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Abstract

Direct Preference Optimization (DPO) has been
shown to be an effective solution in aligning gen-
erative models with human preferences. The re-
cent deep dive shows that DPO’s performance is
constrained by the offline preference dataset. To
solve this challenge, this paper introduces a novel
improvement-guided approach for online itera-
tive optimization of the diffusion models without
extra annotation. We propose to learn an improve-
ment model to extract the implicit preference im-
provement direction from the preference dataset.
The learned improvement model is then used to
generate winning images given the images gen-
erated by the current diffusion model as losing
images. Thus, the improvement model can guide
iterative DPO by generating such online prefer-
ence datasets repeatedly. This method enables
online improvement beyond offline DPO train-
ing without requiring additional human labeling
or risking overfitting the reward model. Results
demonstrate improvements in preference align-
ment with higher diversity compared with other
fine-tuning methods. Our work bridges the gap
between offline preference learning and online
improvement, offering a promising direction for
enhancing diffusion models in image generation
tasks with limited preference data.

1. Introduction

Reinforcement Learning from Human Feedback (RLHF)
has emerged as a powerful paradigm for aligning genera-
tive models with human preferences, showing remarkable
success in both language models (Ouyang et al., 2022) and
diffusion models for image generation (Black et al., 2024;
Fan et al., 2023). Traditional RLHF approaches, often
implemented using Proximal Policy Optimization (PPO)
(Schulman et al., 2017), have faced significant challenges,
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including training instability, overfitting the reward model,
and high computational costs.

Direct Preference Optimization (DPO) was introduced as an
alternative that simplifies the training process by directly op-
timizing the model based on preference data (Rafailov et al.,
2024; Wallace et al., 2024). While DPO offers more effi-
cient training and improved stability, it is inherently limited
to offline dataset, potentially constraining its performance:
Offline DPO, which relies solely on a fixed dataset of prefer-
ences, often exhibits suboptimal performance due to the lack
of on-policy data (Xu et al., 2024; Tajwar et al., 2024). Re-
cent studies have investigated online iterative DPO methods,
such as online annotated preference data from LLMs (Ros-
set et al., 2024), reward models (Xu et al., 2024), or human
feedbacks (Xiong et al., 2024). However, online labeling
can be prohibitively expensive, and runs the risk of reward
hacking (Zhang et al., 2024).

On the other hand, recent research has explored the concept
of self-improvement in generative models especially LLMs,
including self-rewarding models (Yuan et al., 2024b) and
self-improving language models (Choi et al., 2024). The
core idea of these approaches is to provide reward signals
or improvement guidance from some pre-trained model to
guide the iterative training process, which offers a promising
direction to achieve self-improvement without extra labeled
data. As aresult, these approaches could be a natural remedy
for data constraints in DPO.

The self-improvement approaches have been widely stud-
ied for LLMs since the base LLLM can be re-purposed in a
natural way to provide a self-improvement signal. However,
such self-improvement capability remains under-explored
in text-to-image diffusion models since it is not straightfor-
ward to directly apply the self-improvement approach to a
mixed-modality T2I model, which is the main question we
focus on in this paper. Recently, Yuan et al. (2024a) pro-
posed a self-play approach for diffusion models. However,
their optimization target is equivalent to aligning with the
winning data distribution, so the performance is thus still
upper-bounded by the offline dataset’.

In this paper, we aim to answer the following research ques-
tion: Can we achieve iterative improvement for diffusion

'See a more comprehensive discussion on (Yuan et al., 2024a)
in Section 3.3.
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models without extra annotations?

To solve the challenges of limited offline annotations, we
introduce a novel method to train a improvement model to
learn the generic improvement directions from large-scale
preference datasets. Then we use the improvement diffu-
sion model to generate a winning image given a on-policy
losing image and a prompt. By iterative DPO with such
guidance, the improvement model could exploit the improv-
ing guidance from the offline dataset. By extrapolating such
knowledge in iterative DPO, the online sampled images can
be further improved and potentially break the constraints in-
troduced by the offline dataset. This approach offers several
key advantages: Leveraging the advantages of DPO while
mitigating its limitations in offline settings; Enabling online
learning without extra annotations; Providing a mechanism
for iterative improvement for diffusion models with fixed
preference datasets.

Experimental results demonstrate that our iterative train-
ing for diffusion models guided by learned improvement
model leads to improvements over DPO baselines includ-
ing Diffusion-DPO (Wallace et al., 2024) and SPIN (Yuan
et al., 2024a). Specifically, we observe consistently higher
scores on PickScore (Kirstain et al., 2023), HPSv2 (Wu
et al., 2023), and Aesthetic score (Schuhmann et al., 2022),
indicating improved image quality and better alignment with
human preferences.

‘We summarize our contributions as follows: (1) We intro-
duce a novel improvement diffusion model that learns an
improvement direction from an offline preference dataset.
(2) Using the improvement model to generate online training
data, we address the critical challenge of learning from lim-
ited offline preference data, enabling iterative improvement
during training. (3) Our experiments demonstrate improve-
ments in preference alignment and visual quality compared
with baseline DPO methods.

2. Preliminaries
2.1. Diffusion Models

Let g € R™ be a data sample, and gy be the data distribu-
tion, i.e., 9 ~ qo(xo). Diffusion models approximate
qo with pg(zo) = [ pe(xo.r)drir, where po(zo.r) =
pr(xr) Hz;l po(xi—1|xt) is a Markov chain with the fol-
lowing dynamics:

p(:L’T) :N(Ovl)v (D

po(zi—1|ze) = N (g (e, 1), 5). 2)

The forward or diffusion process q(x1.7|z¢) is a Markov
chain that adds Gaussian noise to the data according to a

variance schedule 3y, ..., Br:

T
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wo(xy,t) = \/107 (xt - \/% Eg(l't,t)>. The training of
diffusion models is performedy by optimizing a variational

bound on the negative log-likelihood E,[—logps(zo)],
which is equivalent to optimizing:
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where z; = arxo + V1 — e, 20 ~ qo(xo),e ~
N(0,1).

2.2. DPO and Diffusion-DPO

DPO. Assume that we have access to a general preference
dataset D = {¢, ., ¥ } Where c is the text prompt, z; is the
losing response and z,, is the winning response. Given a
conditional generative model py(z|c) and a reference model
Pref(|c), we can align the model with the preference using
the DPO loss (Rafailov et al., 2024):

B {loga (B log 22ul0) g0 pe(xll@)] .
pref(xw ‘C) pref(xl |026

Diffusion-DPO. For diffusion models, since py(z|c) is
not generally tractable, (Wallace et al., 2024) proposes an
approximation by finding an upper-bound of the original
DPO objective:

~Ec.2),2,,~D.t[l0g o (=BT (|| — €a(x}’ 1, 0) I3
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Drawbacks of DPO. The interpretation of DPO training
is straightforward: it aims to pull up the probability of the
winning response and pull down the losing one. During
training, all the responses are from the preference dataset,
and the actual output of the model is never checked. The
quality of the learned policy in DPO can be compromised
by a biased distribution towards unseen responses. This bias
arises when the offline preference dataset lacks diversity
or is not readily accessible. This phenomenon has been
observed in (Xu et al., 2024).
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Figure 1. The overview of the pipeline of the improvement-guided iterative DPO process. The diagram on the left side demonstrates the
iterative DPO algorithm guided by the improvement model. The current diffusion model generates a losing image and passes it to the
improvement model to improve to a winning image. Both images are paired as the preference dataset to fine-tune the diffusion model.
The diffusion model is optimized iteratively until it converges. The optimized diffusion model is then deployed for inference as shown in

the diagram on the right side.

Given the downsides of using an offline dataset in DPO,
the recent work (Xiong et al., 2024) has explored augment-
ing training datasets through online training, incorporat-
ing online samples that enhance performance in preference
learning (Tajwar et al., 2024). However, annotating these
samples requires extra effort, and optimizing with a reward
model could risk reward over-optimization and hacking.
This paper explores whether DPO-based training without
extra annotations can be further improved.

3. Method

We consider a scenario where only a fixed offline preference
dataset is available, without access to additional annotation
sources. We propose to build an improvement model from
the preference dataset that generates improved images (for a
given prompt) when given images generated by the current
diffusion model as input. The input (image condition) and
output (improved image) of the improvement model there-
fore correspond to a losing/winning preference pair that can
be used for iterative DPO training without extra annotation.

The intuition behind iterative DPO training with an improve-
ment model is straightforward. Recall that DPO training
pulls up the probability of the winning response, which is the
output of the improvement model in our case. It also pulls
down the probability of the losing response, which is the
output of the current diffusion model. Thus, if we can suc-
cessfully train an improvement model, we can continuously
improve the current diffusion model using the improvement
model with iterative DPO training till convergence.

We introduce how to train such an improvement model in
Section 3.1, the sampling from the improvement model in
Section 3.2, and iterative training of the improvement model
in Section 3.3.

3.1. Training the Improvement Diffusion Model

The objective of the improvement diffusion model ¢ is to
predict a conditional distribution over improved images,
pl(xw |1, ¢) i.e. It learns to generate a winning image .,
given a text prompt c and a losing image x;. This can be
accomplished by the ability of diffusion models to condition
the denoising trajectory on arbitrary additional signals. For
example, InstructPix2Pix (Brooks et al., 2023) is an image-
editing model that takes an original image and an editing
instruction (in text) as its input conditions by encoding the
image with additional channels in the first convolutional
layer of the UNet.

Multi-task training. To train a model with a generic im-
provement capability to map any given image to higher qual-
ity ones without sacrificing diversity, we design a multi-task
training algorithm that takes different text-image condition
combinations as input (See the left side of Figure 2). The
model is trained on a mixture of the following tasks:

1. Learning the conditional winning distribution: Given
both text ¢ and a losing image condition z;, we learn the
target distribution of x,,:

BN (0.1),20 ar,ctll€ = €a(@elar, ¢, )P, (8)

where z; = /agx, + V1 — Q€.

2. Reconstruction: Given only the image condition z €
{x., x; }, the model is encouraged to reconstruct x:

Ecnn(0,1) et lll€ = €g (a2, 0,8)]1%], ©)

xy =V + 1 — age.

3. Unconditional distribution: Without conditioning input
from either x,, or x;, the model generates images drawn
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Figure 2. The overview of the training and sampling pipeline of the proposed improvement model. The left side diagram demonstrates
the three tasks used for training the improvement model. The three tasks are co-trained together to make the model both learn the
generic capability of improving image toward the preferred distribution represented in the offline dataset and the retain generalized image
generation capability without losing diversity. The right side diagram shows the sampling strategy of the improvement model where the
diffusion score of the improvement images are combined from the three tasks learned before.

from a distribution encompassing both winning and losing
images:

IEGN/\/(O,I),J:,C,I‘,[“6 - 6¢(1’;/‘®7@7t)”2]7 (10)

where z} = \/ayx + /1 — age, x,c ~ D.

Interpretation. The design of the improvement model
is inspired by InstructPix2Pix (Brooks et al., 2023). How-
ever, their setting cannot be directly applied here because
prompts in our datasets lack specific improvement/editing
instructions. Furthermore, applying their objective function
to our setting could cause the sampled distribution to col-
lapse. Consider a single-task training that solely focuses on
learning the conditional distribution of p(x,,|x;, ¢). With-
out an objective to force the model to utilize x;, it might
learn to ignore z; and instead learn an unconditional dis-
tribution p(x,,|c). This is likely to happen when we are
fine-tuning from a pre-trained diffusion model where image
condition weights are initialized to 0. This necessitates the
additional reconstruction task which aims to capture the
information from the image condition. Furthermore, the
difference between €4 (-|z;, ¢, t) and €, (|2, 0, t) provides
the “improvement direction” from the losing image and the
prompt. Moreover, learning the unconditional score is cru-
cial for achieving both high conditional generation accuracy
and sample diversity (Ho & Salimans, 2022). We also pro-
vide ablation on the effect of the proposed reconstruction
task in Section 5.5.

3.2. Sampling from the Improvement Diffusion Model

Double classifier-free guidance. For conditional sam-
pling from the improvement model, we adapt the double
classifier-free guidance technique introduced in Instruct-

Pix2Pix (Brooks et al., 2023) and design the sampling algo-
rithm as:

€s(@|z,c,t) = €4(2']0,0,1)
+ s1(ep(@|z,0,t) — es(2]0,0,1))
+ sp(ep(2'|x, c,t) — ep (2|2, 0,1)),
(11)

where 2’ is the output, st is the text guidance weight, sy
is the image guidance weight, and c is the text prompt.
The first term €, (2|0, 0, ¢) is to sample without any con-
dition as the standard diffusion model. The second term
sr(eg(a’|x,0,t) — ey(2']0,0,t)) is to sample from the im-
age only condition to reconstruct the input images. It helps
to regularize the divergence of the output from the input
images. The last term sy (€, (2'|2, ¢, t) — €g(2’ |2, 0, 1)) is
to sample from both the image and text condition to improve
from losing images to winning ones. The overall sampling
algorithm of the improvement model is illustrated on the
right side of Figure 2.

Roles of the guidance weights. To further refine the sam-
pling process, we utilize two guidance weights: text guid-
ance weight sy and image guidance weight s;. The text
guidance weight s7 determines the strength of the improve-
ment direction - a larger st value leads to more significant
alignment with text prompt. Meanwhile, the image guid-
ance weight sy controls how closely the output image resem-
bles the input condition image, i.e., increasing sy enforces
greater similarity of input and output images.
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3.3. Improvement-Guided Iterative DPO for Diffusion
Model Fine-tuning

The objective function. Building on the improvement
diffusion model pL(xw |1, ¢), we can sample pairs of pref-
erence images x,, and x;, where x; are generated from the
current diffusion model as the losing image and z,, output
from the improvement model as the winning image. These
online sampled pairs provide data for optimizing the diffu-
sion model using the DPO objective function below:

— B i mpo (-[¢) s mops (Jzr.0) £ 108 0 (=B — eg (2, 1)]I5

+ e — ewr(at, )3 — lle” — erer(ai’, )13

= lle" = eo(at, )I3))],
(12)

where the losing images x; are from the current output of the
model, and the winning images x,, are from the improve-
ment model conditioning on x; and ¢, constructing a new
preference dataset. After one iteration of optimization, we
can regenerate new preference data from the current diffu-
sion model and the improvement model, and perform DPO
training iteratively (details in Algorithm 1). An illustration
of the iterative training pipeline is in Figure 1.

Comparison with SPIN. Here we compare our method
with SPIN, a self-play method that can be applied to dif-
fusion models (Yuan et al., 2024a). The iterative objective
function of SPIN aims to move the model’s output distribu-
tion closer to a target distribution. However, a key limitation
of this approach is its strong reliance on the quality of the
preferred responses. SPIN uses these preferred responses,
along with the prompt set, to construct an SFT dataset, while
discarding the losing responses. This strategy assumes that
the preferred distribution is near-optimal. If this assumption
doesn’t hold, the model risks falling into a suboptimal area.
Furthermore, the output distribution is still constrained by
the available preferred responses in the training dataset, po-
tentially limiting the outputs’ diversity. In contrast, we learn
the improvement direction from the preference dataset while
retaining information from the losing distribution. By itera-
tively applying this learned improvement direction, we can
optimize the model towards better performances. Thus, our
method could surpass SPIN models, achieving both higher
alignment and higher diversity.

4. Related Work

Variants of DPO. Direct preference optimization (DPO)
(Rafailov et al., 2024) is developed to optimize the genera-
tion policy with the offline preference dataset. It eliminates
the dependency on the explicit reward model. However,
the optimal solution derived from the Bradley-Terry (BT)
model makes DPO prone to weakening the regularization
and overfitting to the offline training dataset. Azar et al.

Algorithm 1 Improvement-guided iterative DPO training.

Input: Improvement model pl, prompt set D., model py,
number of iterations 7Ti,;, number of samples n, training
batch size b, text guidance weight sy, image guidance
weight sy, steps per iteration 7ipin
for titer € []-7 Titer] do
Randomly sample n images from py conditioned on
D., and construct D;
Randomly sample n images from pL conditioned on D,
and D;. With guidance weights st and sj, construct
Dy
for ttrain € [17 Ttrain} do
Compute an estimation of gradient using Equa-
tion (12) with batch size b, and update ¢
end for
end for

Qutput: Fine-tuned model py

(2024) propose the IPO by introducing the identity function
into the generic VPO framework and derive an efficient
optimization process and achieve improved performance
than DPO. Meng et al. (2024) argue for the effectiveness
of the reference model regularization in DPO. They there-
fore propose the simple preference optimization (SimPO)
method that bypasses the reference model regularization and
introduces a reward margin to the optimization objective to
better approximate the noisy preference dataset. Their ap-
proach also shows improved performance over DPO. Hong
et al. (2024) also argue about impediments in optimizing
the reference model under distributional discrepancy and
propose the margin-aware preference optimization (MaPO)
method to replace KL regularization on the reference model
with an amplification factor defined by the trained policy’s
likelihood estimation. These DPO variants explore the chal-
lenges of distribution discrepancy between the reference
model and model under optimization. They optimize with
the offline samples which is verified to be less efficient than
on-policy sampling (Tajwar et al., 2024).

Iterative DPO and self-play methods. To understand
and address the limitations of offline training associated
with DPO, recent works have investigated the performance
gap between online and offline training methods (Tajwar
et al., 2024; Tang et al., 2024). Their findings indicate that
online training can lead to better generation, and is beneficial
when high-reward responses have a low likelihood under
the pretrained model. Accordingly, several works have
proposed iterative DPO methods that train DPO using online
samples generated by the improved policy (Guo et al., 2024;
Xu et al., 2023a; Xiong et al., 2023). However, they require
a reward model to label the online samples. To eliminate the
dependence on reward models, researchers have developed
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self-play or self-improvement methods. For example, Yuan
et al. (2024b) use the language model itself to provide the
reward signal, and Chen et al. (2024) treat self-generated
responses as losing to human demonstrations for iterative
improvement. More recently, Choi et al. (2024); Wu et al.
(2024) reformulate these ideas under the constant-sum two-
player game framework (Munos et al., 2023; Swamy et al.,
2024), and propose algorithms to find the approximate Nash
equilibrium. Our work proposes a self-improvement method
for text-to-image diffusion models, which has been under-
explored.

Aligning diffusion models with human preferences. In-
spired by the success of RLHF and DPO in fine-tuning lan-
guage models, recent works have explored applications in
aligning diffusion models with human preferences. RLHF-
based methods maximize a reward score given by a sep-
arately trained reward model (Radford et al., 2021; Lee
etal., 2023; Xu et al., 2023b; Wu et al., 2023; Kirstain et al.,
2023). For differentiable rewards, reward maximization can
be done by backpropagating the reward function gradient
through the denoising process (Clark et al., 2024; Prabhude-
sai et al., 2023). For black-box reward functions, DDPO
(Black et al., 2024) and DPOK (Fan et al., 2023) propose
PPO-based RL fine-tuning. PRDP (Deng et al., 2024) fur-
ther improves training stability on large-scale datasets by
converting reward maximization to an equivalent reward dif-
ference prediction objective. However, RLHF-based meth-
ods generally have a complicated pipeline involving reward
model training, and are prone to reward hacking. These
issues can be partially mitigated by DPO-based methods,
such as Diffusion-DPO (Wallace et al., 2024) and SPIN-
Diffusion (Yuan et al., 2024a), which directly fine-tune the
diffusion model from offline preference datasets without
requiring reward models. However, their performance can
be limited due to a lack of online training. Our approach
combines the benefits of online training from RLHF and the
simplicity from DPO.

5. Experiments
5.1. Experimental Setup
5.1.1. TRAINING

Model and Dataset. We use the Pick-a-pic (Kirstain
et al., 2023) training dataset as the offline preference dataset,
following Diffusion-DPO (Wallace et al., 2024). For the
improvement model, we add 4 channels to the first convolu-
tional layer of the UNet, and initialize the weights from Sta-
ble Diffusion 1.5 (Rombach et al., 2022) following (Brooks
et al., 2023). For iterative DPO training, we fine-tune the
model initialized from the third iteration in SPIN (Yuan
et al., 2024a).

Hyperparameters. For the improvement model training,
we use AdamW with a learning rate 10~%, and train up to
200K steps with batch size 2048, and sample from it with
st = 3.5,s7 = 3.0. For iterative DPO training, we train
for 3 iterations, and for each iteration, we first generate
38400 pairs of preference data, and train for 5k steps for
each iteration with the batch size 2048 and learning rate
104, B = 2000, with SD 1.5 as the reference model.

5.1.2. EVALUATION

Prompt sets. We use two prompt sets for evaluation: We
randomly sample 500 unique prompts from the training set
to reflect the model’s performance on the training set. We
also use the 500 unique prompts from the test dataset in
Pick-a-pic v2 as the test set. We sample 64 random images
from each prompt.

Metrics. We evaluate our method against DPO and other
baselines using a comprehensive set of metrics. For quality
assessment, we employ PickScore (Kirstain et al., 2023),
Human Preference Score v2 (HPSv2) (Wu et al., 2023) and
Aesthetic score (Schuhmann et al., 2022), which capture
different aspects of image quality and alignment with human
preferences. To ensure that our method not only improves
quality but also maintains diversity in generated images, we
use the Vendi score (Friedman & Dieng, 2023) to measure
the diversity.

Baseline methods. We compare our method with the
base model SD 1.5, and DPO-based methods: Diffusion-
DPO and SPIN. Notice that Diffusion-DPO, SPIN, and our
method all share the same data assumption: using the offline
preference dataset only without the need for extra annota-
tions or feedback from reward models.

5.2. Reward Evaluation

We report the results of Pickscore, HPSv2, and Aesthetic
score in Table 1. Our iterative training can further improve
the SPIN model with prompts in both training and test sets
in terms of the surrogate metrics of human preferences. It
further proves that our iterative training with an improve-
ment model can surpass the upper bound in SPIN training.
We also visualize samples from the fine-tuned model in Fig-
ure 6, where our model output can generate the samples
more aligned with the prompt than the SPIN model.

5.3. Human Evaluation

We conduct human evaluation using the prompts in the Pick-
a-pic test set with two metrics: visual quality of the image
and text-image alignment (see details in Appendix B). We
present the results in Figure 5 where our fine-tuned model
consistently outperforms the baseline. We also present visu-
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SPIN
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Figure 3. Visualization of sampled images from the baseline and fine-tuned diffusion models, where our fine-tuning improves the text-
image alignment. Prompts (left to right): 1. A guinea pig riding a motorcycle; 2. Of the lunar module landing on a hydrogen lake on Titan,
through a foggy yellow smog; 3. Earth from Mars; 4. [llustration cartoon of a leprechaun gnome with a rainbow hat stuck at the bottom of

a rock pit.
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Figure 4. Automatic win-rate of our model against SPIN calculated
by Pickscore, evaluated on Pick-a-pic test set.
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o
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Figure 5. Win-rate evaluated on visual quality and text alignment
respectively conducted by human.

alizations in Figure 3 for text-image alignment and Figure 6
for visual quality.

5.4. Effect of the Online Samples

Here we present the effect of the number of online samples
used for iterative training. From Table 2, we find that more
online samples can lead to higher Pickscore from prompts
in both training and test sets. This verifies that the key to
successful iterative training is the online samples generated
from our improvement model: more online samples would

Table 1. Evaluation of Pickscore, HPSv2, Aesthetic score and
Vendi score. Our model achieves improved reward scores without
sacrificing diversity compared with SPIN and Diffusion-DPO.

Score Method Training subset  Test set
SD 1.5 20.46 20.74
. Diffusion-DPO  20.80 21.05
Pickscore (1) gppy 21.15 2141
Iterative (Ours) 21.22 21.47
SD 1.5 26.65 26.90
Diffusion-DPO  26.96 27.19
HPSv2 (1) SPIN 27.39 27.57
Iterative (Ours) 27.44 27.61
SD 1.5 5.48 5.42
. Diffusion-DPO  5.55 5.49
Aesthetic (1) gpyy 5.92 5.86
Iterative (Ours) 5.95 5.88
SD 1.5 2.61 2.64
. Diffusion-DPO  2.44 2.47
Vendi score (1) gpyy 2.43 2.48
Iterative (Ours) 2.45 2.49

lead to better results.

5.5. Evaluation of the Improvement Model

In this section, we provide the evaluation of the improve-
ment model, by using the SD 1.5 baseline to generate the
losing images as the image condition for the improvement
model. We find that the improvement model can achieve
significant improvements on the training set, but the gen-
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SPIN

Ours

Figure 6. Visualization of the sampled images from the baseline and the fine-tuned diffusion models, where our fine-tuning improves the
visual quality. Prompts (left to right): 1. A cyborg on the ocean; 2. Cute grey cat, digital oil painting by Monet; 3. Gray French bulldog; 4.

hummingbird.

Table 2. Evaluation on the effect of the online samples. The values
presented are Pickscore.

Number of online samples  Training set  Test set
2560 21.10 21.27
12800 21.13 21.36
38400 21.22 21.47

Table 3. Ablation study: Evaluation of the improvement model
with or without reconstruction training. The values presented are
Pickscore.

Method Training set  Test set
‘With reconstruction 21.24 21.38
Without reconstruction  21.17 21.29

eralization ability on the test set is worse than the iterative
model, which implies why we do not consider using it as an
inference-time model. The improvement model modifies the
original architecture of SD 1.5 and is trained with different
tasks than text-to-image generation. Thus the generalization
ability on test prompts may not be as good as fine-tuned
diffusion model. In the iterative training, we reuse the same
training prompts and do not use the improvement model on
unseen prompts. The iteratively trained model with the im-
provement model can therefore achieve better generalization
ability on the test set. We also include samples generated
by the improvement model in Appendix C.

6. Discussion and Limitation

Note that the gap between SPIN and our method depends
on the specific structure of the preferences dataset. If all
winning images in the preference set are near-optimal, there
is little space for improvement with our improvement model
and iterative training. However, if the winning images con-
tain a diverse range from sub-optimal to optimal, SPIN can
only get mediocre quality at best. In contrast, our method
that learns the improvement direction can outperform SPIN.
Due to a lack of resources, we use the open-source bench-
mark dataset instead of creating a more diverse dataset for
losing images that could potentially lead to larger improve-
ments from SPIN.
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A. More Visualizations

Here we provide more image samples from both our trained model and SPIN in Figures 3, 6, 7, 8 and 9, where the outputs
from our model are generally more aligned with the text description and have better image quality than SPIN.

SPIN

Ours

Prompt Purple cat eating cake A white cat wearinga  Cute simple rabbit A diamond ring on a Tattoo ideas for an
red hat holding sticks  lineart girls hand introvert

Figure 7. Visualization of the sampled images from the baseline and the fine-tuned diffusion models. Prompts (left to right): 1. Purple cat
eating cake; 2. A white cat wearing a red hat holding sticks; 3. Cute simple rabbit lineart; 4. A diamond ring on a girls hand; 5. Tattoo
ideas for an introvert. The outputs from our model have better visual quality in general.

B. Human Evaluation Details

Here we provide details in our human evaluation in Section 5.3. The total number of prompts in Pick-a-pic test set is 500,
and we filtered out 43 prompts that are not suitable for work. We have 47 human raters to label the results from 457 unique
prompts (for each prompt there is one side-by-side image pair generated from the same seed for both models we compare).
The total number of ratings for image quality is 4050, where each rater gives 86.2 ratings on average, and each unique
prompt repeats 8.86 times on average. The total number of ratings for text-image alignment is 3009, where each rater gives
64.0 ratings on average, and each unique prompt repeats 6.58 times on average.

C. Samples from the Improvement Model

We also provide visualizations of the output of the improvement model in Figure 10, starting from an image condition
generated from the based SD 1.5 model and then repeatedly apply the model to generate new images. The prompts are from
the Pick-a-pic test set. We can observe that the output of the improvement model from the first iteration is significantly
improved from the initial image, while the quality of output from the second iteration is slightly better or similar comparing
to the first iteration. Similar to the discussion in Section 6, if the winning images in the training set are mostly near-optimal
ones, the room for improvement after applying the first iteration might be limited. Nevertheless, such improvement model
could still effectively guide the iterative DPO process. In our paper, we also show the improvement from SPIN is possible
given such training datasets. Exploring the potential benefit of our method when training on more diverse datasets could be
an interesting future work.
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SPIN

Ours

Prompt Pencil sketch of an old A dog riding bicycle Opal gun An evil villain holding  DSLR capture of an old
man looking outside a mini Earth, pixelart — mythical being from
through the first floor norse, he should look
window at home like a real dragon

Figure 8. Visualization of the sampled images from the baseline and the fine-tuned diffusion models. Prompts (left to right): 1. Pencil
sketch of an old man looking outside through the first floor window at home; 2. A dog riding bicycle; 3. Opal gun; 4. An evil villain
holding a mini Earth, pixelart; 5. DSLR capture of an old mythical being from norse, he should look like a real dragon. The outputs from
our model have better text-image alignment in general.

SPIN

Ours

Prompt A fat mafia frog Photograph of Trafficroad, beautiful ~ An abstract print of Flat logo, gaming logo,
wearing a suit medieval warrior, starry sky, detailed water and oil mixing, = white background,
smoking a cigar ata with giant hammer, colorful painting, bubbles, textural vector, orange, grey,
bar at night, oil posing in battlefield bold colors, in the symbol, abstract, hd,
painting, rembrandt style of loish... 4k

Figure 9. Visualization of the sampled images from the baseline and the fine-tuned diffusion models. Prompts (left to right): 1. A fat
mafia frog wearing a suit smoking a cigar at a bar at night, oil painting, rembrandt; 2. Photograph of medieval warrior, with giant hammer,
posing in battlefield; 3. Trafficroad, beautiful starry sky, detailed colorful painting, bold colors, in the style of loish, artist Antonio Ligabue,
artist Djanira, by van gogh, artist Marija Prymatschenko and william morris print, sharp lines, intricate, fine black outlines, light and
shadow, octane render, Ultra-violet ink painting, by Dan Mumford, inspired by cyberpunk and retro-futuristic elements, impressionism,
featuring neon blue and purple hues, bold lines, and dynamic composition, expressionism, created with Copic markers and black light ink,
evokes a sense of mystery, sophistication, and otherworldly beauty; 4. An abstract print of water and oil mixing, bubbles, textural; 5. Flat
logo, gaming logo, white background, vector, orange, grey, symbol, abstract, hd, 4k. The outputs from our model have better text-image
alignment in general.
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Prompt

Flying crocodile

90's street racing in Tokyo

Cute simple rabbit lineart

Purple cat eating cake

Figure 10. Outputs from the improvement model. Prompts (top to bottom): 1. Flying crocodile; 2. 90’s street racing in Tokyo; 3. Cute
simple rabbit lineart; 4. Purple cat eating cake.
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