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Abstract

Reward models play a crucial role in the post-
training of large language models (LLMs). While
explicit reward models are widely used, implicit
approaches like Direct Preference Optimization
(DPO (Rafailov et al., 2023)) offer an alternative.
However, implicit models often exhibit weaker
generalization and performance (Lin et al., 2024).
In this work, we investigate why DPO underper-
forms compared to explicit reward models. We
first demonstrate that generating high-quality an-
swers is generally more difficult than discrimi-
nating between good and bad answers, provid-
ing an intuitive explanation for DPO’s weaker
generalization, since it directly learns generation
rather than discrimination. Further, we show that
the DPO objective requires greater model capac-
ity to fit effectively, suggesting that the learning
task itself is more challenging. Crucially, because
DPO operates by directly optimizing token-level
probabilities, the combination of large vocabu-
lary sizes and long-tail token distributions leads
to inefficient learning dynamics that ultimately
degrade model performance. To address this, we
propose a simple modification to DPO’s formula-
tion: removing the (log)-softmax function, which
improves the implicit reward model’s effective-
ness. This adjustment can enhance algorithms like
PRIME, which rely on implicit reward modeling.

1. Introduction and Background

Reward models play a crucial role in the post-training stage
of Large Language Models, especially in Reinforcement
Learning from Human Feedback (RLHF) (Bai et al., 2022;
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Ouyang et al., 2022), etc. To obtain an accurate approxi-
mation of the underlying rewards, the technique of using
another LLM to serve as the reward model has been in-
vestigated extensively during the research topic in recent
days. Implicit reward models like Rafailov et al. (2023);
Ethayarajh et al. (2024); Meng et al. (2024) provide a con-
venient manner to directly optimize the LLMs instead of
introducing an extra projection between hidden embedding
and the actual rewards, further eliminating the need to op-
timize another reward model in parallel. However, such
implicit reward models usually introduce extra performance
overheads compared to directly utilizing explicit reward
models. Xu et al. (2024); Ivison et al. (2024); Wang et al.
(2024) have studied the performance comparison between
DPO and other explicit reward models based RLHF meth-
ods, which also point out the potential challenges of DPO to
some extent. In this work, we systematically compare DPO
and explicit reward models, analyze the reasons behind the
poor performance of DPO compared to the explicit reward
models, and propose a simple yet effective “quick fix” to
further improve the performance of DPO by removing the
“harmful” log-softmax function.

Related Work

Reward models play a crucial role in the post-training stage
of LLMs, especially for reinforcement learning, which usu-
ally involves the critic models (Konda & Tsitsiklis, 1999;
Schulman et al., 2017). This could be deployed in various
downstream tasks, particularly for reasoning (Guo et al.,
2025; Yao et al., 2025; Xiong et al., 2025) and function
calling (Jin et al., 2025), etc. Moreover, a wide range of
works (Luo et al., 2025) have revealed the different proper-
ties of reward models and how to construct better ones from
different perspectives.

From the way reward models assign the rewards, we could
categorize them into the following several classes (Zhong
et al., 2025). First is the most commonly used one, explicit
reward models, which directly output a real number (usually
through appending a projection layer after the hidden states
and normalized to the range [0,1]), and in some literature,
they are also known as discriminative reward models. Gen-
erative reward models (Ye et al., 2024; Zheng et al., 2023;
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Li et al., 2023) output a paragraph of text, and they usually
provide a more detailed explanation for the criteria adopted
in the reward assignment. In comparison, implicit reward
models, including Rafailov et al. (2023), Ethayarajh et al.
(2024), Meng et al. (2024), Zhao et al. (2023), Rafailov et al.
(2024), directly integrate the rewards into the “generation”
process of a given prompt, and do not introduce any addi-
tional components like explicit reward models, nor need to
generate extra output like generative reward models.

2. Preliminary Observations and Analyses
2.1. Intuition and Preliminary Validation

Recall that DPO uses rqpo(z,y) = [log %(;/I‘g to pa-
rameterize the reward model implicitly. Hopefully, we can
train a good policy model 74p, Which also elicits a good
implicit reward model. However, we argue that generation
is typically harder than discrimination. Specifically, let us
take a math problem from the MATH (Hendrycks et al.,
2021) bench as an example. For math problems, the input

prompt is just the problem itself.

Math Example

When rolling a certain unfair six-sided die with faces
numbered 1, 2, 3, 4, 5, and 6, the probability of
obtaining face F' is greater than 1/6, the probability
of obtaining the face opposite face F' is less than
1/6, the probability of obtaining each of the other
faces is 1/6, and the sum of the numbers on each
pair of opposite faces is 7. When two such dice are
rolled, the probability of obtaining a sum of 7 is
%. Given that the probability of obtaining face F'
is m/n, where m and n are relatively prime positive
integers, find m + n.

The generation and discrimination tasks are distinct in the
following sense.

¢ Generation task: solve the problem and generate a
potential answer to the problem. The accuracy of gen-
eration is defined as whether the problem is solved
in the math task, or whether the instruction is strictly
followed in the instruction following evaluation task.

» Discrimination task: given the description of the math
problem and the generated answer from GPT, we put
them together and again request GPT to decide whether
the generated answer indeed solves the problem or not.
The accuracy of the discrimination task is based on
whether the model’s decision about whether the given
answer solves the problem, or whether the model’s
response satisfies the requirements mentioned in the
instructions.

To verify this argument, we conduct a quantitative experi-
ment with the following two tasks. Specifically, we used
the datasets IFEval (Zhou et al., 2023) and lighteva/MATH
(Huggingface) with two sub-classes from each dataset. For
each sub-class, we sample twenty prompts and use the pro-
prietary model GPT as the evaluation language model. For
the IFEval dataset, we used “keywords:letter_frequency”
and “detectable_content:number_placeholders™ as the sub-
classes where the accuracy increases from 45% to 80% and
65% to 85% respectively. For the lighteva/MATH dataset,
we used “Geometry, Level 5” and “Counting & Probability,
Level 57 as the sub-classes, where the accuracy increases
from 25% to 85% and 50% to 75% respectively. These re-
sults demonstrate that generation tasks are more challenging
than discrimination tasks.

| Instruction Following | Math
55% | 37.5%
82.5% | 80.0%

Generation ‘

Discrimination ‘

Table 1. A case study on the difficulty of generation and discrimi-
nation.

2.2. Model Capacity

To further investigate the underlying reason from the per-
spective of training dynamics, we try to investigate the size
of model capacity that is needed to fit the data for both DPO
and explicit reward models.

Recall that we use the same base model for both DPO and
the explicit reward model. Ignoring the linear head of the
explicit reward model, we approximately regard the number
of parameters of it to be close to that of DPO. Let’s use 6 to
denote the initial parameter of the base model and use 6 to
denote the model parameter after fine-tuning, e.g., 6 could
be either the DPO parameter 64, or the reward model’s
parameter 6...,,. So intuitively, if the task is harder for the 6y,
it may need more effort to tune 6 to fit such a task. Then, it
would result in a larger distance between as |6 — 0y|. We use
the rank of LoRA (Hu et al., 2022) adapters as a proxy for
the distance of model parameters before and after finetuning.
Detailed results could be found in Section 3.2.

2.3. Explanation

The explicit reward model could be regarded as a projector
between the embedding space and the real number, i.e., a
mapping f : R? — R, where d is the hidden dimension of
the embedding layer of an LLM. In contrast, the direct pref-
erence optimization (DPO) (Rafailov et al., 2023) manner
could be regarded as an implicit reward, where we directly
optimize the policy model itself. The training objective of
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Figure 1. Tllustration of model space of DPO and RM.

DPO could be formulated as the following equation,
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From the above formulation, we could regard the opti-
mization objective of DPO as a much larger network,
[T] x (R% x R), standing for T projection layers from the
hidden embedding R to a real number R, where T is the
total vocabulary size. Therefore, if the backbone model for
the explicit reward model is frozen during the training stage,
only the projection layer, with a size of T x 1 parameters,
will be optimized, which is much smaller than the effective
parameters during DPO training. We observe that only a
small fraction of tokens indeed appear in the training corpus,
and if we increase the threshold for counting the frequency
of different tokens, even a smaller portion of tokens ap-
pear in the training dataset, compared to the hundreds of
thousands of tokens utilized by the model in total.

For Ultrafeedback (Cui et al., 2023), we downsample twenty
thousand samples from the training partition, and compute
the frequency distribution of different tokens based on the
subset, for which the results are shown in Figure 2. We
adopt gemma-2b-it (Team et al., 2024) as the base model,
of which the vocabulary size is 256000. For the twenty
thousand subset, including both the prompts and responses,
the total number of training tokens is 3328491, spanning
49373 distinct tokens. If we only consider the responses
where the losses could be calculated on, the total number of
training tokens becomes 2977762, spanning 46509 distinct
tokens.

3. Experiments and Results

In this section, we first give some examples that demon-
strate the different levels of difficulties of generation and
discrimination tasks from the math reasoning area, which
have verifiable answers. Then we display the empirical re-
sults in several experimental settings and provide relevant
analyses according to the results.
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Figure 2. Frequency of different tokens in the Ultrafeedback (Cui
et al., 2023) training subset. The x and y axis are in log 2 scale.
From the figure, we could see that only about 2% = 256 distinct
tokens have appeared more than 2'° = 1024 times in the training
subset, which means that a huge portion of training tokens remain
a very low frequency of appearance.

3.1. Training Environments Setup

For the supervised fine-tuning (SFT) conducted on the Ul-
trafeedback (Cui et al., 2023) subset, we train the model
with 4 Nvidia A6000 GPUs, with a batch size of 128 and
a learning rate of 1e-6. For the RL training under PRIME
(Cui et al., 2025) setting, we use 4 Nvidia H100 GPUs in
total, and use the original hyperparameters.

3.2. Comparison between Explicit Reward Models and
DPO Using LoRA

LoRA (Hu et al., 2022) is a parameter-efficient fine-tuning
(PEFT) technique that decomposes the parameters that need
to be optimized into the product of two low-rank matri-
ces. This helps decrease the GPU memory and compute
resources requirements significantly when the LoRA rank
is small enough.

Table 2 summarizes the results of applying LoRA to both ex-
plicit reward models and DPO in the supervised fine-tuning
setting, from which we could conclude that explicit reward
models always outperform DPO across different ranks for
LoRA. This indicates that DPO suffer from performance
drop not only on out-of-distribution domains as shown in the
previous work Lin et al. (2024), but also on in-distribution
domains. Therefore, to understand the causes of such a gap
between these two kinds of reward models, we try to peel
each affecting factor that distinguishes DPO from explicit
reward models, as formulated in Equation 2.1. Actually we
could regard the logits from LLMs o, or o}, where w and [
stand for the winning and losing sample in the preference
dataset, and ¢ stands for the i-th token in the sequence, as an
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Model Split r=4 r=8 7r=16 r=32 r=64 1r =128
Explicit Reward Model Train 0.7393 0.7585 0.7702 0.7741 0.7754  0.7836
P Test  0.7387 0.7511 0.7628 0.7678 0.7683  0.7787
DPO Train 0.7134 0.6645 0.7230 0.7398 0.7794  0.7900
Test  0.7080 0.7074 0.7440 0.7467 0.7567  0.7707

Table 2. Empirical results from using LoRA (Hu et al., 2022) as the trainable adaptor to investigate how the number of trainable parameters
would impact the performance of explicit reward models and DPO models.

Heads Number 1 2 4 8 16 128 1024 4096 16384 65536
Multi-Head 0.7575 0.7440 0.7535 0.7410 0.7555 0.7756 0.7796 0.7676 0.7605 0.7495
Softmax 0.4076 0.6596 0.6918 0.6998 0.7053 0.6998 0.6928 0.6923 0.6682 0.6511
Log Softmax 0.5000 0.7380 0.7334 0.7354 0.7289 0.7314 0.7505 0.7299 0.7118 0.6933

Table 3. The performance trend with respect to the number of heads for the multi-head only model, multi-head plus softmax model, and
the multi-head plus log softmax model. From the results, we could see that softmax itself does great harm to the model’s performance,
while log softmax could mitigate the bad effects, which we suspect is due to the log function rescaling the range of rewards from [0, 1] to

R again, like without using softmax.

unnormalized explicit scalar reward. Then, 7y just applies a
softmax to all logits in the vocabulary to form a probability
distribution. If we omit the pairwise characteristic of the
objective of DPO, then the essential difference of the opti-
mization goals between explicit reward models and DPO
lies in the following points. DPO first takes a softmax on the
“logits rewards”, then passes it to a log function, and finally
conducts a reduction along the sequence on all tokens by
taking a summation. We then analyze which transformation
leads to the performance drop in the reward shaping of DPO
in the succeeding section.

3.3. Exploration of the Harmful Effects of Log Softmax

Here we show the results of training different models with
or without log softmax. We based the experiments on the
vanilla explicit reward models, which add an extra projec-
tion layer f : R? — R following the final hidden embedding
layer to the backbone model. First, starting from the vanilla
explicit reward models, we change the input to the projec-
tion layer from using only the last hidden embedding to
averaging each of the hidden embeddings corresponding to
each token position in the sequence. Next, we increase the
number of projection heads, with each corresponding to a
subset of the total vocabulary. Then, we could add the (log)
softmax function among the outputs of different projection
heads.

Table 3 demonstrates that simply adding more projection
heads and taking the summation along the sequence di-
mension will not degrade the performance, and only after
integrating the (log) softmax functions, a considerable gap
has appeared.

3.4. Refinement of PRIME

PRIME (Cui et al., 2025) proposes to plug in the implicit
rewards defined similarly to the DPO formulation, with
further updating through a Proximal Policy Optimization
(PPO) (Schulman et al., 2017) way. Based on our observa-
tions from the preliminary experiments conducted on the
SFT stage, we try to explore whether removing the log
softmax function and reference model could improve the
performance, as this will mimic the formulation of explicit
reward models, which usually have a better generalization
ability than implicit reward models.

Minerva  Olympiad
Method MATHS500 Math Bench Average
Base 0.3948 0.1153 0.1941 0.2347
PRIME 0.4450 0.1544 0.2067 0.2687
Ours 0.4482 0.1673 0.2122 0.2759

Table 4. The performance evaluated on three math benchmarks:
MATHS500 (Hendrycks et al., 2021), Minerva Math (Lewkowycz
et al., 2022), and Olympiad Bench (He et al., 2024), with metric
average @ 8, which means take the average accuracy of eight
samples per prompt with temperature 1.0.

Table 4 displays the accuracies on several math benchmarks
before and after removing the log softmax function during
the training of PRIME. Though the log softmax function
is directly adopted for training the critic model, while the
accuracies are evaluated on the actor model, it is intuitive
that the performances of the two are highly correlated. The
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performance gain after removing the log softmax indicates
the effectiveness of our quick fix.

4. Conclusion

From the results of our experiments, we could conclude
that DPO has worse performance on preference learning
than explicit reward models, especially when generalizing
to OOD domains. We analyzed the differences between
explicit reward models and DPO, and located the log soft-
max function as the culprit. Tentative experiments show
that after removing the log softmax function, DPO could
achieve a performance gain, even matching explicit reward
models.

Limitations

Though we have verified our hypothesis on several tasks,
from SFT to actor-critic RL, the experiments could be con-
ducted in more settings. The performance drop caused by
DPO via log softmax is potentially related to the fact that
DPO entangles all the model parameters as the optimiza-
tion objective through the softmax function, however, there
might exist other underlying possible explanations for the
worse performance of implicit reward models compared
to explicit ones. Other hypotheses may be proposed and
verified beyond ours. In addition, the quick fix mentioned
before could serve as a way to match the performance of
implicit reward models with explicit ones, but it does not
provide a means to surpass existing explicit reward mod-
els. Further efforts need to be devoted to this direction to
discover a new way that may outperform the commonly
adopted explicit reward models.
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