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Abstract

Large vision-language models (LVLMs) have001
significantly improved multimodal reasoning002
tasks, such as visual question answering and003
image captioning. These models embed mul-004
timodal facts within their parameters, rather005
than relying on external knowledge bases to006
store factual information explicitly. However,007
the content discerned by LVLMs may devi-008
ate from actual facts due to inherent bias or009
incorrect inference. To address this issue,010
we introduce MFC-Bench (Multimodal Fact-011
Checking Benchmark), a rigorous and com-012
prehensive benchmark designed to evaluate013
the factual accuracy of LVLMs across three014
stages of verdict prediction for MFC: Manipu-015
lation, Out-of-Context, and Veracity Classifica-016
tion. Through our evaluation on MFC-Bench,017
we benchmarked a dozen diverse and represen-018
tative LVLMs, uncovering that current mod-019
els still fall short in multimodal fact-checking020
and demonstrate insensitivity to various forms021
of manipulated content. We hope that MFC-022
Bench could raise attention to the trustworthy023
AI potentially assisted by LVLMs in the future.024

1 Introduction025

Recent advancements in natural language process-026

ing (NLP), particularly large language models027

(LLMs) such as ChatGPT and GPT-4 (OpenAI,028

2023), have showcased exceptional abilities in un-029

derstanding human instructions and performing030

tasks without additional fine-tuning (Kojima et al.,031

2022; Lin et al., 2023). Concurrently, large vision-032

language models (LVLMs) (Dai et al., 2023; Gong033

et al., 2023) extend this proficiency to multimodal034

tasks, integrating vision and language for tasks035

such as image-text alignment and multimodal un-036

derstanding (Fu et al., 2023). However, the ca-037

pabilities and limitations of LVLMs in managing038

multimodal reasoning tasks (Akhtar et al., 2023) re-039

lated to factuality, particularly in identifying online040

unverified information within multimodal inputs, 041

remain underexplored. 042

Fact-checking has traditionally focused on tex- 043

tual content (Guo et al., 2022; Thorne et al., 2018), 044

but multimodal content is often more influential 045

and rapidly spreads online (Li and Xie, 2020; New- 046

man et al., 2012). A key question is whether 047

LVLMs can reliably assess factuality in multimodal 048

contexts. While LVLMs have demonstrated strong 049

generalization capabilities (Liu et al., 2023a), eval- 050

uating their handling of factuality—especially in 051

complex visual-textual contexts—remains crucial 052

to ensuring trustworthy AI applications. 053

Building on recent work (Akhtar et al., 2023), 054

we propose MFC-Bench, a benchmark designed to 055

evaluate LVLMs’ performance across three critical 056

stages of multimodal fact-checking: 1) Manipula- 057

tion Classification, 2) Out-of-Context (OOC) Clas- 058

sification, and 3) Veracity Classification. These 059

tasks involve identifying manipulated content, dis- 060

tinguishing between relevant and irrelevant con- 061

nections between images and text, and assessing 062

the veracity of claims based on multimodal inputs. 063

Through MFC-Bench, we systematically assess the 064

strengths and limitations of LVLMs in these tasks, 065

offering insights into their ability to detect and un- 066

derstand misinformation. 067

Our contributions are four-fold: 1) We introduce 068

MFC-Bench, a comprehensive testbed with 35K 069

multimodal samples across three stage sub-tasks of 070

verdict prediction in the multimodal fact-checking 071

process to assess LVLMs’ trustworthiness; 2) Four 072

novel manipulation methods have been introduced 073

to enhance our benchmark; 3) Extensive evaluation 074

of a dozen advanced LVLMs reveals significant 075

challenges, with GPT-4o only achieving F1 scores 076

of 69.4% on the MFC-Bench; 4) We provide a de- 077

tailed analysis of performance variations among 078

different LVLMs on prompting strategies and justi- 079

fication production. 080

1



InteracteHarper Beckham on
the frow wearing a Tiffany
necklace.

Face  Swap

Marty Hahne, a magician from
Ozark, MO, is burdened by the
excessive regulations of the
Agriculture Department, which not
only demands a license for his
performance rabbit but also insists
on a pointless written disaster plan.

Marty Hahne a magician from
Ozark Mo has a rabbit that he pulls
out of his hat during his magic acts
The Agriculture Department
requires him to have a license for
that rabbit as well as a written
disaster plan.

Text Style Transfer
Justin Trudeau greets
supporters during a
campaign rally in the
Tower of London.

Justin Trudeau greets
supporters during a
campaign rally in Saint
John New Brunswick.

Textual Entity Replace

Howe speaks to the media
before the US Hockey Hall of
Fame s 27th Annual
Enshrinement Dinner at the
Xcel Energy Center in St Paul
Minn.

CLIP SD Generate

New Manipulation
Classification

A Trump supporter
outside NBC studios.

Hillary Rodham Clinton
speaks at a town hall
meeting in Las Vegas on
Tuesday.

Background Change

OOC
Classification

Elephants think of humans
as 'cute' in the same manner
that humans think of kittens
or puppies. Veracity 

Classification

Todd Stern angrily rebuffed
the suggestion that US used
strongarm tactics to force
countries to sign up to the
Copenhagen Accord.

Face Attribute Edit

Squirreluman hath
chosen sides and
gandalf was merely in
the way.

Photoshop

Figure 1: MFC-Bench is a comprehensive benchmark designed to evaluate the LVLMs across three stages of verdict
prediction for MFC: Manipulation Classification, Out-of-Context Classification, and Veracity Classification.

2 Dataset Constitution081

To systematically assess the visual and textual fac-082

tual knowledge related to inconsistencies and coun-083

terfactual reasoning abilities of LVLMs, we have084

formulated our benchmark into three decomposed085

sub-tasks of verdict prediction for the multimodal086

fact-checking process: Manipulation Classification,087

Out-of-Context Classification, and Veracity Classi-088

fication, by considering prevalent multimodal mis-089

information types (Akhtar et al., 2023). For these090

multimodal misinformation types of data for verifi-091

cation, we carefully curate appropriate visual and092

textual queries from a variety of sources to ensure093

a comprehensive evaluation of LVLMs in multi-094

modal fact-checking, as summarized in Table 1.095

We have introduced four novel manipulation meth-096

ods—namely, Background Change, CLIP-based097

SD Generation,Textual Entity Replacement, and098

Text Style Transfer—within the Manipulation Clas-099

sification. These methods will be discussed in de-100

tail, while the other methods will be briefly out-101

lined.102

2.1 MFC Data Types103

2.1.1 Manipulation Classification104

Manipulation Classification is a task meticulously105

designed to ascertain whether multimodal data en-106

compasses fabricated elements (Qi et al., 2019)107

by using LVLMs. To investigate LVLMs’ profi-108

ciency in identifying multimodal content altered109

through various manipulative techniques, in MFC-110

Bench, we organized seven types of manipulation111

methods1: The first five focus on visual alterations,112

1Here, we consider the most challenging setting (Akhtar
et al., 2023) that the correct content in one modality, accompa-

while the last two target textual modifications. 113

Method 1: Face Swap (FS). Face Swap in- 114

volves the process of cutting a face from one im- 115

age and replacing it with a different face in an- 116

other image. A Face Swap subset of the DGM4 117

dataset (Shao et al., 2023) was sampled and se- 118

lected. 119

Method 2: Face Attribute Edit (AE). Face 120

Attribute Edit achieves deception by altering the 121

facial expressions of humans like newsmakers. Vi- 122

sual and textual samples related to face attribute 123

editing were randomly selected from the previously 124

established DGM4 dataset (Shao et al., 2023). 125

Method 3 (New): Background Change (BC). 126

Background Change alters images, transforming 127

public individuals into scenes where he/she never 128

showed up in reality. As depicted in Figure 1, 129

Hillary Rodham Clinton was originally indoors, 130

but BC makes it seem like she is now outside. The 131

objective is to examine the capability of LVLMs for 132

accurate identification of individuals and scenes in 133

images, evaluating their correspondence and au- 134

thenticity in relation to the descriptions provided 135

in texts. 136

Data processing: Backgrounds for outdoor 137

scenes were generated using Grounding DINO (Liu 138

et al., 2023b) and stable-diffusion-inpainting tech- 139

niques. First, we used Grounding DINO to detect 140

the people in the photos and create inverse masks. 141

Then, we provided these masks along with the orig- 142

inal images for stable-diffusion-inpainting. The 143

prompt for generating the backgrounds was “blue 144

sky, white clouds.” The pipeline was implemented 145

using ComfyUI. 146

nied by the manipulated content in the other modality, which
increases credibility.
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Types Description Sources Distribution

Fact. Non-Fact. All

Manipulation

Face Swap DGM4 (Shao et al., 2023) 4,000 2,000 6,000
Face Attribute Edit DGM4 (Shao et al., 2023) 4,000 2,000 6,000
Background Change Ours 1,000 2,000 3,000
CLIP-based SD Generate Ours 5,000 5,000 10,000
Photoshop Fakeddit (Nakamura et al., 2020) 1,000 1,000 2,000
Textual Entity Replace Ours 1,162 838 2,000
Text Style Transfer Ours 1,000 1,000 2,000

OOC Detect out of context NewsCLIPpings (Luo et al., 2021) 1,000 1,000 2,000

Veracity Verify the claim w/ image Mocheg (Yao et al., 2023) 469 1,531 2,000

Table 1: Dataset sources, description, and distribution.

Method 4 (New): CLIP-based Stable Diffu-147

sion Generate (CG). CLIP-based Stable Diffusion148

(Ramesh et al., 2022) features an image-to-image149

generation pipeline that enables the manipulated150

image to retain the linguistic information from151

the original image, producing stable-diffusion ver-152

sions for image replacement. Originally, Figure 1153

showed Howe speaking, but with CLIP SD Gener-154

ate, the image was altered to display a generated155

individual giving the speech, retaining much of156

the original visual content. This design enables us157

to assess the fact-checking capabilities of LVLMs158

regarding their awareness of whether multimodal159

content is fabricated, even when the manipulated160

image retains elements of the original alongside161

the raw text.162

Data processing: Stable diffusion versions of163

the original images were generated using Stabil-164

ityAI’s Stable-Diffusion-2-1-Unclip. By utilizing165

Stable-Diffusion-2-1-Unclip, we input the original166

claim and image into the model to generate the167

manipulated images.168

Method 5: Photoshop (PS). Photoshop has169

long been a leading manipulation for manual image170

editing, enabling users to alter human figures and171

merge different images to create potentially mis-172

leading visuals. The photoshop subset of Fakeddit173

(Nakamura et al., 2020) was selected.174

Method 6 (New): Textual Entity Replace (ER).175

Textual Entity Replace involves substituting enti-176

ties other than the target persons in the data, with177

randomly chosen locations and time. As exem-178

plified in Figure 1, Justin Trudeau was originally179

shown greeting in Saint John, New Brunswick, but180

with Textual Entity Replace, it was changed to him181

greeting at the Tower of London. This method182

seeks to assess the capability of LVLMs to effec-183

tively associate individuals with the entities de-184

picted in both images and texts, highlighting any185

inconsistencies. 186

Data processing: Named entities correspond- 187

ing to persons within a given claim were identi- 188

fied using Named Entity Recognition (NER) (Lam- 189

ple et al., 2016) from bert-base-NER, and the sur- 190

rounding contextual texts between two claims were 191

swapped. To ensure that the claims contain peo- 192

ple, we first screened the data and selected only the 193

claims that included individuals. 194

Method 7 (New): Text Style Transfer (ST). 195

Text Style Transfer is the process of modifying 196

the tone and style of a text to alter the perception 197

of the same person or event, potentially leading 198

to a different factual impression. As Figure 1, by 199

Text Style Transfer, the tone shifts from a neutral, 200

factual statement about Marty Hahne needing a li- 201

cense and disaster plan for his rabbit, to a more 202

critical and dramatic tone, portraying the require- 203

ments as burdensome and excessive. The process 204

examines LVLMs’ ability to rigorously comprehend 205

the events and associated sentiments depicted in 206

images and claims, and to correctly correlate them. 207

Data processing: The sentiment of the text was 208

first determined using GPT-4 (OpenAI, 2023), and 209

then the text was rewritten to express the oppo- 210

site sentiment using GPT-4’s advanced text style 211

transfer capabilities. 212

2.1.2 Out-of-Context Classification 213

Out-of-Context (OOC) Classification in MFC- 214

Bench aims to decipher the coherence and cor- 215

respondence of context across various modali- 216

ties (Luo et al., 2021) with LVLMs. We col- 217

lected multimodal samples from the NewsCLIP- 218

pings dataset (Luo et al., 2021). Unlike the afore- 219

mentioned manipulation techniques that require 220

modifying images and texts, OOC Classification 221

combines real but misused images and texts. If 222

the image and the text are contextually aligned, 223
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the relationship is regarded as true, naturally rep-224

resenting fact. Conversely, if the image and the225

text are not contextually aligned, the relationship226

is regarded as false, indicating non-fact.227

2.1.3 Veracity Classification228

Veracity Classification in MFC-Bench serves to229

classify the factuality of textual claims based on230

visual evidence (Yao et al., 2023) by employing231

LVLMs. Based on the image evidence, the LVLMs232

need to predict the truthfulness of the textual claim.233

We curated a subset of the Mocheg dataset (Yao234

et al., 2023) for this task. If the image evidence235

supports the truthfulness of the textual claim, the236

relationship between the image and the claim is237

supported, indicating fact. Otherwise, the claim is238

treated as refuted by the image, exhibiting non-fact.239

2.2 Label Setting240

To unify the three tasks and facilitate a more ef-241

fective analysis of benchmark results, we formu-242

late the tasks into binary classification, we define243

the label L = {Fact., Non-Fact.}. The Manip-244

ulation Classification task involves determining245

whether multimodal news is fabricated, with labels246

indicating “Manipulated” (Non-Fact.) or “Not247

Manipulated” (Fact.). The OOC Classification248

task assesses whether the image and claim are in-249

consistent, with labels indicating “Matched” (Fact.)250

or “Not Matched” (Non-Fact.). The Veracity Clas-251

sification task evaluates whether the claim is true252

based on image evidence, with labels indicating253

“Supported” (Fact.) or “Refuted” (Non-Fact.).254

2.3 Quality Assurance255

Multiple levels of measures are implemented to256

guarantee data reliability. First, we utilize estab-257

lished and reputable technologies such as Stable258

Diffusion and GPT-4 for data processing, ensur-259

ing that the majority of the operations are accu-260

rate and align with our expectations. Second, we261

incorporate other well-regarded datasets that are262

time-tested and frequently cited. The tasks repre-263

sented by these datasets coincide with the objec-264

tives of our benchmark. Third, after constructing265

the dataset, we conduct a Human Quality Check266

by performing partial sampling. Specifically, we267

randomly select 100 entries from each category268

to verify the dataset’s integrity and ensure the ef-269

fectiveness of the manipulation methods we have270

applied. Finally, our benchmarking includes two271

types of human-involved experiments. The first272

type involves comparing the LVLM’s performance 273

to human performance; the second type entails hu- 274

man subject evaluation of the LVLM’s performance 275

based on its justification production. 276

2.3.1 Human Quality Check 277

This research involved a human subjects study to 278

evaluate the quality of multimodal data manipu- 279

lated by our adopted techniques. To assure the 280

quality of the self-constructed data, we employ 281

three human evaluators, who are senior undergrad- 282

uate or graduate students majoring in computer 283

science. Each student is presented with the manip- 284

ulated data and the original data to judge whether 285

the data has been successfully manipulated with 286

the manipulation techniques for the reliability and 287

credibility of the multimodal data. Each evaluator 288

completes the quality assurance process indepen- 289

dently. Further details regarding the evaluation 290

process are provided in Appendix §C.2 291

The manipulation accuracy for each task is pre- 292

sented in Table 2, which highlights the effective- 293

ness of our techniques. Additionally, the intra-class 294

agreement score is 0.705. The average Spearman’s 295

correlation coefficient between any two annotators 296

is 0.714. These figures reflect the reliability of our 297

data manipulation methods and the consistency of 298

the evaluators’ assessments. 299

Types Accuracy

Background Change 0.97
CLIP-based SD Generate 1.00
Textual Entity Replace 0.99
Text Style Transfer 0.98

Table 2: Manipulation Accurary for Different Types.

3 Methodology 300

3.1 Models 301

To provide an exhaustive perspective on the cur- 302

rent state of emerging LVLMs within the context 303

of multimodal fact-checking, we conducted com- 304

prehensive evaluations on representative accessible 305

LVLMs. Our selection encompasses a range of 306

models from diverse organizations, differing in size, 307

which allows for a thorough understanding of the 308

capabilities and limitations of LVLMs in handling 309

multimodal content concerned with factuality. 310

For the open-source and accessible LVLMs, we 311

adopt the representative models like Emu2 (Sun 312

et al., 2023), InternVL (Chen et al., 2023c), 313
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CogVLM (Wang et al., 2023a), LLaVA-NeXT (Liu314

et al., 2024a), InstructBLIP (Dai et al., 2023), Pix-315

tral2, MiniCPM-V-2.6 (Yao et al., 2024), LLaVA-316

OneVsion (Li et al., 2024a), Molmo (Deitke317

et al., 2024), Qwen-VL (Bai et al., 2023), Qwen2-318

VL (Wang et al., 2024b), Yi-VL (Young et al.,319

2024) and xGen-MM (Xue et al., 2024). As five of320

the most powerful closed-source LVLMs, GPT-4o,321

GPT-4V, Claude3.5-Sonnet, Claude3-Haiku and322

Gemini-1.5-Pro are included in our testing scope.323

3.2 Prompt Strategy324

We define a multimodal content M = {I, C} as a325

tuple consisting of an image I and an accompany-326

ing textual claim C to be fact-checked.327

Given that our benchmark comprises three im-328

portant decomposed sub-tasks for verdict predic-329

tion in the MFC process (Akhtar et al., 2023),330

we have developed three task instructions Ti331

specifically designed to elicit the multimodal fact-332

checking capabilities of the LVLMs as follows:333

Manipulation Classification (Task T1): “Ma-334

nipulation encompasses various alterations such as335

face swapping, face attribute editing, background336

changing, image generation, entity replacement,337

and style transfer. Your task is to determine if the338

image and caption have been manipulated.”339

Out-of-Context Classification (Task T2): “Out-340

of-Context Classification is a task in which the goal341

is to identify whether a given image and accompa-342

nying text are contextually mismatched or falsely343

connected. Your task is to identify whether a given344

image and its accompanying text are contextually345

mismatched or falsely connected.”346

Veracity Classification (Task T3): “The Verac-347

ity task in a multimodal context involves assessing348

the truthfulness or accuracy of textual claims by349

using visual evidence. Your task is to determine the350

truthfulness of textual claims based on the accom-351

panying visual evidence.”352

Besides, we carefully design three questions for353

the three MFC sub-tasks and incorporate the image354

I and claim C into them, to enable the model to355

answer questions for verdict prediction as follows:356

Manipulation Classification (Question Q1):357

“Given a claim {C} and its image {I}, is this multi-358

modal content manipulated?”359

Out-of-Context Classification (Question Q2):360

“Does this claim {C} match its image {I}?”361

2https://mistral.ai/news/pixtral-12b/

Veracity Classification (Question Q3): “Based 362

on the image {I}, is this claim {C} true?” 363

At the end of each prompt template, we instruct 364

the required output format F : “Answer yes or no.”. 365

As demonstrated in Figure 2, to explore the ef- 366

fect of different prompt strategies like Chain-of- 367

Thought (CoT) (Wei et al., 2022) or In-Context 368

Learning (ICL) prompting, we utilized the four fol- 369

lowing prompt methods for the MFC-Bench: Zero- 370

shot, Zero-shot with CoT (Kojima et al., 2022), 371

Few-shot, and Few-shot with CoT (Wei et al., 2022). 372

Specifically, we design the prompt as follows: 373

Zero-shot Prompt. We initially employed the 374

zero-shot setting to activate the fact-checking ca- 375

pabilities of LVLMs. Given a task instruction Ti, 376

a question unit Qi, and the return format F , the 377

LVLMs f(·) are expected to determine whether the 378

output Y = f(Ti, Qi, F ) is “Yes” or “No”, as de- 379

picted in Figure 2(a). To extend the Zero-shot with 380

CoT setting in LLMs described in (Kojima et al., 381

2022), we simply incorporated the CoT prompt Cp 382

“Let’s think step by step” into the original prompt, 383

to encourage the LVLMs to implicitly conduct com- 384

plex reasoning by retrieving internal evidence, for 385

determining the label L. Consequently, LVLMs 386

will process f(Ti, Qi, Cp, F ) and finally return the 387

answer to multimodal fact verification. 388

Few-shot Prompt. Previous literature has in- 389

dicated that pre-trained LLMs can significantly 390

benefit from the inclusion of a few ICL demon- 391

strations (Brown et al., 2020). To assess whether 392

the LVLMs could gain similar advantages from 393

the in-context demonstrations in multimodal fact- 394

checking, we employed the few-shot setting. For 395

the Few-shot examples, we define each example 396

E = {Qi, L} consisting of a question Qi and 397

its corresponding factuality label L for fact ver- 398

ification. The inputs of LVLMs are given as 399

{Ti, E
N , Qi, F}, where EN represents multiple 400

examples and N denotes the number of exam- 401

ples, as demonstrated in Figure 2(b). In terms of 402

the Few-shot with CoT prompt, we manually cu- 403

rated a rationale R for each example to guide the 404

LVLMs, where the example is represented as Ec = 405

{Qi, R, L} and the input is {Ti, E
N
c , Qi, F}. 406

Justification Production Furthermore, to gain 407

deeper insights into the model interpretability of 408

LVLMs, we expand our research on the evalua- 409

tion on the justfication production of LVLMs. The 410

output format F : “Answer yes or no.” was re- 411

moved to allow the model to produce more inter- 412

mediate reasoning steps. The model’s interpretabil- 413
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 Question  Given a caption "Harper Beckham on the frow wearing a Tiffany necklace." and its image, is this multimodal
content manipulated? 
Answer yes or no.

 Question  Given a caption "Hillary 
Rodham Clinton speaks at a
town hall meeting in  Las Vegas
on Tuesday."  and its image, is
this multimodal content
manipulated?
Answer yes or no.
 Answer: Yes. 

 Question  Given a caption "Hillary 
Rodham Clinton speaks at a
town hall meeting in  Las Vegas
on Tuesday."  and its image, is
this multimodal content
manipulated?
Answer yes or no.
 Answer: Yes. 

 Question  Given a caption "Hillary  Rodham Clinton
speaks at a town hall  meeting in  Las Vegas on Tuesday." 
and its image, is this multimodal content manipulated?
Answer yes or no.
Rationale: The inconsistency between the described event
 (town hall meeting) and the visible background (open
sky with clouds) strongly suggests that the background
has been altered.
 Answer: Yes. 

 Question  Given a caption "Hillary  Rodham Clinton
speaks at a town hall  meeting in  Las Vegas on Tuesday." 
and its image, is this multimodal content manipulated?
Answer yes or no.
Rationale: The inconsistency between the described event
 (town hall meeting) and the visible background (open
sky with clouds) strongly suggests that the background
has been altered.
 Answer: Yes. 

 Task  Manipulation encompasses various alterations such as face swapping, face attribute editing, background changing, image
generation, entity replacement, and style transfer. Your task is to determine if the image and caption have been manipulated.

 Question  Given a caption "Harper Beckham on the frow wearing a Tiffany necklace." and its image, is this multimodal
content manipulated? (CoT Optional: Let's think step-by-step.)
Answer yes or no.

 Image 

 Question  Given a caption "Hillary 
Rodham Clinton speaks at a
town hall meeting in  Las Vegas
on Tuesday."  and its image, is
this multimodal content
manipulated?
Answer yes or no.
 Answer: Yes. 

 Image 

(a) Zero Shot (Optional: CoT)

 xN Examples 

 Image 

(b) Few Shot (Optional: CoT)

 Question  Given a caption "Hillary  Rodham Clinton
speaks at a town hall  meeting in  Las Vegas on Tuesday." 
and its image, is this multimodal content manipulated?
Answer yes or no.
 Rationale  The inconsistency between the described event
 (town hall meeting) and the visible background (open
sky with clouds) strongly suggests that the background
has been altered.
 Answer: Yes. 

 Image 

 xN Examples 
 w/ CoT 

Figure 2: Comparison of prompts in zero-shot and few-shot scenarios with and without CoT.

ity was evaluated by GPT-4 and humans across414

four dimensions: Misleadingness (M), Informative-415

ness (I), Soundness (S), and Readability (R). A416

5-point Likert scale was used, where 1 indicates417

the lowest quality and 5 the highest for Informa-418

tiveness, Soundness, and Readability, but the scale419

is reversed for Misleadingness. Detailed explana-420

tions of Misleadingness (M), Informativeness (I),421

Soundness (S), and Readability (R), as well as the422

prompts we used, can be found in Appendix §E.7423

4 Experiments and Results424

4.1 Experimental Setup425

We conduct extensive experiments on the MFC-426

Bench to evaluate a total of 18 representative427

LVLMs: 1) GPT-4o; 2) GPT-4V; 3) Claude3.5-428

Sonnet; 4) Claude3-Haiku; 5) Gemini-1.5-429

Pro; 6) Emu2; 7) InternVL; 8) CogVLM;430

9) LLaVA-NeXT; 10) InstructBLIP; 11) Pix-431

tral; 12) MiniCPM-V-2.6; 13) LLava-OneVsion;432

14) Molmo; 15) Qwen-VL; 16) Qwen2-VL; 17) Yi-433

VL; 18) xGen-MM. To ensure our results are repro-434

ducible, we set the temperature as 0 without any435

sampling mechanism. We also have incorporated436

human performance as the benchmark baseline437

for comparison. We use the accuracy and macro-438

averaged F1 score (dominant) as the evaluation439

metrics. More implementation details and baseline440

descriptions are provided in Appendix §B-§C.441

4.2 Main Results 442

In Table 3, we present the average outcomes of the 443

listed 18 accessible and representative LVLMs in 444

a zero-shot setting on the MFC-Bench. From the 445

results, we derive the following observations: 446

1) For the overall performance of the LVLMs 447

on the Manipulation Classification, the proprietary 448

model Gemini-1.5-Pro achieves the best perfor- 449

mance with the 61.6% F1 score. In open-source 450

models, Molmo performs the best, with the 59.3% 451

F1 score. Counterintuitively, the more powerful 452

closed-source models, namely GPT-4V, Claude3.5- 453

Sonnet and and Claude3-Haiku, fail to produce 454

promising results in this sub-task. 2) None of the 455

models exceeded the 62% F1 score, exposing weak- 456

nesses in vision-language models for this multi- 457

modal fact-checking stage. In contrast, human per- 458

formance reached over 75%, indicating significant 459

room for improvement in LVLMs. This discrep- 460

ancy highlights that computational power alone 461

does not ensure superior performance in Manip- 462

ulation Classification. 3) In OOC Classification, 463

GPT-4o stands out as the preeminent model with 464

the highest 84.8% F1 score. In terms of Veracity 465

Classification, Qwen2-VL is distinguished by its 466

considerable F1 score of 75.5%. 4) Overall, we 467

can find most of the LVLMs could achieve bet- 468

ter performance on OOC Classification but worse 469

on Manipulation Classification, and performance 470

on Veracity Classification lies in the intermediate 471

range. This pattern underscores the rational distri- 472
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Models Size Manipulation OOC Veracity Overall

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

Proprietary Models
GPT-4o - 65.7 60.4 84.8 84.8 80.1 63.0 67.7 69.4
GPT-4V - 58.4 50.2 75.8 75.2 77.4 60.0 60.6 61.8
Claude3.5-Sonnet - 59.9 41.7 49.9 37.6 72.7 47.4 60.1 42.2
Claude3-Haiku - 51.4 37.8 59.8 59.5 80.3 57.4 53.7 51.6
Gemini-1.5-Pro - 64.2 61.6 80.2 80.1 79.6 56.6 66.1 66.1

Open-Source Models
Emu2 37B 38.7 33.0 51.9 51.1 70.0 52.6 41.4 45.6
InternVL 25.5B 60.1 44.6 73.4 73.0 80.0 57.4 62.1 58.3
CogVLM 17B 56.3 52.3 61.4 56.2 76.4 63.4 57.8 57.3
LLaVA-NeXT 13B 62.5 56.5 61.8 57.2 78.4 51.3 63.4 55.0
InstructBLIP 13B 41.7 30.5 59.5 52.3 49.6 49.3 43.3 44.0
Pixtral 12B 58.5 43.9 64.8 63.5 80.9 65.0 60.2 57.5
MiniCPM-V-2.6 8B 58.9 39.7 71.2 71.0 80.4 65.1 60.9 58.6
LLaVA-OneVision 7B 61.5 55.5 75.7 75.4 80.9 60.3 63.5 63.7
Molmo 7B 59.3 59.3 58.9 52.3 79.9 57.6 60.5 56.4
Qwen-VL 7B 45.7 45.4 69.7 69.4 82.7 69.3 49.4 61.4
Qwen2-VL 7B 59.9 46.6 80.1 80.1 85.7 75.5 62.7 67.4
Yi-VL 6B 56.4 43.8 70.4 70.4 78.4 60.0 58.6 58.1
xGen-MM 5B 42.7 33.8 50.0 44.8 64.7 48.7 44.5 42.4

Human
Human - 75.7 75.6 74.0 73.5 96.0 91.7 76.8 80.3

Table 3: Results of different LVLMs on the MFC-Bench, in the zero-shot setting. The accuracy and macro-averaged
F1 score (%) are reported as the metrics. The best and second test results are in bold and underlined, respectively.

bution of task difficulty within our proposed bench-473

mark, MFC-Bench, which comprehensively spans a474

spectrum from challenging to straightforward mul-475

timodal fact-checking tasks. 5) In comparison to476

humans, LVLMs show considerable potential for477

further development in addressing more complex478

fact-checking challenges like Manipulation Classi-479

fication. Despite this, their performance is solid in480

simpler tasks like OOC Classification.481

4.3 Model Interpretability482

We conducted a post-hoc interpretability analysis483

about Justification Production across six selected484

models: LLaVA-NeXT (7B&13B), InstructBLIP485

(7B&13B), Qwen-VL, and Yi-VL. This investiga-486

tion explored the differences in justification pro-487

duction within the same model family yet varying488

parameter sizes, as well as the differences between489

distinct models. In Table 4, evaluations by GPT-4490

and human evaluators show that the LLaVA-NeXT491

models perform exceptionally well, achieving high492

scores in Informativeness, Soundness, and Read-493

ability. In contrast, the InstructBLIP models strug-494

gle with interpretability. We speculate the reason495

is that the models are often limited to binary ‘yes’496

or ‘no’ biased responses, and additional prompts497

fail to improve their explanatory capabilities. Ad-498

ditionally, an increase in the size of the LVLMs,499

from 7 billion to 13 billion parameters, correlates 500

with enhanced interpretability, as observed in the 501

improved metrics for both LLaVA-NeXT and In- 502

structBLIP families. 503

4.3.1 Human Evaluation 504

For each sub-task, three professional fact-checking 505

annotators (aged 26 to 29) assessed the inter- 506

pretability of each sample in a zero-shot evalu- 507

ation setting. The results from their votes were 508

then considered as the final evaluation. The Fleiss’ 509

Kappa (κ) scores shown in Table 6, reflects strong 510

consistency among the annotators. Moreover, the 511

intra-class agreement score is 0.685. The average 512

Spearman’s correlation coefficient between any two 513

annotators is 0.702. More details of human evalua- 514

tion and bias are in Appendix §E.6-§E.9. 515

4.4 Effect of CoT 516

The comparison between Table 3 and Table 5 517

show that the impact of CoT in the zero-shot set- 518

ting varies across different selected representative 519

LMMs on MFC-Bench. For Manipulation Classifi- 520

cation, the impact of CoT on model performance 521

differs, as seen in GPT-4o, where the F1 score 522

decreases from 60.4% to 59.6%, and in LLaVA- 523

OneVision, where it rises from 55.5% to 58.3%. In 524

the case of OOC Classification, CoT proves bene- 525
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Figure 3: Comparison between few-shot conditions w/ and w/o CoT for GPT-4o, LLaVA-OneVision and Qwen2-VL.

Models M I S R

Evaluated by GPT-4
LLaVA-NeXT(7B) 3.82 2.96 3.30 4.39
LLaVA-NeXT(13B) 3.61 3.07 3.48 4.49
InstructBLIP(7B) 3.41 1.06 1.63 2.35
InstructBLIP(13B) 3.32 1.16 1.71 2.46
Qwen-VL 3.76 1.77 2.63 3.68
Yi-VL 3.04 2.04 3.31 4.20

Evaluated by Human
LLaVA-NeXT(7B) 3.56 3.02 3.71 4.46
LLaVA-NeXT(13B) 3.68 3.50 3.77 4.63
InstructBLIP(7B) 3.36 2.22 2.45 3.22
InstructBLIP(13B) 3.32 2.21 2.54 3.51
Qwen-VL 3.61 2.63 3.11 3.64
Yi-VL 3.30 2.34 3.56 4.50

Table 4: Justification Evaluated by GPT-4 and Human.

Models Manipulation OOC Veracity
Acc. F1 Acc. F1 Acc. F1

Proprietary Models
GPT-4o 65.8 59.6 67.6 65.0 77.6 51.9

Open-Source Models
LLaVA-NeXT 58.1 55.1 52.4 39.1 77.2 46.2
InstructBLIP 41.9 31.0 57.0 47.6 37.2 36.9
LLaVA-OneVision 61.2 58.3 73.3 72.7 81.3 61.6
Qwen-VL 45.7 45.2 71.9 71.8 81.8 65.3
Qwen2-VL 59.3 47.0 79.8 79.8 86.6 77.1
Yi-VL 59.9 42.5 69.4 69.3 78.0 56.1

Table 5: Results of selected emerging LVLMs on the
MFC-Bench with the zero-shot CoT setting.

ficial for some LVLMs, such as Qwen-VL, while526

it negatively affects others, like Qwen2-VL. For527

Veracity Classification, CoT generally does not sig-528

nificantly impact performance and may even reduce529

it for certain models. In few-shot settings, as shown530

in Figure 3, CoT does not enhance the performance531

of LLaVA-OneVision and Qwen2-VL. For LLaVA-532

OneVision, CoT has a minimal to slightly positive533

impact on performance in Manipulation Classifica-534

tion and a somewhat negative impact in Veracity535

Classification. Conversely, the effect of CoT on536

the GPT-4o is continuously negative. The possible537

reasons for these observations include the under-538

developed ability of the LVLM to handle multiple539

image inputs and the excessive length of the ra-540

tionale, which diminishes the model’s ability to541

understand the task effectively.542

Models κ(M) κ(I) κ(S) κ(R)

Human Evaluation
LLaVA-NeXT(7B) 0.72 0.68 0.74 0.75
LLaVA-NeXT(13B) 0.70 0.69 0.76 0.77
InstructBLIP(7B) 0.65 0.60 0.67 0.70
InstructBLIP(13B) 0.63 0.58 0.65 0.72
Qwen-VL 0.71 0.66 0.72 0.74
Yi-VL 0.68 0.64 0.70 0.73

Table 6: Fleiss’ Kappa (κ) scores for human evaluation
of different models.

4.5 Effect of ICL 543

To thoroughly investigate the impact of In-Context 544

Learning (ICL) on model performance, we selected 545

GPT-4o, Qwen2-VL and LLaVA-OneVision that 546

support multiple image inputs to conduct few-shot 547

experiments. We calculated the macro-averaged F1 548

scores as the evaluation metric. 1) The results, as 549

illustrated in Figure 3, indicate that the implemen- 550

tation of few-shot learning does not markedly en- 551

hance the fact-checking capabilities of these mod- 552

els. 2) For the performance of Qwen2-VL in Fig- 553

ure 3, the few-shot prompt (i.e., ICL) did not result 554

in a performance improvement. Instead, the few- 555

shot prompt contributed positively to the GPT-4o 556

model’s performance. More qualitative analysis is 557

in Appendix §E. 558

5 Conclusion and Future Work 559

In this study, we aim to investigate the trustworthy 560

insight of LVLMs by examining the multimodal 561

fact-checking ability of LVLMs across a spectrum 562

of data categories. For this purpose, we have de- 563

veloped the MFC-Bench, a comprehensive testbed 564

consisting of 35K multimodal samples, spanning 565

three tasks of varied complexity. Our evaluation of 566

various LVLMs using different prompting methods, 567

including those with CoT or ICL prompts, on the 568

MFC-Bench reveals that these models still exhibit 569

limitations in accurately addressing multimodal 570

fact-checking tasks. In our future work, we plan 571

to systematically study justification production for 572

multimodal fact-checking with LVLMs. 573
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Limitations574

As this is the first benchmark work to evaluate575

the multimodal fact-checking capacity of LVLMs,576

there are no doubt multiple efforts needed to im-577

prove the work in the future:578

• Due to time constraints, the diversity of data579

in the four new manipulation methods remains580

limited. Specifically, for Background Change,581

we focused solely on one scenario—“blue582

sky with white clouds”—without considering583

other potential variations. In the case of CLIP-584

based SD Generation, we explored only im-585

age variants, without further processing of the586

associated claims. Similarly, for Text Style587

Transfer, we restricted ourselves to modifying588

the tone in the opposite direction; however,589

there are numerous other possibilities, such590

as sarcasm, mockery, or ridicule, which could591

also be explored.592

• The dynamic and context-specific nature of593

multimodal fact-checking presents a challenge594

in interpretation and analysis. The current595

benchmark may not fully capture this com-596

plexity, potentially limiting the generalizabil-597

ity of our findings. Human interpretation598

of multimodal disinformation is inherently599

intricate and contextual. Real-world data600

from diverse domains will help advance this601

benchmark into various use case applications.602

Adding temporal dynamics will provide value603

when fact-checking historical facts. Addition-604

ally, future studies could be enhanced by a605

more comprehensive examination of bias and606

fairness in model evaluations to prevent the607

reinforcement or exacerbation of stereotypical608

hallucinations.609

• While this pioneering work delivers compre-610

hensive results related to multimodal fact-611

checking, further improving the interpretabil-612

ity of these findings could provide deeper,613

more actionable insights for practical appli-614

cations and further development of models.615

Delving into the underlying reasons for the616

fact-checking outcomes observed in LVLMs617

and discussing these in detail would not only618

shed light on model behaviors but also sug-619

gest avenues for optimization. Expanding620

on how these results can be translated into621

model enhancements and identifying specific622

aspects that could benefit from refinement 623

would make the findings more applicable. Ad- 624

ditionally, exploring how these interpretations 625

align with real-world multimodal data usage 626

could guide future research directions, fos- 627

tering advancements in both theoretical and 628

applied domains of multimodal fact-checking. 629

• During the benchmarking process, we not 630

only explore the three stages of verdict pre- 631

diction for MFC: Manipulation Classification, 632

OOC Classification, and Veracity Classifica- 633

tion, but also investigate the last stage: Justi- 634

fication Production that requires the selected 635

models to provide the post-hoc explanations. 636

However, there might be a deeper of model in- 637

terpretability that is not touched in this work, 638

which is to explain how an LVLM works in- 639

ternally. In future work, we should investigate 640

the model’s internal reasoning mechanisms 641

and how it arrives at its conclusions from the 642

perspective of the model architecture. Further- 643

more, the current LVLM demonstrates ground- 644

ing capabilities that can be leveraged to better 645

understand the model’s interpretation of im- 646

ages and its fact-checking judgments. 647

• Expanding the scope to include a broader ar- 648

ray of models could enhance the robustness 649

and applicability of the results. Incorporating 650

diverse multilingual datasets, the audio modal- 651

ity, and emerging LVLMs into our benchmark 652

work could provide a more nuanced under- 653

standing of LVLMs’ capabilities across vari- 654

ous languages. Although there is a long way 655

to go, where there is a will, there is a way. 656

Ethics Statement 657

The aim of this research is to focus on the multi- 658

modal fact-checking issue related to LVLMs, to 659

curb the dissemination of multimodal disinforma- 660

tion, and to protect individuals from exposure to 661

fake news. However, we acknowledge the risk that 662

malicious actors might attempt to reverse-engineer 663

misinformation that could evade detection by AI 664

systems trained on LVLMs. We vehemently dis- 665

courage and denounce such practices, and empha- 666

size that human moderation is essential to prevent 667

such occurrences. Our utilization of data adheres 668

to the terms of the datasets (Shao et al., 2023; Luo 669

et al., 2021; Yao et al., 2023). All the data in this 670

work only includes text and image modalities and 671
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does not contain any user information on social672

media.673

To protect our human evaluators, we establish674

three guidelines: 1) ensuring their acknowledg-675

ment of viewing potentially uncomfortable content,676

2) limiting weekly evaluations and encouraging677

a lighter daily workload, and 3) advising them to678

stop if they feel overwhelmed. Finally, we regularly679

check in with evaluators to ensure their well-being.680
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A Distribution1270

The dataset is publicly available on the Hugging1271

Face anonymous page: Manipulation Classifica-1272

tion, OOC Classification and Veracity Classifica-1273

tion.1274

The dataset is accompanied by Croissant meta-1275

data and licensing information all available on Hug-1276

ging Face Hub.1277

B Descriptions of LVLM Baselines1278

We conduct extensive experiments on the MFC-1279

Bench to evaluate the following representative1280

LVLMs:1281

• GPT-4o, the latest flagship model developed 1282

by OpenAI, designed for real-time reasoning 1283

across audio, visual, and textual inputs. It ex- 1284

cels in understanding both vision and audio, 1285

offering significant improvements over pre- 1286

vious models in these areas. We specifically 1287

utilize the “gpt-4o-2024-05-13” version. 1288

• GPT-4V (OpenAI, 2023), developed by Ope- 1289

nAI, is a version of the GPT-4 architecture 1290

that includes capabilities for processing and 1291

generating images in addition to text. We 1292

specifically utilize the “gpt-4-vision-preview” 1293

version. 1294

• Claude3.5-Sonnet developed by Anthropic 1295

with significant improvements most evident in 1296

visual reasoning tasks like interpreting charts 1297

and graphs, and it can accurately transcribe 1298

text from imperfect images We specifically 1299

utilize the “claude-3-5-sonnet-20240620” ver- 1300

sion. 1301

• Claude3-Haiku3, developed by Anthropic, 1302

possesses sophisticated vision capabilities 1303

comparable to other leading models. It can 1304

process a wide range of visual formats, in- 1305

cluding photos, charts, graphs, and technical 1306

diagrams. We specifically utilize the “claude- 1307

3-haiku-20240307” version. 1308

• Gemini-1.5-Pro developed by google, can 1309

perform highly-sophisticated understanding 1310

and reasoning tasks for different modalities, 1311

including vision. We specifically utilize the 1312

“gemini-1.5-pro” version 1313

• Emu2 (Sun et al., 2023) is a generative multi- 1314

modal model with 37 billion parameters, de- 1315

signed to enhance task-agnostic in-context 1316

learning capabilities through effective scaling. 1317

We specifically utilize the “Emu2” version. 1318

• InternVL (Chen et al., 2023c) is a large-scale 1319

vision-language foundation model, scaling up 1320

the vision foundation model to 6 billion pa- 1321

rameters and progressively aligning it with the 1322

LLM, using web-scale image-text data from 1323

various sources. We specifically utilize the 1324

“InternVL-Chat-V1-5” version. 1325

• CogVLM (Wang et al., 2023a) is a power- 1326

ful open-source visual language foundation 1327

3https://claude.ai/
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model that achieves state-of-the-art perfor-1328

mance on multiple cross-modal benchmarks1329

by using a trainable visual expert module for1330

deep fusion of vision and language features.1331

We specifically utilize the “cogvlm-chat” ver-1332

sion.1333

• LLaVA-NeXT (Liu et al., 2024a) is the new1334

version of LLaVA (Liu et al., 2023a), with1335

improved reasoning, OCR, and world knowl-1336

edge capabilities. We specifically utilize the1337

“llava-v1.6-vicuna-7b, llava-v1.6-vicuna-13b,1338

llava-v1.6-34b” version.1339

• InstructBLIP (Dai et al., 2023) introduces1340

a novel vision-language instruction-tuning1341

framework utilizing BLIP-2 models to en-1342

hance zero-shot generalization performance1343

across diverse vision-language tasks. We1344

specifically utilize the “instructblip-vicuna-7b,1345

instructblip-vicuna-13b” version.1346

• Pixtral4 developed by Mistral Ai, is trained1347

to understand both natural images and docu-1348

ments, demonstrates strong abilities in tasks1349

such as chart and figure understanding, docu-1350

ment question answering, multimodal reason-1351

ing, and instruction following. We specifically1352

utilize the “Pixtral-12B-2409” version.1353

• MiniCPM-V-2.6 (Yao et al., 2024) is the latest1354

and most capable model in the MiniCPM-V1355

series developed by OpenBMB, achieves an1356

average score of 65.2 on the latest version of1357

OpenCompass, a comprehensive evaluation1358

over 8 popular benchmarks. We specifically1359

utilize the “openbmb/MiniCPM-V-2_6” ver-1360

sion.1361

• LLaVA-OneVision (Li et al., 2024a) is the1362

first single model that can simultaneously1363

push the performance boundaries of open1364

LMMs in three important computer vision sce-1365

narios: single-image, multi-image, and video1366

scenarios. We specifically utilize the “lmms-1367

lab/llava-onevision-qwen2-7b-ov” version.1368

• Molmo (Deitke et al., 2024) developed by1369

Allen Ai, is powerful model closes the gap1370

between open and proprietary systems across1371

a wide range of academic benchmarks as well1372

as human evaluation. We specifically utilize1373

the “allenai/Molmo-7B-D-0924” version.1374

4https://mistral.ai/news/pixtral-12b/

• Qwen-VL (Bai et al., 2023) is Alibaba 1375

Cloud’s multimodal large vision-language 1376

model that excels in multilingual text recog- 1377

nition, fine-grained understanding, and multi- 1378

image interleaved conversations, significantly 1379

outperforming other large vision-language 1380

models in various benchmarks. We specifi- 1381

cally utilize the “Qwen/Qwen-VL-Chat” ver- 1382

sion. 1383

• Qwen2-VL (Wang et al., 2024b) is the lat- 1384

est addition to the vision-language models in 1385

the Qwen series, building upon the capabili- 1386

ties of Qwen-VL. We specifically utilize the 1387

“Qwen/Qwen2-VL-7B-Instruct” version. 1388

• mPLUG-Owl (Ye et al., 2023a), developed 1389

by DAMO Academy, is a training approach 1390

that enhances LLMs with multimodal capabil- 1391

ities by integrating a foundational LLM with 1392

a visual knowledge module and a visual ab- 1393

stractor module, using a two-stage method to 1394

align image and text. We specifically utilize 1395

the “mplug-owl-llama-7b” version. 1396

• MiniGPT-v2 (Chen et al., 2023b) is a uni- 1397

fied vision-language model designed for di- 1398

verse tasks such as image description and 1399

visual question answering, utilizing unique 1400

task identifiers for improved performance and 1401

efficiency. We specifically built the model 1402

based on the “llama-2-7b-chat” LLaMA ver- 1403

sion with the checkpoint of the online devel- 1404

oping demo. 1405

• Yi-VL (Young et al., 2024) is an open-source 1406

multimodal vision-language model from the 1407

Yi LLM series, excelling in content compre- 1408

hension and multi-round image conversations, 1409

and leading in recent English and Chinese 1410

benchmarks. We specifically utilize the “Yi- 1411

VL-6B” version. 1412

• xGen-MM (Xue et al., 2024) is a series of the 1413

latest foundational Large Multimodal Mod- 1414

els (LMMs) developed by Salesforce AI Re- 1415

search. This series advances upon the success- 1416

ful designs of the BLIP series, incorporating 1417

fundamental enhancements that ensure a more 1418

robust and superior foundation. We specifi- 1419

cally utilize the “Salesforce/xgen-mm-phi3- 1420

mini-instruct-r-v1” version. 1421
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• MiniCPM-V-25 is a robust multimodal large1422

language model designed for efficient end-1423

side deployment. It is built on the foundation1424

of SigLip-400M and MiniCPM-2.4B, con-1425

nected by a perceiver resampler. We specifi-1426

cally utilize the “MiniCPM-V 2.0” version.1427

C Implementation Details1428

C.1 Data Construction1429

C.1.1 Manipulation Classification1430

To explore the potential capacity of LVLMs on Ma-1431

nipulation Classification in a multimodal context,1432

we designed seven types of manipulation, selecting1433

data from the DGM4 dataset (Shao et al., 2023)1434

and constructing additional datasets ourselves. The1435

initial data was sourced from the VisualNews (Liu1436

et al., 2021) datasets. The DGM4 dataset com-1437

plies with the Apache-2.0 license. The VisualNews1438

dataset is available upon request.1439

• Method 1: Face Swap (FS). Face Swap in-1440

volves the process of cutting a face from one1441

image and replacing it with a different face in1442

another image. It can be used to create real-1443

istic but fake images of public figures, such1444

as politicians, celebrities, or journalists, ap-1445

pearing to do things they never did. It is1446

important for LVLMs not only to verify the1447

authenticity of news text content but also to1448

accurately identify whether the individuals in1449

the accompanying photos correspond to the re-1450

ported events. We have sampled and chosen a1451

Face Swap subset of the DGM4 dataset (Shao1452

et al., 2023) as part of our benchmark to detect1453

Whether LVLM can recognize public figures1454

and retrieve information related to individu-1455

als from its internal parametric knowledge1456

through multimodal data.1457

Data processing: A Face Swap subset of the1458

DGM4 dataset (Shao et al., 2023) was sam-1459

pled and selected.1460

• Method 2: Face Attribute Edit (AE). Un-1461

like Face Swap, Face Attribute Edit achieves1462

deception by altering the facial expressions1463

of humans like newsmakers. This can be po-1464

tentially harmful to the public, as it can par-1465

ticularly portray a public figure laughing in-1466

appropriately in a serious context, which is1467

5https://huggingface.co/openbmb/MiniCPM-V-2

highly misleading and infuriating. To iden- 1468

tify such discrepancies, LVLMs must pre- 1469

cisely recognize the type of event and the ex- 1470

pected demeanor of the individuals involved. 1471

Our benchmark randomly selected visual and 1472

textual samples related to face attribute edit- 1473

ing from the previously established DGM4 1474

dataset (Shao et al., 2023). This inclusion 1475

allows us to evaluate the multimodal fact- 1476

checking capabilities of LVLMs in recognizing 1477

the scene, identifying personal information 1478

and detecting the correctness of face’s status 1479

in visual content in the multimodal context. 1480

Data processing: Visual and textual sam- 1481

ples related to face attribute editing were ran- 1482

domly selected from the previously estab- 1483

lished DGM4 dataset (Shao et al., 2023). 1484

• Method 3: Background Change (BC). The 1485

same individuals, involving the same events, 1486

can take place in different locations. Before 1487

the emergence of diffusion models, manipu- 1488

lating a suitable scene was extremely chal- 1489

lenging. However, with the advent of dif- 1490

fusion models (Rombach et al., 2022), we 1491

can now effortlessly alter the background 1492

of images, thereby creating scenes that did 1493

not originally exist in fact. Specifically, we 1494

are interested in whether LVLMs can ex- 1495

actly determine if the time and location of 1496

an event align with the actual scene. We uti- 1497

lized Grounding DINO (Liu et al., 2023b) and 1498

stable-diffusion-inpainting6 models to 1499

generate a background for an outdoor scene. 1500

Our objective was to examine the capability 1501

of LVLMs in faithfully identifying these artifi- 1502

cially constructed counterfactual scenarios. 1503

Data processing: Backgrounds for out- 1504

door scenes were generated using Grounding 1505

DINO (Liu et al., 2023b) and stable-diffusion- 1506

inpainting techniques.First, we used Ground- 1507

ing DINO to detect the people in the photos 1508

and create inverse masks. Then, we provided 1509

these masks along with the original images 1510

for stable-diffusion-inpainting. The prompt 1511

for generating the backgrounds was “blue sky, 1512

white clouds.” The pipeline was implemented 1513

using ComfyUI. 1514

• Method 4: CLIP-based Stable Diffusion 1515

6https://huggingface.co/runwayml/stable-diffusion-
inpainting
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Generate (CG). Stable diffusion (SD) tra-1516

ditionally employs the text-to-image gener-1517

ation. However, by incorporating CLIP (Rad-1518

ford et al., 2021), we can transform the1519

process into an image-to-image generation1520

(Ramesh et al., 2022), enabling the manip-1521

ulated image to retain the linguistic infor-1522

mation from the original image. It is cru-1523

cial for LVLMs to accurately discern between1524

authentic and fabricated images by incorpo-1525

rating their internal knowledge, Using Sta-1526

bilityAI’s Stable-Diffusion-2-1-Unclip7,1527

we generated stable diffusion versions of the1528

original images for replacement. This design1529

allows us to test the fact-checking capacity of1530

LVLMs for awareness of whether the multi-1531

modal contents have been manipulated with1532

the original image information.1533

Data processing: Stable diffusion versions1534

of the original images were generated using1535

StabilityAI’s Stable-Diffusion-2-1-Unclip. By1536

utilizing Stable-Diffusion-2-1-Unclip, we in-1537

put the original claim and image into the1538

model to generate the manipulated images.1539

• Method 5: Photoshop (PS). Photoshop has1540

long been a leading tool for manual image1541

editing, enabling users to alter human fig-1542

ures and merge different images to create1543

potentially misleading visuals. This capa-1544

bility can have serious consequences, as it1545

may lead to the spread of misinformation, ma-1546

nipulate public perception, and distort reality.1547

LVLMs must leverage their inherent knowl-1548

edge, which encompasses a vast understand-1549

ing of context, patterns, and nuances in vi-1550

sual data, to effectively identify and analyze1551

such issues of manipulation and misinforma-1552

tion. To evaluate the effectiveness of LVLMs1553

in detecting human manipulation, we utilize1554

the photoshop subset of Fakeddit (Nakamura1555

et al., 2020). This facilitates our assessment1556

of whether LVLMs can discern the traces of1557

human manipulation, thereby fulfilling the re-1558

quirements of the fact-checking task.1559

Data processing: The photoshop subset of1560

Fakeddit (Nakamura et al., 2020) was se-1561

lected.1562

• Method 6: Textual Entity Replace (ER).1563

7https://huggingface.co/stabilityai/stable-diffusion-2-1-
unclip

Textual Entity Replace is a traditional method 1564

of text manipulation. Using Named Entity 1565

Recognition (NER) (Lample et al., 2016) from 1566

bert-base-NER8, we identified named enti- 1567

ties corresponding to persons within a given 1568

claim where newsmakers are mentioned. Sub- 1569

sequently, we located these named entities 1570

in another claim with the same persons and 1571

swapped the surrounding contextual texts be- 1572

tween the two claims. This creates counter- 1573

factual scenarios where the photos and claims 1574

contain the same individuals, but the events de- 1575

picted are different. This scenario challenges 1576

the ability of LVLMs to keenly associate indi- 1577

viduals with events, relying on their internal 1578

factual knowledge. 1579

Data processing: Named entities correspond- 1580

ing to persons within a given claim were 1581

identified using Named Entity Recognition 1582

(NER) (Lample et al., 2016) from bert-base- 1583

NER, and the surrounding contextual texts 1584

between two claims were swapped. To en- 1585

sure that the claims contain people, we first 1586

screened the data and selected only the claims 1587

that included individuals. 1588

• Method 7: Text Style Transfer (ST). Simi- 1589

lar to Face Attribute Edit, Text Style Transfer 1590

can alter the perception of the same person 1591

and event, giving a different factual impres- 1592

sion. For instance, an originally sad event can 1593

be described in a way that makes it seem hu- 1594

morous. This poses a substantial challenge 1595

for fact-checking efforts as it requires LVLMs 1596

not only to detect the factual content but also 1597

to understand the tone and style nuances that 1598

might misrepresent the underlying truth of 1599

the situation. Hence, we first utilized GPT- 1600

4 (OpenAI, 2023) to determine whether the 1601

sentiment of the text is positive or negative. 1602

Then, leveraging the advanced text style trans- 1603

fer capabilities of GPT-4, we rewrote the text 1604

to express the opposite sentiment. The pro- 1605

cess examines LVLMs’ ability to rigorously 1606

comprehend the events and associated senti- 1607

ments depicted in images and claims, and to 1608

correctly correlate them. 1609

Data processing:The sentiment of the text 1610

was first determined using GPT-4 (OpenAI, 1611

2023), and then the text was rewritten to ex- 1612

8https://huggingface.co/dslim/bert-base-NER
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press the opposite sentiment using GPT-4’s1613

advanced text style transfer capabilities.1614

C.1.2 Out-of-Context Classification1615

Out-of-Context (OOC) Classification (Luo et al.,1616

2021) aims to evaluate the coherence and cor-1617

respondence of context across various modali-1618

ties. Unlike the aforementioned manipulation tech-1619

niques that require modifying images and texts,1620

OOC Classification combines real but misused im-1621

ages and texts. If the image and claim are contex-1622

tually aligned, we define the relationship as true.1623

Conversely, if the image and claim are not contextu-1624

ally aligned, we define the relationship as false. We1625

collected multimodal samples from the NewsCLIP-1626

pings dataset (Luo et al., 2021), using embedding1627

methods such as CLIP and SBERT-WK (Wang and1628

Kuo, 2020) to extract the most similar misused1629

images, for the evaluation of LVLMs’ ability in dis-1630

cerning subtle semantic inconsistencies between1631

images and texts in OOC Classification.1632

Data processing: The Out-of-Context Clas-1633

sification data is sourced from the NewsCLIP-1634

pings(Luo et al., 2021) dataset. The NewsCLIP-1635

pings dataset is available upon request.1636

C.1.3 Veracity Classification1637

Veracity Classification (Yao et al., 2023) involves1638

classifying the veracity of textual claims given re-1639

trieved visual evidence. Based on the image evi-1640

dence, the LVLMs need to predict the truthfulness1641

(Supported, Refuted) of the claim. We curated a1642

subset of the Mocheg dataset (Yao et al., 2023) for1643

this task. If the image supports the truthfulness of1644

the claim, we label the relationship between the1645

image and the claim as “Supported” indicating a1646

true label. Otherwise, it is labeled as “Refuted”1647

indicating a false label. This is a cross-modal se-1648

mantic transformation task designed to test whether1649

LVLMs can accurately interpret and analyze visual1650

information to support or refute textual claims.1651

Data processing: the Veracity Classification1652

data is obtained and sampled randomly from the1653

Mocheg dataset (Yao et al., 2023). Mocheg dataset1654

complies with the Apache-2.0 license.1655

In summary, the data processing for our datasets1656

is centered around Figure 4, which handles both1657

image and text data to construct the benchmark.1658

C.2 Quality Assurance1659

This research involved a human subjects study to1660

evaluate the quality of multimodal data manipu-1661

lated by our adopted techniques. To assure the qual- 1662

ity of the self-constructed data, we employ three 1663

human evaluators, who are senior undergraduate 1664

or graduate students majoring in computer science. 1665

Each student is presented with the manipulated data 1666

and the original data to judge whether the data has 1667

been successfully manipulated with the manipula- 1668

tion techniques for the reliability and credibility of 1669

the multimodal data. Each evaluator completes the 1670

quality assurance process independently. 1671

The following considerations were adhered to 1672

ensure the protection and ethical treatment of par- 1673

ticipants: 1) Voluntary Participation: All partic- 1674

ipants were informed about the nature of the re- 1675

search and their role in it. Participation was en- 1676

tirely voluntary, with participants having the right 1677

to withdraw at any time without any consequences. 1678

2) Informed Consent: Written informed consent 1679

was obtained from all participants. This consent 1680

form detailed the purpose of the research, the proce- 1681

dures involved, potential risks, and measures taken 1682

to safeguard participant data. 3) Data Anonymity 1683

and Confidentiality: All data collected during the 1684

study were anonymized. Personal identifiers were 1685

removed to maintain confidentiality and data were 1686

stored securely to prevent unauthorized access. 4) 1687

Minimal Risk: The study involved minimal risk 1688

to participants. The tasks performed were similar 1689

to everyday activities, and no sensitive personal 1690

information was requested or recorded. 1691

C.3 Comparison 1692

As shown in Table 7, our benchmark includes more 1693

comprehensive data and covers a wider range of 1694

sub-tasks in multimodal fact-checking. Our dataset 1695

consists of three types of tasks and nine specific 1696

data categories. 1697

C.4 GPUs Usage 1698

We utilized the high-performance computing plat- 1699

form and employed Slurm to request 2-4 A800 1700

GPUs for benchmarking multimodal fact-checking 1701

with LVLMs. 1702

D Related Work 1703

D.1 LLMs and LVLMs 1704

Recent advancements have seen LLMs excel across 1705

various domains, with major tech companies de- 1706

veloping high-performing proprietary models such 1707

as OpenAI’s GPT-3 (Brown et al., 2020) and GPT- 1708

4 (OpenAI, 2023), Google’s PaLM (Chowdhery 1709
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Diffusion
GAN

Photoshop

Data

Construction

Marty Hahne a magician from
Ozark Mo has a rabbit that he pulls
out of his hat during his magic acts
The Agriculture Department
requires him to have a license for
that rabbit as well as a written
disaster plan.

Marty Hahne, a magician from Ozark,
MO, is burdened by the excessive
regulations of the Agriculture
Department, which not only
demands a license for his
performance rabbit but also insists
on a pointless written disaster plan.

GPT-4 Transfer
NER and Swap

An crowd waits to
cast their votes at a
Republican caucus
in Chelsea Maine

Orchestra helps
create harmony for
Roma children in
east London

Tasks Image Manipulation Text Manipulation OOC Veracity

Human EvaluationEvaluation

WSBK Rider Nicky
Hayden Dies After
Sustaining Injuries In
Bicycle Crash

Rapper Kanye West
scored 106 points in
a charity basketball
game against a team
of children in
wheelchairs.

Figure 4: The pipeline of dataset construction.

Datasets Manipulation OOC Veracity

FS AE BC CG PS ER ST

Fakeddit (Nakamura et al., 2020) % % % % " % % " %

DGM4 (Shao et al., 2023) " " % % % % % % %

MEIR (Sabir et al., 2018) % % % % " " % % %

EMU (Da et al., 2021) % % % % " % % % %

Mocheg (Yao et al., 2023) % % % % % % % % "

NewsCLIPpings (Luo et al., 2021) % % % % % % % " %

MAIM (Jaiswal et al., 2017) % % % % % % % " %

COSMOS (Aneja et al., 2023) % % % % % % % " %

MMFakeBench (Liu et al., 2024b) % % % " " " % " "

MFC-Bench " " " " " " " " "

Table 7: Comparison of datasets related to multimodal fact-checking.
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et al., 2022) and Gemini (Team et al., 2023), and1710

Anthropic’s Claude. These models, however, are of-1711

ten only accessible via specific APIs or not at all. In1712

contrast, the AI community has embraced the emer-1713

gence of open-source LLMs, making significant1714

contributions like MistralAI’s Mistral-series (Jiang1715

et al., 2023), Google’s UL2-20B (Tay et al., 2023)1716

and Gemma (Mesnard et al., 2024), Tsinghua1717

University’s GLM-130B (Zeng et al., 2023), and1718

Meta’s OPT (Zhang et al., 2022) and the LLaMA1719

series (Touvron et al., 2023a,b; Meta, 2024), en-1720

hanced by extensive alignment efforts (Wang et al.,1721

2023c; Xu et al., 2023; Luo et al., 2023b,a; Mukher-1722

jee et al., 2023; Zhou et al., 2023; Li et al., 2023b).1723

LVLMs have significantly advanced the un-1724

derstanding of both textual and visual data1725

within a unified framework (Chen et al., 2023a;1726

Zhang et al., 2024). Innovative models such1727

as Flamingo (Alayrac et al., 2022) and PaLM-1728

E (Driess et al., 2023) have demonstrated the ability1729

to integrate visual and textual information effec-1730

tively, without the need for task-specific training.1731

Concurrently, the development of diverse multi-1732

modal datasets (Yang et al., 2023) stemming from1733

GPT-4 and GPT-4V (OpenAI, 2023) has spurred1734

the fine-tuning of models like LLaVA (Liu et al.,1735

2023a), MiniGPT-4 (Zhu et al., 2023), mPLUG-1736

Owl (Ye et al., 2023b), InstructBLIP (Dai et al.,1737

2023), and others (Bai et al., 2023; Wang et al.,1738

2023b; Gong et al., 2023; Team et al., 2023; Bav-1739

ishi et al., 2023), highlighting a trend towards more1740

versatile and real-world applicable multimodal sys-1741

tems.1742

D.2 Factual Knowledge in LMs1743

Previous studies have established that language1744

models (LMs) can function as repositories of fac-1745

tual knowledge, serving effectively as knowledge1746

bases (Petroni et al., 2019, 2020; Heinzerling and1747

Inui, 2021). This reservoir of factual informa-1748

tion acquired during pretraining proves beneficial1749

for knowledge-intensive tasks, such as question-1750

answering and fact-checking (Roberts et al., 2020;1751

Yu et al., 2022; Pan et al., 2023). Petroni et al.1752

(2019) used cloze tests involving triples and tai-1753

lored prompts to evaluate the factual knowledge1754

embedded in language models, while Jiang et al.1755

(2020) focused on optimizing prompt design to1756

enhance factual retrieval from these models.1757

Despite these advancements, the reliability of1758

these methods has been questioned. Elazar et al.1759

(2021) highlighted the inconsistency in rank-based1760

probing methods when using paraphrased contexts. 1761

Similarly, Cao et al. (2021) argued that biased 1762

prompting and the leakage of correct answers can 1763

often lead to an overestimation of LM’s knowl- 1764

edge retention. On the other hand, Varshney et al. 1765

(2022) employed question-answering formats to 1766

gauge models’ uncertainty about specific facts, sug- 1767

gesting a different approach to measure factual ac- 1768

curacy. Our methodology aligns more closely with 1769

the approaches of Kadavath et al. (2022); Lin et al. 1770

(2022); Hu et al. (2024), which involve querying 1771

models directly to self-evaluate their accuracy in 1772

delivering factual responses, offering a more direct 1773

assessment of their knowledge capabilities. But 1774

differently, this work focuses on the multimodal 1775

nature of fact checking to explore the complex rea- 1776

soning capability of LVLMs. 1777

D.3 Multimodal Fact-Checking 1778

Multimodal Fact-Checking refers to the systematic 1779

process of identifying counterfactuals or inconsis- 1780

tencies between facts across different modalities 1781

within multimodal data (Akhtar et al., 2023). Com- 1782

mon manifestations of multimodal misinformation 1783

include claims about digitally manipulated context 1784

(Agarwal et al., 2019; Shao et al., 2023) and the 1785

amalgamation of context from disparate modalities 1786

and contexts (Luo et al., 2021; Aneja et al., 2021). 1787

The former is predominantly associated with deep- 1788

fake technologies (Maras and Alexandrou, 2018; 1789

Dolhansky et al., 2019), while the latter is linked 1790

with cheapfake methodologies (Aneja et al., 2021). 1791

An essential Multimodal Fact-Checking pipeline 1792

consists of evidence retrieval and the adjudication 1793

process. Evidence retrieval furnishes the founda- 1794

tional basis for subsequent multimodal judgments. 1795

Within the adjudication phase, tasks are delineated 1796

into distinct categories, such as Manipulation Clas- 1797

sification, Out-of-Context Classification, and Ve- 1798

racity Classification. 1799

Manipulation Classification (Shao et al., 2023) is 1800

a task meticulously designed to ascertain whether 1801

multimodal data encompasses fabricated elements. 1802

Out-of-Context Classification (Luo et al., 2021) 1803

aims to evaluate the coherence and correspon- 1804

dence of context across various modalities. Ve- 1805

racity Classification (Yao et al., 2023) involves 1806

assessing whether the context from one modality 1807

aligns with or accurately reflects the context from 1808

another modality. Collectively, these tasks con- 1809

stitute the comprehensive process of multimodal 1810

fact-checking. In this work, we employed six dif- 1811
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ferent manipulation techniques to assess whether1812

LVLMs can detect manipulations in multimodal1813

news. Data from the NewsCLIPpings dataset is1814

used to challenge LVLMs’ ability to discern seman-1815

tic differences between real images and real text,1816

specifically for OOC classification. Similar to text,1817

the cross-modal Veracity task is used to evaluate1818

LVLMs’ ability to perform factual inference across1819

different modalities.1820

D.4 Benchmarks for LVLMs1821

Traditional multimodal benchmarks have been1822

centered around specific skills such as visual1823

recognition (Goyal et al., 2017), image descrip-1824

tion (Agrawal et al., 2019), and visual common-1825

sense reasoning (Zellers et al., 2019). However,1826

the advent of advanced LVLMs has necessitated1827

the development of new benchmarks to keep pace1828

with their robust zero-shot capabilities, which of-1829

ten exceed those measured by conventional met-1830

rics. This has exposed shortcomings in their abil-1831

ity to match answers accurately, highlighting is-1832

sues with robustness. To address these limitations,1833

the research community has introduced several in-1834

novative benchmarks, such as MME (Fu et al.,1835

2023), MMBench (Liu et al., 2023c), MM-Vet (Yu1836

et al., 2023), SEED-Bench (Li et al., 2023a), GOAT-1837

Bench (Lin et al., 2024b), LAMM (Yin et al., 2023)1838

and MMCode (Li et al., 2024b). These benchmarks1839

are designed to facilitate structured evaluations of1840

complex multimodal tasks and reveal the flaws1841

of traditional methods. Distinct from these, our1842

proposed benchmark is tailored to systematically1843

assess multimodal factual knowledge, especially1844

concerning disinformation detection in the realm1845

of deepfakes and cheapfakes. This testbed would1846

allow for a more thorough exploration of LVLMs’1847

trustworthy awareness concerning a wider range of1848

task types associated with multimodal factuality.1849

E Analysis1850

E.1 Zero-shot Evaluation Results1851

Table 8 shows the zero-shot evaluation results of1852

a total of 20 LVLMs on the MFC-Bench in the1853

zero-shot setting.1854

E.2 Zero-shot CoT Evaluation Results1855

Table 5 shows the zero-shot CoT evaluation results1856

of a total of 7 LVLMs on the MFC-Bench in the1857

zero-shot CoT setting.1858

E.3 Potential Test Set Leakage 1859

For the open-source LVLMs, test set leakage is 1860

not a concern, as the literature explicitly delineates 1861

the datasets and instruction-tuning procedures em- 1862

ployed in their training, none of which encompass 1863

the multimodal data utilized in our MFC-Bench. 1864

However, we cannot fully guarantee the exclusion 1865

of potential data leakage with the proprietary mod- 1866

els, as its internal workings remain opaque. Nev- 1867

ertheless, as evidenced by the results in the exper- 1868

iments, where all LVLMs were evaluated directly 1869

on the MFC-Bench, the absence of significant test 1870

set leakage is implied. This is inferred from the 1871

fact that direct application of the LVLMs did not 1872

yield disproportionately high performance, which 1873

would be expected if the models were benefiting 1874

from test set leakage. 1875

E.4 Results on Different Manipulation 1876

Techniques 1877

We further provide the detailed results of the repre- 1878

sentative LVLMs on the Manipulation Classifica- 1879

tion with respect to the seven manipulation meth- 1880

ods, as depicted in Table 9. 1881

E.5 Effect of Prompts on Manipulation 1882

Classification 1883

To verify the model’s understanding of manipula- 1884

tion data, we designed prompts for six different 1885

manipulation methods and tested them on twelve 1886

models (see §F). As shown in Figure 5, the model’s 1887

performance on each sub-task was consistent with 1888

that of a single prompt. This suggests that the 1889

model struggles with manipulation fact-checking. 1890

For the Background Change task, the scenarios we 1891

set might have been too simple, making it easy for 1892

the model to detect the manipulations. 1893

E.6 Human Evaluation 1894

To assess the effectiveness of the MFC-Bench and 1895

better evaluate the performance of LVLMs, we con- 1896

ducted human evaluation experiments. For each 1897

sub-task, as illustrated in Figure 1, we randomly 1898

selected 100 samples, resulting in a total of 800 1899

examples for human evaluation. 3 professional 1900

fact-checking annotators (between the ages of 26 1901

and 29) were asked to judge the truthfulness of 1902

each sample (i.e., “Fact.” or “Non-Fact.”) in the 1903

zero-shot evaluation setting. Then the voting re- 1904

sults were regarded as the answers. The results 1905

from their votes were then considered as the final 1906

evaluation. The Fleiss’ Kappa (κ) scores shown 1907
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Models Size Manipulation OOC Veracity

Accuracy F1 Accuracy F1 Accuracy F1

Proprietary Models
GPT-4o - 65.7 60.4 84.8 84.8 80.1 63.0
GPT-4V - 58.4 50.2 75.8 75.2 77.4 60.0
Claude3.5-Sonnet - 59.9 41.7 49.9 37.6 72.7 47.4
Claude3-Haiku - 51.4 37.8 59.8 59.5 80.3 57.4
Gemini-1.5-Pro - 57.7 36.6 80.2 80.1 79.6 56.6

Open-Source Models
Emu2 37B 38.7 33.0 51.9 51.1 70.0 52.6
InternVL 25.5B 60.1 44.6 73.4 73.0 80.0 57.4
CogVLM 17B 56.3 52.3 61.4 56.2 76.4 63.4
LLaVA-NeXT 13B 62.5 56.5 61.8 57.2 78.4 51.3
InstructBLIP 13B 41.7 30.5 59.5 52.3 49.6 49.3
Pixtral 12B 58.5 43.9 64.8 63.5 80.9 65.0
MiniCPM-V-2.6 8B 58.9 39.7 71.2 71.0 80.4 65.1
LLaVA-OneVision 7B 61.5 55.5 75.7 75.4 80.9 60.3
Molmo 7B 59.3 59.3 58.9 52.3 79.9 57.6
Qwen-VL 7B 45.7 45.4 69.7 69.4 82.7 69.3
Qwen2-VL 7B 59.9 46.6 80.1 80.1 85.7 75.5
mPLUG-Owl 7B 45.7 45.4 48.3 46.1 60.8 49.7
Yi-VL 6B 56.4 43.8 70.4 70.4 78.4 60.0
xGen-MM 5B 42.7 33.8 50.0 44.8 64.7 48.7
MiniCPM-V-2 2.8B 64.0 56.6 67.2 66.3 81.8 65.5

Human
Human - 75.7 75.6 74.0 73.5 96.0 91.7

Table 8: Results of different LVLMs on the MFC-Bench, in the zero-shot setting. The accuracy and macro-averaged
F1 score (%) are reported as the metrics.

in Table 6, reflects strong consistency among the1908

annotators. Additionally, the intra-class agreement1909

score is 0.685. The average Spearman’s correlation1910

coefficient between any two annotators is 0.702.1911

As demonstrated in Table 10 and Table 11: 1)1912

The accuracy of human predictions significantly1913

surpasses LVLMs in Manipulation Classification.1914

Humans achieved an accuracy of 75.67% and an F11915

score of 75.58%. In Background Change and CLIP-1916

based Stable Diffusion Generation methods, human1917

accuracy exceeded 90%. Human fact-checking1918

ability in Manipulation Classification surpasses1919

that of LVLMs, suggesting that there is consider-1920

able room for improvement in LVLM performance.1921

2) Human performance in OOC classification is1922

on par with the best-performing LVLMs, such as1923

GPT-4V. Without manipulating the text and image,1924

LVLMs can effectively identify the false connec-1925

tions between them. 3) For Veracity Classification,1926

humans achieved an accuracy of over 95%. This1927

high accuracy can be attributed to two factors: the1928

strong fact-checking abilities of humans and the1929

high degree of correlation within the dataset, which1930

allowed humans to draw on their experience.1931

Human performance exceeds that of most 1932

LVLMs, especially in Manipulation Classification. 1933

This indicates that there is still significant potential 1934

for improvement in the fact-checking capabilities 1935

of LVLMs. 1936

E.7 Model Interpretability 1937

To gain deeper insights into the model interpretabil- 1938

ity of LVLMs, we expand our research on the evalu- 1939

ation on the justfication production of LVLMs. The 1940

output format F : “Answer yes or no.” was removed 1941

to allow the model to produce more intermediate 1942

reasoning steps. 1943

For the evaluation of justification production, 1944

traditional automated evaluation metrics are inade- 1945

quate to assess the output results of LVLMs (Chang 1946

et al., 2024). Fortunately, GPT-4 has been demon- 1947

strated to excel in assessing text quality from 1948

multiple angles, even in the absence of reference 1949

texts (Lin et al., 2024a; Wang et al., 2024a). Thus 1950

the model’s justification was evaluated by GPT-4 1951

and Human subjects across four dimensions: Mis- 1952

leadingness (M), Informativeness (I), Soundness 1953

(S), and Readability (R). A 5-point Likert scale was 1954
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Figure 5: Effect of prompts specifically designed for different types of manipulation techniques.

Models Size FS AE BC CG PS ER ST

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Proprietary Models
GPT-4o - 61.4 45.7 60.8 42.9 78.6 73.2 63.6 60.8 80.4 80.4 58.1 53.7 56.8 49.5
GPT-4V - 52.5 40.7 49.5 37.1 82.2 81.3 52.3 44.6 77.3 77.2 47.5 36.3 47.3 34.2
Claude3.5-Sonnet - 62.7 41.0 64.4 39.7 69.0 47.6 53.7 36.9 59.3 49.2 58.7 38.8 51.0 35.5
Claude3-Haiku - 50.2 35.8 50.2 36.1 50.0 35.5 50.2 35.7 51.4 42.3 57.4 42.3 50.7 37.2
Gemini-1.5-Pro - 63.2 49.1 62.8 47.3 77.8 71.1 54.4 45.5 84.3 84.3 61.2 51.0 56.8 48.3

Open-Source Models
Emu2 37B 35.5 30.7 35.3 30.0 32.7 25.9 33.6 28.8 57.3 52.6 57.7 42.6 49.8 38.1
InternVL 25.5B 64.4 44.4 65.1 43.9 78.9 71.3 53.0 41.5 52.1 39.4 57.8 37.0 50.5 36.2
CogVLM 17B 54.0 51.6 53.1 50.4 71.7 70.5 60.7 58.9 50.0 33.4 41.9 29.5 48.2 41.1
LLaVA-NeXT 13B 60.7 51.2 60.5 50.7 81.8 79.9 61.9 59.6 63.5 59.9 54.2 41.5 55.5 51.2
InstructBLIP 13B 33.6 25.7 33.6 25.8 33.6 25.7 50.5 35.8 49.1 33.4 42.2 30.9 50.7 36.7
Pixtral 12B 64.4 44.9 64.5 44.9 66.9 50.5 50.5 38.7 57.3 52.7 57.2 42.5 52.0 41.1
MiniCPM-V-2.6 8B 66.2 41.6 66.3 42.0 68.1 45.8 50.4 35.5 54.0 43.3 57.6 37.5 49.9 34.2
LLaVA-OneVision 7B 59.9 51.3 58.7 49.9 78.5 73.0 60.9 56.2 71.6 71.0 55.2 37.9 48.2 35.1
Molmo 7B 51.4 50.2 52.3 51.0 64.6 64.3 70.4 69.8 61.4 56.0 47.1 45.9 51.2 51.1
Qwen-VL 7B 45.4 45.2 46.3 46.1 46.9 46.8 46.9 46.2 41.6 41.6 47.2 46.4 40.2 40.0
Qwen2-VL 7B 64.8 45.5 64.7 44.7 74.5 64.5 51.0 37.9 65.8 65.7 55.5 37.6 51.7 39.0
mPLUG-Owl 7B 45.5 45.5 45.1 45.1 47.7 47.7 50.5 49.4 47.1 46.2 50.3 44.7 49.2 48.2
Yi-VL 6B 65.3 44.2 64.7 43.7 68.9 50.5 51.2 40.2 64.7 63.5 56.4 37.4 49.6 36.8
xGen-MM 5B 35.3 29.6 35.4 29.7 35.1 29.5 49.9 36.5 50.0 33.6 48.4 43.0 49.5 36.3
MiniCPM-V-2 2.8B 62.2 50.4 62.5 50.1 83.7 85.8 63.1 59.9 70.7 70.2 56.8 39.2 49.6 38.9

Human
Human - 63.0 62.9 71.0 70.9 92.0 92.0 91.0 91.0 75.9 75.4 59.0 58.8 78.0 77.9

Table 9: Detailed results of LVLMs on the Manipulation Classification in the zero-shot setting.
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Tasks Accuracy F1

Manipulation Classification 75.67 75.58
OOC Classification 74.00 73.50

Veracity Classification 96.00 91.70

Table 10: Results of human evaluation on the MFC-
Bench across different multimodal fact-checking tasks
in a zero-shot setting.

Tasks Accuracy F1

FS 63.0 62.9
AE 71.0 70.9
BC 92.0 92.0
CG 91.0 91.0
PS 75.9 75.4
ER 59.0 58.8
ST 78.0 77.9

Table 11: Detailed results of human evaluation on the
Manipulation Classification in the zero-shot setting.

used, where 1 indicates the lowest quality and 5 the1955

highest for Informativeness, Soundness, and Read-1956

ability, but the scale is reversed for Misleadingness.1957

• Misleadingness (M) assesses whether the1958

model’s explanation is consistent with the real1959

veracity label of a claim, with a rating scale1960

ranging from 1 (not misleading) to 5 (very1961

misleading).1962

• Informativeness (I) measures how much the1963

explanation provides new information, such1964

as explaining the background and additional1965

context, with a rating scale ranging from 11966

(not informative) to 5 (very informative).1967

• Soundness (S) describes whether the expla-1968

nation seems valid and logical, with a rating1969

scale ranging from 1 (not sound) to 5 (very1970

sound).1971

• Readability (R) evaluates whether the expla-1972

nation follows proper grammar and structural1973

rules, and whether the sentences in the expla-1974

nation fit together and are easy to follow with1975

a rating scale ranging from 1 (not fluent) to 51976

(very fluent).1977

To use GPT-4 to evaluate the model interpretabil-1978

ity of LVLMs, we carefully designed the following1979

prompt. First, we give the GPT-4 system prompt1980

“You are now the judge of the model output.”; Next,1981

we provide GPT-4 with both the label L and model 1982

output Y using the format “Label:{L}, Model out- 1983

put {Y}”. Finally, GPT-4 evaluates the output in 1984

four dimensions and return with json format. Be- 1985

low is the complete prompt we use for GPT-4: 1986

Label:{L} 1987

Model output: {Y} 1988

Please rate in four dimensions: 1989

1. Misleadingness -assesses whether the model’s 1990

explanation is consistent with the real veracity la- 1991

bel of a claim, with a rating scale ranging from 1 1992

(not misleading) to 5 (very misleading) 1993

2. Informativeness - assesses whether the expla- 1994

nation provides new information, such as explain- 1995

ing the background and additional context, with a 1996

rating scale ranging from 1 (not informative) to 5 1997

(very informative) 1998

3. Soundness - describes whether the explana- 1999

tion seems valid and logical, with a rating scale 2000

ranging from 1 (not sound) to 5 (very sound) 2001

4. Readability - evaluates whether the explana- 2002

tion follows proper grammar and structural rules, 2003

and whether the sentences in the explanation fit 2004

together and are easy to follow with a rating scale 2005

ranging from 1 (poor) to 5 (excellent). 2006

Scores 1-5, returned in json format. 2007

We conducted model interpretability analysis 2008

across six models: LLaVA-NeXT (7B), LLaVA- 2009

NeXT (13B), InstructBLIP (7B), InstructBLIP 2010

(13B), Qwen-VL, and Yi-VL. This investigation 2011

explored the differences within the same model 2012

family with varying parameter sizes, as well as the 2013

differences between distinct models. 2014

E.8 Effect of Model Size 2015

To explore the impact of model size on factual 2016

capabilities, we analyzed two families of LVLMs: 2017

InstructBLIP and LLaVA-NeXT, which both utilize 2018

the same language backbone, i.e., Vicuna (Chiang 2019

et al., 2023), and employ similar CLIP models, with 2020

InstructBLIP using EVA CLIP-g and LLava-NeXT 2021

using CLIP ViT-L/14. Specifically, we examined 2022

InstructBLIP (7B), InstructBLIP (13B), LLava- 2023

NeXT (7B), LLava-NeXT (13B), and LLava-NeXT 2024

(34B). As shown in Figure 6, the following obser- 2025

vations were made: 1) In Manipulation Classifi- 2026

cation, there is a minimal correlation between the 2027

model size of the specific LVLMs family and the 2028

performance. 2) Regarding OOC Classification 2029

and Veracity Classification, the model performance 2030

generally improves with the increased model size. 2031
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Models Size Manipulation OOC Veracity

M I S R M I S R M I S R

Evaluated by GPT-4
LLaVA-NeXT(7B) 7B 3.95 3.09 3.24 4.39 3.82 3.09 3.54 4.56 3.68 2.69 3.12 4.22
LLaVA-NeXT(13B) 13B 3.83 3.16 3.36 4.46 3.57 3.17 3.70 4.61 3.44 2.89 3.39 4.41
InstructBLIP(7B) 7B 3.86 1.06 1.47 2.24 3.04 1.11 1.87 2.60 3.32 1.00 1.54 2.21
InstructBLIP(13B) 13B 3.67 1.42 1.92 2.71 2.88 1.06 1.69 2.44 3.42 1.00 1.53 2.23
Qwen-VL 7B 4.02 1.83 2.61 3.73 3.82 1.64 2.45 3.47 3.43 1.85 2.83 3.85
Yi-VL 6B 3.44 2.18 3.20 4.20 3.02 2.12 3.35 4.23 2.65 1.82 3.39 4.16

Evaluated by Human
LLaVA-NeXT(7B) 7B 3.43 3.15 3.83 4.47 3.82 2.09 3.54 4.56 3.42 3.82 3.76 4.34
LLaVA-NeXT(13B) 13B 3.63 3.43 3.96 4.87 3.57 3.17 3.70 4.61 3.83 3.89 3.64 4.42
InstructBLIP(7B) 7B 3.80 2.13 2.41 2.63 3.04 2.11 2.87 3.45 3.25 2.41 2.06 3.57
InstructBLIP(13B) 13B 3.78 2.17 2.83 2.76 2.88 2.06 2.69 3.95 3.30 2.40 2.11 3.83
Qwen-VL 7B 3.46 2.74 3.52 3.13 3.45 2.20 2.45 3.47 3.91 2.96 3.35 4.31
Yi-VL 6B 3.54 2.53 3.81 4.56 3.23 2.20 3.35 4.23 3.14 2.28 3.52 4.72

Table 12: Model Interpretability Evaluated by GPT-4 and Human.
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Figure 6: Model size effects of LVLMs.

E.9 Yes/No Bias2032

During benchmarking, we identified a Yes/No Bias2033

issue with the tested LVLMs, where it tends to2034

consistently respond with either “yes” or “no”. We2035

have chosen two key metrics to evaluate the Yes/No2036

bias of the model for the Manipulation Classifica-2037

tion task: 1) False Positive Rate (FPR) (Fawcett,2038

2006) and 2) False Negative Rate (FNR) (Pow-2039

ers, 2020). In Figure 7, models such as GPT-2040

4V, Claude3-Haiku, Yi-VL, and InternVL tend to2041

answer “no” more frequently. Conversely, mod-2042

els like Emu2, MiniGPT-v2, and InstructBLIP2043

are more inclined to answer “yes”. Meanwhile,2044

LLaVA-NeXT, CogVLM, Qwen-VL, and mPLUG-2045

Owl exhibit a balanced performance without a2046

strong bias towards either affirmative or negative2047

classifications. Given that these models were not2048

specifically trained for this task, the presence of2049

such biases is not unexpected. This underscores the2050

necessity of MFC-Bench, aiming to guide the en-2051

hancement of fact-checking capabilities in LVLMs2052

for future developments.2053
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Figure 7: Yes/No Bias in tested LVLMs.

E.10 Case Study 2054

To better understand the reasoning process of the 2055

model in fact-checking, we are conducting a study 2056

on the correct and incorrect reasoning processes of 2057

the GPT-4V model. Figure 8 illustrates an instance 2058

where GPT-4V fails to identify manipulated con- 2059

tent, specifically a face swap involving Joe Biden 2060

and another individual. This oversight underscores 2061

a significant limitation of GPT-4V in accurately rec- 2062

ognizing individuals within images. The model’s 2063
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rationale primarily emphasizes overall scene con-2064

sistency and plausible historical context, but it fails2065

to detect the specific manipulation of Joe Biden’s2066

identity. In contrast, Figure 9 showcases GPT-4V’s2067

successful identification of manipulated content by2068

accurately discerning the discrepancy between the2069

emotional state depicted in the image and the corre-2070

sponding caption. Todd Stern’s smiling expression2071

contrasts with the caption’s description of him an-2072

grily rebuffing a suggestion. GPT-4V effectively2073

recognizes this emotional mismatch, demonstrat-2074

ing its capability to evaluate the coherence between2075

visual and textual elements.2076

E.11 Error Analysis2077

In zero-shot settings, the model’s performance re-2078

lies solely on its understanding of the instructions,2079

its comprehension of the images and claims, and2080

ultimately making a judgment based on this under-2081

standing(see also §E.10). The main results indicate2082

that the model’s fact-checking ability is weak. As2083

discussed in §E.9, the Yes/No Bias also highlights2084

this issue.2085

In few-shot settings, the model does not gain2086

insights from the examples. As Figure 3 shows,2087

LLaVA-NeXT’s usable response rate decreases,2088

and it starts outputting gibberish instead of “yes” or2089

“no”. Specifically, in few-shot with CoT conditions,2090

LLaVA-NeXT does not generate its own reason-2091

ing process but merely copies the rationale from2092

previous examples. For example, one output from2093

LLaVA-NeXT is, “Answer yes or no. Rationale:2094

The image shows what seems to be an unnatural or2095

edited blend of faces, particularly noticeable in the2096

features of the man and the child. This indicates2097

that the image may have been digitally altered.”,2098

which is already included in the demonstrations of2099

the prompt.2100

F Prompts Designed for Manipulation2101

Techniques2102

1. Face Swap is a manipulation technique of cut-2103

ting a face from one image and replacing it with2104

a different face in another image. Your task is to2105

determine if the claim and its image have used Face2106

Swap. Answer yes or no.2107

2. Face Attribute Edit is a manipulation tech-2108

nique for altering facial expressions. Your task is2109

to determine if the claim and its image have used2110

Face Attribute Edit. Answer yes or no.2111

3. Background Change is a manipulation tech-2112

nique that involves altering the background of im- 2113

ages. Your task is to determine if the claim and its 2114

image have used Background Change. Answer yes 2115

or no. 2116

4. CLIP-based Stable Diffusion Generation is a 2117

manipulation technique that utilizes an image-to- 2118

image generation pipeline to produce manipulated 2119

images. Your task is to determine if the claim and 2120

its image have used CLIP-based Stable Diffusion 2121

Generate. Answer yes or no. 2122

5. Textual Entity Replace is a manipulation tech- 2123

nique that involves identifying named entities cor- 2124

responding to persons in one text, locating these 2125

entities in another text, and swapping the surround- 2126

ing contextual texts between the two. Your task is 2127

to determine if the claim and its image have used 2128

Textual Entity Replace. Answer yes or no. 2129

6. Text Style Transfer is a manipulation tech- 2130

nique that rewrites text to express the opposite sen- 2131

timent. Your task is to determine if the claim and 2132

its image have used Text Style Transfer. Answer 2133

yes or no. 2134

G Discussion of Label Setting 2135

We considered the following points in adopting this 2136

design philosophy for label setting: 2137

• Simplicity and Clarity: As the first study to 2138

benchmark MFC with LVLMs, our design 2139

allows us to quantitatively assess the perfor- 2140

mance of LVLMs in a straightforward and 2141

intuitive manner. This simplicity facilitates 2142

preliminary in-depth analyses that more com- 2143

plex settings might not easily provide. We find 2144

it exciting to cleverly and flexibly unify three 2145

significant data types under the MFC umbrella 2146

without adding unnecessary complexity. 2147

• Poor Performance of LVLMs: Despite high 2148

F1 score of 84.8% on OOC Classification, the 2149

tasks are not too simple, as evidenced by lower 2150

F1 scores of 61.6% and 75.5% on Manipula- 2151

tion Classification and Veracity Classification. 2152

Besides, the best Accuracy and F1 on Manip- 2153

ulation Classification only achieve 64.0% and 2154

56.6% by a lightweight LVLM, MiniCPM-V- 2155

2 (2.8B), leaving significant room to improve 2156

larger LVLMs that perform worse on this task. 2157

• Appropriate Difficulty Levels: Our bench- 2158

mark is designed to balance difficulty levels 2159

(i.e., OOC Classification: relatively easy; Ve- 2160

racity Classification: moderate; Manipulation 2161
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Joe Biden looks on as President Obama pitches his executive actions to reduce gun violence at
the White House last week.

 Image  Caption 

 Rationale  Upon reviewing the image and the caption, the rationale for determining whether the multimodal content
is manipulated involves analyzing a few key aspects:
1. Image Analysis: The image shows two individuals, one of whom appears to be former President Barack Obama,
and the other resembles Joe Biden. This matches the description given in the caption.
2. Caption Context: The caption "Joe Biden looks on as President Obama pitches his executive actions to reduce
gun violence at the White House last week" aligns with the visual content. Joe Biden is indeed seen looking on while
Barack Obama appears to be speaking.
3. Visual Consistency: The image does not show any signs of obvious manipulation such as mismatched lighting,
unusual blurring, or inconsistent shadows that would suggest digital alteration. Both individuals are well-lit and
appear naturally within the context of the scene.
4. Historical Context: The scenario described in the caption is a plausible historical event, as Barack Obama and
Joe Biden often appeared together during their tenure in the White House, particularly on significant policy
announcements.
Given these points, there is no evidence from the provided image and caption to suggest that the content is
manipulated. Therefore, the answer is no, the content does not appear to be manipulated.

Figure 8: Example of wrongly predicted manipulation by GPT-4V with rationale.

US Special Envoy Todd Stern angrily rebuffed the suggestion that America used strongarm
tactics to force countries to sign up to the Copenhagen Accord

 Image  Caption 

 Rationale  The rationale for determining that the content is manipulated is based on the mismatch between the
visual and textual elements:
1. Visual Element (Image): The image shows Todd Stern smiling, suggesting a positive or neutral emotional state.
2. Textual Element (Caption): The caption describes Todd Stern as angrily rebuffing a suggestion, indicating a
negative or confrontational emotional state.
The emotional tone conveyed by the image does not match the emotional tone described in the caption. This
incongruity between the image and the caption suggests that they do not correspond to the same context or
moment, indicating manipulation of the multimodal content.

Figure 9: Example of correctly predicted manipulation by GPT-4V with rationale.

Classification: relatively difficult), reflecting2162

varying complexities to assess LVLM capabil-2163

ities comprehensively. This integration allows2164

for a broader evaluation of LVLMs’ adapt-2165

ability and generalization across diverse MFC2166

data types.2167

• Foundation for Future Research: Our work2168

lays the groundwork for future studies, which2169

could incorporate more systematic human sub-2170

ject studies to explore interpretability and ad-2171

ditional analytical dimensions. This potential2172

for expansion underscores the value of our ini-2173

tial simplification and sets the stage for more2174

complex investigations.2175

H Discussion of Real-World Scenarios 2176

The main contribution of our benchmark is to pro- 2177

vide insights into the trustworthy issue for current 2178

researchers studying existing emerging LVLMs. 2179

For a real-world fact-checking process, there are 2180

stages like claim detection, evidence retrieval, 2181

claim verification, justification production, etc. Our 2182

work just directly provides the check-worthy data 2183

so that the claim detection stage could be omit- 2184

ted. Then, the LVLM is evaluated by retrieving 2185

the inherent evidence embedded in its internal pa- 2186

rameters, which can be regarded as the evidence 2187

retrieval stage in this benchmark work. Finally, 2188

for fact verification, the LVLM is used to verify 2189

the factuality in the verdict prediction stage with 2190
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produced justification. Our human subjects evalua-2191

tions have verified the soundness and alignment of2192

the multimodal data for real-world needs.2193
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