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Abstract

We characterize the maximum likelihood that two
voting rule outcomes are different and that the win-
ner of one voting rule is the loser of the other
(implying that they are drastically different) on
positional scoring rules, Condorcet winner/loser,
Copeland, Ranked Pairs, and STV (Single Trans-
ferable Vote) under any fixed number of alterna-
tives. The most famous problem in this scope is
strong Borda’s paradox, in which the winner of the
plurality rule is the Condorcet loser. Under mild
assumptions, we show that the maximum likeli-
hood that different rules are drastically different is
Θ(1) except for a few special cases, demonstrating
the difference between these rules. We also prove
that two scoring rules with linear independent scor-
ing vectors have different winners with probability
Θ(1), no matter how similar they are. Our analysis
adopts the smoothed social choice framework [Xia,
2020] and can be applied to a variety of statistical
models, including the standard impartial culture
(IC).

1 INTRODUCTION

In recent years, hot debates have emerged regarding elec-
toral system reforms in the United States, as many localities
substituted the traditional plurality voting rule with Ranked
Choice Voting (RCV) [FairVote, 2023, Post, 2021, Party,
2020, Voting, 2023] or approval voting [Report., 2020] and
the fifth president who lost the popular vote but won the
election emerges [Revesz, 2016]. Supporters of the reform
argue that new voting rules can give more opportunities to
independent candidates and underrepresented groups, while
the opponents claim that the chance that a different winner
would be elected is minimal under the two-party system.
This dispute inspires our question: how likely is the out-

come of different voting rules being (drastically) differ-
ent?

The impact of the question is double-sided. A confirmative
answer supports the reforms and drives researchers and
localities to discover, design, and deploy different voting
rules to fit diverse scenarios. On the other hand, a dissenting
answer justifies the legitimacy of the current plurality rule
and eliminates the possibility of undermining democracy by
campaigns on changing voting rules.

The significance of the different outcome problems gives
rise to a spectrum of theoretical work on studying its exis-
tence and likelihood, which can be dated back to Borda’s
paradox [Borda, 1781]. When a (strong) Borda’s paradox
occurs, a plurality winner is a Condorcet loser. An even
stronger version, named strict Borda’s paradox, additionally
requires the Condorcet winner to be in the last place under
the plurality rule.

Example 1 (Borda’s Paradox, [Gehrlein and Lepelley,
2010]). Suppose that there are three candidates A, B, and
C. The election contains one vote for [A ≻ B ≻ C], seven
votes for [A ≻ C ≻ B], seven votes for [B ≻ C ≻ A],
and six votes for [C ≻ B ≻ A]. Under the plurality rule
that counts the top ranks, A becomes the winner, while C
is in the last place. However, the Condorcet winner/loser
is elected by pairwise comparisons. Therefore, C becomes
the Condorcet winner while A is the loser. Therefore, both
strong Borda’s paradox and strict Borda’s paradox occur
in the vote.

There is a large literature [Tataru and Merlin, 1997, Cervone
et al., 2005, Gehrlein and Lepelley, 2010, Diss and Gehrlein,
2012] on the likelihood for strong and strict Borda’s paradox
in a three-candidate election under the standard assumption
of impartial culture (IC) or impartial anonymous culture
(IAC). Nevertheless, previous work faces three aspects of
challenges.

Firstly, most papers are restricted to the comparison between
positional scoring rules and the Condorcet winner/loser. On



the other hand, (drastically) different outcomes occur among
a wide range of common voting rules, including general
positional scoring rules, ranked-choice voting, Copeland,
Ranked Pairs, and Single Transferable vote (STV).

Secondly, the assumption of IC and IAC has widely been
criticized as unrealistic (see, for example, [Lehtinen and
Kuorikoski, 2007, Nurmi, 1999]) and fails to reflect real-
world scenarios.

Finally, few previous analyses on the likelihood can be ex-
tended to settings with more than three candidates due to
the restriction on the techniques or overburden calculations.
This largely undermines their application to real-world sce-
narios.

Therefore, our question on how likely the outcome of dif-
ferent voting rules is (drastically) different remains largely
unanswered.

1.1 OUR CONTRIBUTIONS

We analyze the asymptotic likelihood, with respect to n,
the number of voters, that the outcomes between voting
rules are different (named different winner, DW) and that
the winner under one voting rule is the loser under the other
rule (named drastically different, DD), including the strong
Borda’s paradox, where a loser is the opposite of a win-
ner—roughly speaking, while a winner receives the most
support among candidates, a loser receives the least. We con-
duct an analysis across positional scoring rules, Copeland,
Ranked Pairs, STV, and the Condorcet winner/loser. We
adopt the smoothed social choice framework in Xia [2020],
which can be summarized as follows. Let Π be the set of dis-
tributions π ∈ Rm!, where m is the number of alternatives
and m! is the number of linear orders among candidiates.
For each vote, the adversary first picks a distribution π ∈ Π,
and then a linear order is generated by sampling from π,
which is treated as the vote.

Our work extends previous studies in three aspects. Firstly,
our likelihood results cover a wider range of voting rules.
Secondly, the semi-random analysis provides a more general
and practical characterization than the standard IC. With
the semi-random framework, our results can be applied
for analysis of the likelihood under a variety of statistical
models including IC. Finally, our results hold for any fixed
number of alternatives, while most previous work focused
on three or four alternatives.

We investigate the likelihood of DW and DD events under
two assumption respectively. The first assumption requires
the uniform distribution πuni = ( 1

m! , · · · ,
1
m! ) belongs to

the convex hull of Π. This assumption applies not only to the
standard IC, but also to other ranking models that do not in-
clude the IC, such as the single-agent Mallows’ model [Xia,
2020]. We characterize the likelihood of the drastically dif-

Table 1: The likelihood of DD and DW problems under the
assumption that IC lies within the convex hull. All but one of
the STV results is for the drastically different problem (DD),
while one of the STV results is for the different winner
problem (DW). PSR is the abbreviation of the positional
scoring rule.

Voting Rules Likelihood Results

Borda Condorcet 0 Thm. 2
Coro. 1Other PSR Θ(1)

Linear Independent PSRs Θ(1) Thm. 4

Any PSR Copeland Θ(1)
Thm. 5
Coro. 4

Borda Ranked Pairs Θ(n− 3
2 ) Thm. 6

Coro. 5Other PSR Θ(1)

STV Plurality DW: Θ(1) Thm. 7
DD: Θ(n− 1

2 )

or Θ(n−m−1
2 )

Thm. 8
Coro. 6

Table 2: The likelihood of DD and DW under the assumption
that the votes are generated i.i.d.

Voting Rules Likelihood Results

PSR Condorcet Θ(1) or
exp(−Θ(n))

Coro. 2

Linear Independent PSRs
Θ(1) or

exp(−Θ(n))
Coro. 3

ferent problems between a wide range of voting rules. We
also show that there is Θ(1) probability for STV and Plu-
rality (Theorem 7) to have different outcomes. The second
assumption requires Π is a single-element set (hence the
votes are generated i.i.d.) and give dichotomy results for the
likelihood of drastically different winners between two pairs
of rules. A summary of these results is shown in Table 1 and
Table 2.

Our results demonstrate that, under natural assumptions,
these voting rules are indeed significantly different from
each other except for a few very special cases. Specifi-
cally, Theorem 2 shows that strong Borda’s paradox occurs
with Θ(1) probability in positional scoring rules except for
Borda’s rule.

We also ran simulation experiments in Python to calculate
numerically the likelihood of DD and DW for different
voting rules under impartial culture and Mallows’ model.
Our experimental results demonstrate our theorems that
these rules are indeed different.



1.2 RELATED WORKS AND DISCUSSIONS

There is a large literature characterizing the likelihood of
Borda’s paradox. Under settings of three alternatives, Tataru
and Merlin [1997] and Cervone et al. [2005] character-
ized the likelihood of strong Borda’s paradox under IC
and IAC respectively, and Diss and Gehrlein [2012] study
the likelihood of the strict Borda’s Paradox under IC and
IAC. Gehrlein and Lepelley [2010] examine the impact that
degrees of mutual coherence among voters’ preferences
will have on the likelihood of the paradox. Diss and Tlidi
[2018] characterize conditions for a profile to show Borda’s
paradox or not in weighted scoring rules. There are also
many empirical studies of Borda’s paradox in real-world
elections, including the 2016 Republican presidential pri-
maries [Kurrild-Klitgaard, 2018] and the 2017 Iran presiden-
tial election [Feizi et al., 2020]. The reader is referred to the
work by Diss and Gehrlein [2012] for additional empirical
literature.

Studies have also been conducted on paradoxes that are
closely related to Borda’s paradox. Diss et al. [2018] study
the likelihood of a similar class of paradoxes named abso-
lute majority winner/loser paradox, in which an alternative
ranked top by more than half of the voters is not elected
as the winner. Diss and Gehrlein [2015] study the likeli-
hood that a Condorcet winner is elected by a scoring rule
(named Condorcet efficiency) under a modified version of
IAC. Brandt et al. [2022] leverage ILP techniques to identify
the minimum number of voters and alternatives for multiple
voting paradoxes (including Borda’s paradoxes and absolute
majority winner/loser paradox) to occur under a wide range
of voting rules. Bruns et al. [2019] identify the likelihood
of Borda’s paradox and Condorcet efficiency of plurality
with runoff under a four-alternative setting and IAC.

Smoothed analysis [Spielman and Teng, 2004, 2009] refers
to a type of worst-average analysis in which an adver-
sary (the “worst” component) first selects an instance, and
then random noises (the “average” component) are added.
Smoothed analysis has been widely applied to analyze the
practical performance of algorithms, circumventing the hard
worst-case. For example, Spielman and Teng [2004] use
smoothed complexity analysis to explain why simplex algo-
rithms take polynomial time most of the time despite their
hardness in the worst case. Readers are referred to Spielman
and Teng [2009] for more applications.

Recent studies introduce smoothed analysis into computa-
tional social choice [Baumeister et al., 2020, Xia, 2020]
to study topics including the likelihood of axiom sat-
isfactions [Xia, 2021b, 2023b], manipulations and para-
doxes [Xia, 2020, Liu and Xia, 2022, Xia, 2023a], and
ties [Xia, 2021a]. More specifically, Baumeister et al. [2020]
first propose the blue-sky idea of incorporating smoothed
analysis into social choice, and Xia [2020] first implements
the idea by proposing the formal smoothed social choice

framework and characterizing the smoothed likelihood of
famous Condorcet’s paradox and ANR impossibility. Xia
and Zheng [2021, 2022] study the smoothed complexity of
the winner determination for the NP-hard Kemeny, Dogson,
and Young rule.

2 PRELIMINARY

For any positive integer q ∈ N, let [q] = {1, 2, · · · , q}. The
set of alternatives is defined as A := [m], and the set of
all linear orders over A is denoted by L(A). Let n be the
number of voters. Each voter represents their preference
using a linear order R ∈ L(A), which is called a vote. The
vector of n agents’ votes is a (preference) profile, denoted
by P . Such a profile is also referred to as an n-profile. The
set of n-profiles for all n ∈ N is denoted by L(A)∗ :=
∪∞
n=1L(A)n. A fractional profile is a preference profile

together with a weight vector w⃗P ∈ Rn. A profile can be
considered as a fractional profile where all weights are 1.
Specifically, a distribution π on L(A) can be represented as
a fractional profile, where P = L(A) and each entry of w⃗P

represents the likelihood of a linear order. Let Hist(P ) ∈
Zm!
≥0 denote the histogram of P , whose R-element is the

multiplicity of linear order R ∈ L(A) occurs in profile P .

An (irresolute) voting rule r : L(A)∗ → 2A maps every
profile to its corresponding set of winners in A. In this work,
all voting rules are assumed to be irresolute unless stated
otherwise. For a voting rule r, let r̂ be the mapping from a
profile to its corresponding set of losers (see the definition
of each voting rule).

An integer positional scoring rule is defined by an integer
scoring vector s⃗ = (s1, · · · , sm) ∈ Zm where s1 ≥ s2 ≥
· · · ≥ sm and s1 > sm = 0. Given a (fractional) profile
P , each alternative receives a score si from a vote if it is
ranked at i-th position. The alternatives with the maximum
overall score are the winners, while the alternatives with
the minimum score are considered the losers. For example,
plurality is characterized by (1, 0, · · · , 0) and Borda’s rule
is characterized by (m− 1,m− 2, · · · , 1, 0).

Given a profile P , let P [a ≻ b] be the number of votes in P
which rank a higher than b. The weighted majority graph
WMG(P ) is a weighted directed graph, where each vertex
represents an alternative, and the weight of the edge a → b is
wP (a, b) = P [a ≻ b]−P [b ≻ a]. The unweighted majority
graph UMG(P ) is the unweighted directed graph obtained
from WMG(P ) by keeping the edges with strictly posi-
tive weights. We say a voting rule r is weighted-majority-
graph-based (WMG-based), if r(P1) = r(P2) whenever
WMG(P1) = WMG(P2). In this paper, we consider the
following three WMG-based rules.

• Condorcet winner/loser. Given profile P , an alterna-
tive a is a Condorcet winner if wP (a, b) > 0 for all
b ̸= a. In other words, a loses no pairwise compar-



isons. Similarly, a is a Condorcet loser if and only if
wP (a, b) < 0 for all alternatives b ̸= a. We will use
rC(P ) and r̂C(P ) to denote the set of Condorcet win-
ner and loser in profile P . It can be verified that the
size of winner or loser set is either 0 or 1.

• Copeland. The Copeland (Cdα) rule with parameter
0 ≤ α ≤ 1, assigns 1 point to alternative a every
time he/she wins a pairwise comparison and α points
for both alternatives in each tie. Then the winners of
Copelandα are the set of all alternatives with the high-
est total score. The losers are the alternatives with the
lowest total score.

• Ranked Pairs. The ranked pairs rule (RP) sorts ev-
ery pair of alternatives (a, b) according to wP (a, b)
in the descending order. An acyclic graph G is then
constructed by sequentially adding each pair as a
directed edge (from the winner to the loser in the
pairwise comparison) in the sorted order, provided it
does not form a cycle. Whenever there is a tie, i.e.
wP (a, b) = wP (a

′, b′), the order of adding edges
can have different outcome. Then an alternative is
a Ranked Pairs winner (loser) if there exists a tie-
breaking sequence such that it is the winner (loser).
This tie-breaking method is called parallel-universe
tie-breaking method [Conitzer et al., 2009].

We also consider the single transferable vote (STV) rule.
The STV is a voting rule that selects the winner through
m− 1 rounds. In each round, the plurality rule is applied,
and the alternative with the fewest plurality votes (the plu-
rality loser) is eliminated from the election. Whenever there
are more than one alternative that has the lowest plurality
score, we arbitrarily break the tie and eliminate one of them.
An alternative is an STV winner (loser) if there exists a
sequence of tie-breaking such that it survives to the end
(elminated in the first round). An illustrative example is
presented in Appendix A.

2.1 SEMI-RANDOM LIKELIHOOD OF
DIFFERENT WINNERS

In this paper, we consider two levels of difference between
voting rules. We say two voting rules have different winners
(DW) if their winners are different and drastically different
(DD) if a winner of the first voting rule is a loser of the
second rule.

Definition 1. Given two voting rules r1 and r2 and a
profile P , suppose the winner and the loser sets of both
r1 and r2 are not empty. Two voting rules r1 and r2 are
said to have different winners on a profile P , denoted by
DW(r1, r2, P ) = 1, if r1(P ) ̸= r2(P ). r1 and r2 are consid-
ered drastically different on P , denoted by DD(r1, r2, P ) =
1, if r1(P ) ∩ r̂2(P ) ̸= ∅.

For certain voting rules, such as the Condorcet rule, the
winner or loser may not exist. In such cases, both DD and
DW are set to 0. In other words, if the Condorcet winner does
not exist, we do not consider the Condorcet rule and another
voting rule to have different winners or to be drastically
different.

We then introduce the statistic model applied in the
semi-random analysis model. A single-agent preference
model [Xia, 2020] M = (Θ,L(A),Π) is characterized by
a parameter space Θ, the sample space L(A), and a set of
distributions Π parameterized by Θ. The distribution set
Π is said to be closed if it forms a closed subset of Rm!.
It is strictly positive if there exists a constant ε > 0 such
that the probability of any linear order in L(A) under any
distribution π in Π is at least ε. In this paper, we assume
that Π is closed and strictly positive. An example of a model
with closed and strictly positive Π is shown in Example 3.

We first formalize DW and DD in the context of the semi-
random likelihood model.

Definition 2 (Max semi-random likelihood of different win-
ner and drastically different problem). Given a single-agent
preference model M = (Θ,L(A),Π), and two voting rules
r1, r2, the adversary aims to maximize the likelihood of DW
(DD, respectively) by choosing the distribution π ∈ Π for
each agent, whose votes are generated independently. Let
π⃗ ∈ Πn be the vector of distributions for all agents. The
max semi-random likelihood of DW and DD are defined as
follows.

D̃W
max

r1,r2 := sup
π⃗∈Πn

PrP∼π⃗(DW(r1, r2, P ) = 1),

D̃D
max

r1,r2 := sup
π⃗∈Πn

PrP∼π⃗(DD(r1, r2, P ) = 1).

Note that DD is not symmetric it specifically considers r1’s
winner and r2’s loser. When r1 is plurality and r2 is Con-
dorcet, DD is exactly strong Borda’s paradox. In contrast,
DW is symmetric.

3 PMV-IN-POLYHEDRON PROBLEM

We characterize the likelihood of different outcomes by
converting them into PMV-in-polyhedron problems [Xia,
2021a]. Roughly speaking, the probability of each target
event occurring also corresponds to the probability that a
randomly generated profile (which is a Poisson multivariate
variables) lies within a polyhedron defined by a set of linear
constraints.

Definition 3 (Poisson multivariate variables (PMVs)).
Given any q, n ∈ N and any vector π⃗ = (π1, · · · , πn)
of n distributions over [q], a (n, q)-PMV, denoted by
X⃗π⃗, is the histogram of n independent random variables
Y1, Y2, · · · , Yn, of which Yi follows distribution πi.



We clarify the notations used for π as follows. (1) π: A
distribution over L(A), representing the probability of each
linear order in the set of all linear orders L(A). (2) π⃗: A
n-vector where each entry πi is a distribution over L(A).
(3) Π: The set of distributions. Intuitively, π⃗ is the collection
of n random votes, and the PMV X⃗π⃗ counts the occurrences
of each linear order R ∈ L(A) across n votes. Sampling
π⃗ generates a profile P , and Hist(P ) is the corresponding
sample of X⃗π⃗ .

A polyhedron H ⊆ Rq can be characterized by a matrix
A and a vector b⃗, i.e. H := {x⃗ ∈ Rq : Ax⃗ ≤ b⃗}. The
characteristic cone of H is H≤0 := {x⃗ ∈ Rq : Ax⃗ ≤ 0⃗}.
The dimension of the polyhedron H, denoted by dim(H), is
the dimension of the smallest affine subspace containing H.
A polyhedron H ⊆ Rq is full-dimensional if dim(H) = q.

Definition 4 (PMV-in-polyhedron problem). Given a con-
stant q ∈ N, a polyhedron H ⊆ Rq, and a set Π of dis-
tributions over [q], we are interested in the max likelihood

supπ⃗∈Πn Pr
[
X⃗π⃗ ∈ H

]
.

Methodology For each different winner and drastically
different problem, we represent the event by a polyhedron
H or the union of several polyhedra, such that the event
occurs in a profile P if and only if Hist(P ) ∈ H or Hist(P )
lies in the union of polyhedra. This converts the DW or DD
problem into a PMV-in-polyhedron problem. We then apply
the main technical theorem from Xia [2021a] to characterize
the max semi-random likelihood of the problem.

Let Hn := {x⃗ ∈ H∩Rq
≥0 : x⃗·1⃗ = n}, and HZ

n := Hn∩Zq .
Given the set of distributions Π, let CH(Π) be the convex
hull of set Π. The theorem is as follows.

Theorem 1 (Smooth Likelihood of PMV-in-polyhe-
dron [Xia, 2021a]). Given any q ∈ N , any closed and
strictly positive Π over [q], and any polyhedron H charac-
terized by an integer matrix A, for any n ∈ N,

sup
π⃗∈Πn

Pr(X⃗π⃗ ∈ H) =
0 ifHZ

n = ∅
exp(−Θ(n)) ifHZ

n ̸= ∅ ∧ H≤0 ∩ CH(Π) = ∅
Θ
(√

n
dim(H≤0)−q

)
otherwise.

4 RESULTS

4.1 STRONG BORDA’S PARADOX

Our first result characterizes the likelihood that a winner of
a positional scoring rule is also a Condorcet loser, which is a
generalized case of the strong Borda’s paradox. We consider
two different choices of the distribution set Π, which are

1. πuni ∈ CH(Π), where CH(Π) denotes the convex
hull of Π,

2. Π = {π}, a single-element set, where each vote is
generated by π i.i.d.

Let rs⃗ denote the positional rule characterized by s⃗, and
πuni = ( 1

m! , · · · ,
1
m! ) denote the uniform distribution over

L(A).

Specifically, these two choices of Π extend the IC assump-
tion in two distinct ways. To be exact, IC is a special case
of the second case, where we choose Π = {πuni}. The first
case generalizes the IC assumption differently, allowing
the profile P is generated by a mixture of π ∈ Π and πuni

is not necessarily an element of Π.

Theorem 2. Suppose the set of distributions Π be strictly
positive, closed and πuni ∈ CH(Π) then

D̃D
max

rs⃗,rC
(n) =

{
0 if rs⃗ is the Borda’s rule
Θ(1) otherwise.

Theorem 2 enables us to analyze the likelihood of (drasti-
cally) different winners under a wider range of statistical
models, including IC and single-agent Mallows’ (Exam-
ple 3), bringing a deeper implication to the votings in prac-
tice. As shown in Example 4 in the appendix, the theorem
works even when the uniform distribution is not an element
of Π, but lies in its convex hull.

Proof Sketch of Theorem 2. The Borda’s rule’s case comes
from the following theorem.

Theorem 3 (Fishburn and Gehrlein [1976]). For every m ≥
3 and any scoring vector s⃗, there exists a profile P such that
a winner of rs⃗ is a Condorcet loser if and only if rs⃗ is NOT
the Borda’s rule.

Hence, it suffices to show the case of other positional scoring
rules. The following lemma serves as an outline of the proofs
in this paper. In most of the proofs, we first specify the event
X and the sub-event Y . Then we show that Y satisfies the
conditions in the lemma. Finally, we apply Theorem 1 and
show that the likelihood of Y (consequently X) is Θ(1).

Lemma 1 (Main Techincal Lemma). Let X be the event we
are interested in and

X̃max(n) := sup
π⃗∈Πn

PrP∼π⃗(X happens when profile is P ),

where Π is closed and strictly positive. We say an event Y
is a sub-event of X , if Y happens implies X happens. If we
can find a sub-event Y of X , which can be characterized
by a polyhedron H = {Ax⃗ ≤ b⃗}, and the polyhedron H
satisfies (1) A is an integer matrix (2) dim(H≤0) = m! (3)
HZ

n ̸= ∅ (4) H≤0 ∩ CH(Π) ̸= ∅.

Then we can apply Theorem 1 and show that X̃max(n) =
Θ(1).



Proof. It suffices to show Ỹ max(n) = Θ(1) since Y is a
sub-event of X , where X̃max(n) ≥ Ỹ max(n). We verify all
the conditions of Theorem 1. First, it is clear that A is an in-
terger matrix and Π is strictly positive. Also, the conditions
HZ

n ̸= ∅ and H≤0 ∩ CH(Π) ̸= ∅ imply the problem falls

into the Θ
(√

n
dim(H≤0)−q

)
case. The conclusion follows

directly, since dim(H≤0) = m!.

Proof of Theorem 2. We give a proof sketch when rs⃗ is not
Borda’s rule.

Step 1: Define the Sub-Event and the Polyhedron Ha.
The sub-event Ya is “given profile P , alternative a is the
unique winner in rs⃗ and the Condorcet loser”. Now we
construct the polyhedron representing Ya via the score dif-
ference vector Scores⃗x,y and the pairwise difference vector
Pairx,y . For a profile P , Scores⃗x,y ·Hist(P ) is the score dif-
ference between x and y under s⃗, and Pairx,y ·Hist(P ) > 0
if and only if x wins the pairwise comparison with y. The
full definition of these two vectors are presented in Ap-
pendix B. The polyhedron Ha is then defined by the combi-
nation of constraints Scores⃗b,a · x⃗ ≤ −1⃗, and Paira,b · x⃗ ≤
−1⃗ for all alternatives b ̸= a. It is straightforward to verify
that Ha represents the sub-event Ya.

Step 2: Prove the conditions on Ha.

We prove the properties as follows, which are derived from
the fact that IC lying in the convex hull and the Ha is full-
dimensional.

Claim 1. For polyhedron Ha, the conditions in Lemma 1
hold: (1) Ha

≤0 ∩ CH(Π) ̸= ∅, (2) dim(Ha
≤0) = m!, and

(3) (Ha)Zn ̸= ∅.

(1) is guaranteed by the assumption that πuni ∈ CH(Π),
and that πuni ∈ Ha

≤0 since Scorex,y · π⃗uni = 0 and
Pairx,y · π⃗uni = 0 for every pair of alternatives x, y.

(2) comes from applying the following lemma given that
Ha is not empty is guaranteed by Theorem 3.

Lemma 2. Any non-empty polyhedron H = {x⃗ ∈ Rq :

Ax⃗ ≤ b⃗} where b⃗ < 0⃗ satisfies dim(H≤0) = q.

For any x⃗0 ∈ H and any λ > 1, b⃗ < 0⃗ implies A · λx⃗0 =
λAx⃗0 ≤ λ⃗b < 0⃗. Then we can show that λx⃗0 is an in-
ner point of H≤0. The existence of an inner point implies
dim(H≤0) = q.

Returning to the proof of the claim, we observe that Ha

is characterized by Ax ≤ b, where b = −1⃗ < 0. Since
Ha is non-empty (ensured by Theorem 3), it follows from
Lemma 2 that dim(Ha

≤0) = m!.

Finally, (3) comes from applying another lemma as follows.

Lemma 3. Let H be the polyhedron characterized by A, b⃗,
where b⃗ ≤ 0⃗. Suppose H is full-dimensional, then there
exists N ∈ N, such that HZ

n is not empty for every n > N .

Since H is full-dimensional, we can find an open ball in Hn

(the intersection of H and hyperplane x⃗ · 1⊤ = n) for any n.
Then according to the fact that A · λx⃗0 = λAx⃗0 ≤ λ⃗b < b⃗,
the radius of such open ball is proportional to n. The larger
n is, the larger open ball we can find. Therefore, for all
sufficiently large n, we can find an open ball in Hn that
contains an integer point.

The full proof of Lemma 2 and 3 is in Appendix C.

Step 3: Apply Lemma 1.

By assumption, Π is a closed and strictly positive set of dis-
tributions over L(A). And we have proved that sub-event Ya

is characterized by Ha satisfying all the conditions. Hence,
by applying Lemma 1 we have D̃D

max

rs⃗,rC
(n) = Θ(1).

The following corollary computes the likelihood of the re-
verse case in Theorem 2. Specifically, for every pair of
voting rules (r1, r2) (excluding STV), and a profile P such
that one of the r1 winners is a r2 winner, we consider the
complement of the profile, denoted by P̄ . In P̄ , one of the
r1 losers is a r2 winner. The formal definition of a comple-
ment profile is provided in Appendix B, and the full proof
is presented in Appendix D.1. Specifically, for rs⃗ and rC ,
the positional score vector and the weighted majority graph
of a profile are the negations of those of its complement.

Corollary 1. Suppose the set of distributions Π be strictly
positive, closed and πuni ∈ CH(Π) then

D̃D
max

rC ,rs⃗
(n) =

{
0 if rs⃗ is the Borda’s rule
Θ(1) otherwise

We then analyze the max semi-likelihood under the other
distribution set Π, where Π is a single-element set. Recall
that a distribution π can be treated as a fractional profile,
allowing us to calculate both the winner and loser sets for
such a profile. This leads to the following corollary.

Corollary 2. Suppose the distribution set Π = {π} where
π is strictly positive. Let

DDrs⃗,rC (n) := PrP∼πn(DD(rs⃗, rC , P ) = 1),

where s⃗ is a score vector. Consider π as a fractional profile,
we have

DDrs⃗,rC (n) =

{
Θ(1) rs⃗(π) ∩ r̂C(π) ̸= ∅,
exp(−Θ(n)) otherwise.

Proof Sketch. We separately consider the Θ(1) and expo-
nential cases. For the Θ(1) case, we identify a sub-case



with the likelihood of Θ(1); for the exponential case, we
construct both a super-case and a sub-case, each with a like-
lihood of exp(−Θ(n)). Then the conclusion is clear. We
present the full proof in Appendix D.2. We also provide
Example 5 in Appendix A, which computes the likelihood
of DD under the single-agent Mallows’ model with constant
dispersion.

4.2 DRASTICALLY DIFFERENCE BETWEEN
DIFFERENT POSITIONAL RULES

Theorem 4. For fixed m ≥ 3 and any two linear indepen-
dent score vectors s⃗1 and s⃗2, suppose the set of distributions
Π is strictly positive and closed, and πuni ∈ CH(Π), then

D̃D
max

rs⃗1 ,rs⃗2
(n) = Θ(1).

Proof Sketch. We construct a sub-event Ya and check it
satisfies the conditions of Lemma 1, and then the Θ(1) result
can be derived by the lemma. Given alternative a, we define
the sub-event Ya by “a is the winner under rs⃗1 and the loser
under rs⃗2 in P ”. Ha will satisfy the conditions whenever it
is not empty, and hence we construct a profile P such that
Hist(P ) ∈ Ha. Finally we shown

D̃D
max

rs⃗1 ,rs⃗2
(n) = Θ(1).

The full proof is in Appendix D.3.

Similar to the Section 4.1, we have the following corollary.

Corollary 3. Suppose the distribution set Π = {π} where
π is strictly positive. Let

DDrs⃗1 ,rs⃗2
(n) := PrP∼πn(DD(rs⃗1 , rs⃗2 , P ) = 1),

where s⃗1, s⃗2 are two linearly independent score vectors.
Consider π as a fractional profile, we have

DDrs⃗1 ,rs⃗2
(n) =

{
Θ(1) rs⃗1(π) ∩ r̂s⃗2(π) ̸= ∅,
exp(−Θ(n)) otherwise.

4.3 COPELAND AND INTEGER POSITIONAL
RULES ARE DRASTICALLY DIFFERENT

Theorem 5. Let Cdα denotes the copeland rule with pa-
rameter α. For fixed m ≥ 3, α ∈ [0, 1], and s⃗ which is an
integer score vector, suppose the set of distributions Π be
strictly positive, closed, and πuni ∈ CH(Π). Then

D̃D
max

rs⃗,Cdα
(n) = Θ(1).

Proof Sketch. When rs⃗ is not the Borda’s rule, we claim
that the Strong Borda Paradox is a special case of the desired
event, hence its likelihood is Θ(1).

When rs⃗ is the Borda’s rule, we construct sub-event Y as fol-
lows. We re-index the alternatives as A = {a, 1, · · · ,m−1}.
Let G be the unweighted majority graph such that (1) a
beats 1, (2) for 2 ≤ j ≤ m − 1, j beats a, and for
1 ≤ i < j ≤ m− 1, i beats j. We set the sub-event Y to be
that a is the unique winner of rs⃗ and UMG(P ) = G. We

define Ha,G as follows. Let Aa,G :=

(
Aa,s⃗0

SG

)
and b⃗ = −1⃗.

Here Aa,s⃗0 is the matrix with row vectors {Scores⃗0k,a : k ∈
[m], k ̸= a}. Let SG be the matrix whose row vectors are
{Pairy,x : (x, y) ∈ Edge(G)}. Then following the reason-
ing as in the proof of Theorem 2, it suffices to construct a
profile P to show that Ha,G is non-empty. We do this based
on the following observation.

Observation 1. Let BC(a) be the Borda score of alterna-
tive a. For a profile P , we have∑
b̸=a

P [a ≻ b] = BC(a) =
(m− 1)n

2
+

1

2

∑
b̸=a

wP (a, b).

The full proof is in Appendix D.4.

We also state the reverse version, which can be proved by
similar reasoning and using the properties of the comple-
ment profile as in the proof of Corollary 1.

Corollary 4. Suppose the set of distributions Π be strictly
positive, closed, and πuni ∈ CH(Π). Then

D̃D
max

Cdα,rs⃗
(n) = Θ(1).

4.4 POSITIONAL RULES AND RANKED PAIRS
ARE DRASTICALLY DIFFERENT

Theorem 6. Let rRP denote the ranked pairs rule. For
fixed m ≥ 3 and an integer score vector s⃗, suppose the set
of distributions Π be strictly positive, closed, and πuni ∈
CH(Π). Then

D̃D
max

rs⃗,rRP
(n) =

{
Θ(n− 3

2 ) m = 3, rs⃗ is Borda,
Θ(1) otherwise.

Proof Sketch. On the one hand, when rs⃗ is Borda and
m = 3, the desired event (DD) happens if and only if
WMG(P ) is a directed cycle where the weight of each edge
is the same, and hence it can be described by polyhedron
and the result is derived by applying Theorem 1. On the
other hand, we follow a similar way of Theorem 2. The full
proof is in Appendix D.5.

We also consider the reverse version. Let G and G′ be the
acyclic graph constructed by the Ranked Pairs rule under
profiles P and P̄ , respectively. By the properties of the com-
plement profile, the sink (source) of G is exactly the source
(sink) of G′. Hence, we can follow the same reasoning in
Corollary 1 and state the following corollary.



Corollary 5. Suppose the set of distributions Π be strictly
positive, closed, and π⃗uni ∈ CH(Π). Then

D̃D
max

rRP,rs⃗
(n) =

{
Θ(n− 3

2 ) m = 3, rs⃗ is Borda
Θ(1) otherwise

4.5 STV AND PLURALITY

Theorem 7. Given m ≥ 3,

D̃W
max

STV,P lurality(n) = Θ(1).

Proof Sketch. Given a permutation σ of [m], the sub-event
Y is “σ(j) is the only loser and being eliminated in j-
th round, while the plurality winner is i”. Given the se-
quence of eliminated alternatives, we can characterize Y by
a polyhedron Hσ,i. We then construct a profile in Hσ,i and
hence the conditions of Lemma 1 holds. Finally, we apply
Lemma 1 and derive the conclusion. Full proof is presented
in Appendix D.6.

Theorem 8. Given m ≥ 3,

D̃D
max

STV,P lurality(n) = Θ(n− 1
2 ).

Proof Sketch of Theorem D.7. We analyze the desired
event by decomposing it into the union of sub-events de-
fined by the elimination sequence and the tie-breaking se-
quence. Let H denote the corresponding polyhedron, and
let H≤0 represent its characteristic cone. We prove that
dim(H≤ 0) ≤ m!− 1 in the case of a tie, which concludes
our proof. The full proof is presented in Appendix D.7.

For the converse, the event “one of the plurality winners
is the STV loser (eliminated in the first round)” can only
occur when all candidates have the same plurality score. By
following a similar approach to the proof of Theorem 8, we
derive the following corollary.

Corollary 6.

D̃D
max

Plurality,STV (n) = Θ(n−m−1
2 ).

5 EXPERIMENT RESULTS

We conducted numerical experiments to estimate the prob-
ability of DW and DD for different voting rules using syn-
thetic ranking data generated from common statistical mod-
els.

5.1 EXPERIMENT SETUP

We set the number of alternatives to m = 4 and consider
three settings. The first distribution set is Π = {πuni},
which corresponds to our results under assumptions that IC

lies within the convex hull and the Θ(1) case when Π is
single-element. The other two settings use the single-agent
Mallows’ Model with fixed dispersion rate φ = 0.8, 0.9
(Example 3), which corresponds to our exp(−Θ(n)) results
when the distribution set Π is single-element.

For each setting, voter preferences are sampled indepen-
dently and identically (i.i.d.) from the corresponding distri-
bution. Each experiment consists of 105 simulations, during
which we compute the frequencies (probabilities) of DW
and DD outcomes. We vary the number of voters n across
the following values: n = 100, 200, . . . , 1000 to observe
how the likelihoods converge as n increases.

The experiment involves six common voting rules/criteria:
Borda, plurality, Condorcet winner/loser, ranked pairs, STV,
and Copeland (α = 0.5), as defined in the preliminaries.

5.2 RESULTS FOR SINGLE-ELEMENT
DISTRIBUTION
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Figure 1: Two pairs of comparison. UD is the uniform dis-
tribution, and MM is the single-agent Mallows’ model with
fixed dispersion φ.

We show two pairs of comparison in Figure 1. The curve of
uniform distribution converges to a value of Θ(1) while the
single-agent Mallows’ model curves converge to 0 rapidly,
as predicted in Corollary 2 and Example 5.

5.3 STV VS. PLURALITY RULE

Figure 2 shows the change of DW and DD for STV and
plurality rule as the number of voters increases. The curve
of uniform distribution corroborates our result of Θ(1) for
DW and Θ(n− 1

2 ) for DD as revealed in Theorem 7 and
Theorem 8.
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Figure 2: The probability of DW and DD for the STV and
Plurality under uniform distribution.

5.4 POSITIONAL RULES VS. RANKED PAIRS
WITH THREE CANDIDATES

When the number of candidates is 3, Figure 3 shows the
change of DD as the number of voters increases. The curve
of uniform distribution corroborates our result of Θ(n− 3

2 )
for the Borda rule while the Plurality rule has a probability
of Θ(1) to produce a drastically different outcome against
Ranked Pairs.
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Figure 3: The probability of DD under uniform distribution
when m = 3.

For additional experiments and results, see Appendix E.

6 FUTURE WORKS

We focus on studying the max semi-random likelihood of the
different winner problem. Similar techniques of our work
can be applied to analyze the min semi-random likelihood.
This may require a finer characterization and case discus-
sions. Another question that remains open is the smoothed
likelihood of strict Borda’s paradox. We are also interested
in applying semi-random analysis to more voting paradoxes,
including the no-show paradox and Condorcet’s paradox.
These analysis can brings us a more comprehensive under-
standing on how these paradoxes may impact votes.
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A EXAMPLES

Example 2. We consider a three-alternative profile as follows. The profile contains seven votes for [A ≻ B ≻ C], six votes
for [B ≻ A ≻ C] and six votes for [C ≻ B ≻ A]. In the first round of the Single Transferable Vote (STV) method, either
alternative B or C is eliminated from the election. If B is eliminated, the winner will be A and the loser will be B. If C is
eliminated, the winner will be B and the loser will be C. Hence, the STV winner set of this profile is {A,B}, and the loser
set is {B,C}.

Example 3. Here we take a single-agent Mallows’ model as an example [Xia, 2020, Example 2 in the appendix]. For
any 0 ≤ φ < φ ≤ 1, we let M[φ,φ]

Ma denote the Mallows model whose parameter space Θ = L(A) × [φ,φ]. For each
(R,φ) ∈ Θ, R is the central ranking, and φ is the parameter of dispersion. For distribution π(R,φ), any ranking R′ is
generated with probability φKT (R,R′)/Zφ, where KT (R,R′) is the Kendall Tau distance between R and R′, defined by the
number of pairwise disagreements between R and R′, and Zφ =

∑
R′∈L(A) φ

KT (R,R′) is the normalization constant. The
distribution set Π in single-agent Mallows’ model is closed and strictly positive.

Example 4. We consider a single-agent Mallows’ model M[φ,φ]

Ma mentioned in Example 3. Note that the πuni /∈ Π when
φ < 1 because for any π(R,φ), the likelihood of generating any ranking R′ other than the central ranking R is strictly lower
than that of R itself. However, for a fixed φ ≤ φ ≤ φ, let π0 = 1

m!

∑
R∈L(A) π(R,φ) be the average of all π(R,φ) for all

ranking R. Then due the symmetricity, π0 = πuni. Therefore, We have πuni ∈ CH(Π). And by applying Theorem 2, we
show that under single-agent Mallows’ model, and for any rs⃗ not being a Borda’s rule, the max semi-random likelihood that
the winner of rs⃗ is a Condorcet loser is Θ(1).

Example 5. We use the single-agent Mallows’ model with constant dispersion as an example. Given the central ranking
R0 = [1 ≻ 2 ≻ · · · ≻ m] and dispersion parameter φ < 1, Π = {π(R0,φ)} is strictly positive. Additionally, rs⃗(π)∩r̂C(π) =
∅, since 1 is the expected winner of both rs⃗ and rC . Hence,

DDrs⃗,rC (n) = exp(−Θ(n))

under this Mallows’ model when φ < 1.

B DEFINITIONS

Definition 5 (Score difference vector [Xia, 2021a]). For any scoring vector s⃗ = (s1, · · · , sm) and any pair of different
alternatives x, y, let Scores⃗x,y denote the m!-dimensional vector indexed by rankings in L(A), the R-element of Scores⃗x,y
is sj1 − sj2 , where j1 and j2 are the ranks of x and y in R, respectively.

Definition 6 (Pairwise difference vector [Xia, 2020]). For any pair of different alternatives x, y, Pairx,y denotes the
m!-dimensional vector indexed by R ∈ L(A), whose R-element is 1 if x ranks higher than y in R and otherwise −1.

In our analysis, it is often necessary to combine multiple profiles. The combination of two profiles P1 and P2 is a profile
with |P1|+ |P2| votes. Since the contribution of individual profiles to the positional scores and the weights of edges in the
WMG are linear, we define the combination of these two profiles as P = P1 + P2. However, the subtraction of profiles,
P1 − P2, cannot be trivially defined, as a negative number of votes does not make sense. To address this, we define the
complement of a profile P as follows.

Definition 7 (Complement of Profiles). Given a profile P where k is the maximum entry in Hist(P ). Let A be the profile
whose histogram is (1, · · · , 1). Then the complement of P , denoted by P̄ , is defined as removing votes in P from kA.

The histogram of P̄ has all non-negative entries, making P̄ well-defined. Also, the contribution of P and P̄ to the positional
scores and weights of edges in the WMG are opposite. Sometimes we denote P̄ as −P for the simplicity of terminology.

C PROOF OF LEMMAS

Lemma 2. Suppose a polyhedron H = {x⃗ ∈ Rq : Ax⃗ ≤ b⃗} where b⃗ < 0⃗. Then H is either empty or full-dimensional.
Furthermore, dim(H≤0) = q when H ̸= ∅.



Proof. Suppose x⃗0 ∈ H. It suffices to show dim(H) = q. For any λ ≥ 1, we have

A · λx⃗0 = λAx⃗0 ≤ λ⃗b < b⃗.

Hence, λx⃗0 ∈ H for any λ ≥ 1. In Euclidean space, a polyhedron H contains an interior point that implies H is full-
dimensional. Then it suffices to find an interior point of H. We consider the L∞ norm for vector n⃗ = (n1, · · · , nq) and
matrix A = (aij)L×q , where

∥n⃗∥∞ := max
i∈[q]

|ni|.

∥A∥∞ := max
i,j

|aij |.

Suppose b⃗ = (b1, · · · , bL), let ∥⃗b∥ 0 := mink∈[L]|bk|. We have ∥⃗b∥ 0 > 0 since b⃗ < 0⃗. Then there exists λ1 ≥ 1 such that
λ1∥⃗b∥ 0 ≥ 2∥⃗b∥∞. For each row of A, denoted by a⃗i, we have a⃗i · x⃗0 ≤ bi ≤ −∥⃗b∥ 0. Hence, for any vector d ∈ Rq satisfy
∥d∥∞ ≤ ∥b∥∞

2∥A∥∞
, we have

a⃗i(λ1x⃗0 + d⃗) = a⃗i · λ1x⃗0 + a⃗i · d⃗

≤ −λ1∥⃗b∥ 0 + ∥a⃗i∥∞ · ∥d⃗∥∞

≤ −λ1∥⃗b∥ 0 + ∥A∥∞∥d⃗∥∞

≤ −λ1∥⃗b∥ 0 +
1

2
∥⃗b∥∞

≤ −3

2
∥⃗b∥∞ ≤ bi.

Hence, λix⃗0 + d⃗ ∈ H. Since the L∞ norm is equivalent to that of L2, λix⃗0 is an interior point of H. Also, since b⃗ < 0⃗, H is
a subset of the characteristic cone H≤0. Hence, H≤0 is also full-dimensional.

Lemma 4. Let Fn denote the hyperplane
{x⃗ ∈ Rq : x⃗ · 1⃗⊤ = n}.

Let Bq−1(x⃗0, r) be a q − 1 dimensional ball, which centered at x⃗0 with radius r and contained in Fn. Then there exists an
integer point αn ∈ Bq−1(x⃗0, r) when r >

√
q.

Proof of Lemma 4: Let x⃗0 = (x1
0, · · · , x

q
0), and k :=

∑q
i=1⌊xi

0⌋. Clearly, n − q < k ≤ n and k ∈ Z, and the equality
holds if and only if all components of x⃗0 are integers. Hence, α0 = x0 will be the desired integer point on Fn when k = n.

If not so, then n− k ≥ 1. We define αn by

αn := (⌊x1
0⌋+ 1, ⌊x2

0⌋+ 1, · · · ,
⌊xn−k

0 ⌋+ 1, ⌊xn−k+1
0 ⌋, ⌊xn−k+2

0 ⌋, · · · , ⌊xq
0⌋).

It is easy to verify αn ∈ Fn, since αn · 1⃗⊤ = n− k +
∑q

i=1⌊xi
0⌋ = n. Also,

Dist(x0, αn) =

(
q∑

i=1

(xi
0 − ⌊xi

0⌋ − 1)2

)1/2

<

√√√√ q∑
i=1

12 =
√
q.

Notice that r >
√
q, then show the existence of the integer point αn in a constructive way.

Lemma 3. Let H be the polyhedron characterized by A, b⃗, where b⃗ ≤ 0⃗. Suppose dim(H) = q, then there exists N ∈ N,
such that

HZ
n := H ∩ {x⃗ ∈ Zq : x⃗ · 1⊤ = n}

is not empty for every n > N .



Proof. Since dim(H) = q, there exists x⃗0 ∈ int(H). In other word, there exists an open ball B(x⃗0, r), r > 0, such that
B(x⃗0, r) ⊆ H. We claim that B(λx⃗0, λr) ∈ H for any λ > 1.This is because Ax⃗ ≤ b⃗ =⇒ A(λx⃗) ≤ λ⃗b ≤ b⃗, since λ > 1.

Let λn := n/(x⃗0 · 1⃗⊤) ∈ R, then λnx⃗0 ∈ Fn. Clearly, there exists N , such that

n > N =⇒ λnr >
√
q.

Then for any n > N , Bq−1(λnx⃗0, λnr) ∩ Fn is a ball in hyperplane Fn. Since its radius is greater than
√
q, by Lemma

4 there exists an integer point αn such that αn ∈ Bq−1(λnx⃗0, λnr) ⊆ H and αn · 1⊤ = n. Hence, HZ
n ̸= ∅ for any

n > N .

D FULL PROOF OF MAIN RESULTS

D.1 PROOF OF COROLLARY 1

The proof follows a similar route as Theorem 2. Let Ha characterized by A and b⃗ be the polyhedron of sub-event Y (a is the
unique winner of rs⃗ and the Condorcet loser) in Theorem 2. Then the reverse event Ŷ (a is the unique loser of rs⃗ and the
Condorcet winner) can be characterized by the polyhedron Ĥa := {−Ax⃗ ≤ b⃗}. Once we show that Ĥa is non-empty, we
can follow the reasoning in the proof for Theorem 2 and apply Lemma 1 to achieve the desired result. It can be verified that
−P (the complement of profile P ) is the desired profile, where P is the profile for which Hist(P ) ∈ Ha, and is constructed
in the proof of Theorem 2.

D.2 PROOF OF COROLLARY 2

We separately consider the Θ(1) and exponential cases. For the Θ(1) case, we identify a sub-case with the likelihood of
Θ(1); for the exponential case, we construct both a super-case and a sub-case, each with a likelihood of exp(−Θ(n)). Then
the conclusion is clear.

When rs⃗(π⃗)∩ r̂C(π⃗) ̸= ∅, suppose a is one of its elements and let Y ′
a be the event ‘a is one of the winners of rs⃗ and one of the

losers of rC’. This event can be characterized by Ha
⋆ := (Ha)≤0 in the proof of Theorem 2, and Ha ⊆ (Ha)≤0. Since the

conditions in Lemma 1 hold for Ya, they also hold for Y ′
a since Y ′

a is a super-case of Ya. Then we obtain DDrs⃗,rC (n) = Θ(1)
by applying Lemma 1.

Otherwise, we construct the super-case and sub-case as follows. On the one hand, given any i ∈ [m], we have (1)
dim((Hi

⋆)≤0) = m! (2) (Hi
⋆)

Z
n ̸= ∅. Also, CH(Π) ∩ (Hi

⋆)≤0 = ∅ since rs⃗(π⃗) ∩ r̂C(π⃗) = ∅, hence

PrP∼π⃗n(DD(rs⃗, rC , P ) = 1) ≤
∑
i∈[m]

PrP∼π⃗n(Y ′
i ) = exp(−Θ(n))

by Theorem 1. On the other hand, at least one of Y ′
i happens given DD(rs⃗, rC , P ) = 1, hence

PrP∼π⃗n(DD(rs⃗, rC , P ) = 1) ≥ inf
i∈[m]

PrP∼π⃗n(Y ′
i ) = exp(−Θ(n)),

which completes the proof of the exponential case.

D.3 PROOF OF THEOREM 4

Step 1: Sub-Event and Polyhedron Ha

Given alternative a, we define the sub-event Ya by “a is the unique winner under rs⃗1 and the unique loser under rs⃗2 in P ”.
Let As⃗1,a be the matrix whose row vectors are {Scores⃗1k,a : k ∈ [m], k ̸= a} and As⃗2,a be the matrix with row vectors

{Scores⃗2a,k : k ∈ [m], k ̸= a}. Let Aa =

(
As⃗1,a

As⃗2,a

)
and b⃗ = −1⃗. Then Ha := {x⃗ ∈ Rm! : Aax⃗ ≤ b⃗}. Then it’s not hard to

verify that Ha represents sub-event Ya.

Step 2: Prove the conditions on Ha



It suffices to show that Ha is non-empty since the rest of the reasoning is similar to the proof of Theorem 2. We then
construct a profile P with Hist(P ) ∈ Ha.

We consider a series of profiles {Pi}i∈[m] defined as follows. Reindex the set of alternatives by A = {a, c1, · · · , cm−1}.
Given i ∈ [m], let

Pi = {vj : (vj)−i = (cj , · · · , cm−1, · · · , cj−1), (vj)i = a},

be the profile of m − 1 votes. Let s⃗1 = (s11, s
1
2, · · · , s1m), s⃗2 = (s21, s

2
2, · · · , s2m), and Sk :=

∑m
j=1 s

j
k where k ∈ {1, 2}.

We have
Scores⃗

k

a,cj (Pi) = mski − Sk, k ∈ {1, 2},

for any j ∈ {1, · · · ,m− 1}, since the score of cj are all the same.

We then show that there exists (t1, t2, · · · , tm) ∈ Zm such that P =
∑m

i=1 tiPi satisfies Hist(P ) ∈ Ha. Given profile P ,
−P is defined as the profile that reverses each vote’s rank in P , and an easy observation is Scores⃗a,b(P ) = −Scores⃗a,b(−P )

for any alternatives a, b and score vector s⃗. Hence, it suffices to find an integer vector t⃗ = (t1, · · · , tm), such that

m∑
i=1

ti(ms1i − S1) = t⃗ · (ms⃗1 − S11⃗) > 0,

m∑
i=1

ti(ms2i − S2) = t⃗ · (ms⃗2 − S21⃗) < 0.

Since s⃗1 and s⃗2 are linear independent, we claim that ms⃗1−S11⃗ and ms⃗2−S21⃗ are linear independent. If not so, there exists
λ ∈ R such that for all i ∈ [m], ms1i −S1 = λ(ms2i −S2). Since s1m = s2m = 0, we have S1 = λS2, hence ms1i = ms2i for
all i ∈ [m], which contradicts to the fact that s⃗1 and s⃗2 are independent. Then there exists t⃗′ ∈ Rm satisfies the inequalities,
since ms⃗1 − S11⃗ and ms⃗2 − S21⃗ are independent. Suppose t⃗′ · (ms⃗1 − S11⃗) = x1 and t⃗′ · (ms⃗2 − S21⃗) = −x2 where
x1, x2 > 0. Let x := min{x1, x2} and M := max{

∑m
i=1 |ms1i − S1|,

∑m
i=1 |ms2i − S2|}. There exists t⃗∗ ∈ Qm such that∑m

i=1 |t′i − t∗i | < x
2M since Qm are dense in Rm. It can be verified that t∗ also satisfies these inequalities and the integer

vector t⃗ is obtained by multiplying an appropriate integer to t∗. Hence we have constructed a profile P =
∑m

i=1 tiPi where
Hist(P ) ∈ Ha.

Step 3: Apply Lemma 1. Finally, we apply Lemma 1 and get

D̃D
max

rs⃗1 ,rs⃗2
(n) = Θ(1).

D.4 PROOF OF THEOREM 5

We prove this theorem through the case study of s⃗ is a Borda’s rule or not.

Case 1: s⃗ is not a Borda’s rule.

By Theorem 3, there exists a profile P such that the winner of positional rule under s⃗ is the Condorcet loser with probability
Θ(1). Since a Condorcet loser always ranks the last place in Cdα for any α ∈ [0, 1], P is also a profile where the positional
rule winner is the Cdα loser. Recall that rC is the Condorcet rule, hence,

D̃D
max

rs⃗,rCdα
(n) = sup

π⃗∈Πn

∑
a∈[m]

PrP∼π⃗[a ∈ rs⃗(P ) ∩ r̂Cdα
(P )]

≥ sup
π⃗∈Πn

∑
a∈[m]

PrP∼π⃗[a ∈ rs⃗(P ) ∩ r̂C(P )]

= D̃D
max

rs⃗,rC
(n) = Θ(1) by Theorem 2.

Case 2: s⃗ is a Borda’s rule.

Step 1: Find the Sub-event and Characterize Polyhdron Ha,G.



We use s⃗0 denotes the Borda’s rule. For a profile P , we consider the unweighted majority graph, denoted by UMG(P ) where
each vertex represents an alternative and a directed edge (a, b) ∈ E(G) if and only if wP (a, b) = P [a ≻ b]−P [b ≻ a] > 0.
We say there is a tie between a and b if wP (a, b) = 0. A tournament graph is a simple (no loop or bidirected edges) and
complete (each pair of vertex is joined by at least one directed edge) directed graph.

We consider the following event: a is the unique winner of rs⃗ and UMG(P ) = G, where G is a tournament graph such that
(1) a beats 1, (2) for 2 ≤ j ≤ m− 1, j beats a, and for 1 ≤ i < j ≤ m− 1, i beats j. We denote this event by Y .

We define Ha,G as follows. Let Aa,G :=

(
Aa,s⃗0

SG

)
and b⃗ = −1⃗. Here Aa,s⃗0 is the matrix with row vectors {Scores⃗0k,a : k ∈

[m], k ̸= a}. Let SG be the matrix whose row vectors are {Pairy,x : (x, y) ∈ Edge(G)}.

Claim 2. Hist(P ) ∈ Ha,G if and only if Y happens.

Proof of Claim 2 As we have discussed previously, Aa,s⃗0 · Hist(P ) ≤ −1 implies a is the unique rs⃗0 winner. Also,
Pairy,x ·Hist(P ) ≤ −1 if and only if x wins y in the pairwise comparison. Hence, the claim holds.

Step 2: Show the conditions on Y and Ha,G.

Claim 3. Y ̸= ∅.

We give a construction later.

Claim 4. H≤0 ∩ CH(Π) ̸= ∅.

Our assumption guarantees that πuni ∈ CH(Π). And πuni ∈ H≤0 since Scorex,y · π⃗uni = 0 and Pairx,y · π⃗uni = 0 for
every pair of alternatives x, y.

Claim 5. dim(Ha,G) = m!

Since Ha,G can be characterized by an integer matrix A and b⃗ < 0⃗, we have dim(Ha,G) = m! if Ha,G is not empty by
Lemma 2.

Step 3: Apply Lemma 1 We check the conditions in Lemma 1. Clearly, Y is a subset of rs⃗0 ∩ r−1
Cdα

̸= ∅, which is the
desired event in this theorem. Also, Ha,G can be characterized by an integer matirx A and b⃗. Finally, Ha,G

≤0 ∩ CH(Π) ̸= ∅
and dim(Ha,G) = m!. Then by Lemma 1, it suffices to construct such a profile P , such that rs⃗0(P ) = {a}, a ∈ r̂Cdαm and
UMG(P ) is a tournament graph.

We then construct a profile P such that a ∈ rs⃗0 ∩ r̂Cdα . We start with several observations. We use BC(a) to represent the
Borda’s rule of a.

Observation 2. We consider a profile P and the corresponding weighted majority graph WMG(P ), then for any alternative
a ∈ [m],

1. ∑
b ̸=a

P [a ≻ b] = BC(a).

2.

BC(a) =
(m− 1)n

2
+

1

2

∑
b ̸=a

wP (a, b).

Proof. We first prove the first equality. For each vote vi, we consider its contribution to both left hand side (LHS) and right
hand side (RHS). Suppose a ranks higher than k other alternative in this vote. Then clearly the contribution of vi to the RHS
is k. Also, for every agent b ranked lower than a, vi contributes one point to P [a ≻ b] in LHS, which is in total k points.
Hence we have equality.

Then we prove the second equality. Recall that wP (a, b) = P [a ≻ b] − P [b ≻ a]. By definition, we have P [a ≻ b] =
(n+ wP (a, b))/2. Then we take the sum of every b ̸= a, and we have

BC(a) =
∑
b ̸=a

P [a ≻ b] =
(m− 1)n

2
+

1

2

∑
b ̸=a

wP (a, b)



By this observation, BC(x) > BC(y) if and only if
∑

k ̸=x wP (x, k) >
∑

k ̸=y wP (y, k). We then construct P by
constructing a weighted directed graph G as follows. Reindex the set of alternatives by A = {a, 1, · · · ,m− 1}. For every
1 ≤ i < j ≤ m− 1, let w(i, j) = 2. Let w(a, 1) = 2m2 and w(j, a) = 2 for 2 ≤ j ≤ m− 1. Mcgarvey McGarvey [1953]
guarantee that there exists a profile P such that WMG(P ) = G.

Then it suffices to show P is the desired profile. First, a is the unique s⃗0 winner, since
∑

b ̸=a wP (a, b) ≥ 2m(m− 1) >∑
j ̸=i wP (i, j) for any i ∈ [m− 1]. Also, a ∈ r−1

Cdα
, since its Cdα score is one and any other agent win at least one pairwise

comparison. Hence, P is the desired profile and we can conclude D̃D
max

rs⃗0 ,rCdα
(n) = Θ(1).

D.5 PROOF OF THEOREM 6

When rs⃗ is not Borda’s rule, the statement holds with the same reason on Case 1 in the proof of Theorem 5. This is because
a Condorcet winner (loser) is always a Ranked Pair winner (loser). Hence, we follow the same processes and have

D̃D
max

rs⃗,rRP
(n) = Θ(1).

We separately consider the case when m ≥ 4 and m = 3 when rs⃗ is Borda’s rule.

Case 1: m ≥ 4. When rs⃗ is Borda’s rule and m ≥ 4, we follow a similar reasoning in Theorem 5. And it suffices to specify
a profile P , such that a is both the unique winner of rs⃗ and the loser (not necessarily unique) of ranked pairs and there are
no ties in any pairwise comparison.

We then construct P as follows. Reindex the set of alternatives by A = {a, 1, · · · ,m− 1}. Consider the weighted majority
graph G as follows. For i ∈ [m− 2], let w(a, i) = 2m2, and −w(m− 1, a) = w(a,m− 1) = −2m2 − 2. For j ∈ [m− 2],
let w(j, j + 1) = 4m2 + 2m − 2j, and w(m − 1, 1) = 2m2 + 2. For any other undefined edges (i, j), let w(i, j) = 2 if
i < j. We can calculate that

∑
i ̸=a wP (a, i) = 2m3 − 6m2 − 2, and for all j ∈ [m − 1],

∑
k ̸=j wP (j, k) ≤ 4m. Since

m ≥ 4, we have

2(m3 − 3m2 − 1) = 2[(m− 3)m2 − 1] ≥ 2m2 − 2 > 4m.

The existence of the P such that WMG(P ) = G is guaranteed by McGarvey [1953]. Hence, a is the unique rs⃗0 winner
under this profile. However, if we apply the Ranked Pair rule, we will first fix (1, 2), · · · , (m− 2,m− 1) and finally fix
(m− 1, a). Hence, a is the Ranked Pair loser.

Then we define the sub-event Ya by “a being the Borda winner in P , and the weighted majority graph of P is G”. When
m ≥ 4 and rs⃗ is Borda’s rule, we have

D̃D
max

rs⃗,Cdα
(n) = Θ(1),

followed by the similar reasoning in the proof of Theorem 5.

Case 2: m = 3. First, let WMG∗ be the set of all WMG(P ), we have

Pr[rs⃗0(P ) ∩ r̂RP(P ) ̸= ∅]

=
∑

G∈WMG∗

Pr[rs⃗0(P ) ∩ r̂RP(P ) ̸= ∅,WMG(P ) = G](∗)

Let Gk = (V,Ek) be the directed graph defined as V = [m] = [3] and Ek = {1 → 2, 2 → 3, 3 → 1}, where the
weight of each edge is k. Without loss of generality suppose a is one of the Ranked Pair losers. It can be verified that
wP (a, b) + wP (a, c) ≤ 0 for any given profile P . If wP (a, b) + wP (a, c) = 0, then BC(a) = n by Observation 1.
Hence, a ∈ r

s⃗0
(P ) implies BC(b) = BC(c) = n, since BC(a) + BC(b) + BC(c) = 3n, and it can be verified

that WMG(P ) = Gk for some integers 0 ≤ k ≤ n/3. Whenever wP (a, b) + wP (a.c) < 0, Observation 1 gives
BC(a) = n+ 1

2 [wP (a, b) + wP (a, c)] < n. This excludes the possibility of a having the highest Borda Score. Hence, let
G := {Gk : 0 ≤ k ≤ n/3}, we have



D̃D
max

rs⃗0 ,rRP
(n)

= sup
π⃗∈Πn

PrP∼π⃗[rs⃗0(P ) ∩ r̂RP(P ) ̸= ∅]

= sup
π⃗∈Πn

PrP∼π⃗[rs⃗0(P ) ∩ r̂RP(P ) ̸= ∅,WMG(P ) ∈ G]

= sup
π⃗∈Πn

PrP∼π⃗[WMG(P ) ∈ G].

Step 1: Characterize WMG(P ) ∈ G by H0. Let H0 := {Ax⃗ ≤ b⃗} where A is the matrix whose six rows are {Pairi,j −
Pairj,i : i ̸= j} and b⃗ = 0⃗.

Step 2: Prove Properties of H0.

Claim 6. dim((H0)≤0) = m!− 3.

This is because (H0)≤0 = H0, and H0 is defined by three linear independent equations. Therefore, the dimension of the
null space of (H0)≤0 is 3, and dim(H0)≤0) = m!− 3.

Claim 7. CH(Π) ∩ (H0)≤0 ̸= ∅.

This is because π⃗uni ∈ CH(Π) and π⃗uni ∈ (H0)≤0.

Claim 8. (H0)Zn ̸= ∅ for every integer n ≥ 2.

Let P0 be a profile with two votes {[1 ≻ 2 ≻ 3], [3 ≻ 2 ≻ 1]}, and P1 be the profile with three votes {[1 ≻ 2 ≻ 3], [2 ≻
3 ≻ 1], [3 ≻ 1 ≻ 2]}. WMG(k0P0 + k1P1) ∈ G for any integers k1, k2, and hence we prove the claim.

Step 3: Apply Theorem 1. We check all conditions of Theorem 1. First, Π is closed and strictly positive, and A is an integer

matrix. Then, CH(Π) ∩ (H0)≤0 ̸= ∅ and (H0)Zn ̸= ∅, then it suffices to consider the Θ(n
dim(H≤0)−q

2 ) case. Finally, we
have dim((H0)≤0) = m!− 3. Hence, by Theorem 1, we have

D̃D
max

rs⃗0 ,rRP
(n) = sup

π⃗∈Πn

PrP∼π⃗[WMG(P ) ∈ G]

= Θ(n
m!−3−m!

2 ) = Θ(n− 3
2 ),

when s⃗0 represents the Borda’s rule.

D.6 PROOF OF THEOREM 7.

Step 1: Sub-Event and Polyhedron We characterize the sub-event Y by a permutation of [m] (denoted by σ([m])), and
an alternative i ̸= σ(m). The sub-event Y is “σ(j) is eliminated in j-th round, while the plurality winner is i”. We further
suppose that σ(j) is the only loser in the j-th round, where it is unnecessary to break the tie.

We consider the polyhedron Hσ,i defined as follows. Let

A =


Aσ

1

Aσ
2
...

Aσ
m−1

Ai

 , b⃗ = −1⃗,

where Ai · Hist(P ) ≤ −1⃗ characterizes “i” is the plurality winner and Aσ
j · Hist(P ) ≤ −1⃗ characterizes “given

σ(1), · · · , σ(j − 1) are eliminated in former rounds, σ(j) is eliminated in j-th round”. It can be verified these events
can be exactly described by linear constraints.

Step 2: Prove the conditions on Hσ,i. We consider a special case where σ0(1, 2, · · · ,m) = (1, 2, · · · ,m) and i0 = m− 1.
It suffices to show that Hσ0,i0 is not empty and the rest of the proof is similar to that of Theorem 2. Consider the voting



Num of votes 2 4 · · · 2(m− 1) 2m− 3

First place 1 2 · · · m− 1 m
Second place m m · · · m 1

Table 3: Example: STV winner but not plurality winner.

profile in Table 3. Since m ≥ 3, 2m− 3 > 2 and 1 will be the first alternative being eliminated, while the score of m in the
second round becomes 2m− 1, and hence 2 will be eliminated in the second round. It can be verified that m is the STV
winner and m− 1 is the plurality winner, which implies Hσ0,m−1 is not empty.

Step 3: Apply Lemma 1. Finally, we apply Lemma 1 and obtain

D̃W
max

STV,P lurality(n) = Θ(1).

D.7 PROOF OF THEOREM 8.

Proof. The desired event is "one of the STV winners being the plurality loser", and this event can be further divided by
the union of sub-events which is characterized by the elimination sequence and the tie-breaking sequence. An elimination
sequence, denoted by σ, is a permutation of the alternative set A = [m]. Given an elimination sequence and a profile P , the
tie-breaking sequence, denoted by t⃗, is an m-vector whose i-th component is the set of alternatives who have the lowest
plurality score in the i-th round. Let σ(A) be the set of permutations and T be the set of all tie sequences. Let σ(i) and t⃗(i)
be the i-th component of the corresponding vector. It can be verified σ and t⃗ can decide the outcome of STV for any given
profile P . We have

Pr[rSTV (P ) ∩ r̂Plur(P ) ̸= ∅]

=
∑

σ∈σ(A)

∑
t⃗∈T

Pr
[
σ, t⃗, rSTV (P ) ∩ r̂Plur(P ) ̸= ∅

]
=

∑
σ∈σ(A)

∑
t⃗∈T

Pr
P
[σ, t⃗, σ(m) ∈ t⃗(1), |⃗t(1)| ≥ 2].

(*)

The last equality is followed by the observation as follows. If the STV winner σ(m) is a plurality loser, both σ(m) and σ(1)
have the lowest plurality score and σ(1) is decided to be eliminated in the first round after tie-breaking.

Step 1: Define the Polyhedron Hσ,⃗t. Let

A =


Aσ,⃗t

1

Aσ,⃗t
2
...

Aσ,⃗t
m−1

 , b⃗ =


b⃗1
b⃗2
...

b⃗m−1

 ,

where we use Aσ,⃗t
i x ≤ b⃗i to describe the event "σ(i) is eliminated and alternatives in t⃗(i) have the lowest plurality score" for

each i. When |⃗t(i)| ≥ 2, the tie between alternatives in t⃗(i) can be described by Scores⃗Plur

a,b (P ) ≤ 0 and Scores⃗Plur

b,a (P ) ≤ 0

for each pair a, b ∈ t⃗(i) and a ̸= b. Clearly Ax ≤ b precisely describes the event "the elimination sequence is σ, tie sequence
is t⃗".

Step 2: Prove the properties of Hσ,⃗t. Given σ, t which satisfies two conditions σ(1) ∈ t⃗(1) and |⃗t(1)| ≥ 2, we claim that
dimension of the corresponding characteristic cone Hσ,⃗t

≤0 is at most m!− 1. This is because |⃗t(1)| ≥ 2 and hence the number
of equalities in Ax ≤ 0⃗ is at least 1.

Also, we show that there exists a profile P0 such that its corresponding σ0, t⃗0 satisfies 1) σ0(1) ∈ t⃗0(1), 2) one of the STV
winners is a Plurality loser, 3) dim(Hσ0,t0

≤0 ) = m!− 1. Let vi be the vote defined as (vi)−2 = (i, i+1, · · · ,m− 1, · · · , i−
1), (vi)2 = m for every i ∈ [m−1]. Let v0 = (m, 1, · · · ,m−1), and the desired profile P0 := 2v0+2v1+

∑m−1
i=2 (i+1)vi.



We now apply the STV rule to P0. In the first round, alternative 1,m have the lowest plurality score, and alternative 1
is eliminated in tie-breaking. In the i-th round, alternative i is eliminated, and the alternative m is the final winner.
Hence the corresponding σ0 = (1, 2, · · · ,m) and t⃗ = ({1,m}, {2}, · · · , {m}). The first two conditions is clear, and
dim(Hσ0,t⃗0

≤0 ) = m!− 1 because Hσ0,t⃗0
≤0 is the intersection of a full-dimensional polyhedron and a hyperplane.

Step 3: Apply Theorem 1. By Theorem 1 and properties of Hσ,⃗t shown in Step 2,

Pr
[
σ, t⃗, rSTV (P ) ∩ r̂Plur(P ) ̸= ∅

]
≤ Θ(n−m!−1−m!

2 ) = Θ(n− 1
2 ),

and
Pr
[
σ0, t⃗0, rSTV (P ) ∩ r̂Plur(P ) ̸= ∅

]
= Θ(n− 1

2 ).

Hence, we obtain
D̃D

max

STV,P lurality(n) = Θ(n− 1
2 ).

E SIMULATION RESULTS

We ran experiments in Python to calculate numerically the probability of DW and DD for different voting rules, comparing
the convergence rate of uniform distribution and Mallows’ model intuitively by using line chart.

E.1 OVERVIEW UNDER UNIFORM DISTRIBUTION

Additionally, for the uniform distribution, we extend the analysis to n = 2000 and compute their 95% confidence intervals
to investigate further convergence behavior.

A summary of results and corresponding theoretical results under uniform distribution when m = 4 and n = 2000 is
presented in Table 4. The experimental findings align closely with the theoretical results. The likelihood that Borda and
Condorcet are drastically different is 0, as predicted. Our experiments also implies that DD and DW can serve as criteria to
evaluate the similarity between voting rules, such as Borda is similar to WMG-based rules than plurality.

Rule 1 Rule 2 Probability Confidence Interval Corresponding
Theoretic ResultsDW DD DW DD

Plurality Condorcet 48.66% 1.967% (48.35%, 48.97%) (1.881%, 2.053%) Thm. 2Borda Condorcet 30.25% 0.0% (29.97%, 30.54%) −−−
Plurality Borda 38.24% 3.371% (37.94%, 38.54%) (3.259%, 3.483%) Thm. 4

Plurality Copeland 47.13% 7.227% (46.82%, 47.43%) (7.067%, 7.388%) Thm. 5Borda Copeland 27.72% 0.741% (27.45%, 28.00%) (0.688%, 0.794%)

Plurality Ranked Pairs 40.18% 3.940% (39.88%, 40.48%) (3.819%, 4.061%) Thm. 6Borda Ranked Pairs 18.26% 0.021% (18.02%, 18.50%) (0.012%, 0.030%)

STV Plurality 38.63% 0.404% (38.33%, 38.93%) (0.365%, 0.443%)
Thm. 7
Thm. 8

Table 4: DW and DD under uniform distribution with 4 alternatives and 2000 voters.

Other pairs of comparison are listed below. The simulation results under uniform distribution align with our IC results (to be
Θ(1)). We also conduct the experiment under Mallows model and observed an exponential rate of convergence.
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Figure 4: the probability of DW and DD.
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