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Abstract

In recent computer vision research, the advent of the Vision Transformer (ViT)
has rapidly revolutionized various architectural design efforts: ViT achieved state-
of-the-art image classification performance using self-attention found in natural
language processing, and MLP-Mixer achieved competitive performance using
simple multi-layer perceptrons. In contrast, several studies have also suggested that
carefully redesigned convolutional neural networks (CNNs) can achieve advanced
performance comparable to ViT without resorting to these new ideas. Against
this background, there is growing interest in what inductive bias is suitable for
computer vision. Here we propose Sequencer, a novel and competitive architecture
alternative to ViT that provides a new perspective on these issues. Unlike ViTs,
Sequencer models long-range dependencies using LSTMs rather than self-attention
layers. We also propose a two-dimensional version of Sequencer module, where an
LSTM is decomposed into vertical and horizontal LSTMs to enhance performance.
Despite its simplicity, several experiments demonstrate that Sequencer performs
impressively well: Sequencer2D-L, with 54M parameters, realizes 84.6% top-1
accuracy on only ImageNet-1K. Not only that, we show that it has good transfer-
ability and the robust resolution adaptability on double resolution-band. Our source
code is available at https://github.com/okojoalg/sequencer.

1 Introduction

Figure 1: IN-1K top-1 accuracy v.s. model
parameters. All models are trained on IN-1K
at resolution 2242 from scratch.

The de-facto standard for computer vision has been
convolutional neural networks (CNNs) [39, 64, 22,
65, 66, 9, 29, 67]. However, inspired by the many
breakthroughs in natural language processing (NLP)
achieved by Transformers [75, 35, 57], applications
of Transformers for computer vision are now being
actively studied. In particular, Vision Transformer
(ViT) [16] is a pure Transformer applied to image
recognition and achieves performance competitive
with CNNs. Various studies triggered by ViT have
shown that the state-of-the-art (SOTA) performance
can be achieved for a wide range of vision tasks us-
ing self-attention alone [79, 48, 73, 47, 15], without
convolution.

The reason for this success is thought to be due to the
ability of self-attention to model long-range depen-
dencies. However, it is still unclear how essential the
self-attention is to the effectiveness of Transformers for vision tasks. Indeed, the MLP-Mixer [70]
based only on multi-layer perceptrons (MLPs) is proposed as an appealing alternative to Vision Trans-
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formers (ViTs). In addition, some studies [49, 14] have shown that carefully designed CNNs are still
competitive enough with Transformers in computer vision. Therefore, identifying which architectural
designs are inherently effective for computer vision tasks is of great interest for current research [83].
This paper provides a new perspective on this issue by proposing a novel and competitive alternative
to these vision architectures.

We propose the Sequencer architecture, that uses the long short-term memory (LSTM) [27] rather than
the self-attention for sequence modeling. The macro-architecture design of Sequencer follows ViTs,
which iteratively applies token mixing and channel mixing, but the self-attention layer is replaced
by one based on LSTMs. In particular, Sequencer uses bidirectional LSTM (BiLSTM) [63] as a
building block. While simple BiLSTM shows a certain level of performance, Sequencer can be further
improved by using ideas similar to Vision Permutator (ViP) [28]. The key idea in ViP is to process the
vertical and horizontal axes in parallel. We also introduce two BiLSTMs for top/bottom and left/right
directions in parallel. This modification improves the efficiency and accuracy of Sequencer because
this structure reduces the length of the sequence and yields a spatially meaningful receptive field.

When pre-trained on ImageNet-1K (IN-1K) dataset, our new attention-free architecture outperforms
advanced architectures such as Swin [48] and ConvNeXt [49] of comparable size, see Figure 1.
It also outperforms other attention-free and CNN-free architectures such as MLP-Mixer [70] and
GFNet [61], making Sequencer an attractive new alternative to the self-attention mechanism in vision
tasks.

This study also aims to propose novel architecture with practicality by employing LSTM for spatial
pattern processing. Notably, Sequencer exhibits robust resolution adaptability, which strongly
prevents accuracy degradation even when the input’s resolution is increased double during inference.
Moreover, fine-tuning Sequencer on high-resolution data can achieve higher accuracy than Swin-B
[48] and Sequencer is also useful for semantic segmentation. On peak memory, Sequencer tends to be
more economical than ViTs and recent CNNs for high-resolution input. Although Sequencer requires
more FLOPs than other models due to recursion, the higher resolution improves the relative efficiency
of peak memory, enhancing the accuracy/cost trade-off at a high-resolution regime. Therefore,
Sequencer also has attractive properties as a practical image recognition model.

2 Related works

Inspired by the success of Transformers in NLP [75, 35, 57, 58, 3, 60], various applications of
self-attention have been studied in computer vision. For example, in iGPT [6], an attempt was made
to apply autoregressive pre-training with causal self-attention [57] to image classification. However,
due to the computational cost of pixel-wise attention, it could only be applied to low-resolution
images, and its ImageNet classification performance was significantly inferior to the SOTA. ViT [16],
on the other hand, quickly brought Transformer’s image classification performance closer to SOTA
with its idea of applying bidirectional self-attention [35] to image patches rather than pixels. Various
architectural and training improvements [72, 84, 79, 90, 48, 73, 5] have been attempted for ViT [16].
In this paper, we do not improve self-attention itself but propose a completely new module for image
classification to replace it.

The extent to which attention-based cross-token communication inherently contributes to ViT’s
success is not yet well understood, starting with MLP-Mixer [70], which completely replaced ViT’s
self-attention with MLP, various MLP-based architectures [71, 46, 28, 69, 68, 13] have achieved
competitive performance on the ImageNet dataset. We refer to these architectures as global MLPs
(GMLPs) because they have global receptive fields. This series of studies cast doubt on the need
for self-attention. From a practical standpoint, however, these MLP-based models have a drawback:
they need to be finetuned to cope with flexible input sizes during inference by modifying the shape
of their token-mixing MLP blocks. This resolution adaptability problem has been improved in
CycleMLP [7], for example, by the idea of realizing a local kernel with a cyclic MLP. There are
similar ideas such as [82, 81, 42, 21] which are collectively referred to as local MLPs (LMLPs).
Besides the MLP-based idea, several other interesting self-attention alternatives have been found.
GFNet [61] uses Fourier transformation of the tokens and mixes the tokens by global filtering in the
frequency domain. PoolFormer [83], on the other hand, achieved competitive performance with only
local pooling of tokens, demonstrating that simple local operations are also a suitable alternative.
Our proposed Sequencer is a new alternative to self-attention that differs from both of the above, and
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Sequencer is an attempt to realize token mixing in vision architectures using only LSTM. It achieved
competitive performance with SOTA on the IN-1K benchmark, especially with an architecture that
can flexibly adapt to higher resolution.

The idea of spatial axis decomposition has been used several times in neural architecture in computer
vision. For example, SqueezeNeXt [17] decomposes a 3x3 convolution layer into 1x3 and 3x1 convo-
lution layers, resulting in a lightweight model. Criss-cross attention [31] reduces memory usage and
computational complexity by restricting the attention to only vertical and horizontal portions. Current
architectures such as CSwin [15], Couplformer [40], ViP [28], RaftMLP [69], SparseMLP [68], and
MorphMLP [86] have included similar ideas to improve efficiency and performance.

In the early days of deep learning, there were attempts to use RNNs for image recognition. The
earliest study that applied RNNs to image recognition is [19]. The primary difference between our
study and [19] is that we utilize a usual RNN in place of a 2-multi-dimensional RNN(2MDRNN).
The 2MDRNN requires H +W sequential operations; The LSTM requires H sequential operations,
where H and W are height and width, respectively. For subsequent work on image recognition using
2MDRNNs, see [20, 32, 4, 43]. [4] proposed an architecture in which information is collected from
four directions (upper left, lower left, upper right, and lower right) by RNNs for understanding natural
scene images. [43] proposed a novel 2MDRNN for semantic object parsing that integrates global and
local context information, called LG-LSTM. The overall architecture design is structured to input
deep ConvNet features into the LG-LSTM, unlike Sequencer which stacks LSTMs. ReNet [77] is
most relevant to our work; ReNet [77] uses a 4-way LSTM and non-overlapping patches as input. In
this respect, it is similar to Sequencer. Meanwhile, there are three differences. First, Sequencer is
the first MetaFormer [83] realized by adopting LSTM as the token mixing block. Sequencer also
adopts a larger patch size than ReNet [77]. The benefit of adopting these designs is that we can
modernize LSTM-based vision architectures and fairly compare LSTM-based models with ViT. As a
result, our results provide further evidence for the extremely interesting hypothesis MetaFormer [83].
Second, the way vertical BiLSTMs and horizontal BiLSTMs are connected is different. Our work
connects them in parallel, allowing us to gather vertical and horizontal information simultaneously.
On the other hand, in ReNet [77], the output of the horizontal BiLSTM is used as input to the vertical
BiLSTM. Finally, we trained Sequencer on large datasets such as ImageNet, whereas ReNet [77] is
limited to small datasets as MNIST [41], CIFAR-10 [38], and SVHN [54], and has not shown the
effectiveness of LSTM for larger datasets. ReSeg [76] applied ReNet to semantic segmentation. RNNs
have been applied not only to image recognition, but also to generative models: PixcelRNN [74]
is a pixel-channel autoregressive generative model of images using Row RNN, which consists of a
1D-convolution and a usual RNN, and Diagonal BiLSTM, which is computationally expensive.

In NLP, attempts have been made to avoid the computational cost of attention by approximating causal
self-attention with recurrent neural network (RNN) [34] or replacing it with RNN after training [33].
In particular, in [34], an autoregressive pixel-wise image generation task is experimented with an
architecture where the attentions in iGPT are approximated by RNNs. These studies are specific
to unidirectional Transformers, in contrast to our token-based Sequencer which is the bidirectional
analog of them.

3 Method

In this section, we briefly recap the preliminary background on LSTM and further describe the details
of the proposed architectures.

3.1 Preliminaries: Long short-term memory

LSTM [27] is a specialized recurrent neural network (RNN) for modeling long-term dependencies of
sequences. Plain LSTM has an input gate it that controls the storage of inputs, a forget gate ft that
controls the forgetting of the former cell state ct�1 and an output gate ot that controls the cell output
ht from the current cell state ct. Plain LSTM is formulated as follows:
it = � (Wxixt +Whiht�1 + bi) , ft = � (Wxfxt +Whfht�1 + bf ) , (1)
ct = ft � ct�1 + it � tanh (Wxcxt +Whcht�1 + bc) , ot = � (Wxoxt +Whoht�1 + bo) , (2)
ht = ot � tanh(ct), (3)

where � is the logistic sigmoid function and � is Hadamard product.
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(a) Sequencer (b) BiLSTM2D layer

(c) Transformer
block

(d) Vanilla
Sequencer block

(e) Sequencer2D
block

Figure 2: (a) The architecture of Sequencers; (b) The figure outlines the BiLSTM2D layer, which
is the main component of Sequencer2D. (c) Transformer block consist of multi-head attention.
In contrast, (d) Vanilla Sequencer block and (e) Sequencer2D block, utilized on our archtecture,
composed of BiLSTM or BiLSTM2D instead of multi-head attention.

BiLSTM [63] is profitable for sequences where mutual dependencies are expected. A BiLSTM
consists of two plain LSTMs. Let �!x be the input series and �x be the rearrangement of �!x in reverse
order.

��!
hfor and

 ���
hback are the outputs obtained by processing �!x and  �x with the corresponding

LSTMs, respectively. Let
���!
hback be the output

 ���
hback rearranged in the original order, and the output

of BiLSTM is obtained as follows:
��!
hfor,

 ���
hback = LSTMfor(

�!
x ), LSTMback(

 �
x ), h = concatenate(

��!
hfor,

���!
hback) . (4)

Assume that both
��!
hfor and

���!
hback have the same hidden dimension D, which is hyperparameter of

BiLSTM. Accordingly, vector h has dimension 2D.

3.2 Sequencer architecture

Overall architecture In the last few years, ViT and its many variants based on self-attention [16,
72, 48, 91] have attracted much attention in computer vision. Following these, several works [70,
71, 46, 28] have been proposed to replace self-attention with MLP. There have also been studies of
replacing self-attention with a hard local induced bias module [7, 83] and with a global filter [61]
using the fast Fourier transform algorithm (FFT) [10]. This paper continues this trend and attempts to
replace the self-attention layer with LSTM [27]: we propose a new architecture aiming at memory
saving by mixing spatial information with LSTM, which is memory-economical compared to ViT,
parameter-saving, and has the ability to learn long-range dependencies.

Figure 2a shows the overall structure of Sequencer architecture. Sequencer architecture takes non-
overlapping patches as input and projects them onto the feature map. Sequencer block, which is a
core component of Sequencer, consists of the following sub-components: (1) BiLSTM layer can mix
spatial information more memory-economically for high-resolution images than Transformer layer
and more globally than CNN. (2) MLP for channel-mixing as well as [16, 70]. Sequencer block is
called Vanilla Sequencer block when plain BiLSTM layers are used as BiLSTM layers as Figure 2d
and Sequencer2D block when BiLSTM2D layers are used as Figure 2e. We define BiLSTM2D layer
later. The output of the last block is sent to the linear classifier via the global average pooling layer,
as in most other architectures.
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BiLSTM2D layer We propose the BiLSTM2D layer as a technique to mix 2D spatial information
efficaciously. It has two plain BiLSTMs: a vertical BiLSTM and a horizontal one. For an input
X 2 RH⇥W⇥C , {X:,w,: 2 RH⇥C

}
W

w=1 is viewed as a set of sequences, where H is the number of
tokens in the vertical direction, W is the number of sequences in the horizontal direction, and C is
the channel dimension. All sequences X:,w,: are input into the vertical BiLSTM with shared weights
and hidden dimension D:

Hver
:,w,: = BiLSTM(X:,w,:). (5)

In a very similar manner, {Xh,:,: 2 RW⇥C
}
H

h=1 is viewed as a set of sequences, and all sequences
Xh,:,: are input into the horizontal BiLSTM with shared weights and hidden dimension D as well:

Hhor
h,:,: = BiLSTM(Xh,:,:). (6)

We combine {Hver
:,w,: 2 RH⇥2D

}
W

w=1 into Hver
2 RW⇥H⇥2D and {Hhor

h,:,: 2 RW⇥2D
}
H

h=1 into
Hhor

2 RW⇥H⇥2D. They are then concatenated and processed point-wisely in a fully-connection
layer. These processes are formulated as follows:

H = concatenate(Hver
,Hhor), X̂ = FC(H), (7)

where FC(·) denotes the fully-connected layer with weight W 2 RC⇥4D. The PyTorch-like
pseudocode is shown in Appendix B.1.

BiLSTM2D is more memory-economical and throughput-efficiency than multi-head-attention of
ViT for high-resolution input. BiLSTM2D involves (WC +HC)/2 dimensional cell states, while a
multi-head-attention involves h ⇤ (HW )2 dimensional attention map where h is a number of heads.
Thus, as H and W increase, the memory cost of an attention map increases more rapidly than the cost
of a cell state. On throughput, the computational complexity of self-attention is O(W 4

C), whereas
the computational complexity of BiLSTM is O(WC

2) where we assume W = H for simplicity.
There are O(W ) sequential operations for BiLSTM2D. Therefore, assuming we use a sufficiently
efficient LSTM cell implementation, such as official PyTorch LSTMs we are using, the increase of
the complexity of self-attention is much more rapid than BiLSTM2D. It implies a lower throughput
of attention compared to BiLSTM2D. See an experiment in Section 4.5.

Architecture variants For comparison between models of different depths consisting of Se-
quencer2D blocks, we have prepared three models with different depths: 18, 24, and 36. The names
of the models are Sequencer2D-S, Sequencer2D-M, and Sequencer2D-L, respectively. The hidden
dimension is set to D = C/4. Details of these models are provided in Appendix B.2.

As shown in subsection 4.1, these architectures outperform typical models. Interestingly, however,
subsection 4.3 shows that replacing Sequencer2D block with the simpler Vanilla Sequencer block
maintains moderate accuracy. We denote such a model as Vanilla Sequencer. Note that some of the
explicit positional information is lost in the Vanilla Sequencer because the model treats patches as a
1D sequence.

4 Experiments

In this section, we compare Sequencers with previous studies on the IN-1K benchmark [39]. We also
carry out ablation studies, transfer learning studies, and analysis of the results to demonstrate the
effectiveness of Sequencers. We adopt PyTorch [56] and timm [80] library to implement models in
the conduct of all experiments. See Appendix B for more setup details.

4.1 Scratch training on IN-1K

We utilize IN-1K [39], which has 1000 classes and contains 1,281,167 training images and 50,000
validation images. We adopt AdamW optimizer [50]. Following the previous study [72], we adopt
the base learning rate batch size

512 ⇥ 5⇥ 10�4. The batch sizes for Sequencer2D-S, Sequencer2D-M,
and Sequencer2D-L are 2048, 1536, and 1024, respectively. As a regularization method, stochastic
depth [30] and label smoothing [66] are employed. As data augmentation methods, mixup [87],
cutout [12], cutmix [85], random erasing [88], and randaugment [11] are applied.
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Table 1: The table shows the top-1 accuracy when trained on IN-1K, comparing our model with
other similar scale representative models. Training and inference throughput and their peak memory
were measured with 16 images per batch on a single V100 GPU. The left sides of the slashes are
values during training, and the right sides of the slashes are values during inference. Fine-tuned
models marked with """. Note Sequencer2D-L" are compared to Swin-B" and ConvNeXt-B" with
more parameters since Swin and ConvNeXt have not fine-tuned models of similar parameters with
Sequencer2D-L" in the original papers.
Model Family Res. #Param. FLOPs Throughput Peak Mem. Top-1 Pre FT Top-1

(image/s) (MB) Acc.(%) Acc.(%)

Training from scratch

RegNetY-4GF [59] CNN 2242 21M 4.0G 228/823 1136/225 80.0 non-fine-tune
ConvNeXt-T [49] CNN 2242 29M 4.5G 337/1124 1418/248 82.1 as above
DeiT-S [72] Trans. 2242 22M 4.6G 480/1569 1195/180 79.9 as above
Swin-T [48] Trans. 2242 28M 4.5G 268/894 1613/308 81.2 as above
ViP-S/7 [28] GMLP 2242 25M 6.9G 214/702 1587/195 81.5 as above
CycleMLP-B2 [7] LMLP 2242 27M 3.9G 158/586 1357/234 81.6 as above
PoolFormer-S24 [83] LMLP 2242 21M 3.6G 313/988 1461/183 80.3 as above
Sequencer2D-S Seq. 2242 28M 8.4G 110/347 1799/196 82.3 as above

RegNetY-8GF [59] CNN 2242 39M 8.0G 211/751 1776/333 81.7 as above
T2T-ViTt-19 [84] Trans. 2242 39M 9.8G 197/654 3520/1140 82.2 as above
CycleMLP-B3 [7] LMLP 2242 38M 6.9G 100/367 2326/287 82.6 as above
PoolFormer-S36 [83] LMLP 2242 31M 5.2G 213/673 2187/220 81.4 as above
GFNet-H-S [61] FFT 2242 32M 4.5G 227/755 1740/282 81.5 as above
Sequencer2D-M Seq. 2242 38M 11.1G 83/270 2311/244 82.8 as above

RegNetY-12GF [59] CNN 2242 46M 12.0G 199/695 2181/440 82.4 as above
ConvNeXt-S [49] CNN 2242 50M 8.7G 212/717 2265/341 83.1 as above
Swin-S [48] Trans. 2242 50M 8.7G 165/566 2635/390 83.2 as above
Mixer-B/16 [70] GMLP 2242 59M 12.7G 338/1011 1864/407 76.4 as above
ViP-M/7 [28] GMLP 2242 55M 16.3G 130/395 3095/396 82.7 as above
CycleMLP-B4 [7] LMLP 2242 52M 10.1G 70/259 3272/338 83.0 as above
PoolFormer-M36 [83] LMLP 2242 56M 9.1G 171/496 3191/368 82.1 as above
GFNet-H-B [61] FFT 2242 54M 8.4G 144/482 2776/367 82.9 as above
Sequencer2D-L Seq. 2242 54M 16.6G 54/173 3516/322 83.4 as above

Fine-tuning

ConvNeXt-B" [49] CNN 3842 89M 45.1G 78/234 7329/870 85.1(+1.3) 83.8
Swin-B" [48] Trans. 3842 88M 47.1G 54/156 12933/1532 84.5(+1.0) 83.5
GFNet-B" [61] FFT 3842 47M 23.2G 137/390 3710/416 82.1(+0.8) 82.9
Sequencer2D-L" Seq. 3922 54M 50.7G 26/84 9062/481 84.6(+1.2) 83.4

Table 1 shows the results that are comparing the proposed models to others with a comparable number
of parameters to our models, including models with local and global receptive fields such as CNNs,
ViTs, and MLP-based and FFT-based models. Sequencers has the disadvantage that its throughput
is slower than other models because it uses RNNs. In the scratch training on IN-1K, however, they
outperform these recent comparative models in accuracy across their parameter bands. In particular,
Seqeuncer2D-L is competitive with recently discussed models with comparable parameters such as
ConvNeXt-S [49] and Swin-S [48], with accuracy outperformance of 0.3% and 0.2%, respectively.

Table 1 demonstrates that Sequencer’s throughput is not good. The training throughput is about
three times the inference throughput for all these models. Compared to other models, both measured
inference and training time are not good.

4.2 Fine-tuning on IN-1K

In this fine-tuning study, Sequencer2D-L pre-trained on IN-1K at 2242 resolution is fine-tuned
on IN-1K at 3922 resolution. We compare it with the other models fine-tuned on IN-1K at 3842
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Table 2: Sequencer ablation experiments. We adopt Sequencer2D-S variant for these ablation
studies. C1 denotes vertical BiLSTM, C2 denotes horizontal BiLSTM, and C3 denotes channel fusion
component. When vertical BiLSTM only, horizontal BiLSTM only or unidirectional BiLSTM2D, its
hidden dimension needs to be doubled from the original setting because it compensates the output
dimension for the excluded LSTM and matches the dimensions.

(a) Components

C1 C2 C3 Acc.
X 75.6

X 75.0
X X 81.6
X X X 82.3

(b) LSTM Direction

Bidirectional Acc.
79.7

X 82.3

(c) Vanilla Sequencer

Model #Params. FLOPs Acc.
VSequencer-S 33M 8.4G 78.0
VSequencer(H)-S 28M 8.4G 78.8
VSequencer(PE)-S 33M 8.4G 78.1
Sequencer2D-S 28M 8.4G 82.3

(d) Hidden dimension

Hidden dim. ratio #Params. FLOPs Acc.
1x 28M 8.4G 82.3
2x 45M 13.9G 82.6

(e) Various RNNs

Model #Params. FLOPs Acc.
RNN-Sequencer2D 19M 5.8G 80.6
GRU-Sequencer2D 25M 7.5G 82.3
Seqeucer2D-S 28M 8.4G 82.3

resolution. Since 392 is divisible by 14, the input at this resolution can be split into patches without
padding. However, note that this is not the case with a resolution of 3842.

As Table 1 indicates, even when higher-resolution Sequencer is fine-tuned, it is competitive with the
latest models such as ConvNeXt [49], Swin [48], and GFNet [61].

4.3 Ablation studies

This subsection presents ablation studies based on Sequencer2D-S for further understanding of
Sequencer. We seek to clarify the effectiveness and validity of the Sequencers architecture in terms
of the importance of each component, bidirectional necessaries, setting of the hidden dimension, and
the comparison with simple BiLSTM.

We show where and how relevant the components of BiLSTM2D are: The BiLSTM2D is composed
of vertical BiLSTM, horizontal BiLSTM, and channel fusion elements. We want to see the validity of
vertical BiLSTM, horizontal BiLSTM, and channel fusion. For this purpose, we examine the removal
of channel fusion and vertical or horizontal BiLSTM. Table 2a shows the results. Removing channel
fusion shows that the performance degrades from 82.3% to 81.6%. Furthermore, the additional
removal of vertical or horizontal BiLSTM exposes a 6.0% or 6.6% performance drop, respectively.
Hence, each component discussed here is necessary for Sequencer2D.

We show that the bidirectionality for BiLSTM2D is important for Sequencer. We compare
Sequencer2D-S with a version that replaces the vertical and horizontal BiLSTMs with vertical
and horizontal unidirectional LSTMs. Table 2b shows that the unidirectional model is 2.6% less
accurate than the bidirectional model. This result attests to the significance of using not unidirectional
LSTM but BiLSTM.

It is important to set the hidden dimension of LSTM to a reasonable size. As described in subsection
3.2, Sequencer2D sets the hidden dimension D of BiLSTM to D = C/4, but this is not necessary if
the model has channel fusions. Table 2d compares Sequencer2D-S with the model with increased
D. Although accuracy is 0.3% improved, FLOPs increase by 65%, and the number of parameters
increases by 60%. Namely, the accuracy has not improved for the increase in FLOPs. Moreover, the
increase in dimension causes overfitting, which is discussed in Appendix C.3.

Vanilla Sequencer can also achieve accuracy that outperforms MLP-Mixer [70], but is not as accu-
rate as Sequencer2D. Following experimental result supports the claim. We experiment with the
Sequencer2D-S variants, where Vanilla Sequencer blocks replace the Sequencer2D blocks, called
VSequencer-S(H), with incomplete positional information. In addition, we experiment with a variant
of VSequencer-S(H) without the hierarchical structure, which we call VSequencer-S. VSequencer-
S(PE) is VSequencer-S using ViTs-style learned positional embedding (PE) [16]. Table 2c indicates
effectiveness for combination of LSTM and ViTs-like architecture. Surprisingly, even with Vanilla
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Table 3: Left. Results on transfer learning. We transfer models trained on IN-1K to datasets from
different domains. Sequencers use 2242 resolution images, while ViT-B/16 and EfficientNet-B7 work
on higher resolution, see Res. column. Right. Semantic segmentation results on ADE20K [89]. All
models are Semantic FPN [36] based. We show mIoU for the ADE20k validation set.

Model Res. #Pr. FLOPs CF10 CF100 Flowers Cars
ResNet50 [22] 2242 26M 4.1G - - 96.2 90.0
EN-B7 [67] 6002 26M 37.0G 98.9 91.7 98.8 94.7
ViT-B/16 [16] 3842 86M 55.4G 98.1 87.1 89.5 -
DeiT-B [72] 2242 86M 17.5G 99.1 90.8 98.4 92.1
CaiT-S-36 [73] 2242 68M 13.9G 99.2 92.2 98.8 93.5
ResMLP-24 [71] 2242 30M 6.0G 98.7 89.5 97.9 89.5
GFNet-H-B [61] 2242 54M 8.6G 99.0 90.3 98.8 93.2

Sequencer2D-S 2242 28M 8.4G 99.0 90.6 98.2 93.1
Sequencer2D-M 2242 38M 11.1G 99.1 90.8 98.2 93.3
Sequencer2D-L 2242 54M 16.6G 99.1 91.2 98.6 93.1

Model #Pr. mIoU
PVT-Small [79] 28M 39.8
PoolFormer-S24 [83] 23M 40.3
Sequencer2D-S 32M 46.1
PVT-Medium [79] 48M 41.6
PoolFormer-S36[83] 35M 42.0
Sequencer2D-M 42M 47.3
PVT-Large [79] 65M 42.1
PoolFormer-M36 [83] 60M 42.4
Sequencer2D-L 58M 48.6

Sequencer and Vanilla Sequencer(H) without PE, the performance reduction from Sequencer2D-S is
only 4.3% and 3.5%, respectively. According to these results, there is no doubt that Vanilla Sequencer
using BiLSTMs is significant enough, although not as accurate as Sequencer2D.

All LSTMs in the BiLSTM2D layer can be replaced with other recurrent networks such as gated
recurrent units (GRUs) [8] or tanh-RNNs to define BiGRU2D layer or BiRNN2D layer. We also
trained these models on IN-1K, so see Table 2e for the results. The table suggests that all of these
variants, including RNN-cell, work well. Also, tanh-RNN performs slightly worse than others,
probably due to its lower ability to model long-range dependence.

4.4 Transfer learning and semantic segmentation

Sequencers perform well on IN-1K, and they have good transferability. In other words, they have
satisfactory generalization performance for a new domain, which is shown below. We utilize the
commonly used CIFAR-10 [38], CIFAR-100 [38], Flowers-102 [55], and Stanford Cars [37] for
this experiment. See the references and Appendix B.4 for details on the datasets. The results of the
proposed model and the results in previous studies of models with comparable capacity are presented
in Table 3. In particular, Sequencer2D-L achieves results that are competitive with CaiT-S-36 [73]
and EfficientNet-B7 [67].

We experiment for semantic segmentation on ADE20K[89] dataset. See Appendix C.4 for details on
the setup. Sequencer outperforms PVT [79] and PoolFormer [83] with similar parameters; compared
to PoolFormer, mIoU is about 6 pts higher.

We have investigated a commonly object detection model with Sequencer as the backbone. Its
performance is not much different from the case of ResNet [22] backbone. Its improvement is the
future work. See Appendix C.5.

4.5 Analysis and visualization

In this subsection, we investigate the properties of Sequencer in terms of resolution adaptability and
efficiency. Furthermore, effective receptive field (ERF) [51] and visualization of the hidden states
provides insight into the question of how Sequencer recognizes images.

One of the attractive properties of Sequencer is its flexible adaptability to the resolution, with minimal
impact on accuracy even when the resolution of the input image is varied from one-half to twice.
In comparison, architectures like MLP-Mixer [70] have a fixed input resolution, and GFNet [61]
requires interpolation of weights in the Fourier domain when inputting images with a resolution
different from training images. We evaluate the resolution adaptability of models comparatively by
inputting different resolution images to each model, without fine-tuning, with pre-trained weights
on IN-1K at the resolution of 2242. Figure 3a compares absolute top-1 accuracy on IN-1K, and
Figure 3b compares relative one to the input image with the resolution of 2242. By increasing the
resolution by 28 for Sequencer2D-S and by 32 for other models, we avoid padding and prevent
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the effect of padding on accuracy. Compared to DeiT-S [72], GFNet-S [61], CycleMLP-B2 [7],
and ConvNeXt-T [49], Sequencer-S’s performance is more sustainable. The relative accuracy is
consistently better than ConvNeXt [49], which is influential in the lower-resolution band, and, at
4482 resolution, 0.6% higher than CycleMLP [7], which is influential in the double-resolution band.
It is noteworthy that Sequencer continues to maintain high accuracy on double resolution.

The higher the input resolution, the higher memory-efficiency and throughput of Sequencers when
compared to DeiT [72]. Figure 3 shows the efficiency of Sequencer2D-S when compared to DeiT-S
and ConvNeXt-T [49]. Memory consumption increases rapidly in DeiT-S and ConvNeXt-T with
increasing input resolution, but more gradual increase in Sequencer2D-S. The result strongly implies
that it has more practical potential as the resolution increases than the ViTs. At a resolution of 2242,
it is behind DeiT in throughput, but it stands ahead of DeiT when images with a resolution of 8962
are input.

(a) Absolute top-1 acc.

Δ

(b) Relative top-1 acc. to 2242 res.

(c) GPU peak memory (d) Throughput

Figure 3: Top. Resolution adaptability. Every model is trained at
2242 resolution and evaluated at various resolutions with no fine-
tuning. Bottom. Comparisons among Sequencer2D-S, DeiT-S [72],
and ConvNeXt-T [49] in (c) GPU peak memory and (d) throughput
for different input image resolutions. Measured for each increment
of 2242 resolution, points not plotted are when GPU memory is ex-
hausted. The measurements are founded on a batch size of 16 and a
single V100.

Figure 4: Part of states
of the last BiLSTM2D
layer in the Sequencer
block of stage 1. From
top to bottom: out-
puts of ver-LSTM, hor-
LSTM, and ch-fusions
and original images.

In general, CNNs have localized, layer-by-layer expanding receptive fields, and ViTs without shifted
windows capture global dependencies, working the self-attention mechanism. In contrast, in the
case of Sequencer, it is not clear how information is processed in Sequencer block. We calculated
ERF [51] for ResNet-50 [22], DeiT-S [72], and Sequencer2D-S as shown in Figure 5. ERFs of
Sequencer2D-S form a cruciform shape in all layers. The trend distinguishes it from well-known
models such as DeiT-S and ResNet-50. More remarkably, in shallow layers, Sequencer2D-S has a
wider ERF than ResNet-50, although not as wide as DeiT. This observation confirms that LSTMs in
Sequencer can model long-term dependencies as expected and that Sequencer recognizes sufficiently
long vertical or horizontal regions. Thus, it can be argued that Sequencer recognizes an image in a
very different way than CNNs or ViTs. For more details on ERF and additional visualization, see
Appendix D.

Moreover we also visualized a hidden state of vertical and horizontal BiLSTM, and a feature map
after channel fusion, and the results are visualized in Figure 4. It demonstrates that our Sequencer
has the hidden states interact with each other over the vertical and horizontal directions. The closer
tokens are in position, the stronger their interaction tends to be; the farther tokens are in position, the
less their interaction tends to be.
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(a) RN50/first (b) DeiTS/first (c) SeqS/first (d) RN50/last (e) DeiTS/last (f) SeqS/last

Figure 5: The visualizations are the ERFs of Sequencer2D-S and comparative models such as ResNet-
50 and DeiT-S. The left of the slash denotes the model name, and the right of the slash denotes the
location of the block of output used to generate the ERFs. The ERFs are rescaled from 0 to 1. The
brighter and more influential the region is, the closer to 1, and the darker, the closer to 0.

5 Conclusions

We propose a novel and simple architecture that leverages LSTM for computer vision. It is demon-
strated that new modeling with LSTM instead of the self-attention layer can achieve competitive
performance with current state-of-the-art models. Our experiments show that Sequencer has a good
memory-resource/accuracy and parameter/accuracy tradeoffs, comparable to the main existing meth-
ods. Despite the impact of recursion on throughput, we have demonstrated benefits over it. We
believe that these results raise a number of interesting issues. Improving Sequencer’s poor throughput
is one example. Moreover, we expect that investigating the internal mechanisms of our model using
methods other than ERF will further our understanding of how this architecture works. In addition,
it would be important to analyze in more detail the features learned by Sequencer in comparison to
other architectures. We hope this will lead to a better understanding of the role of various inductive
biases in computer vision. Furthermore, we expect that our results trigger further study beyond the
domain or research area. Especially, it would be a very interesting open question to see if such
a design works with time-series data in vision such as video or in a multi-modal problem setting
combined with another modality such as video with audio.
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