumor patches, with the first tumor patch being visited at a fraction of 0.0085 and the last at 0.03. For
the entire cohort of such slides, tumor patch visits ranged from 0.001 — 0.099 fraction for SASHA-0.1
and 0.009 —0.034 fraction for SASHA-0.2 (Fig. E[, column 4, orange trace). In contrast, when patches
are randomly sampled for the same slide, the first tumor patch is typically sampled after visiting
0.141 £ 0.121 fraction of the patches. This demonstrates that the RL agent is able to localize tumor
regions, typically with an order of magnitude fewer steps than random sampling.

. Patches selected by RL Agent Similar Patches Updated
LR — Time
0.0 0.2 0.0 0.2

Figure 5: Visualization of the observation path traced by the RL agent for a WSI. The first image
shows the tumor-annotated region in the WSI. The second image illustrates the patches selected by
the RL agent from the initial to the terminal time steps. The third image presents the similar patches
updated by the TSU model.
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Method Patch FEMHR) FE(LR) Infer TSU RL Total

DTFD 1.46 116.75 N/A 0.0230 N/A N/A 116.77
ACMIL 1.46 116.75 N/A 0.0140 N/A N/A 116.76
HAFED 1.46 116.75 N/A 0.0010 N/A N/A 116.75
SASHA-0.1 1.46 8.60 4.74 0.0007 2.06 0.105 15.50

SASHA-0.2 1.46 18.23 4.95 0.0007 4.09 0219 27.49

Table 13: Comparison of inference time for different methods, including the time involved in each
computational step. “Patch” denotes the time for dividing the slide into patches, FE denotes Feature
Extraction time, with HR representing High Resolution and LR representing Low Resolution. “Infer”
refers to the inference time for a single model pass. TSU corresponds to the time required for state
update, and RL indicates the time needed for agent policy and value updates. The “Total” time (last
column) corresponds to the values shown in Fig. 3k, which does not include the fixed “Patch” time
overhead. For SASHA, the value in “Infer.” corresponds specifically to the time for one forward pass
through the HAFED model.

A4 Computation of WSI Compressibility, Inference time, and Calibration Error

Whole Slide Images (WSIs) are typically acquired at gigapixel resolution. For laboratories or hospitals
maintaining long-term archives, this poses a significant storage challenge. However, we propose that,
for accurate tumor diagnosis, it is not necessary to store WSIs as raw images. By storing them as
informative feature representations, a considerable reduction in storage requirements can be achieved.

To quantify the data reduction achieved during WSI processing, we define the WSI compressibility
factor as the ratio between the original image size at full magnification and the size of the final feature
representation used for classification. We define the raw image size as W x H x 3, representing the
width, height, and RGB color channels, respectively.

Models such as ACMIL, DTFD, and HAFED operate on high-resolution feature tensors U &
RN *kxd \where N is the number of low-resolution patches, k (16) is the number of sub-patches in
high-resolution per low-resolution patch, and d (384) is the feature dimension. In contrast, SASHA
operates on an initial low-resolution feature set Z € RY*9 and iteratively refines it by zooming
into diagnostically relevant patches. The final state representation S7 € R™V*? can be archived as a

compact summary of the WSI, requiring approximately 16 times less storage compared to methods
like ACMIL, DTFD, or HAFED, Fig. [3{d.

The compressibility factor C' is defined as:

Nxkxd

WXH3  for SASHA

_ ImageSize [ W43 for ACMIL, DTFD, HAFED
~ Feature Space

Empirically, the compressibility factor is ~ 5 x 10* for ACMIL, DTFD, and HAFED, and ~ 10° for
SASHA-0.1 and SASHA-0.2. This indicates that SASHA methods yield significantly more compact
feature representations for classification tasks.

Inference time computation: As shown in Figure 3k, SASHA, with its selective sampling strategy,
achieves the lowest inference time compared to models such as ACMIL, DTFD, and HAFED, which
sample all the patches at high resolution. We report the average inference time per slide for the
CAMELYONI6 test dataset. The inference time reported in Fig. [3f includes all steps: pre-processing,
feature extraction, and classification. Table[I3]shows the inference time involved in each step. The
column “Patch” refers to the time required to divide the WSI at low resolution into non-overlapping
256 x256 patches, while also removing background content such as regions with only the glass
slide or insufficient biological tissue. This step is a constant overhead across all methods and is
not included in the Total time in Table Feature extraction of high-resolution patches reflects a
major inference time bottleneck. Because SASHA visits only a small fraction (10-20%) of patches
at high resolution, this yields considerable savings over other approaches that visit all (100%) of
patches at high resolution, like DTFD, ACMIL, HAFED. In addition to feature extraction, the TSU
is a secondary bottleneck in SASHA because at each timestep, the cosine similarity with all other
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non-masked patches must be computed, albeit at low resolution. Improving the speed of this step is
scope for future work.

Expected Calibration Error (ECE): Expected Calibration Error (ECE) is a metric used to quantify
how well a neural network’s predicted probabilities align with the true probabilities (or observed
frequencies) of its predictions [11]. It measures how reliable a model’s confidence levels are in
its predictions. A perfectly calibrated model would have an ECE of 0, indicating that the model’s
confidence scores accurately reflect the true likelihood of its predictions being correct.

To compute ECE, we first divide the predicted confidence scores (i.e., the maximum softmax
probabilities) into M = 10 equally spaced bins. For each bin, we calculate two quantities: i)
Accuracy: the proportion of correctly classified samples in the bin; and ii) Confidence: the average of
the predicted probabilities in the bin. These metrics are then used to compute the calibration error as
the absolute difference between its accuracy and confidence for each bin, summed across bins [L1].

HAFED achieves the lowest Expected Calibration Error (ECE) of approximately 0.015, indicating
highly calibrated predictions. In contrast, ACMIL and SASHA-0.1 exhibit the highest ECE values,
around 0.06. SASHA-0.2 achieves an intermediate ECE of around 0.03, which is still lower than
that of ACMIL and DTFD. This suggests that SASHA-0.2 not only matches HAFED in terms
of classification accuracy but also performs better than other sota methods in terms of calibrated
predictions.

A.5 Hardware

For feature extraction and model inference, we utilized an NVIDIA GeForce GTX 1080 Ti GPU with
12 GB of memory. Feature extraction was carried out with a batch size of 512. Training for HAFED
and TSU was also performed on the same GPU. To accelerate the training of the RL agent described
in Section[3.4] we employed an NVIDIA Tesla V-100 GPU with 32 GB of memory.

A.6 Limitations and Extensions

Training time cost - A key limitation of our method is that, despite being RL-based, it performs
feature extraction on all high-resolution patches during training. To reduce training time, future
improvements would involve developing an end-to-end pipeline that trains the RL agent concurrently
with the HAFED and the TSU modules. In such a model, the policy network decides the specific
low-resolution patch to sample in real-time, followed by HAFED feature distillation for the zoomed-in
patch, and TSU state update for the entire slide, with all steps being trained end-to-end with reward
at each time step. This would be followed by the additional steps of training the policy and value
networks, and so on, until the end of each episode, for several episodes. This mimics how RL agents
learn, conventionally, in novel environments with sporadic rewards. With this method, there would
be no need to sample every patch at high resolution during training. Yet, key challenges — with stable,
training of multiple modules concurrently — may need to be addressed.

Fixed sampling budget - In our current setup, we employ a fixed sampling budget per slide (e.g.,
10% or 20%). However, as shown in Figure [Z_q we observe that for certain slides, the classifier can
become confident in its prediction fairly early in the sampling process, rendering further sampling
unnecessary. This suggests that a dynamic budget allocation strategy — guided by the classifier’s
confidence — could further reduce inference time without compromising performance.

Architecture overhead and parameter scaling - We compare the total number of model param-
eters—excluding the ViT-based feature extractor (see Appendix [A.2.T)—across different methods.
DTFD, ACMIL, and HAFED, all of which operate on high-resolution inputs, are relatively lightweight
with approximately 82.56K, 84.37K, and 300K parameters, respectively. In contrast, the SASHA
pipeline consists of three distinct modules: HAFED, the Target State Updater (TSU), and the
Reinforcement Learning (RL) agent, with parameter counts of 300K, 1.1M, and 296K, respec-
tively—summing to approximately 1.7M parameters. This represents a 3.5 X increase in parameters
compared to HAFED and a 21 x increase relative to DTFD and ACMIL.

Filtering normal patches - WSIs typically contain far more normal patches, as compared to tumor
patches. This imbalance becomes particularly problematic when the tumor occupies only a small
fraction of the slide. In such cases, the RL agent is more likely to encounter and select normal
patches — especially in the early steps — leading to inefficient exploration and increased risk of a
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miss. The sparse distribution of tumor regions makes it difficult for the agent to consistently focus
on diagnostically relevant areas within a limited sampling budget. A more efficient strategy would
involve the early filtering of normal, redundant, or uninformative patches, allowing the agent to
concentrate its computational efforts on a smaller, more informative subset of patches. This could
improve both performance and inference efficiency.

Incorporation into clinical workflows - Our method is particularly suited for deployment in clinical
settings, from two key standpoints — Explainability and Calibration. First, clinicians are likely to
trust decisions made by Al agents only if these decisions can be readily and rationally explained.
Our RL agent consistently selects high-attention, tumor-rich patches, as compared to normal patches.
Moreover, this selection occurs far more frequently than that of a random policy. These selection
strategies make the decisions of the RL agent intuitive and easy to explain to clinicians (Section[4.5).

Second, clinicians are also likely to benefit from a reliable “confidence” score from the Al model,
to know when they can, and cannot, trust its predictions. We showed that the expected calibration
error (ECE) for SASHA=0.2 were consistently lower than those of competing sota attention-based
models like ACMIL and DTFD (Section {.6). With well-calibrated models (lower ECE), the model’s
confidence in its predictions (e.g., predictive uncertainty) is reliable. In this case, it becomes a useful
indicator for when referral to a clinician or expert is warranted. In other words, by quantifying
predictive uncertainty of the SASHA-0.2 classifier with established approaches (e.g., predictive
entropy), our RL model could provide clinicians with valuable additional information about when
its prediction can (or cannot) be trusted. Finally, inference time accuracy may depend on the extent
of domain shift between the test and training clinical samples; developing approaches that combine
domain adaptation with efficient sampling may be relevant to address this challenge.
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