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ABSTRACT

Distributed time series data presents a challenge for federated learning, as clients
often possess different feature sets and have misaligned time steps. Existing fed-
erated time series models are limited by the assumption of perfect temporal or
feature alignment across clients. In this paper, we propose FedTDD, a novel fed-
erated time series diffusion model that jointly learns a synthesizer across clients.
At the core of FedTDD is a novel data distillation and aggregation framework that
reconciles the differences between clients by imputing the misaligned timesteps
and features. In contrast to traditional federated learning, FedTDD learns the cor-
relation across clients’ time series through the exchange of local synthetic outputs
instead of model parameters. A coordinator iteratively improves a global distiller
network by leveraging shared knowledge from clients through the exchange of
synthetic data. As the distiller becomes more refined over time, it subsequently
enhances the quality of the clients’ local feature estimates, allowing each client to
then improve its local imputations for missing data using the latest, more accurate
distiller. Experimental results on five datasets demonstrate FedTDD’s effective-
ness compared to centralized training, and the effectiveness of sharing synthetic
outputs to transfer knowledge of local time series. Notably, FedTDD achieves
79.4% and 62.8% improvement over local training in Context-FID and Correla-
tional scores.

1 INTRODUCTION

Dataset Alignment

Temporal Alignment on All Clients

No Aligned Timestamp That All Clients Have.

Temporal Alignment on Clients 2 and 3

Time Stamp Only From 3864 to 3876 and
Data Redundancy of Features A and B

Client 1

Time Stamp From 16 to 744

Client 2

Time Stamp From 2904 to 3876

Feature Alignment on All Clients

Only Feature A and B can be aligned

Client 3

Time Stamp From 3864 to 4536

Public Dataset

Time Stamp From 1 to 5000

Figure 1: Feature and temporally misaligned time
series. The gray masking indicates missing data.

Multivariate time series data are pivotal in
many domains, such as healthcare, finance,
manufacturing, and sales (Lim & Zohren,
2021). Consider a collaboration between mul-
tiple clients, shown in Figure 1. In a healthcare
setting, these clients could be hospitals, each
collecting patient data locally for a downstream
task, such as predicting patient outcomes. The
data gathered, such as vital signs like heart rate
and blood pressure, is inherently temporal, i.e.,
time series data. Aggregating data from all the
sources could improve model performance due
to increased sampled diversity when training
downstream predictive models. However, pri-
vacy regulations such as the General Data Protection Regulation (GDPR) (Voigt & Von dem Buss-
che, 2017) and confidentiality agreements between hospitals prevent sharing of raw data (Alaa et al.,
2021).

Federated learning (FL) (McMahan et al., 2017) takes a step towards tackling this privacy challenge
by enabling clients to train a global model by sharing locally trained model parameters rather than
raw data. However, this environment faces the challenge of feature and temporal misalignment (Luu
et al., 2021), as hospitals may possess different feature sets with varying time intervals for data
collection.
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In horizontal FL (Li et al., 2020), different clients have data for the same features but for different
samples or timesteps. Hence, it can tackle situations involving temporal misalignment but not feature
misalignment. On the other hand, in vertical FL (Liu et al., 2024), different clients possess different
feature sets for the same samples or timesteps. While this can handle feature misalignment, it cannot
tackle temporal misalignment. Hence, neither horizontal nor vertical FL can fully tackle scenarios
with both feature and temporal misalignment. On top of this, data may be missing or incomplete due
to unavailability or inconsistent collection frequencies, further hindering a model’s ability to learn
patterns (Pratama et al., 2016).

To overcome these limitations, we propose FedTDD (Federated Learning in Multivariate Time Se-
ries via Data Distillation), a first-of-its-kind federated time series diffusion model capable of learning
a time series synthesizer from clients’ distinct features with temporal misalignment. FedTDD in-
troduces a novel data distillation (Sachdeva & McAuley, 2023) and aggregation framework for the
common feature set, whose values differ across clients and can be obtained from the public domain.
In this framework, a coordinator maintains a global model called the distiller, trained iteratively
using a combination of public data and clients’ intermediate synthetic data outputs. Each client
keeps a local time series diffusion model for imputing local features which leverages the latest dis-
tiller to improve the quality of local estimates. Unlike traditional federated learning, FedTDD learns
the correlations among clients’ time series through the exchange of synthetic outputs instead of ag-
gregating models (McMahan et al., 2017), effectively handling feature and temporal misalignment
without sharing raw data.

Given the recent advancements of diffusion models over mainstream generative models like Gen-
erative Adversarial Networks (GANs) (Goodfellow et al., 2020), we utilize a time series Denoising
Diffusion Probabilistic Model (DDPM) (Ho et al., 2020), adapted to handle temporal dependen-
cies through temporal embeddings and sequential conditioning. Specifically, we select Diffusion-
TS (Yuan & Qiao, 2024) since it leverages both time and frequency domain information, effectively
capturing trends and seasonality, which leads to a more accurate imputation of missing data. By
imputing data from unaligned time steps, clients can obtain temporally aligned data without needing
alignment on the features or sharing raw data.

In summary, our major contributions are as follows: (i) We propose a novel federated generative
learning framework that effectively handles temporal and feature-level misalignment and data miss-
ing problems in time series data. (ii) We develop a data distillation and aggregation framework that
learns correlations among clients’ time series by exchanging synthetic data instead of model pa-
rameters, enabling clients to improve their local models without direct data sharing and effectively
handling data discrepancies. (iii) We conduct extensive experiments on five benchmark datasets,
showing up to 79.4% and 62.8% improvement over local training in Context-FID and Correlational
scores under extreme feature and temporal misalignment cases and achieving performance compa-
rable to centralized training.

2 RELATED WORK

Table 1: Overview of the related work.

Method Model
Type

Time
Series

FL
Type

Handles Temporal
Misalignment

Handles Feature
Misalignment

GTV (Zhao et al., 2023) GAN × Vertical × ✓
DPGDAN (Wang et al., 2023) GAN × Vertical × ✓
SiloFuse (Shankar et al., 2024) DDPM × Vertical × ✓
VFLGAN-TS (Yuan et al., 2024) GAN ✓ Vertical × ✓
FedGAN (Rasouli et al., 2020) GAN ✓ Horizontal ✓ ×
T2TGAN (Brophy et al., 2021) GAN ✓ Horizontal ✓ ×

FedTDD (Ours) DDPM ✓ Hybrid ✓ ✓

Time series generation Generative models for time series data aim to capture temporal dependen-
cies and sequential patterns inherent in such datasets. TimeGAN (Yoon et al., 2019) combines gen-
erative adversarial networks (GANs) Goodfellow et al. (2020) with recurrent neural networks (Mo-
gren, 2016) to produce realistic multivariate time series. TimeVAE (Desai et al., 2021) utilizes
variational autoencoders (VAEs) (Kingma, 2013) tailored for time series to capture trends and sea-
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sonality. Recently, diffusion-based models like TimeGrad (Rasul et al., 2021), CSDI (Tashiro et al.,
2021), SSSD (Alcaraz & Strodthoff, 2022), TSDiff (Kollovieh et al., 2024), and Diffusion-TS (Yuan
& Qiao, 2024) have further advanced time series generation by producing high-fidelity sequences,
outperforming the mainstream GANs and VAE-based techniques. Despite their effectiveness, these
models operate in centralized settings and assume fully aligned data with consistent features and
timestamps. They are not equipped to handle feature and temporal misalignments common in real-
world distributed scenarios, making them unsuitable for federated environments with heterogeneous
data distributions (Mendieta et al., 2022; Qu et al., 2022; Ye et al., 2023).

Federated learning with generative models Federated learning (Zhang et al., 2021) has primar-
ily been applied to image generation, such as FedCycleGAN (Song & Ye, 2021) leverages Cycle-
GAN (Zhu et al., 2017) in federated settings to generate synthetic images while preserving data
privacy. For tabular data, methods like GTV (Zhao et al., 2023), DPGDAN (Wang et al., 2023),
and SiloFuse (Shankar et al., 2024) employ GANs and diffusion models within vertical federated
learning frameworks to synthesize tabular datasets. However, these approaches focus on vertically
partitioned data, where all clients have features corresponding to the same sample ID, and do not
address data redundancy or misalignment issues. Federated learning with generative models for
time series data remains under-explored. Existing works such as FedGAN (Rasouli et al., 2020),
VFLGAN-TS (Yuan et al., 2024), and T2TGAN (Brophy et al., 2021) extend GANs to federated
time series generation. VFLGAN-TS operates in a vertical federated learning context, tackling fea-
ture misalignment, but does not handle temporal misalignment. In contrast, T2TGAN tackles hor-
izontal federated learning settings but introduces data redundancy due to overlapping data among
clients and cannot handle feature mismatches between clients. As summarized in Table 1, these
methods encounter issues as shown in Figure 1, making them less effective for federated time series
generation where both feature and temporal misalignments are prevalent.

Preliminary on generative modeling with DDPMs For the generative backbone, we adopt the
Diffusion-TS architecture (Yuan & Qiao, 2024), which extends DDPMs Ho et al. (2020) to cap-
ture temporal patterns using a generative modeling process. DDPMs are models trained using
a forward noising and backward denoising process. The forward phase progressively adds ran-
dom Gaussian noise to the data s0 at diffusion step t, where the transition is parameterized by
q(st | st−1) = N (st;

√
1− βt st−1, βt I) with βt ∈ (0, 1), eventually transforming it into pure

noise sT ∼ N (0, I). The backward phase is where the model learns to reverse this noising pro-
cess. Starting from random noise sT ∼ N (0, I), it iteratively removes the added noise step by step
via pθ(st−1 | st) = N (st−1;µθ(st, t),Σθ(st, t)), to reconstruct a new data sample resembling the
original input distribution. The functions µθ and Σθ are generally estimated using a model.

Diffusion-TS extends standard DDPMs by incorporating mechanisms specifically designed for time
series characteristics such as trends and seasonality (Kitagawa & Gersch, 1984). Instead of treating
data points independently, it utilizes an encoder-decoder transformer architecture (Vaswani, 2017)
that processes entire sequences, effectively modeling temporal relationships. To handle trends,
Diffusion-TS decomposes the time series into components that represent slow-varying behaviors
over time. For capturing seasonality and periodic patterns, it employs frequency domain analy-
sis using the Fast Fourier Transform (FFT) (Cooley et al., 1969; Heckbert, 1995). By integrating
FFT, the model can analyze and reconstruct cyclical patterns (Ceneda et al., 2018) within the data,
allowing it to learn both time and frequency domain representations (Fons et al., 2022). This com-
bination enables Diffusion-TS to generate more accurate and realistic time series data by effectively
modeling complex temporal dynamics. Besides, Diffusion-TS supports both unconditional and con-
ditional generation. In the unconditional generation, the model produces new samples solely based
on the learned data distribution, starting from random noise and applying the learned denoising pro-
cess. In the conditional generation, Diffusion-TS utilizes gradient-based guidance during sampling
to incorporate the observed data y. At each diffusion step, the model refines its estimated time series
ŝ0 by adjusting it with a gradient term that enforces consistency with the observed data. The refine-
ment can be computed via s̃0(st, t; θ) = ŝ0(st, t; θ)+η∇st(∥y − ŝ0(st, t; θ)∥2+γ log p(st−1 | st)),
where η is a hyperparameter that controls the strength of the gradient guidance, and γ balances the
trade-off between fitting the observed data and maintaining the generative model’s prior distribution
p(st−1 | st). This iterative refinement ensures that the generated time series aligns with the pro-
vided observations and preserves the temporal patterns learned during training. Further details of
Diffusion-TS are shown in Appendix B.2.
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Figure 2: FedTDD Structure. First, the Distiller is pre-trained on a public dataset. Then, each
client uses the distiller and imputer to impute common and exclusive features, respectively. Finally,
synthetic data is sent back to the coordinator to expand the public dataset for the next round. The
order of execution(1-7) is labeled in the figure. Here the common features are A and B, and the
exclusive features are C and D.

3 FedTDD

In this work, we address the problem of collaborative time series imputation in the presence of tem-
poral and feature misalignments, without requiring the sharing of raw data. In a federated learning
setting, clients may possess different subsets of features. We categorize features into two types:
common features and exclusive features. Common features are those present in all clients and also
available in a public dataset, while exclusive features are unique to each client and not shared. For
example, market indices might be common features in financial data, while individual portfolio hold-
ings are exclusive. Our proposed framework, FedTDD, as shown in Figure 2, tackles this problem
using two models. A global distiller first imputes missing common features across clients. Local
imputer models then use the imputed common features to predict the missing exclusive features for
each client, addressing both temporal and feature misalignments. Furthermore, clients protect their
privacy by sharing only synthetic versions of the common features while collaboratively improving
the global distiller. This cycle of iterative imputation and model refinement ultimately converges to
yield good quality imputations, while ensuring that no raw data is shared.

3.1 PROBLEM DEFINITION

We consider a federated learning setup involving N clients and a coordinator. Each client i possesses
a time series dataset, denoted as Xi =

[
Xi

j,k

]
{j=1...T i,k=1...Ci}

, where T i is the number of time

steps, and Ci is the number of channels. These datasets can be split into two components, one for the
common features and one for the exclusive features, i.e., Xi = Xi

comm ∪Xi
ex. The coordinator holds

a public dataset Xpub =
[
Xpub

j,k

]
∀j;k∈Fcomm

, which contains data for the common features Fcomm but

without any missing values. This public dataset is time-indexed differently from the clients’ data
and provides a reliable reference for the common features. Each client’s time series data comes from
a distinct time interval, meaning that each client’s time indices j are unique. The feature set for each
client i, F i, consists of common features Fcomm, which are shared across all clients, and exclusive
features F i

ex, which are specific to each client. Thus, the overall feature set for client i is represented
as F i = Fcomm ∪ F i

ex. Conversely, clients may have missing values in both the common and
exclusive features. These missing values are indicated by a binary mask matrix Mi =

[
M i

j,k

]
∀j,k

,

4
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Algorithm 1: FedTDD
Input: Public dataset Xpub, clients’ datasets Xi

Result: Global distiller model D, local imputer models U i

1 Initialize: Train D on Xpub

2 for r = 1 to R do
3 for each client i do
4 Receive global distiller D
5 X̂i

comm ← D
(
Xi

comm, M
i
comm

)
; ▷ Impute common features

6 X̂i
ex ← U

(
Xi

ex, M
i
ex
)

; ▷ Impute exclusive features
7 Xi

train ← X̂i
comm ∪ X̂i

ex ; ▷ Combine with exclusive features
8 Train U i on Xi

train ; ▷ Train local imputer
9 X̂i ← U i(z), z ∼ N (0, I) ; ▷ Generate synthetic data

10 Send X̂i
comm from X̂i to coordinator

11 end
12 for each client i do
13 Select nr =

r

R
α · L sequences from X̂i

comm

14 Xpub ← Xpub ∪ X̂i
comm[1 : nr] ; ▷ Expand public dataset

15 end
16 Finetune D on updated Xpub

17 end

where M i
j,k = 1 if the value Xi

j,k is observed while 0 indicates it is missing. The mask can be split
into two parts: Mi

comm, which corresponds to missing data in the common features, and Mi
ex, which

corresponds to missing data in the exclusive features. The goal is to design a collaborative method
that enables clients to leverage shared knowledge and the public dataset to input the missing data
locally without sharing raw data. Table 4 summarises the mathematical notations used.

3.2 HYBRID FEDERATED LEARNING FOR IMPUTATION UNDER MISALIGNMENT

Algorithm 1 presents the overview of FedTDD. The framework consists of two key components: the
global distiller model D and the local imputer models U i. The global distiller D imputes missing
common features shared across all clients, while each client trains a local imputer U i to infer missing
exclusive features specific to their data. These components work together to address temporal and
feature misalignment by iteratively improving the imputation process over several rounds r ranging
from 1 to R.

The process begins with the coordinator training a global distiller model D using the public dataset
Xpub. D leverages a temporal DDPM backbone to apply a forward diffusion process by gradually
adding noise to the data and learns to reverse this process. During training, D conducts uncondi-
tional generation by starting from Gaussian noise ϵ and learning to approximate the data distribution
through the time and frequency domain components (Yuan & Qiao, 2024). Formally, we have

Ltime = E(j,k,t) |Mpub
j,k=1

[∥∥∥Xpub
j,k − X̃pub

j,k(X
pub
j,k,t, t, ϵ; θ)

∥∥∥2] and (1)

Lfreq = E(j,k,t) |Mpub
j,k=1

[∥∥∥FFT(Xpub
j,k)− FFT

(
X̃pub

j,k(X
pub
j,k,t, t, ϵ; θ)

)∥∥∥2] , (2)

where ϵ ∼ N (0, I), Xpub
j,k is the (j, k)-th entry of Xpub, X̃pub

j,k is the denoised estimate from D, and
FFT denotes the Fast Fourier Transform (Heckbert, 1995), which is a mathematical operation that
converts a finite-length time domain signal to its frequency domain representation. We take the
following objective

Ldistiller(Di) = E(j,k,t) |Mpub
j,k=1 [wt (λ1Ltime + λ2Lfreq)] , wt =

λγt(1− γ̄t)

δ2t
, (3)

where λ1 and λ2 control the balance between time and frequency losses while wt emphasizes learn-
ing at larger diffusion steps, with λ being a small constant. The parameter δt ∈ (0, 1) determines

5
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the amount of noise added at each forward diffusion step, where t is a diffusion time step uniformly
sampled from 1 to T during training. The cumulative product γ̄t =

∏t
v=1 γv , with γt = 1 − δt,

track how the original signal diminishes over time due to the added noise. By weighting the loss at
different steps, wt helps the model focus on reconstructing the signal under high-noise conditions.

After this initial training, the coordinator distributes the trained global distiller model D to all par-
ticipating clients. Each client i then utilizes D to impute their missing common features. Since
clients may have missing values in Xi

comm, they input their data along with the corresponding mask
Mi

comm to the distiller model, which will perform conditional generation to iteratively refine the
imputed data by sampling from the conditional distribution guided by the observed data, shown in
Equation 23. The imputation process follows X̂i

comm = D(Xi
comm,M

i
comm), where D reconstructs

only the missing values, indicated by Mi
comm = 0. Similarly, the local imputer imputes missing

values in Xi
ex by inputting their data along with the corresponding mask Mi

ex to the imputer model
via X̂i

ex = U(Xi
ex,M

i
ex). The imputed common features X̂i

comm are then combined with the avail-
able exclusive features X̂i

ex to form the training data Xi
train = X̂i

comm ∪ X̂i
ex for the local imputer.

Meanwhile, each client trains their local imputer model U i using Xi
train as the ground truth. Since

the imputed common features X̂i
comm are fully known (as they are outputs from the pre-trained and

fine-tuned D), they are entirely used as ground truth for training U i, regardless of the original mask
Mi

comm. For the exclusive features, only the observed entries indicated by the mask Mi
ex are used as

ground truth since the quality of the imputer’s generated data during training is not sufficient to be
used as ground truth. We define the loss mask as Mi

loss = 1i
comm ∪Mi

ex, where 1i
comm is a matrix of

ones corresponding to the common features of client i. This loss mask ensures that the reconstruc-
tion loss is computed over all entries of the imputed common features and the observed entries of
the exclusive features. The training loss for the imputer U i can be defined as follows:

Limputer(Ui) = E(j,k,t) |Mi
lossj,k

=1

[
wt

(
λ1Li

time + λ2Li
freq

)]
, (4)

where Li
time = E(j,k,t) |Mi

lossj,k
=1

[∥∥∥Xi
trainj,k − X̃i

trainj,k(X
i
trainj,k,t

, t; θ)
∥∥∥2] (5)

and Li
freq = E(j,k,t) |Mi

lossj,k
=1

[∥∥∥FFT(Xi
trainj,k)− FFT

(
X̃i

trainj,k(X
i
trainj,k,t

, t; θ)
)∥∥∥2] , (6)

where Xi
trainj,k is the (j, k)-th entry of Xi

train, X̃i
trainj,k is the denoised estimate from U . After train-

ing, each client uses the trained imputer U i to generate a synthetic dataset through unconditional
synthesis, which includes both the common features X̂i

comm and the exclusive features X̂i
ex. Starting

from Gaussian noise, the imputer generates samples X̂i = U i(z), z ∼ N (0, I), that capture the
distribution of both common and exclusive features.

To protect privacy, only the common features from the synthetic dataset, X̂i
comm, are shared with the

coordinator. This ensures that no raw or exclusive client data is exposed during the collaborative
learning. The coordinator uses the synthetic common feature data from the clients to expand its
public dataset. Rather than simply absorbing all the synthetic data, the coordinator carefully controls
the growth of the dataset by accepting a fraction of the sequences from each client. Specifically, the
coordinator adds r

Rα ∗ L, where L represents the length of the synthetic datasets X̂i
comm;∀i ∈

{1, 2, . . . , N}, α is a hyperparameter between 0 and 1, and the ratio of r and R yields a number that
linearly increases up to 1, allowing for a gradual expansion as the rounds increase. The coordinator
retrains the global distiller D using this expanded dataset. The addition of synthetic data enhances
the distiller’s ability to learn the patterns necessary for imputing missing common features.

The overall process creates an iterative cycle of improvement. As clients’ generative models, specif-
ically their local imputers, become more accurate with each round, the quality of the synthetic data
they generate also improves. This higher-quality synthetic data, in turn, improves the distiller model
at the coordinator, which benefits all clients when it is redistributed. Over several training rounds,
this mutual reinforcement drives both the global distiller and the local imputers to improve con-
tinuously. Ultimately, the process converges, yielding robust imputation models without requiring
clients to share their raw data.
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Figure 3: Illustrations of different baselines compared to FedTDD. The data in the coordinator,
also called public data, in Figure 3b, 3d and 3e consists only common features time series. Dashes
indicate temporal missing values.

4 EXPERIMENTS

We assess FedTDD’s performance by showing its advantages and disadvantages when applied to
multiple benchmark datasets. We leave the analysis of different training configurations in the Ap-
pendix C, where we examine the impact of limited public data, abundant sequences with missing
data, imbalanced data distributions and different aggregation strategies on model performance.

Datasets To assess the quality of synthetic data, we consider four real-world datasets and one
simulated dataset with different properties, such as the number of features, correlation, periodicity,
and noise levels. Each dataset is preprocessed using a sliding window technique (Yoon et al., 2019)
to segment the data into sequences of length 24 to capture meaningful temporal dependencies while
keeping the computational cost manageable. Stocks (Yoon et al., 2019) is the daily historical Google
stock data from 2004 to 2019 with highly correlated features. ETTh (Zhou et al., 2021) recorded the
electricity transformers hourly between July 2016 and July 2018, including load and oil temperature
data that consists of 7 features. Energy (Candanedo, 2017) from UCI appliances energy prediction
dataset with 10-minute intervals for about 4.5 months. fMRI (Smith et al., 2011) is a realistic
simulation of brain activity time series with 50 features. MuJoCo (Tunyasuvunakool et al., 2020) is
a physics-based simulation time series containing 14 features. We show the statistics of all datasets
in Appendix D.2.

Baselines We compare FedTDD against approaches show in Figure 3a, 3b, 3c and 3d. For the
Centralized* training, we aggregate all data from individual clients, including public data, into
a single location, where a global model is trained using the combined dataset, and this will be
trained with all available features in the dataset and without missing values. While Centralized
uses the same training procedure as Centralized*, it is, however, trained on a combined dataset
with missing values and corresponding features available from each client plus the public data.
To deal with differing features across clients, we create the combined dataset consisting of the total
number of features in the particular benchmark dataset and zero-fill any remaining features to ensure
uniformity. On the other hand, Local training involves training a separate model for each client using
only their local data, without any communication or data aggregation. This approach has to be done
to verify that FedTDD can perform relatively better than train locally. Finally, the Pre-trained
approach leverages a model trained on a public dataset and uses it to impute the common features
in local data from each client. Again, there is no data aggregation for this approach. In comparison,
FedTDD integrates the Pre-trained approach and applies data aggregation to it. We utilized a SOTA
diffusion-based multivariate time series generative model, Diffusion-TS (Yuan & Qiao, 2024), as
the backbone for these baselines and FedTDD. Alternatively, any other time series generative model
can be adopted in these approaches in a plug-and-play manner.

Evaluation metrics We quantitatively assess the quality of the generated synthetic data using four
key metrics (see Appendix D.3 for more details). Context-Fréchet Inception Distance (Context-
FID) score (Jeha et al., 2022) evaluates the similarity between the distribution of real and synthetic
time series data by computing the Fréchet distance. Correlational score (Liao et al., 2020) measures
the correlation between the features of multivariate time series in the synthetic data compared to its
real data. Discriminative score (Yoon et al., 2019) measures the realism of the synthetic data by
training a binary classifier to distinguish between real and synthetic data. Predictive score (Yoon
et al., 2019) evaluates the utility of the synthetic data by training a sequence-to-sequence model on
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Table 2: Results on multiple time series datasets. Bold indicates best performance.

Metric Method Stocks ETTh MuJoCo Energy fMRI

Context-FID

Centralized* 0.682 +/- 0.106 0.281 +/- 0.040 0.782 +/- 0.138 0.533 +/- 0.082 1.737 +/- 0.125

Centralized 3.548 +/- 0.990 8.870 +/- 2.295 10.00 +/- 2.814 9.343 +/- 2.808 13.56 +/- 3.357

Local 1.648 +/- 0.229 1.313 +/- 0.188 0.751 +/- 0.121 1.179 +/- 0.179 1.694 +/- 0.153

Pre-trained 1.047 +/- 0.169 0.326 +/- 0.040 0.617 +/- 0.090 0.412 +/- 0.054 1.411 +/- 0.102
FedTDD 0.675 +/- 0.087 0.271 +/- 0.038 0.529 +/- 0.068 0.376 +/- 0.056 1.459 +/- 0.099

Correlational

Centralized* 0.061 +/- 0.043 0.253 +/- 0.094 1.989 +/- 0.247 5.231 +/- 1.294 7.900 +/- 0.384

Centralized 0.769 +/- 0.336 0.340 +/- 0.097 2.230 +/- 0.518 5.681 +/- 0.634 18.07 +/- 2.311

Local 0.156 +/- 0.120 0.239 +/- 0.079 1.298 +/- 0.260 3.447 +/- 0.838 5.992 +/- 0.383
Pre-trained 0.077 +/- 0.052 0.165 +/- 0.074 1.323 +/- 0.171 2.821 +/- 0.651 6.049 +/- 0.349

FedTDD 0.058 +/- 0.050 0.161 +/- 0.064 1.296 +/- 0.215 2.800 +/- 0.686 6.017 +/- 0.364

Discriminative

Centralized* 0.136 +/- 0.091 0.199 +/- 0.061 0.297 +/- 0.108 0.230 +/- 0.080 0.422 +/- 0.074

Centralized 0.476 +/- 0.042 0.475 +/- 0.017 0.474 +/- 0.024 0.496 +/- 0.006 0.477 +/- 0.030

Local 0.340 +/- 0.153 0.298 +/- 0.060 0.200 +/- 0.092 0.329 +/- 0.087 0.397 +/- 0.061
Pre-trained 0.175 +/- 0.117 0.115 +/- 0.060 0.208 +/- 0.068 0.141 +/- 0.068 0.419 +/- 0.051

FedTDD 0.185 +/- 0.105 0.106 +/- 0.061 0.153 +/- 0.120 0.153 +/- 0.072 0.414 +/- 0.051

Predictive

Centralized* 0.040 +/- 0.000 0.127 +/- 0.003 0.112 +/- 0.015 0.292 +/- 0.009 0.137 +/- 0.004

Centralized 0.047 +/- 0.012 0.223 +/- 0.020 0.165 +/- 0.060 0.427 +/- 0.053 0.233 +/- 0.051

Local 0.043 +/- 0.003 0.118 +/- 0.011 0.048 +/- 0.006 0.204 +/- 0.012 0.135 +/- 0.006

Pre-trained 0.046 +/- 0.001 0.104 +/- 0.004 0.052 +/- 0.004 0.177 +/- 0.005 0.133 +/- 0.006

FedTDD 0.041 +/- 0.001 0.101 +/- 0.004 0.048 +/- 0.004 0.175 +/- 0.006 0.133 +/- 0.004

the synthetic data and measuring its performance on real data. All evaluation metrics are computed
based on the respective features of the individual clients and then averaged over five trials, followed
by calculating the overall average across the number of clients. The quality of synthetic data is
considered the “best” when all metrics approach 0, meaning lower values indicate better quality.

Training configurations We run FedTDD and the baselines mentioned above with ten clients, five
global rounds, 7500 local epochs for the first round, and 5000 for the rest. Besides, the coordinator
trains on the public data consisting of common features, and each client contributes a set of features,
which is the combination of common and exclusive features. The number of common features is
around 50% of the total number of features in the original dataset. On the other hand, we use
public ratio (PR) to manipulate the proportion of the public data that has to be reserved from the
entire dataset before partitioning the dataset to all clients. Split ratio (SR) divides all sequences into
two groups. In the first group, a mask is applied to just the common features, while in the second
group, the mask is applied to all features. Moreover, missing ratio (MR) is the missing rate to
mask on a sequence of multivariate time series, and we consider the missing scenario as shown in
Appendix D.4. In the main experiments, we set PR, SR, and MR to 0.5. All the hyperparameters
are listed in Appendix D.5.

4.1 TIME SERIES GENERATION

In Table 2, we quantitatively analyze the quality of unconditionally generated 24-length time series
for diverse time series datasets. FedTDD shows a strong performance comparable to the Central-
ized* approach. The proposed aggregation mechanism during fine-tuning proved essential to prevent
the degradation of the coordinator model’s performance and, in turn, the client models. By doing
this, we achieved strong results across most datasets. We also present the generated synthetic sam-
ples of one representative client for ETTh and fMRI datasets in Figure 4.

Challenges on fMRI dataset We observe that the fMRI dataset’s imputation quality was lower
than other datasets, as the mean square error between the imputed and real data is greater. Con-
sequently, client models degraded due to training on low-quality imputed data. This suggests that
the imputation strategy may need further refinement for such datasets, where the data distribution
and complexity present greater challenges for accurate synthetic data generation and imputation.
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Figure 4: Real samples and synthetic samples generated unconditionally from FedTDD and Local.
The first and second rows of samples are from ETTh and fMRI datasets, respectively.

Besides, the Local approach achieves the best Correlational and Discriminative scores for the fMRI
dataset. However, we cannot conclude that training locally is the best overall approach for fMRI.
As we mentioned, the low performance of FedTDD and Pre-trained is primarily due to the poor
quality of the imputed data, which affects training. This shows the advantage of Local training not
relying on imputed data, making it seem better suited for the fMRI dataset compared to FedTDD
and Pre-trained.

Comparison between Centralized and Local training Both Centralized and Local approaches
are trained on datasets with missing values, but their performance differs significantly. This could be
due to the different model architectures used in each approach. As aforementioned, the Centralized
model is trained on a combined dataset where the additional features are filled with zeros, which
results in the worst performance. This shows the advantage of having an individual model trained
locally for each client.

4.2 ABLATION STUDY

In Table 3, we show the result of reducing the number of common features in FedTDD. We set the
number of common features to around 25% of the total number of features in the corresponding
dataset. As a result, we can observe the robustness of FedTDD when dealing with a relatively small
number of common features across most datasets. However, FedTDD does not perform as expected
on the fMRI dataset because of the poor quality of imputed data, as mentioned in Section 4.1. On
the other hand, the performance of Centralized training slightly decreased due to more zeros filling
out the combined dataset, especially in the public data.

5 CONCLUSION

While federated learning is increasingly applied for different regreasing tasks for time series (TS),
it is still limited in handling generative tasks, especially when time series features are vertically
partitioned and temporarily misaligned. We propose a novel federated TS generation framework,
FedTDD, which trains TS diffusion model by leveraging the self-imputing capability of the diffusion
model and globally aggregating from clients’ knowledge through data distillation and clients’ syn-
thetic data. The central component of FedTDD is a distiller at the coordinator that first is pre-trained
on the public datasets and then periodically fine-tuned by the aggregated intermediate synthetic data
from the clients. Clients keep their personalized TS diffusion models and train them with local data
and synthetic data of the latest distiller periodically. Our extensive evaluation across five datasets
shows that FedTDD effectively overcomes the hurdle of feature partition and temporal misalign-
ment, achieving improvements of up to 79.4% and 62.8% over local training on Context-FID and
Correlational scores, while delivering performance comparable to centralized baselines.

6 REPRODUCIBILITY AND ETHICS STATEMENT

Reproducibility To ensure the reproducibility of our research, we have open-sourced the code
for the various federated learning techniques and the time series diffusion models, as shown in
https://anonymous.4open.science/r/FedTDD/. This code is available in a publicly
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Table 3: Ablation study for a relatively small number of common features. Bold indicates best
performance.

Metric Method Stocks ETTh MuJoCo Energy fMRI

Context-FID

Centralized* 0.682 +/- 0.106 0.281 +/- 0.040 0.782 +/- 0.138 0.533 +/- 0.082 1.737 +/- 0.125

Centralized 3.733 +/- 0.959 11.54 +/- 3.894 14.68 +/- 4.263 13.17 +/- 3.035 15.34 +/- 4.789

Local 1.982 +/- 0.234 0.824 +/- 0.105 0.660 +/- 0.100 0.844 +/- 0.127 1.220 +/- 0.098

Pre-trained 0.738 +/- 0.142 0.316 +/- 0.032 0.547 +/- 0.099 0.381 +/- 0.066 1.178 +/- 0.104
FedTDD 0.680 +/- 0.123 0.267 +/- 0.036 0.510 +/- 0.072 0.331 +/- 0.051 1.196 +/- 0.098

Correlational

Centralized* 0.061 +/- 0.043 0.253 +/- 0.094 1.989 +/- 0.247 5.231 +/- 1.294 7.900 +/- 0.384

Centralized 0.697 +/- 0.168 0.523 +/- 0.095 2.317 +/- 0.597 5.781 +/- 0.924 31.35 +/- 4.923

Local 0.091 +/- 0.052 0.167 +/- 0.057 1.079 +/- 0.196 1.984 +/- 0.594 4.929 +/- 0.395
Pre-trained 0.028 +/- 0.027 0.132 +/- 0.054 1.115 +/- 0.233 1.795 +/- 0.577 5.033 +/- 0.323

FedTDD 0.025 +/- 0.022 0.137 +/- 0.064 1.060 +/- 0.209 1.737 +/- 0.282 5.005 +/- 0.317

Discriminative

Centralized* 0.136 +/- 0.091 0.199 +/- 0.061 0.297 +/- 0.108 0.230 +/- 0.080 0.422 +/- 0.074

Centralized 0.475 +/- 0.041 0.469 +/- 0.020 0.479 +/- 0.026 0.494 +/- 0.010 0.484 +/- 0.023

Local 0.300 +/- 0.116 0.208 +/- 0.070 0.190 +/- 0.088 0.241 +/- 0.071 0.398 +/- 0.058
Pre-trained 0.119 +/- 0.088 0.116 +/- 0.067 0.163 +/- 0.088 0.130 +/- 0.058 0.418 +/- 0.050

FedTDD 0.112 +/- 0.097 0.107 +/- 0.078 0.157 +/- 0.104 0.120 +/- 0.067 0.412 +/- 0.057

Predictive

Centralized* 0.040 +/- 0.000 0.127 +/- 0.003 0.112 +/- 0.015 0.292 +/- 0.009 0.137 +/- 0.004

Centralized 0.168 +/- 0.025 0.196 +/- 0.027 0.198 +/- 0.049 0.314 +/- 0.052 0.223 +/- 0.029

Local 0.084 +/- 0.038 0.114 +/- 0.009 0.069 +/- 0.010 0.199 +/- 0.007 0.130 +/- 0.005
Pre-trained 0.028 +/- 0.007 0.108 +/- 0.004 0.063 +/- 0.007 0.190 +/- 0.005 0.132 +/- 0.005

FedTDD 0.028 +/- 0.005 0.107 +/- 0.005 0.062 +/- 0.006 0.186 +/- 0.004 0.130 +/- 0.005

accessible repository under an anonymous account. Furthermore, all experiments conducted as part
of this study utilized publicly available datasets.

Ethics statement In this research on federated learning over temporally and feature-misaligned
datasets, we carefully considered both the positive and potential negative effects. By leveraging fed-
erated learning, we enhance data privacy, as no raw data is centralized, reducing risks of sensitive
information exposure. However, misaligned datasets may introduce biases that impact model fair-
ness, which we actively worked to mitigate. While our work aims to advance privacy-preserving AI,
we acknowledge potential trade-offs in performance and fairness, which are transparently reported
to inform future research and applications.
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A NOTATIONS

Table 4 shows the notations used in FedTDD.

Table 4: Descriptions of notations used in FedTDD.

Variable Description

Data Variables
Xi,Xi

j,k Time series dataset of client i and data point at time index j, feature k

X̃pub
j,k , X̃

i
trainj,k The denoised estimate from D and U

X̂i Synthetic dataset generated by client i

Mask Variables
Mi Binary mask matrix indicating observed data for client i

Model Variables
D Global distiller model trained by the coordinator
U i Local imputer model of client i
FFT Fast Fourier Transform function

Indices and Parameters
N Number of clients participating in federated learning
T i Number of time steps in client i’s dataset
Ci Number of channels (features) in client i’s dataset
r Round index in iterative training (from 1 to R)
R Total number of training rounds
α Hyperparameter controlling the rate of data expansion
t Diffusion time step
ϵ Standard Gaussian noise term

Feature Sets
Fcomm Set of common features shared across all clients
F i Feature set of client i
F i

ex Exclusive features specific to client i

Loss Functions
Ldistiller(D) Loss function for the distiller model D
Limputer(Ui) Loss function for imputer model U i

B BACKGROUND

In this section, we provide a comprehensive overview of Denoising Diffusion Probabilistic Mod-
els (DDPMs) (Ho et al., 2020) and introduce Diffusion-TS (Yuan & Qiao, 2024), an extension of
DDPMs specifically designed for time series data. We aim to highlight how Diffusion-TS builds
upon the foundational principles of DDPMs, particularly focusing on the unique challenges of mod-
eling temporal information inherent in time series data.

B.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DDPMs) are a class of generative models that have
demonstrated remarkable success in modeling complex data distributions, especially in the domain
of image generation. The core idea behind DDPMs is to generate new data samples by reversing
a predefined noising process. This involves two main stages: a forward diffusion process that pro-
gressively adds noise to the data, and a reverse diffusion process that learns to remove the noise to
recover the original data distribution.

B.1.1 FORWARD DIFFUSION PROCESS

The forward diffusion process incrementally corrupts the original data s0 ∈ Rd through a Markov
chain s0, s1, . . . , sT . At each time step t, Gaussian noise is added to the data as follows:

q(st | st−1) = N (st;
√

1− βt st−1, βt I), (7)
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where βt ∈ (0, 1) is a predefined variance schedule that controls the amount of noise added at each
step, and I is the identity matrix. The sequence {βt} is typically designed so that βt increases over
time, ensuring that the data becomes more corrupted as t increases.

The overall forward process can be expressed as:

q(s1:T | s0) =
T∏

t=1

q(st | st−1). (8)

As t approaches T , the data st becomes increasingly noisy, and in the limit sT approaches an
isotropic Gaussian distribution N (0, I). This property is crucial because it allows the reverse process
to start from a known simple distribution.

An important feature of the forward process is that we can directly sample st at any time step t from
s0 without simulating all previous steps. By defining γt = 1−βt and γ̄t =

∏t
v=1 γv , we can derive:

q(st | s0) = N (st;
√
γ̄t s0, (1− γ̄t) I). (9)

This expression shows that st is a linear combination of the original data s0 and Gaussian noise,
scaled by the terms

√
γ̄t and

√
1− γ̄t, respectively.

Using the reparameterization trick (Kingma, 2013), which is widely used in variational autoen-
coders, we can write:

st =
√
γ̄t s0 +

√
1− γ̄t ϵ (10)

where ϵ ∼ N (0, I) is a standard Gaussian noise term. This formulation allows us to efficiently
compute st and backpropagate gradients during training.

B.1.2 REVERSE DIFFUSION PROCESS

The goal of the reverse diffusion process is to recover the original data s0 from the noisy data sT .
This involves learning a reverse Markov chain parameterized by pθ(st−1 | st), where θ represents
the model parameters:

pθ(st−1 | st) = N (st−1;µθ(st, t),Σθ(st, t)). (11)

Starting from sT ∼ N (0, I), we iteratively sample st−1 from pθ(st−1 | st) until we reach s0. The
functions µθ and Σθ are typically modeled using deep neural networks.

B.1.3 TRAINING OBJECTIVE AND VARIATIONAL LOWER BOUND

Directly maximizing the data likelihood Es0 [log pθ(s0)] is intractable due to the high-dimensional
integrals involved. Instead, we optimize a variational lower bound (VLB) on the negative log-
likelihood:

Jvlb = − log pθ(s0 | s1)+
T∑

t=2

DKL

(
q(st−1 | st, s0)

∥∥∥∥ pθ(st−1 | st)
)
+DKL

(
q(sT | s0)

∥∥∥∥ p(sT )) .

(12)
In this expression, DKL denotes the Kullback-Leibler divergence between two probability distribu-
tions. The first term measures the discrepancy between the true posterior and the model’s approxi-
mation at the final step, the middle term sums over the discrepancies at each intermediate step, and
the last term ensures that the model’s prior at t = T matches the known distribution p(sT ).

B.1.4 SIMPLIFIED TRAINING OBJECTIVE

Ho et al. (2020) proposed a simplified training objective that focuses on predicting the noise ϵ added
to s0 at each time step. By reparameterizing the reverse process, they showed that the variational
lower bound can be simplified to the following loss function:

Jsimple = Et,s0,ϵ

[
∥ϵ− ϵθ(st, t)∥2

]
, (13)

where ϵθ(st, t) is the model’s estimate of the noise at time step t. This loss function is computation-
ally efficient and has been empirically shown to produce high-quality generative models.
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B.1.5 RELATION TO SCORE MATCHING

Estimating ϵ is closely related to estimating the score function, which is the gradient of the log
probability density function with respect to the data. Specifically, the score function ∇st log q(st |
s0) can be expressed as:

∇st log q(st | s0) = − 1

1− γ̄t

(
st −

√
γ̄t s0

)
= − 1√

1− γ̄t
ϵ. (14)

This shows that predicting ϵ is equivalent to learning the scaled score function of the noisy data
distribution.

B.1.6 SAMPLING PROCEDURE

After training, new data samples can be generated by starting from sT ∼ N (0, I) and iteratively
applying the learned reverse transitions. The sampling process at each step t is given by:

st−1 =
1

√
γt

(
st −

1− γt√
1− γ̄t

ϵθ(st, t)

)
+ σt z, (15)

where σt is a hyperparameter controlling the randomness in the sampling process, and z ∼ N (0, I).
This equation updates st towards the estimated mean while adding some noise to maintain stochas-
ticity.

B.2 DIFFUSION-TS: INTERPRETABLE DIFFUSION FOR TIME SERIES

While DDPMs have been successful in modeling high-dimensional data such as images, they do not
explicitly account for the unique characteristics of time series data, which often include temporal
dependencies, trends, and seasonal patterns. Diffusion-TS (Yuan & Qiao, 2024) extends the DDPM
framework to address these challenges by incorporating an interpretable decomposition architecture
specifically designed for time series analysis.

B.2.1 ADAPTED DIFFUSION FRAMEWORK FOR TIME SERIES

In Diffusion-TS, both the forward and reverse diffusion processes are adapted to capture the temporal
structures inherent in time series data.

Forward process The forward process remains similar to that of standard DDPMs but is tailored
to handle sequential data. The time series data s0 ∈ Rd, where d represents the sequence length, is
gradually corrupted using a variance schedule δt:

q(st | st−1) = N
(
st;
√
1− δt st−1, δt I

)
, (16)

where δt ∈ (0, 1) controls the noise level at each diffusion step. The cumulative product γ̄t =∏t
v=1 γv , with γt = 1− δt, allows for direct computation of st from s0.

Reverse process In the reverse process, Diffusion-TS modifies the parameterization by directly
predicting an estimate of the original time series ŝ0(st, t; θ). The reverse transition is formulated as:

st−1 =

√
γ̄t−1δt
1− γ̄t

ŝ0(st, t; θ) +

√
γt(1− γ̄t−1)

1− γ̄t
st + σt zt, (17)

where σt =
√
δt and zt ∼ N (0, I). By predicting ŝ0 directly, the model focuses on reconstructing

the original time series, which is crucial for capturing temporal dependencies.

B.2.2 DECOMPOSITION-BASED MODEL ARCHITECTURE

To effectively model time series data, Diffusion-TS employs a decomposition-based architecture that
explicitly models trend and seasonality components, inspired by classical time series decomposition
methods.
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Trend synthesis The trend component vtr captures the long-term progression in the data. It is
synthesized using polynomial regression (Oreshkin et al., 2019; Desai et al., 2021):

vtr =

D∑
i=1

(
C · Linear

(
w

(i)
tr

)
+ x

(i)
tr

)
, (18)

where D is the number of decoder layers in the transformer architecture, C = [1, c, c2, . . . , cp]
is a matrix of polynomial basis vectors, with c = [0, 1, . . . , d − 1]T /d representing normalized
time indices and p being the polynomial degree, w(i)

tr are learnable weights for the i-th layer’s trend
component, and x

(i)
tr is the mean output from the i-th decoder block, capturing the average behavior.

This approach allows the model to capture smooth and continuous changes over time.

Seasonality and residual synthesis The seasonality component s(i)seas captures repeating patterns
or cycles in the data using Fourier series (De Livera et al., 2011; Woo et al., 2022). The amplitude
A

(k)
i and phase Φ

(k)
i of the k-th frequency component are computed as follows:

A
(k)
i =

∣∣∣F (w(i)
seas

)
k

∣∣∣ , Φ
(k)
i = arg

(
F
(
w(i)

seas

)
k

)
, (19)

s(i)seas =

K∑
k=1

A
(k)
i cos

(
2πfk c+Φ

(k)
i

)
, (20)

where F denotes the Fourier Transform applied to the weights w(i)
seas, A

(k)
i and Φ

(k)
i are the amplitude

and phase of the k-th frequency component, K is the number of significant frequencies selected
based on their amplitudes, and fk is the k-th frequency component. The residual component r
accounts for any remaining patterns or noise not captured by the trend and seasonality components.
The final reconstructed time series is obtained by combining these components:

ŝ0(st, t; θ) = vtr +

D∑
i=1

s(i)seas + r. (21)

B.2.3 FOURIER-BASED TRAINING OBJECTIVE

To ensure the model effectively learns and disentangles the time series components, Diffusion-TS
introduces a loss function that operates in both the time and frequency domains:

Jθ = Et,s0

[
wt

(
λ1 ∥s0 − ŝ0(st, t; θ)∥2 + λ2 ∥FFT(s0)− FFT (ŝ0(st, t; θ))∥2

)]
, (22)

where wt = λγt(1−γ̄t)
δ2t

is a weighting term that emphasizes learning at larger diffusion steps, with
λ being a small constant. λ1 and λ2 are hyperparameters that balance the contributions of the time-
domain loss and the frequency-domain loss, and FFT denotes the Fast Fourier Transform, which
transforms the time series into the frequency domain. By incorporating the frequency-domain loss,
the model is encouraged to accurately capture periodic components, improving its ability to model
seasonality. Using mean squared error loss to train this denoising model is refer to (Ho et al., 2020)

B.2.4 HANDLING TEMPORAL INFORMATION DIFFERENTLY

Diffusion-TS differs from standard DDPMs in several key aspects tailored for time series data.
First, the model explicitly separates the time series into trend, seasonality, and residual compo-
nents, enhancing interpretability and modeling capabilities. Second, by incorporating a loss in the
frequency domain, the model emphasizes the learning of periodic patterns, which are prevalent in
time series data. Lastly, the use of an encoder-decoder transformer architecture allows the model to
capture long-range temporal dependencies and complex sequential patterns. These adaptations en-
able Diffusion-TS to effectively model the intricate temporal dynamics present in time series data,
addressing the limitations of standard DDPMs that do not explicitly account for temporal structures.
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Table 5: Results on multiple time series datasets when PR is 0.25. Bold indicates best performance.

Metric Method Stocks ETTh MuJoCo Energy fMRI

Context-FID

Centralized* 0.389 +/- 0.045 0.179 +/- 0.022 0.591 +/- 0.129 0.500 +/- 0.084 1.239 +/- 0.095

Centralized 4.255 +/- 0.808 7.405 +/- 2.354 8.273 +/- 2.918 12.75 +/- 4.210 11.37 +/- 2.654

Local 1.372 +/- 0.253 1.240 +/- 0.126 0.956 +/- 0.213 1.838 +/- 0.265 1.491 +/- 0.096

Pre-trained 0.483 +/- 0.066 0.300 +/- 0.039 0.567 +/- 0.147 0.488 +/- 0.077 1.267 +/- 0.086
FedTDD 0.367 +/- 0.048 0.230 +/- 0.033 0.562 +/- 0.136 0.468 +/- 0.071 1.322 +/- 0.087

Correlational

Centralized* 0.056 +/- 0.052 0.203 +/- 0.061 1.535 +/- 0.245 4.159 +/- 0.933 6.603 +/- 0.277

Centralized 0.472 +/- 0.283 0.255 +/- 0.050 1.968 +/- 0.221 4.951 +/- 0.487 16.73 +/- 1.074

Local 0.120 +/- 0.069 0.215 +/- 0.078 1.103 +/- 0.181 2.999 +/- 0.763 5.031 +/- 0.238
Pre-trained 0.069 +/- 0.052 0.134 +/- 0.046 1.084 +/- 0.173 2.258 +/- 0.553 5.196 +/- 0.203

FedTDD 0.044 +/- 0.038 0.140 +/- 0.058 1.058 +/- 0.148 2.159 +/- 0.521 5.297 +/- 0.261

Discriminative

Centralized* 0.124 +/- 0.100 0.103 +/- 0.052 0.320 +/- 0.064 0.239 +/- 0.055 0.383 +/- 0.054

Centralized 0.473 +/- 0.032 0.430 +/- 0.020 0.437 +/- 0.036 0.489 +/- 0.009 0.433 +/- 0.041

Local 0.331 +/- 0.107 0.285 +/- 0.050 0.257 +/- 0.096 0.351 +/- 0.048 0.391 +/- 0.044
Pre-trained 0.178 +/- 0.107 0.121 +/- 0.065 0.261 +/- 0.084 0.137 +/- 0.051 0.419 +/- 0.041

FedTDD 0.095 +/- 0.098 0.106 +/- 0.049 0.258 +/- 0.056 0.153 +/- 0.047 0.409 +/- 0.044

Predictive

Centralized* 0.034 +/- 0.001 0.126 +/- 0.008 0.090 +/- 0.010 0.283 +/- 0.007 0.128 +/- 0.005

Centralized 0.042 +/- 0.003 0.210 +/- 0.016 0.187 +/- 0.045 0.278 +/- 0.024 0.183 +/- 0.023

Local 0.037 +/- 0.001 0.116 +/- 0.007 0.042 +/- 0.005 0.201 +/- 0.008 0.128 +/- 0.004

Pre-trained 0.036 +/- 0.000 0.102 +/- 0.004 0.038 +/- 0.003 0.171 +/- 0.003 0.129 +/- 0.004

FedTDD 0.036 +/- 0.001 0.100 +/- 0.005 0.036 +/- 0.004 0.171 +/- 0.003 0.128 +/- 0.003

B.2.5 CONDITIONAL GENERATION FOR TIME SERIES APPLICATIONS

For practical applications like imputation (filling missing values) and forecasting (predicting future
values), Diffusion-TS extends its framework to conditional generation. Given observed data y, the
model aims to generate samples consistent with this data. To achieve this, Diffusion-TS employs
gradient-based guidance during the sampling process. The estimated time series ŝ0 is adjusted at
each diffusion step using:

s̃0(st, t; θ) = ŝ0(st, t; θ) + η∇st

(
∥y − ŝ0(st, t; θ)∥2 + γ log p(st−1 | st)

)
, (23)

where η is a hyperparameter controlling the strength of the gradient guidance, γ balances the trade-
off between fitting the observed data and adhering to the learned data distribution, and log p(st−1 |
st) represents the model’s prior, ensuring that the generated data remains realistic. By iteratively
refining s̃0 using gradient information, the model generates samples that not only match the observed
data but also maintain the overall temporal coherence and patterns learned during training.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 LIMITED PUBLIC DATA AVAILABILITY

We analyze the performance of FedTDD against other baselines when the public data is limited
by reducing the public ratio (PR) from 0.5 to 0.25. As shown in Table 5, FedTDD maintains its
performance (ETTh and MuJoCo declined slightly) even with limited public data, and the results
are notably better compared to those with a PR of 0.5 in Table 2. This improvement is due to the
increased amount of client data as PR decreases, which allows for better time series generation as
clients train on more data. Nevertheless, FedTDD continues to struggle with the fMRI dataset, as
discussed in Section 4.1.

C.2 ABUNDANCE OF SEQUENCES WITH INCOMPLETE DATA

We assess the robustness of FedTDD in handling a large number of sequences with missing values
across individual clients by decreasing the split ratio (SR) from 0.5 to 0.25. As explained in Sec-
tion 4, decreasing the SR increases the missingness across both common and exclusive features in
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Table 6: Results on multiple time series datasets when SR is 0.25. Bold indicates best performance.

Metric Method Stocks ETTh MuJoCo Energy fMRI

Context-FID

Centralized* 0.682 +/- 0.106 0.281 +/- 0.040 0.782 +/- 0.138 0.533 +/- 0.082 1.737 +/- 0.125

Centralized 4.373 +/- 1.392 8.080 +/- 2.113 10.35 +/- 3.222 8.951 +/- 2.331 15.01 +/- 5.081

Local 3.010 +/- 0.438 1.237 +/- 0.144 0.851 +/- 0.110 1.202 +/- 0.156 2.055 +/- 0.187

Pre-trained 0.802 +/- 0.122 0.413 +/- 0.069 0.642 +/- 0.078 0.472 +/- 0.066 1.372 +/- 0.106
FedTDD 0.699 +/- 0.104 0.365 +/- 0.058 0.636 +/- 0.076 0.433 +/- 0.058 1.462 +/- 0.118

Correlational

Centralized* 0.061 +/- 0.043 0.253 +/- 0.094 1.989 +/- 0.247 5.231 +/- 1.294 7.900 +/- 0.384

Centralized 0.375 +/- 0.227 0.329 +/- 0.076 2.135 +/- 0.454 5.686 +/- 0.552 17.63 +/- 2.684

Local 0.192 +/- 0.143 0.241 +/- 0.076 1.311 +/- 0.199 3.576 +/- 0.678 6.439 +/- 0.529

Pre-trained 0.082 +/- 0.063 0.157 +/- 0.052 1.365 +/- 0.254 2.958 +/- 0.762 6.112 +/- 0.329
FedTDD 0.069 +/- 0.064 0.153 +/- 0.069 1.308 +/- 0.240 2.909 +/- 0.905 6.211 +/- 0.372

Discriminative

Centralized* 0.136 +/- 0.091 0.199 +/- 0.061 0.297 +/- 0.108 0.230 +/- 0.080 0.422 +/- 0.074

Centralized 0.459 +/- 0.051 0.471 +/- 0.025 0.457 +/- 0.042 0.498 +/- 0.003 0.486 +/- 0.019

Local 0.290 +/- 0.122 0.285 +/- 0.079 0.227 +/- 0.117 0.341 +/- 0.077 0.420 +/- 0.062
Pre-trained 0.200 +/- 0.130 0.174 +/- 0.079 0.232 +/- 0.098 0.150 +/- 0.068 0.440 +/- 0.050

FedTDD 0.176 +/- 0.127 0.153 +/- 0.071 0.188 +/- 0.085 0.149 +/- 0.065 0.431 +/- 0.054

Predictive

Centralized* 0.040 +/- 0.000 0.127 +/- 0.003 0.112 +/- 0.015 0.292 +/- 0.009 0.137 +/- 0.004

Centralized 0.044 +/- 0.006 0.237 +/- 0.002 0.218 +/- 0.044 0.464 +/- 0.033 0.374 +/- 0.020

Local 0.042 +/- 0.003 0.121 +/- 0.013 0.049 +/- 0.007 0.202 +/- 0.011 0.131 +/- 0.006

Pre-trained 0.044 +/- 0.002 0.108 +/- 0.003 0.058 +/- 0.006 0.177 +/- 0.006 0.131 +/- 0.004

FedTDD 0.044 +/- 0.003 0.105 +/- 0.004 0.050 +/- 0.005 0.181 +/- 0.006 0.130 +/- 0.003

client data. In Table 6, we observe a slight decline in some metrics, but overall FedTDD performs
well and even outperforms Local and Pre-trained baselines in terms of Context-FID, Correlational
and Discriminative scores across most datasets. Again, FedTDD continues to underperform on the
fMRI dataset, as mentioned in Section 4.1.

C.3 IMBALANCED DATA DISTRIBUTIONS

We now evaluate the performance of FedTDD against other baselines presented in Table 7 using im-
balanced partitioned datasets, where each partition may contain distinct data distributions. FedTDD
generally performs better in terms of Context-FID score across most datasets except for MuJoCo
and fMRI. This highlights the strength of FedTDD in maintaining synthetic data distribution with
real data in most imbalanced dataset scenarios.

Performance of Local training The results show that training locally without communication
with the coordinator is comparable to all other methods, particularly outperforming Centralized*
and Centralized in most metrics. Notably, it achieves the best Discriminative score across datasets,
especially in MuJoCo, Energy and fMRI, indicating that locally trained models generate more re-
alistic synthetic data. In contrast, FedTDD and other baselines (excluding Local) perform below
expectations, especially FedTDD and Pre-trained. This is primarily due to the evaluation of syn-
thetic data using test data with different distributions corresponding to each client, while other ap-
proaches can generate more generalized synthetic data. For instance, the clients in FedTDD and
Pre-trained learn different data distributions during the coordinator’s imputation process. FedTDD
performs even worse than Pre-trained due to the additional data aggregation and fine-tuning process.
Moreover, Centralized* and Centralized approaches train all the data including public data at once,
which leads to the worst performance. As a result, local models might be more suited for generating
synthetic data that is distributed closer to the respective test data.

C.4 AGGREGATION STRATEGY

We evaluate the effectiveness of FedTDD on the Stocks and fMRI datasets by comparing our pro-
posed aggregation strategy with three other aggregation settings: (1) 1 : 0, e.g. fine-tune with 100
public samples and 0 synthetic samples, (2) 1 : 1, e.g. fine-tune with 100 public samples and 100
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Table 7: Results on multiple imbalanced partitioned datasets. Bold indicates best performance.

Metric Method Stocks ETTh MuJoCo Energy fMRI

Context-FID

Centralized* 1.911 +/- 0.198 1.736 +/- 0.226 1.933 +/- 0.376 3.361 +/- 0.510 2.311 +/- 0.178

Centralized 5.057 +/- 1.228 11.45 +/- 2.225 11.39 +/- 4.001 11.78 +/- 3.678 15.01 +/- 3.275

Local 1.355 +/- 0.180 0.813 +/- 0.097 0.703 +/- 0.117 0.961 +/- 0.079 1.676 +/- 0.144

Pre-trained 0.568 +/- 0.062 0.320 +/- 0.046 0.644 +/- 0.089 0.583 +/- 0.066 1.540 +/- 0.108
FedTDD 0.463 +/- 0.066 0.258 +/- 0.035 0.675 +/- 0.088 0.570 +/- 0.057 1.549 +/- 0.103

Correlational

Centralized* 0.153 +/- 0.105 0.383 +/- 0.093 2.234 +/- 0.316 9.474 +/- 1.755 7.985 +/- 0.449

Centralized 0.900 +/- 0.270 0.441 +/- 0.079 2.403 +/- 0.533 6.711 +/- 0.766 19.19 +/- 2.149

Local 0.162 +/- 0.117 0.173 +/- 0.070 1.282 +/- 0.204 3.095 +/- 0.874 6.075 +/- 0.351
Pre-trained 0.090 +/- 0.083 0.131 +/- 0.056 1.260 +/- 0.257 2.515 +/- 0.699 6.171 +/- 0.461

FedTDD 0.096 +/- 0.095 0.151 +/- 0.055 1.274 +/- 0.216 2.464 +/- 0.733 6.137 +/- 0.351

Discriminative

Centralized* 0.322 +/- 0.109 0.371 +/- 0.058 0.364 +/- 0.070 0.444 +/- 0.024 0.446 +/- 0.036

Centralized 0.472 +/- 0.036 0.487 +/- 0.015 0.467 +/- 0.032 0.492 +/- 0.011 0.476 +/- 0.024

Local 0.255 +/- 0.110 0.242 +/- 0.066 0.150 +/- 0.098 0.265 +/- 0.078 0.277 +/- 0.081
Pre-trained 0.150 +/- 0.121 0.186 +/- 0.072 0.320 +/- 0.120 0.415 +/- 0.049 0.451 +/- 0.045

FedTDD 0.169 +/- 0.096 0.178 +/- 0.090 0.324 +/- 0.097 0.416 +/- 0.042 0.443 +/- 0.047

Predictive

Centralized* 0.085 +/- 0.002 0.226 +/- 0.028 0.118 +/- 0.021 0.302 +/- 0.017 0.141 +/- 0.007

Centralized 0.089 +/- 0.010 0.327 +/- 0.006 0.346 +/- 0.042 0.303 +/- 0.033 0.247 +/- 0.050

Local 0.079 +/- 0.008 0.128 +/- 0.016 0.057 +/- 0.012 0.180 +/- 0.006 0.134 +/- 0.005

Pre-trained 0.069 +/- 0.003 0.108 +/- 0.007 0.065 +/- 0.006 0.171 +/- 0.004 0.133 +/- 0.005

FedTDD 0.070 +/- 0.003 0.107 +/- 0.007 0.067 +/- 0.006 0.171 +/- 0.005 0.132 +/- 0.004

Table 8: Results of four aggregation strategies on Stocks and fMRI datasets. Bold indicates best
performance.

Metric Setting Stocks fMRI

Context-FID

1 : 0 1.012 +/- 0.163 1.419 +/- 0.077
1 : 1 1.090 +/- 0.242 2.078 +/- 0.184

1 : [0, 1] 0.675 +/- 0.087 1.785 +/- 0.128

1 : α[0, 1] (ours) 0.675 +/- 0.087 1.459 +/- 0.099

Correlational

1 : 0 0.084 +/- 0.093 6.061 +/- 0.277

1 : 1 0.078 +/- 0.071 6.318 +/- 0.309

1 : [0, 1] 0.058 +/- 0.050 6.241 +/- 0.408

1 : α[0, 1] (ours) 0.058 +/- 0.050 6.017 +/- 0.364

Discriminative

1 : 0 0.148 +/- 0.124 0.426 +/- 0.054

1 : 1 0.172 +/- 0.093 0.412 +/- 0.061
1 : [0, 1] 0.185 +/- 0.105 0.414 +/- 0.062

1 : α[0, 1] (ours) 0.185 +/- 0.105 0.414 +/- 0.051

Predictive

1 : 0 0.041 +/- 0.001 0.135 +/- 0.004

1 : 1 0.042 +/- 0.002 0.133 +/- 0.004

1 : [0, 1] 0.041 +/- 0.001 0.131 +/- 0.005
1 : α[0, 1] (ours) 0.041 +/- 0.001 0.133 +/- 0.004

synthetic samples, (3) 1 : [0,1], e.g. fine-tune with 100 public samples and increase the synthetic
samples linearly from 0 to 100, (4) 1 : α[0,1] (ours), e.g. fine-tune with 100 public samples
and increase the synthetic samples linearly from 0 to 100 by a factor α. We explore α values of
[0.1, 0.5, 1.0], where α = 1.0 is equivalent to setting (3). As shown in Table 8, our proposed strat-
egy (4) achieves the best results across most metrics on Stocks dataset, particularly with α = 1.0.
Although our approach does not perform as well on the fMRI dataset, it effectively prevents further
deterioration of results. We list the α used for each dataset in Appendix D.5.
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D EXPERIMENT DETAILS

D.1 HARDWARE AND SOFTWARE

We run experiments on an Intel(R) Core(TM) i7-14700KF processor and an NVIDIA GeForce RTX
4090 GPU with CUDA version 12.5. The operating system for the setup is Ubuntu 22.04.4 LTS.
Flower framework and PyTorch are used to simulate the distributed experiments by creating multiple
models corresponding to individual clients.

D.2 DATASETS

Table 9 shows the statistics of all benchmark datasets. We provide the number of rows and features.

Table 9: Statistics of datasets.

Dataset #Rows #Features Source

Stocks 3773 6 https://finance.yahoo.com/quote/GOOG
ETTh 17420 7 https://github.com/zhouhaoyi/ETDataset
MuJoCo 10000 14 https://github.com/deepmind/dm control
Energy 19711 28 https://archive.ics.uci.edu/ml/datasets
fMRI 10000 50 https://www.fmrib.ox.ac.uk/datasets

D.3 EVALUATION METRICS

Context-FID score Jeha et al. (2022) introduced the Context-FID score, which is an adaptation
of existing Fréchet inception distance (FID) used for evaluating the similarity between real and syn-
thetic time series distributions. Instead of the Inception model used for the image feature extractor,
Context-FID leverages a time series embedding model called TS2Vec (Yue et al., 2022). The au-
thors demonstrated that models with lower Context-FID generally perform better in downstream
tasks, such as achieving a strong correlation between Context-FID and the forecasting performance
of generative model. In conclusion, a lower Context-FID score indicates greater similarity between
the real and synthetic distributions.

Correlational score Liao et al. (2020) estimates the covariance of the ith and jth feature of time
series using the following formula:

covi,j =
1

T

T∑
t=1

Yt
iY

t
i −

(
1

T

T∑
t=1

Yt
i

)(
1

T

T∑
t=1

Yt
j

)
. (24)

To quantify the correlation between real and synthetic data, we compute the following metric:

1

10

d∑
i,j

∣∣∣∣∣∣ covreali,j√
covreali,i covrealj,j

−
covsynthi,j√

covsynthi,i covsynthj,j

∣∣∣∣∣∣, (25)

Discriminative score The discriminative score is determined by the formula |accuracy − 0.5|,
which measures the ability of the model to differentiate between real and synthetic data. A lower
score indicates better performance as the model struggles to distinguish between the two, implying
higher similarity. For consistency, we adapt the experimental setup of TimeGAN (Yoon et al., 2019)
with a 2-layer GRU-based neural network as the classifier.

Predictive score The predictive score is computed as the MAE between the predicted and actual
values on the test data. Again, we use the experimental configuration of TimeGAN (Yoon et al.,
2019) with a 2-layer GRU-based neural network for sequence prediction.
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D.4 MISSING SCENARIO

Figure 5 shows the missing scenario we used in all experiments.

Figure 5: We consider random missing strategy on multivariate time series. The white background
represents the conditional ground truth, while the grey background represents the time steps of the
particular channel that must be imputed.

D.5 HYPERPARAMETERS

In Table 10, we list the hyperparameter settings for all datasets. To evaluate the effectiveness of
FedTDD, 80% of each client’s data is used for training, with the remaining 20% reserved for testing.

Table 10: Hyperparameters

Parameter Stocks ETTh MuJoCo Energy fMRI
Attention heads 4 4 4 4 4
Attention head dimension 16 16 16 24 24
Encoder layers 2 3 3 4 4
Decoder layers 2 2 2 3 4
Batch size 64 128 128 64 64
Alpha, α 1.0 0.1 0.1 0.5 0.1
Timesteps / Sampling steps 500 500 1000 1000 1000
Pre-trained training steps 10000 18000 14000 25000 25000

E VISUALIZATIONS

Figure 6 to 8 present the performance of time series synthesis in three different visualization tech-
niques. Principal component analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-
SNE) and kernel density estimation (KDE) are used to visualize how well the generated synthetic
data distributions align the real data distributions (PCA and t-SNE project the data in 2-dimensional
space). The figures show that FedTDD achieves significantly better performance with greater over-
lap and closer similarity between the real and synthetic samples.

F SYNTHETIC SAMPLES

Figure 9 to 13 demonstrate synthetic time series generated unconditionally by FedTDD and Local
approach against real time series data. The generated synthetic samples from FedTDD closely re-
semble the real samples across most datasets. In each figure, the first row corresponds to the first
client, the second row to the second client, and so forth. A maximum of 4 features are selected
randomly for each client.
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Figure 6: PCA plots of real and synthetic time series generated by one representative client from
FedTDD, Pre-trained and Local on all datasets.
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Figure 7: t-SNE plots of real and synthetic time series generated by one representative client from
FedTDD, Pre-trained and Local on all datasets.
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Figure 8: KDE plots of real and synthetic time series generated by one representative client from
FedTDD, Pre-trained and Local on all datasets. The y-axis of the plots represents the data density
estimation.
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Figure 9: Real samples and synthetic samples generated by FedTDD and Local for the Stocks
dataset.
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Figure 10: Real samples and synthetic samples generated by FedTDD and Local for the ETTh
dataset.
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Figure 11: Real samples and synthetic samples generated by FedTDD and Local for the MuJoCo
dataset.
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Figure 12: Real samples and synthetic samples generated by FedTDD and Local for the Energy
dataset.
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Figure 13: Real samples and synthetic samples generated by FedTDD and Local for the fMRI
dataset.
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