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ABSTRACT

The past decade has witnessed a drastic increase in modern deep neural networks
(DNN ) size, especially for generative adversarial networks (GANSs). Since GANs
usually suffer from high computational complexity, researchers have shown an in-
creased interest in applying pruning methods to reduce the training and inference
costs of GANs. Among different pruning methods invented for supervised learn-
ing, dynamic sparse training (DST) has gained increasing attention recently as
it enjoys excellent training efficiency with comparable performance to post-hoc
pruning. Hence, applying DST on GANs, where we train a sparse GAN with a
fixed parameter count throughout training, seems to be a good candidate for reduc-
ing GAN training costs. However, a few challenges, including the degrading train-
ing instability, emerge due to the adversarial nature of GANs. Hence, we introduce
a quantity called balance ratio (BR) to quantify the balance of the generator and
the discriminator. We conduct a series of experiments to show the importance of
BR in understanding sparse GAN training. Building upon single dynamic sparse
training (SDST), where only the generator is adjusted during training, we propose
double dynamic sparse training (DDST) to control the BR during GAN training.
Empirically, DDST automatically determines the density of the discriminator and
greatly boosts the performance of sparse GANs on multiple datasets.

1 INTRODUCTION

In the past decade, the training and inference costs of modern deep neural networks (DNNs) are
gradually becoming prohibitive (He et al.l 2016} [Dosovitskiy et al.l [2020; Liu et al.l [2021d), espe-
cially for large language models (Brown et al., [2020). Among all these large models, generative
adversarial networks (GANs) (Goodfellow et al.l 2020) have been widely investigated for years and
achieved remarkable results. However, similar to other giant models, GANs are notably computa-
tionally intensive. For example, BigGAN (Brock et al.l |2018) trained on 8 NVIDIA V100 GPUs
with full precision will take 15 days. Consequently, to train GANSs in broader resource-constrained
scenarios, this computational bottleneck of training needs to be resolved urgently.

Neural network pruning has recently emerged as a powerful tool to reduce training and inference
costs of DNNs for supervised learning. There are mainly three genres of pruning methods, namely
pruning-at-initialization, pruning-during-training, and post-hoc pruning methods. Post-hoc prun-
ing (Janowsky, [1989; |[LeCun et al.| [1989; Han et al., 2015) can date back to the 1980s, which
was first introduced for reducing inference time and memory requirements; hence does not align
with our purpose of efficient training. Later, pruning-at-initialization (Lee et al., 2018; Wang et al.,
2020a; [Tanaka et al., [2020) and pruning-during-training methods (Louizos et al., 2017; [Wen et al.,
2016) were introduced to prune the networks before training and throughout the training, respec-
tively. Most early pruning-during-training algorithms (Savarese et al.,|2020) gradually decrease the
density of the neural networks and hence do not bring much training efficiency compared to post-
hoc pruning. However, recent advances in dynamic sparse training (DST) (Evci et al., [2020; [Liu
et al., 2021azbic; [Mocanu et al., [2018]) for the first time show that pruning-during-training methods
can have comparable training FLOPs as pruning-at-initialization methods while having competing
performance with respect to post-hoc pruning. Therefore, applying DST on GANs seems to be a
promising choice.

Although DST has attained remarkable achievements in supervised learning, the application of DST
on GANS is less explored due to newly emerged challenges. The main difficulty stems from the
fact that the training procedure of GANSs is notoriously brittle. To ensure successful training, we
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usually need carefully chosen architectures and finely-tuned hyper-parameters. One possible cause
is the difficulty of balancing the generator and the discriminator throughout training (Bai et al.,|2018;
Arora et al.,[2017). Specifically, an overly-strong discriminator will lead to overfitting, while a weak
discriminator will result in mode collapse. As a consequence, the requirement of balanced training
brings even more challenges to sparse GAN training. On the one hand, we find that performance
degradation caused by the unbalance of GANs is even more severe when sparsity is introduced. On
the other hand, for directly applying DST to the generator (or both) like the pioneering work STU-
GAN (L1u et al.}2022), it is unclear how to determine a reasonable density of the discriminator. To
this end, we propose a metric called balance ratio (BR), which measures the degree of balance of
the two components, to study sparse GAN training.

We find that BR is useful in (1) understanding the interaction between the discriminator and the
generator, (2) identifying the cause of training failure, and (3) helping stabilize sparse GAN training
as an indicator. To our best knowledge, this is the first study to investigate the balance of sparse
GANSs and may even provide new insights into dense GAN training.

Using BR as an indicator, we further propose double dynamic sparse training (DDST) to adjust the
density and the connections of the discriminator automatically during training.

Our contributions are summarized below:

* We introduce a quantity named balance ratio to quantify the degree of balance in GAN
training, which also helps understand the cause of some training failure cases.

* We first consider single dynamic sparse training (SDST), which is a generalization of STU-
GAN (Liu et al.| 2022)): applying DST to only the generator with varying discriminator
density ratios. We show that SDST does not necessarily outperform the static sparse train-
ing baselines.

* We provide two strategies to determine the discriminator density for SDST, and we find
that using a relatively larger density usually generates stable and better performance.

* Using the balance ratio as an indicator, we propose double dynamic sparse training (DDST),
which makes the discriminator dynamic both in density level and parameter level. Empiri-
cally, DDST outperforms baselines with reasonable computational cost on several datasets.

2 RELATED WORKS

2.1 NEURAL NETWORK PRUNING

Based on the smallest granularity of pruned units, neural network pruning can be categorized into
structured (Liu et al.,[2017; 2018 |Huang & Wang| [2018}|Luo et al.,[2017) and unstructured pruning
(Frankle & Carbin} 2018} [Han et al.l|2015). In this work, we mainly focus on unstructured pruning
where individual weight is the finest resolution.

Post-hoc pruning. Post-hoc pruning prunes weights of a fully-trained neural network, and they
usually have high computation cost due to the multiple rounds of train-prune-retrain procedure (Han
et al., |2015; Renda et al.| [2020). Some use specific criteria (Han et al.| [2015} [LeCun et al., [1989;
Hassibi et al., [1993; [Molchanov et al., [2019; Dai et al., |2018} |Guo et al.l [2016}; [Dong et al., 2017;
Yu et al.| [2018) to remove weights, while others perform extra optimization iterations (Verma &
Pesquet, 2021). Post-hoc pruning was initially proposed to reduce the inference time, while later
work on lottery ticket works (Frankle & Carbinl 2018; [Renda et al., [2020) aimed to mine trainable
sub-networks.

Pruning-at-initialization methods. SNIP (Lee et al. [2018)) is one of the pioneering works which
aim to find trainable sub-networks without any training. Some following works (Wang et al.,[2020a;
Tanaka et al. 2020} |de Jorge et al.| 2020; |Alizadeh et al.,|2022) aim to propose different metrics to
prune networks at initialization. Among them, Synflow (Tanaka et al.,[2020), SPP (Lee et al., 2019),
and FORCE (de Jorge et al., [2020) try to address the problem of layer collapse during pruning.
Neural tangent transfer (Liu & Zenke| 2020) learns a sub-network by aligning the empirical neural
tangent kernel and network output to the dense counterpart.
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Pruning-during-training methods. Another genre of pruning algorithms gradually prunes dense
DNNs throughout training. To mitigate performance drop after pruning, early works add explicit
£y (Louizos et al., 2017) or #; (Wen et al.l|2016) regularization terms to encourage sparse solution.
Later works learn the subnetworks structures through projected gradient descent (Zhou et al., [2021)
or trainable masks (Kang & Han, 2020; Kusupati et al.,|2020; Liu et al., 2020; Savarese et al., 2020;
Srintvas et al, |2017; |X1ao et al.l |2019). However, these pruning-during-training methods often do
not enjoy memory sparsity during training. As a remedy, DST methods (Bellec et al., 2017} Dettmers
& Zettlemoyer, [2019; Evci et al.| [2020; |Liu et al., 202 1ajbic; Mocanu et al., 2018; Mostafa & Wang,
2019; (Graesser et al., [2022)) were introduced to train the neural networks under a given parameter
budget while mask change is allowed during training.

2.2 GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (GANs). GANs (Goodfellow et al., 2020) have drawn consider-
able attention and have been widely investigated for years. Various architectures have been proposed
to enhance the capability of GANs. Deep convolutional GANs (Radford et al., [2015) replace fully-
connected layers in the generator and the discriminator. After that, follow-up works (Brock et al.,
2018} /Gulrajani et al., 2017; [Karras et al.,[2017}; Zhang et al.,|2019) employed more advanced meth-
ods to improve the fidelity of generated samples. Due to the difficulty of finding Nash Equilibrium,
training of GAN is highly unstable. Therefore, several novel loss functions (Mao et al., 2017} Ar-
jovsky et al.,2017; Salimans et al.,|2016;|Gulrajani et al.,|2017;Sun et al., [2020), normalization and
regularization methods (Miyato et al.l [2018; |Wu et al.| 2021}, |Terjék, 2019) were proposed to sta-
bilize the adversarial training. Besides the efforts devoted to the training of GAN, image-to-image
translation is also extensively explored. Specifically, this direction includes semantic image synthe-
sis (Zhu et al.,2017b), style transfer (Karras et al.,[2020b}; /Choi et al., 2018};Zhu et al.| 2017a), super
resolution (Ledig et al., [2017;|Wang et al.} [2018) etc.

GAN compression and pruning. Like other deep neural networks, the training and inference pro-
cess of GANs requires massive resource consumption and memory. One of the promising ways is
based on neural architecture search and distillation algorithm (L1 et al., [2020; [Fu et al., 2020; |Hou
et al 2021)). Another part of the work applied prune-based methods for GANS’ generator com-
pression (Shu et al., 2019} Jin et al.| 2021} [Yu & Pool, |2020). Yet, they only focus on the pruning
of generators, thus potentially posing a negative influence on Nash Equilibrium between generators
and discriminators. Later, works by (Wang et al.,|2020b) presented a unified framework by combing
the methods mentioned above. Follow-up work by [Li et al.| (2021)) compresses both components of
GANS by letting the student GANs also learn the losses. Another line of work (Kalibhat et al., 2021}
Chen et al., 2021) tries to test the existence of lottery tickets in GAN. However, most mentioned
methods are not prepared for training efficiency and require over-parameterized GAN models in ad-
vance. Directly training sparse GANs has been less explored so far. To the best of our knowledge,
STU-GAN [L1u et al.|(2022]) is the only work that tries to apply DST to GANS.

3 BALANCE RATIO: QUANTIFYING THE BALANCE OF SPARSE GANS

3.1 PRELIMINARY AND SETUPS

Generative adversarial networks (GANs) have two fundamental components, a generator G(-; 0¢)
and a discriminator D(-; @p). Specifically, the generator maps a sampled noise z from a multivariate
normal distribution p(z) into a fake image to cheat the discriminator, whereas the discriminator
distinguishes the generator’s output and the real images , from the distribution ¢(x). Formally,
the optimization objective of the two-player game defined in JS-GAN (Goodfellow et al., 2020) is
defined as follows:

L(0p,0¢) = Eq, ~g(a) [l0g(D(r;0D))] + Ezvp(z) [log(1 — D(G(2;0c)))] - (1)

To be more specific, different loss can be used, including Wasserstein loss (Gulrajani et al.| [2017)
and hinge loss (Miyato et al.,|2018)). In this work, we use hinge loss for all GANs.
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GAN sparse training. In this work, we are interested in sparse training for GANs. Specifically, the
objective of sparse GAN training can be formulated as:

minmax £(0p @ mp,0g © mg) (2)
6c 6p

st. mp € {0,1}7?, mg € {0,1}7¢, |mpllo/rp < dp, |mclo/pc < da,

where © is the Hadamard product; 8p, mp, pp, dp are the sparse solution, mask, number of
parameters, and target density for the discriminator, respectively. The corresponding variables for
the generator are denoted with subscript G. For pruning-at-initialization methods, masks m are
determined before training whereas m are dynamically adjusted for dynamic sparse training (DST)
methods.

3.2 BALANCE OF GAN DURING TRAINING

As discussed in[Section T] it is essential to maintain the balance of generator and discriminator during
GAN training. As pointed out by|Bai et al.|(2018)) and |Arora et al.|(2017), discriminators that are too
strong lead to over-fitting, whereas weak discriminators are unable to detect mode collapse. When it
comes to sparse GAN training, the consequences caused by the unbalance can be further amplified.
Specifically, different from dense GAN training, densities of generators and discriminators can be
varied significantly, leading to a more unbalanced worst-case scenario.

To support our claim, we conduct experiments with SNGAN (Miyato et al.,2018)) on the CIFAR-10
dataset. Following Liu et al.|(2022), we start with static sparse training where densities of gener-
ators and discriminators are chosen from {10%, 20%, 30%, 50%, 100%}. Layer-wise sparsity ratio
and masks mg, mp are determined using Erdds-Rényi-Kernel (ERK) graph topology (Evci et al.|
2020) and are fixed throughout the training. More experiment details can be found at

Experiment results. Results are reported in First three plots in show the re-
sults when varying density of discriminator dp, for weak generators (dg € {10%, 20%, 30%}).

We observe FID first decreases then increases. Specifically, neither overly-weak discriminators nor
overly-strong discriminators can provide satisfactory performance. Similarly, for stronger genera-
tors (dg € {50%, 100%}), only the dense discriminator with dg = 100% is not too weak to have
satisfactory FID result. Hence, to ensure a balanced training of GAN, it is crucial to find the suitable
sparsity ratio for the discriminator.

3.3 BALANCE RATIO

The observation in [Section 3.2 raises a funda-
' mental question: is there a way to quantify the
degree of balance between the generator and
the discriminator? To answer the question, we
introduce balance ratio (BR), which is, to the

(6(2).D(6""(2))

[e%

(G DE™) best of our knowledge, the first quantity that
A measures the balance of sparse generators and
100 . ..
e Y T discriminators.
X
Figure 1: Illustration of balance ratio. At each training iteration, we draw random

noise z from a multivariate normal distribution
and real images x, from the training set. We denote the discriminator after gradient descent up-
date as D(-;0p). We denote generator before and after gradient descent training as GP™(+; 8) and
GP%(-; 0¢,), respectively. Then the balance ratio is defined as:
0St e
pr - DIE™(2) = D(E™(z) _ o .
D(x,) — D(GP(2)) B
also provides an illustration of BR. Specifically, BR measures how much improvement
the generator can achieve in the scale measured by the discriminator for a specific random noise z.
When BR is small (e.g., BR< 30%), it means that the updated generator is too weak to trick the
discriminator as the generated images are still considered fake. Similarly, for the case where BR
is large (e.g., BR> 80%), the discriminator is considered too weak hence it will not provide useful
information to the generator.
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Figure 2: FID (|) of static sparsely trained SNGAN with and without DA on CIFAR-10 with
different sparsity ratio combinations. The shaded areas denote the standard deviation.
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Figure 3: Balance ratio of static sparsely trained SNGAN on CIFAR-10 with different sparsity
ratio combinations.

We now visualize the BR evolution throughout the training for the experiments in[Section 3.2] The
results are shown in [Figure 3|

The effectiveness of BR. We first check if BR can reflect the density increase (hence representation
power increase) of the discriminator. In we can see that for larger discriminator density
dp, the BR is much lower throughout the training. Furthermore, the best density as indicated by

[Figure 2] has overall BR in the range [0.3,0.7].

Overly weak discriminators lead to training failure. For the cases where the discriminators are
too weak compared to the generators, e.g., all cases where dp = 10%, we are able to observe the
strongly oscillatory behavior of BR. More precisely, BR starts to oscillate after it reaches a value
that is higher than 1.0. During the experiments, we also empirically observe that the FID gradually
increases after such a turning point. As also shown in FID of overly-strong discrimina-
tors (e.g., dp = 100%) are lower than overly-weak discriminators (e.g., dp = 10%). The such
phenomenon seems to imply that performance degradation caused by overly-strong discriminators
is better than failure caused by overly-weak discriminators.

3.4 DYNAMIC DENSITY ADJUSTMENT OF THE DISCRIMINATORS

We have shown in[Section 3.3|that BR is able to capture the degree of balance of the generators and
discriminators. Hence, it is natural to leverage BR to dynamically adjust the density of discrimina-
tors during sparse GAN training. Specifically, we initialize the initial density of the discriminator
ditt = dg. After a specific training iteration interval AT, we will adjust the density of the discrim-
inator based on the time-averaged BR over last a few iterations with a pre-defined density increment
Ad. With a pre-defined BR bounds [B_, B, ], we decrease dp by Ad when BR is smaller than B_,
and vise versa. Notice that the DA algorithm is in spirit very similar to StyleGAN2-ADA
[2020a) which adjusts augmentation probability with ADA. Out of simplicity, we increase the
density by growing the connections with the largest gradient magnitude 2020). Global
magnitude pruning is used to drop connections so as to decrease the density. The algorithm is shown
in{Appendix C||Algorithm 1}

We test our proposed methods dynamic density adjust (DA) with two target BR intervals, namely
DA-strong ([B_, B4+] =[0.3,0.4]), DA-mild ([B_, B4] = [0.45,0.55]). DA-strong tends to
find a relatively stronger discriminator, which results in a lower BR throughout the training, whereas
DA-mild tends to make the discriminator and the generator relatively balanced, i.e., BR = 0.5.
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Figure 4: FID (]) comparison of SDST against stat ic sparse training for SNGAN on CIFAR-10
with different sparsity ratio combinations. The shaded areas denote the standard deviation.

Experiment results. Results are shown in [Figure 2| with dashed lines. For stronger generators
(da € {30%,50%, 100%}), both DA-strong and DA-mild are able to identify reasonable dis-
criminator densities. While for weak generators (dg € {10%,20%}), DA-mild shows a more
stable performance. The experiments show the significant benefits brought by BR. Furthermore,
they again support our claims that neither overly-strong nor weak discriminators can lead to bal-
anced and successful GAN training.

4 IS ONLY ADJUSTING THE GENERATOR ENOUGH FOR SPARSE GANS?

In this section, we are going to test DST on GANs. We first test SDST, a direct application of DST
method on GAN where only the generator dynamically adjusts masks during the training. We do
not consider naively applying DST on both generators and discriminators, as in STU-GAN
let al.l2022), it is empirically shown that adjusting both components simultaneously generates worse
performance with more severe training instability. We name such method single dynamic sparse
training (SDST) as only one component of the GAN, i.e., the generator, is dynamic. Hence, STU-
GAN is a special case for SDST, which grows connections based on gradientsﬂ

We follow the same setting considered in [Section 3.2 where the densities of the generators d¢ and
discriminators dp are chosen from {10%, 20%, 30%, 50%, 100%}. Detailed DST procedure and

corresponding hyper-parameters can be found in [Appendix B]

Experiment results. We show the experiment results in The first observation is that
the performance of @ RigL and ¢ SET does not vary much in general. The second observation
is that SDST is better than static sparse training when the discriminator is strong enough. More
specifically, for dg € {10%,20%}, SDST method is worse than static sparse training when the
density of the discriminator is weak (dp = 10%). On the contrary, when the discriminator is strong
enough, dp € {20%, 30%, 50%, 100%}, we see a great performance boost brought by SDST. The
reason is that the in-time over-parameterization induced by DST increases the representation power
of the generator. Such a boost is beneficial only when the discriminator has matching or better
representation power.

Despite the superior performance of STU-GAN (or SDST in general) at higher density ratios, there
exist some limitations for SDST, which are summarized as follows:

©® When using SDST, dp is manually chosen before training. However, it is unclear what is a good
choice. In real-world scenarios, it is not practical to search for the optimal dp for each d¢.

® The issue of GAN unbalance is unresolved during training since the density of the discriminator
is fixed. As shown in the best performance is not always obtained with the maximum
dp = 100%. If we are using an overly-strong discriminator, we are wasting extra computational
cost for a worse performance.

Hence, STU-GAN (or SDST in general), which directly applies DST to the generator, may only
be useful when the corresponding discriminator is strong enough. In this sense, to deal with more
complicated scenarios, obtaining balanced training in an automatic way is essential in GAN dynamic
sparse training.

"Notice that STU-GAN is almost identical to @ SDST (RigL) with EMA tailored for DST.
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Table 1: FID () of different sparse training methods on CIFAR-10 and STL-10 datasets with no
constraint on the density of the discriminator. Best results are in bold; second-best results are
underlined.

CIFAR-10 STL-10
Generator density 10% 20% 30% 50% 10% 20% 30% 50%
(Dense Baseline) 10.74 29.71
Static-Balance 2673 18.04 1438 1222 50.08 44.19 4396 37.21
Static-Strong 26.60 1947 1460 11.28 52.03 44.04 4253 38.33

« DST-balance (SET) 32.02 1854 1474 1323 4991 3371 3292 3175
e DST-balance (RigL) 2456 1553 13.62 1251 6690 50.34 4457 32.63

« SDST-Balance (SET)  27.80 18.13 14.15 1232 63.57 49.05 43.74 31.29
+ SDST-Strong (SET) 17.04 1458 1229 1147 7834 5431 4177 3232
e SDST-Balance (RiglL) 30.38 17.89 1495 12.09 46.17 38.12 31.88 31.30
e SDST-Strong (RigL) 1695 1426 1236 1147 48.04 3424 32.67 30.40

+ R-DDST (SET) 13.58 12.54 11.71 1097 63.59 56.15 4548 31.71
o R-DDST (RigL) 1377 1233 1146 11.18 42.72 33.12 3244 30.88

Table 2: FID ({) and normalized training FLOPs of different sparse training methods with BigGAN
on CIFAR-10 dataset. Best results are in bold; second-best results are underlined.

FID () Normalized training FLOPs
Generator density 10% 20% 30% 50% 10% 20 % 30 % 50 %
(Dense Baseline) 8.43 6.80 x10'7 (100%)
Static-Balance 1746 13.13 1090 8.54 9.78%  19.04% 28.68% 49.12%
Static-Strong 2296 13.54 11.54 9.02 8390% 84.93% 86.32% 90.15%

e SDST-Balance (RigL) 11.98 958 896 7.92 991% 1941% 2890% 48.38%
o SDST-Strong (RigL) 10.79 930 882 830 84.04% 8522% 86.54% 89.56%
¢ R-DDST (RigL) 958 877 811 817 977% 2485% 40.00% 77.13%

5 DOUBLE DYNAMIC SPARSE TRAINING FOR GANS

STU-GAN (or SDST in general) considered in the last section cannot generate stable and satisfy-
ing performance. This implies that we should utilize the discriminator in a better way rather than
just directly applying DST to the discriminator. Consequently, DA (Section 3.4), which adjusts the
discriminator density to stabilize GAN training, is a favorable candidate to address the issue. We
name the proposed method double dynamic sparse training (DDST), which adjusts the density of
the discriminator during training with BR as the indicator while the generator performs DST. We
propose two DDST methods, namely R—-DDST and S—-DDST based on whether we give constraints
on the maximum density of the discriminator. We present them in [Section 5.1|{and |[Section 5.2| We
use the word double for the following two reasons: @ both the generators and the discriminators are
dynamic (both R-DDST and S-DDST); @ the discriminator enjoys two levels of dynamic flexibility,
namely density level and parameter level (S-DDST). Such a method has much more flexibility and
generates more stable performance compared to SDST.

5.1 RELAXED DOUBLE DYNAMIC SPARSE TRAINING

We first investigate the direct combination of SDST with DA. Specifically, the generator is adjusted
using SDST as mentioned in while the density of the generator is dynamically adjusted
with DA as mentioned in e call such a combination relaxed double dynamic sparse
training (R-DDST) as it does not necessarily introduce sparsity to the discriminator, and the density
of the discriminator can be as high as 100% (hence dense discriminator). For a fair comparison,

baseline methods can use the discriminator with arbitrary sparsity ratio, i.e., dp € [dmin, dmax] =
[0%, 100%).

Comparison to STU-GAN (SDST). Compared to STU-GAN (or SDST in general) which pre-
defines the discriminator density before training, the difference is that for R-DDST, the density of
the discriminator is adjusted during the training process automatically through DA. Given the initial
discriminator density d'% = dg, R-DDST automatically increases the discriminator density if a
stronger discriminator is needed, and vice versa.
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Datasets, architectures, and target sparsity ratios. We first conduct experiments on SNGAN
with ResNet architectures on CIFAR-10 (Krizhevsky et al.,2009) and STL-10 (Coates et al., 2011)
datasets. Target density ratios of the generators dg are chosen from {10%, 20%, 30%, 50% }. Please

see for more experiment details.
Baseline methods and R-DDST. We use static (Section 3.2) and SDST (Section 4) as our base-

lines. Since these baselines use pre-defined discriminator density ratios, we propose two strategies
to define the discriminator density ratios based on the results from [Section 3.2| and [Section 4; @
balance strategy, where we set the density of the discriminator dp the same as the density of the
generator d¢; @ strong strategy, where we set the density of the discriminator as large as possible,
i.e., dp = dmax. In this section, we use dy,, = 100% for the strong strategy. For SDST methods,
we test both grow methods, i.e., « SDST (SET) (Mocanu et al., 2018) which grows connections
randomly and e SDST (RigL) (Evci et al.l2020) which grows connections via gradient.

Similar to SDST, we again consider ¢ R-DDST (SET) and @ R-DDST (RigL) which differ based
on how R-DDST grows connections. One thing to notice is that we use the same growth criterion

for the generator and the discriminator out of simplicity. More training details can be found in [Ap-]
FID results on the training set are shown in[Table I More results of SNGAN on CIFAR-10

test set can be found in[Appendix E} Training costs comparison can be found in

The strong strategy and the balance strategy. For almost all density ratios of SNGAN (CIFAR-10)
experiments, using the strong strategy is always comparable to or better than the balance strategy.
The difference between the two is almost negligible when applied to static methods. However,
for SDST methods, using stronger discriminators always leads to a large performance gain.

For SNGAN on the STL-10 dataset, the advantage of the strong strategy over the balance strategy is
no longer obvious. Precisely, for 3 out of 8 cases, using the strong strategy is better than using the
balance strategy. The explanation is that the size difference between generators and discriminators
is larger for STL-10. Hence, the degree of unbalance is more severe and leads to more detrimental
effects.

R-DDST identifies reasonable discriminator density. For the CIFAR-10 dataset, we find that
R-DDST consistently performs better than the corresponding baselines with the same grow methods.
This illustrates that R—-DDST is flexible and able to find suitable discriminator density compared to
the two baseline strategies, i.e., the strong and the balance strategy.

For the STL-10 dataset, « R-DDST (RigL) performs consistently better than « R-DDST (SET)
and baselines, whereas « R-DDST (SET) is not competitive any more. We postulate that under such
a setting where the dataset scales up and the training is more difficult, gradient growth not only
identifies important connections of the generator but also provides efficient representation power
growth of the discriminator to balance the growth of the generator. Please also see[Appendix D|for
the time evolution of BR and the discriminator density during training for R-DDST methods.

Larger GAN model experiments. We have also conducted experiments with BigGAN (Brock
et al.|[2018]) on CIFAR-10 datasets. Based on the SNGAN results, we compare all @ RigL variants
with static baselines. FID and normalized training FLOPs with respect to dense training are
shown in[Table 2] The results show that e R~DDST shows stable performance and outperforms other
baselines most of the time. Moreover, compared to the second best method @ SDST-Strong, e
R-DDST not only shows lower FID but also requires much less training cost.

Main takeaway. In this section, we compared R-DDST with sparse training baselines. We find that
e RigL and strong strategy are preferred compared to ¢ SET and balance strategy. @ SDST (RigL)
with strong strategy generally generates better performance compared to other sparse training base-
lines. Finally, @« R-DDST (RigL) beats @ SDST (RigL) with much less computational cost and
always ranked top two among all methods.

5.2 STRICT DOUBLE DYNAMIC SPARSE TRAINING

R-DDST introduced in the previous section does not necessarily introduce sparsity for the discrim-
inator, which provides less memory/training resources saving for larger generator density ratios.
Hence, we further present strict double dynamic sparse training (S-DDST) in this section which
enforces the discriminator to be sparse, i.e., dp < dmax < 100%. In this section, we assume that
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Table 3: FID (] ) of different sparse training methods on CIFAR-10 and STL-10 datasets. The density
of the discriminator is constrained to be lower than 50%. Best results are in bold; second-best results
are underlined.

CIFAR-10 STL-10
Generator density 10% 20% 30% 50% 10% 20% 30% 50%
(Dense Baseline) 10.74 29.71
Static-balance 2673 18.04 14.38 12.22 50.08 44.19 4396 37.21
Static-strong 2235 16.57 1347 1222 5028 4495 42,12 3721

+ DST-balance (SET) 32.02 1854 1474 1323 4991 3371 3292 31.75
e DST-balance (RiglL)  24.56 15.53 13.62 1251 66.90 50.34 4457 32.63

« SDST-balance (SET) 27.80 18.13 14.15 1232 63.57 49.05 43.74 31.29
+ SDST-strong (SET) 16.00 1331 13.17 1232 4840 3356 32.19 31.29
e SDST-balance (RiglL) 30.38 17.89 1495 12.09 46.17 38.12 3248 31.30

e SDST-strong (RigL) 15.66 1320 1299 12.09 63.65 3345 32.09 3130

+ S-DDST (SET) 1422 1330 1239 1197 5172 3574 4236 31.68
 S-DDST (RigL) 14.13 1287 1215 1217 4428 32.84 32.00 30.28
we can use the discriminator with sparsity ratio dp € [dmin, dmax] = [0%, 50%]. Compared with

R-DDST, the learning process will be more challenging with the introduced constraints on the max-
imal discriminator density. S-DDST consists of two phases and works as follows:

O Density exploration of the discriminator. During the first phase, S-DDST performs just like
R-DDST, with the exception that we apply the constraint dp < dyax < 100%. Concretely, S-DDST
aims to find a suitable discriminator density d}, with DA algorithm in the first half of training.

® Paramter exploration of the discriminator. During the second phase, both the generator and
discriminator are adjusted using DST with fixed discriminator density d7, found in the first phase.

Baseline methods and S-DDST. We use the same baselines and adopt the same general setup in
We divide the training iterations evenly for two phases. For a comprehensive com-
parison, we continue to report FID results from two growth methods, i.e., « S-DDST (SET) and e

S-DDST (RigL) in[Table 3] IS and other results can be found in[Appendix E]

S-DDST shows stable and superior performance. For the CIFAR-10 dataset, we notice that
S—-DDST stably surpasses its corresponding baselines regardless of grow methods and initial density
of discriminators and generators. Even with a further constraint on the discriminator, DA is still able
to improve GANs training and can explore more reasonable density than the strong and the balance
strategy. For STL-10 dataset, @ S-DDST (RigL) again shows the most promising performance.
Please also see |[Figure 7|in|Appendix D|for discriminator density and BR evolution during training.

Main takeaway. In this section, we report the results from ¢ S-DDST (RigL) with its baselines.
Generally, @ RigL still demonstrates encouraging results compared with ¢ SET in most experiments
when extra sparsity is introduced. While the strong strategy shows favorable performance in the
CIFAR-10 dataset, the gain is not salient when the size of the backbone increase and the training
dataset scales up to STL-10. Most importantly, @ S-DDST (RigL) is able to have comparable
performance in some cases when compared to e R—~DDST (RigL) and outperforms @ SDST (RigL)
after we restrict the maximal density of discriminators.

6 CONCLUSION

In this paper, we study DST for GANs. We find that simply applying DST methods to the generator
is not sufficient to improve the performance of sparse GANs. Hence, we propose to use BR to
measure the degree of unbalance between the generator and the discriminator. We find that the
application of DST only on the generator is beneficial when the discriminator is relatively stronger.
Furthermore, we propose two methods, namely R-DDST and S-DDST, to dynamically adjust the
discriminator in both parameter and density levels. Both of these methods demonstrate encouraging
results. Our study may help researchers have a better understanding of the balance of GAN training
and encourage more researchers to investigate sparse training for generative models.
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7  REPRODUCIBILITY

STATEMENT

To ensure reproducibility, we will include a link to an anonymous repository after the discussion

forums are open. All the ex

periment details can be found in [Section 4} [Section 5.1} [Section 5.2}

[Appendix Aland[Appendix B

10



Under review as a conference paper at ICLR 2023

REFERENCES

Milad Alizadeh, Shyam A Tailor, Luisa M Zintgraf, Joost van Amersfoort, Sebastian Farquhar,
Nicholas Donald Lane, and Yarin Gal. Prospect pruning: Finding trainable weights at initializa-
tion using meta-gradients. arXiv preprint arXiv:2202.08132, 2022.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214-223. PMLR, 2017.

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and equilibrium
in generative adversarial nets (gans). In International Conference on Machine Learning, pp. 224—
232. PMLR, 2017.

Yu Bai, Tengyu Ma, and Andrej Risteski. Approximability of discriminators implies diversity in
gans. arXiv preprint arXiv:1806.10586, 2018.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. arXiv preprint arXiv:1711.05136, 2017.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Xuxi Chen, Zhenyu Zhang, Yongduo Sui, and Tianlong Chen. Gans can play lottery tickets too.
arXiv preprint arXiv:2106.00134, 2021.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Star-
gan: Unified generative adversarial networks for multi-domain image-to-image translation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8789—8797,
2018.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, pp. 215-223. JIMLR Workshop and Conference Proceedings, 2011.

Bin Dai, Chen Zhu, Baining Guo, and David Wipf. Compressing neural networks using the varia-
tional information bottleneck. In International Conference on Machine Learning, pp. 1135-1144.
PMLR, 2018.

Pau de Jorge, Amartya Sanyal, Harkirat S Behl, Philip HS Torr, Gregory Rogez, and Puneet K
Dokania. Progressive skeletonization: Trimming more fat from a network at initialization. arXiv
preprint arXiv:2006.09081, 2020.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. Advances in Neural Information Processing Systems, 30, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943-2952.
PMLR, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

11



Under review as a conference paper at ICLR 2023

Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, and Zhangyang Wang.
Autogan-distiller: Searching to compress generative adversarial networks. arXiv preprint
arXiv:2006.08198, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139-144, 2020.

Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of sparse training in
deep reinforcement learning. In International Conference on Machine Learning, pp. 7766—7792.
PMLR, 2022.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. Advances in neural information processing systems, 30,
2017.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. Advances
in neural information processing systems, 29, 2016.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293-299. IEEE, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770778, 2016.

Liang Hou, Zehuan Yuan, Lei Huang, Huawei Shen, Xueqi Cheng, and Changhu Wang. Slimmable
generative adversarial networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 77467753, 2021.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In
Proceedings of the European conference on computer vision (ECCV), pp. 304-320, 2018.

Steven A Janowsky. Pruning versus clipping in neural networks. Physical Review A, 39(12):6600,
1989.

Qing Jin, Jian Ren, Oliver J Woodford, Jiazhuo Wang, Geng Yuan, Yanzhi Wang, and Sergey
Tulyakov. Teachers do more than teach: Compressing image-to-image models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13600-13611, 2021.

Neha Mukund Kalibhat, Yogesh Balaji, and Soheil Feizi. Winning lottery tickets in deep generative
models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 8038—
8046, 2021.

Minsoo Kang and Bohyung Han. Operation-aware soft channel pruning using differentiable masks.
In International Conference on Machine Learning, pp. 5122-5131. PMLR, 2020.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. Advances in Neural Information Processing
Systems, 33:12104-12114, 2020a.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110-8119, 2020b.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

12



Under review as a conference paper at ICLR 2023

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
International Conference on Machine Learning, pp. 5544-5555. PMLR, 2020.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro
Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic sin-
gle image super-resolution using a generative adversarial network. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 4681-4690, 2017.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip HS Torr. A signal propagation
perspective for pruning neural networks at initialization. arXiv preprint arXiv:1906.06307, 2019.

Muyang Li, Ji Lin, Yaoyao Ding, Zhijian Liu, Jun-Yan Zhu, and Song Han. Gan compression: Ef-
ficient architectures for interactive conditional gans. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5284-5294, 2020.

Shaojie Li, Jie Wu, Xuefeng Xiao, Fei Chao, Xudong Mao, and Rongrong Ji. Revisiting discrimi-
nator in gan compression: A generator-discriminator cooperative compression scheme. Advances
in Neural Information Processing Systems, 34:28560-28572, 2021.

Junjie Liu, Zhe Xu, Runbin Shi, Ray CC Cheung, and Hayden KH So. Dynamic sparse train-
ing: Find efficient sparse network from scratch with trainable masked layers. arXiv preprint
arXiv:2005.06870, 2020.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse training via boosting
pruning plasticity with neuroregeneration. Advances in Neural Information Processing Systems,
34:9908-9922, 2021a.

Shiwei Liu, Decebal Constantin Mocanu, Yulong Pei, and Mykola Pechenizkiy. Selfish sparse rnn
training. In International Conference on Machine Learning, pp. 6893-6904. PMLR, 2021b.

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need
dense over-parameterization? in-time over-parameterization in sparse training. In International
Conference on Machine Learning, pp. 6989-7000. PMLR, 2021c.

Shiwei Liu, Yuesong Tian, Tianlong Chen, and Li Shen. Don’t be so dense: Sparse-to-sparse gan
training without sacrificing performance. arXiv preprint arXiv:2203.02770, 2022.

Tianlin Liu and Friedemann Zenke. Finding trainable sparse networks through neural tangent trans-
fer. In International Conference on Machine Learning, pp. 6336-6347. PMLR, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012-10022, 2021d.

Zhuang Liu, Jianguo Li, Zhigiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pp. 2736-2744, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
1_0 regularization. arXiv preprint arXiv:1712.01312, 2017.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp- 5058-5066, 2017.

13



Under review as a conference paper at ICLR 2023

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley.
Least squares generative adversarial networks. In Proceedings of the IEEE international confer-
ence on computer vision, pp. 2794-2802, 2017.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):1-12, 2018.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11264—-11272, 2019.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In International Conference on Machine Learning, pp.
4646—-4655. PMLR, 2019.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. arXiv preprint arXiv:2003.02389, 2020.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Pedro Savarese, Hugo Silva, and Michael Maire. Winning the lottery with continuous sparsification.
Advances in Neural Information Processing Systems, 33:11380—-11390, 2020.

Han Shu, Yunhe Wang, Xu Jia, Kai Han, Hanting Chen, Chunjing Xu, Qi Tian, and Chang Xu.
Co-evolutionary compression for unpaired image translation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 3235-3244, 2019.

Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. Training sparse neural networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition workshops,
pp. 138-145,2017.

Ruoyu Sun, Tiantian Fang, and Alexander Schwing. Towards a better global loss landscape of gans.
Advances in Neural Information Processing Systems, 33:10186—-10198, 2020.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information Pro-
cessing Systems, 33:6377-6389, 2020.

David Terjék. Adversarial lipschitz. arXiv preprint arXiv:1907.05681, 2019.

Sagar Verma and Jean-Christophe Pesquet. Sparsifying networks via subdifferential inclusion. In
International Conference on Machine Learning, pp. 10542—-10552. PMLR, 2021.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020a.

Haotao Wang, Shupeng Gui, Haichuan Yang, Ji Liu, and Zhangyang Wang. Gan slimming: All-in-
one gan compression by a unified optimization framework. In European Conference on Computer
Vision, pp. 54-73. Springer, 2020b.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen
Change Loy. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings
of the European conference on computer vision (ECCV) workshops, pp. 0-0, 2018.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. Advances in neural information processing systems, 29, 2016.

14



Under review as a conference paper at ICLR 2023

Yi-Lun Wu, Hong-Han Shuai, Zhi-Rui Tam, and Hong-Yu Chiu. Gradient normalization for gener-
ative adversarial networks. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 6373-6382, 2021.

Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran. Autoprune: Automatic network pruning by
regularizing auxiliary parameters. Advances in neural information processing systems, 32, 2019.

Yasin Yaz, Chuan-Sheng Foo, Stefan Winkler, Kim-Hui Yap, Georgios Piliouras, Vijay Chan-
drasekhar, et al. The unusual effectiveness of averaging in gan training. In International Confer-
ence on Learning Representations, 2018.

Chong Yu and Jeff Pool. Self-supervised generative adversarial compression. Advances in Neural
Information Processing Systems, 33:8235-8246, 2020.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei Gao, Ching-
Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance score propagation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 9194—
9203, 2018.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. In International conference on machine learning, pp. 7354-7363. PMLR,
2019.

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for
data-efficient gan training. Advances in Neural Information Processing Systems, 33:7559-7570,
2020.

Xiao Zhou, Weizhong Zhang, Hang Xu, and Tong Zhang. Effective sparsification of neural networks
with global sparsity constraint. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3599-3608, 2021.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223-2232, 2017a.

Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver Wang, and
Eli Shechtman. Toward multimodal image-to-image translation. Advances in neural information
processing systems, 30, 2017b.

15



Under review as a conference paper at ICLR 2023

A EXPERIMENTAL SETUP

Our code is mainly based on the original code of ITOP 2021¢) and GAN ticket (Chen|
2021).

A.1 ARCHITECTURE DETAILS

We use ResNet-32 (He et all 2016) for CIFAR-10 dataset and ResNet-48 for STL-10 dataset.
See [Table 4] and [Table 3| for detailed architectures. Spectral normalization is applied for all fully-
connected layers and convolutional layers of the discriminators.

For BigGAN architecture, we use the implementation used in (12020). EI

A.2 DATASETS

We use the training set of CIFAR-10 and unlabeled partition of STL-10 for GAN training. Train-
ing images are resized to 32 x 32 and 48 x 48 for CIFAR-10 and STL-10 datasets, respectively.
Augmentation methods for both datasets are random horizontal flip and per-channel normalization.

A.3 TRAINING HYPERPARAMETERS

SNGAN on the CIFAR-10 and STL-10 datasets. We use a learning rate of 2 x 10~ for both
generators and discriminators. The discriminator is updated five times for every generator update.
We adopt Adam optimizer with 57 = 0 and S = 0.9. The batch size of the discriminator and the
generator is set to be 64 and 128, respectively. Hinge loss is used following [Brock et al.| (2018));
(2021). We use exponential exponential moving average (EMA) (Yaz et al., with

£ = 0.999. The generator is trained for a total of 100k iterations.

BigGAN on the CIFAR-10 dataset. We use a learning rate of 2 x 10~ for both generators and
discriminators. The discriminator is updated four times for every generator update. We adopt Adam
optimizer with 81 = 0 and 55 = 0.999. The batch size of both the discriminator and the generator
is set to be 50. Hinge loss is used following|Brock et al.[(2018]);|Wu et al.|(2021)). We use EMA with
B = 0.9999. The generator is trained for a total of 200k iterations.

A.4 EVALUATION METRIC

SNGAN on the CIFAR-10 and the STL-10 datasets. We compute Fréchet inception distance
(FID) and Inception score (IS) for 50k generated images every 2000 iterations. Best FID and IS are
reported. For the CIFAR-10 dataset, we report both FID for the training set and test set, whereas,
for the STL-10 dataset, we report the FID of the unlabeled partition.

BigGAN on the CIFAR-10 dataset. We compute Fréchet inception distance (FID) and Inception
score (IS) for 10k generated images every 5000 iterations. Best FID and IS are reported.

B DYNAMIC SPARSE TRAINING DETAILS

B.1 GENERAL DST HYPERPARAMETERS

Following (2020)), we specify the hyper-parameters of DST through sparsity distribution,
update schedule, drop criterion, and grow criterion. We explain the details of DST below.

Sparsity distribution at initialization. Following Evci et al.| (2020); Liu et al.|(2021c), only param-
eters of fully connected layers and convolutional layers will be pruned. At initialization, we use the
commonly adopted Erdés-Rényi-Kernel (ERK) strategy (Evci et al., 2020; [Dettmers & Zettlemoyer),
2019; [Liu et all, [2021c) to allocates higher sparsity to larger layers. Specifically, the sparsity of
nl71+nl+wl+hl
= Inlwlhl

convolutional layers [ is scaled with 1 — , where n! denotes the number of channels

2https ://github.com/mit—-han-lab/data-efficient-gans/tree/master/
DiffAugment-biggan-cifarl
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of layer [ while w' and h! are the width and the height of the corresponding kernel in that layer.

For fully connected layers, Erdds-Rényi (ER) strategy is used, where the sparsity is scaled with
-1 1

1 _n +n

ni—Inl -

Drop and grow. After AT training iterations, we update the mask m¢ by dropping/pruning
faecay (7, T)pcde number of connections with the lowest magnitude, where pg, d¢ are the num-
ber of parameters and target density for the generator, fgecay(7,7’) is the update schedule, which
will be explained in the next part. Right after the connection drop, we regrow the same amount of
connections.

For the growing criterion, we test both random growth ¢ SDST (SET) (Mocanu et al.| [2018; |[Liu
et al.,|2021c) and gradient-based growth @ SDST (RigL) (Evci et al.l|2020). Concretely, gradient-
based methods find newly-activated connections 6 with highest gradient magnitude |%—9 , while
random based methods explore connections in a random fashion. All the newly-activated connec-
tions are set to 0. One thing that should be noticed is that while previous works consider layer-wise
connections drop and growth, we grow and drop connections globally as it grants more flexibility to
the SDST method.

Update schedule. The update schedule can be specified by the number of training iterations be-
tween sparse connectivity updates AT, the initial fraction of connections adjusted -, and decaying
schedule fyecay(7,7T") for .

EMA for sparse GAN. EMA (Yaz et al} [2018) is well-known for its ability to alleviate the non-
convergence of GAN. We also implement EMA for sparse GAN training. Specifically, we zero out
the moving average of dropped weights whenever there is a mask change.

B.2 DST HYPERPARAMETERS FOR SDST

SNGAN on the CIFAR-10 and the STL-10 datasets. The connection update frequency of the
generator AT is set to 500 and 1000 for the CIFAR-10 dataset and STL-10 dataset, respectively.
The initial  is set to 0.5 and we use a cosine annealing function fyecay following RigL and ITOP.

BigGAN on the CIFAR-10 dataset. The connection update frequency of the generator AT is set
to be 1000. The initial vy is set to 0.5 and we use a cosine annealing function fyecay following RigL
and ITOP.

B.3 DYNAMIC ADJUST AND DST HYPERPARAMETERS FOR DDST

R-DDST. For R-DDST, only the generator is adjusted using DST while the discriminator is ad-
justed using dynamic adjust (DA). The DA bounds are chosen to be [0.475, 0.525], [0.45, 0.55], and
[0.45,0.55] for SNGAN (CIFAR-10), SNGAN (STL-10) and BigGAN (CIFAR-10), respectively.
Ad is set to be 0.05, 0.025, 0.05 for SNGAN (CIFAR-10), SNGAN (STL-10) and BigGAN (CIFAR-
10), respectively. The density of the discriminator is adjusted every 1000, 2000, and 5000 iterations
for the three settings, respectively. Time-averaged BR over 1000 iterations is used as the indicator.

We use the same setting used in[Section B.2]for the generator.

S-DDST. For S-DDST, the discriminator is adjusted using DA in the first half of training, i.e.,
the first 50,000 iterations. In the second half of the training, the discriminator is adjusted using
DST. The generator is only adjusted with DST. For the DA bounds, they are set as [0.45, 0.55] and
[0.475,0.525] for CIFAR-10 and STL-10 dataset, respectively. The density of the discriminator is
adjusted every 2000 iterations for each dataset. The density of the generator is adjusted every 1000
1terations.

We compute BR for every iteration to visualize the BR evolution, whereas one should note that such
computational cost can be greatly decreased if BR is computed every AT iterations.

C ALGORITHMS

In this section, we present the detailed algorithms for both DA and S-DDST. We do not present the
algorithm of R-DDST as it is a combination of DA and SDST.
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Table 4: ResNet architecture for CIFAR-10. Table 5: ResNet architecture for STL-10.

(@) Generator (5) Discriminator (a) Generator (b) Discriminator
TeRE N mage 7 € [ L, 1[50 2z € R128 ~ N(0,1) image x € [—1, 1]18x48x3
- - dense, 6 x 6 x 512 ResBlock down 64
dense, 4 x 4 x 256 ResBlock down 128
ResBlock up 256 ResBlock down 128
ResBlock up 256 ResBlock down 128
ResBlock up 128 ResBlock down 256
ResBlock up 256 ResBlock down 128 S y—) ResBlock 5
esBlock u esBlock down
ResBlock up 256 ResBlock down 128 P
BN ReLU.3 x 3 Tanh ReLU 01 BN, ReLU, 3 x 3 conv, Tanh ResBlock down 1024
,ReLU, 3 x 3 conv, Tanl e .
ReLU 0.1

Global sum pooling Global ave pooling

dense — 1
dense — 1

C.1 DYNAMIC ADJUST ALGORITHM

We first present DA in[Algorithm 1}

Algorithm 1 Dynamic density adjust (DA) for the discriminator.

Require: Generator (G, discriminator D, DA upper bound B and lower bound B_, DA interval AT, density
increment Ad, grow method A, drop method B, iteration t.
ift mod ATp == 0 then
Compute time-averaged BR with [Equation J|
if BR is greater or equal to B then
Increase the density of discriminator from dp to dp + Ad using given grow method .A.
else if BR is less or equal to B_ then
Decrease the density of discriminator from dp to dp — Ad using given drop method 5.
end if
end if

AN ol e

C.2 STRICT DOUBLE DYNAMIC SPARSE TRAINING ALGORITHM

Details of S-DDST algorithm is presented in

Algorithm 2 Strict double dynamic sparse training (S-DDST) for GANs.

Require: Generator G, discriminator D, total number of iterations 7", number of training steps for discrimina-
tor in each iteration [N, maximal density of discriminator dmax.

1: fortin[1,---,7T] do

2 fornin[l,---,N]do

3 Compute the loss of discriminator £Lp(6p)

4 Lp(0p).backward()

5:  end for

6

7

8

Compute the loss of generator L (0¢)
La(0¢).backward()
if ¢ is less than 0.5 x 1" and current density of discriminator dp is less than dm.x then

Apply DA in[Algorithm T|to D
10:  else
11: Apply DST to D
12:  endif
13:  Apply DST to G
14: end for

D DDST BALANCE RATIO EVOLUTION

In this section, we show that DDST methods are able to maintain a BR throughout training. We show
the time evolution of BR and discriminator density for CIFAR-10 and STL-10 datasets.
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Figure 5: Balance ratio and discriminator density evolution during training for e R—-DDST (RigL)
on CIFAR-10. Dashed lines represent BR values of 0.45 and 0.55.
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Figure 6: Balance ratio and discriminator density evolution during training for e R—-DDST (RigL)
on STL-10. Dashed lines represent BR values of 0.45 and 0.55.

D.1 R-DDST

Results are shown in|Figure 5|and [Figure 6| It clearly illustrates the ability of @ R-DDST (RigL) to
keep the BR controlled during GAN training.

D.2 S-DDST

Results of S-DDST are shown in [Figure 7| and [Figure 8| It clearly illustrates the ability of e
S-DDST (RigL) to keep the BR controlled during GAN training.
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Figure 7: Balance ratio and discriminator density evolution during training for @ S-DDST (RigL)
on CIFAR-10. Dashed lines represent BR values of 0.45 and 0.55.
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Figure 8: Balance ratio and discriminator density evolution during training for ¢ S-DDST (RigL)
on STL-10. Dashed lines represent BR values of 0.45 and 0.55.

E MORE EXPERIMENT RESULTS

In this section, we present IS scores results for [Table 1] and [Table 3} The corresponding results are
shown in [Table 6] and [Table 7} respectively. We also include FID results of CIFAR-10 test set in
Table §
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Table 6: IS (higher is better) of different sparse training methods on CIFAR-10 and STL-10 datasets.
There is no constraint on the density of the discriminator, i.e., dpnax = 100%.

Dataset CIFAR-10 STL-10
Generator density 10% 20% 30% 50% 10% 20% 30% 50%
(Dense Baseline) 8.48 9.16
Static-Balance 718 776 801 831 784 807 835 8.60
Static-Strong 749 800 831 854 774 829 838 883

« SDST-Balance (SET) 694 7.79 805 820 840 854 920 9.12
+ SDST-Strong (SET) 827 846 851 843 810 867 889 931
e SDST-Balance (RigL) 6.81 7.77 8.08 830 885 874 9.19 9.14
o SDST-Strong (RigL) 820 838 855 848 825 930 9.01 937

+ R-DDST (SET) 855 850 840 856 833 862 904 934
e R-DDST (RigL) 832 861 849 855 879 925 930 9.27

Table 7: IS (higher is better) of different sparse training methods on CIFAR-10 and STL-10 datasets.
The density of the discriminator is constrained to be lower than d,x = 50%.

Dataset CIFAR-10 STL-10
Generator density 10% 20% 30% 50% 10% 20% 30% 50%
(Dense Baseline) 8.48 9.16
Static-Balance 7.18 7776 801 831 7.84 807 835 8.60
Static-Strong 786 821 835 828 7.81 805 826 837

« SDST-Balance (SET) 694 7.79 805 820 840 854 920 9.12
+ SDST-Strong (SET) 822 836 856 835 840 929 921 922
e SDST-Balance (RigL) 6.81 7.77 8.08 830 88 874 9.19 9.14
e SDST-Strong (RigL) 824 851 820 818 770 932 919 933

+ S-DDST (SET) 808 825 845 823 807 891 911 950
e S-DDST (RigL) 816 847 829 832 845 924 916 903

Table 8: FID of test set (|) of different sparse training methods on CIFAR-10 dataset. Best results
are in bold; second-best results are underlined.

Maximal discriminator density dpyax 100 % 50 %

Generator density 10% 20% 30% 50% 10% 20% 30% 50%
(Dense Baseline) 13.32

Static-Balance 29.53 20.83 17.09 1421 29.53 20.83 17.09 14.21
Static-Strong 29.15 2217 1737 14.04 2198 1935 1652 14.84
« SDST-Balance (SET) 30.34 21.00 16.84 1553 30.34 21.00 16.84 15.53
+ SDST-Strong (SET) 1995 17.05 15.16 14.10 18.83 1596 15.61 14.53
e SDST-Balance (RigL) 3325 20.74 1778 1475 3325 20.74 17.78 14.75
e SDST-Strong (RigL) 19.67 1579 13.89 1436 18.60 16.01 15.84 14.67
« R-DDST (SET) 16.34 1529 1430 13.85 - - - -

o R-DDST (RigL) 16.65 14.87 1449 14.05 - - - -

« S-DDST (SET) - - - - 1775 1574 15.07 1491
o S-DDST (RigL) - - - - 17.07 15,50 15.02 14.67
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Table 9: Training FLOPs (x10'7) of different sparse training methods on CIFAR-10 dataset.

Dataset CIFAR-10
Generator density 10% 20 % 30 % 50 %
(Dense Baseline) (1.74, 1.00x)

Static-Strong  (0.63, 0.36x) (0.70, 0.40x) (0.80, 0.46x) (1.07,0.61x)
dmax = 100%  SDST-Strong  (0.63, 0.36x)  (0.70,0.40x) (0.80,0.46x) (1.07,0.61x)
R-DDST (0.63,0.36x) (0.70,0.40x) (0.80,0.46x) (1.07,0.61x)

Static-Strong ~ (0.36,0.21x)  (0.43,0.25x)  (0.53,0.30x) (0.79, 0.46x)
dmax = 50%  SDST-Strong  (0.36,0.21x) (0.43,0.25x) (0.53,0.30x) (0.79, 0.46x)
S-DDST (0.36,0.21x) (0.43,0.25x) (0.53,0.30x) (0.79, 0.46x)

Table 10: Training FLOPs (x 10'7) of different sparse training methods on STL-10 dataset.

Dataset STL-10
Generator density 10% 20 % 30 % 50 %
(Dense Baseline) (1.85, 1.00x)

Static-Strong  (1.30,0.75x) (1.34,0.77x) (1.36,0.78x) (1.41, 0.81x)
dmax = 100%  SDST-Strong  (1.30,0.75%x)  (1.34,0.77x) (1.36,0.78x) (1.41,0.81x%)
R-DDST (1.30,0.75x) (1.34,0.77x) (1.36,0.78x) (1.41,0.81x)

Static-Strong  (1.07,0.62x) (1.11,0.63x) (1.13,0.65x) (1.18, 0.68x)
dmax = 50%  SDST-Strong  (1.07,0.62x) (1.11,0.63x) (1.13,0.65x) (1.18,0.68x%)
S-DDST (1.07,0.62x) (1.11,0.63x) (1.13,0.65x) (1.18, 0.68x)

F A ROUGH ESTIMATION OF COMPUTATIONAL COSTS ON SNGAN

In this section, we provide a very rough estimation on the computational cost of different sparse
training methods in terms of training FLOPs. Please see [Appendix G]for a more accurate compari-
son. We approximate the number of backward FLOPs with two times the number of forward FLOPs.
We compare the following methods under two settings where diax € {100%, 50%}:

* Dense training.

* static—-Strong.
* SDST-Strong.

¢ R-DDST.

¢ S-DDST.

We choose static-Strong and SDST-Strong as they perform relatively better than their
counterparts with the balance strategy. To simplify our calculation, we compute the FLOPs of
R-DDST and S—-DDST assuming the discriminator density dp = dyax. We also assume that DST
may not cause the change of FLOPs. The results are shown in [Table 9]and [Table 10

It can be seen that the extra computational cost introduced by DAEL which computes BR, and e
RigL, which computes gradient magnitude for connection growth, is negligible compared to the
total training cost as they only happen every several hundred iterations.

G A DETAILED COMPARISON OF TRAINING COSTS

In this section, we compute the computational cost of @ RigL vairants and stat ic baselines more
accurately. More specifically, we take into account the density redistribution over different layers in
this section. Also, we neglect the computational overhead introduced by computing BR.

3In our experiment, we compute BR for every iteration to visualize its evolution. However, BR only needs
to be calculated for every several hundred iterations to compute the time-averaged BR.
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Table 11: Training FLOPs (x10'7) and normalized training FLOPs with respect to dense training
of different sparse training methods with SNGAN on CIFAR-10 dataset.

Dataset CIFAR-10
Generator density 10% 20 % 30 % 50 %
(2.67, 100%)

(0.46, 17.08%)  (0.70, 26.29% )
(1.63, 60.94%)  (1.72, 64.57%)
(0.46, 17.19%)  (0.68, 25.62%)
(1.64, 61.42%)  (1.71, 64.04%)
(1.14, 42.73%)  (1.63, 60.94%)

(Dense Baseline)

(0.24, 9.00%)
(1.56, 58.29%)
(0.24, 9.14%)
(1.57, 58.80%)
(0.49, 18.20%)

(1.26, 47.34%)
(1.99, 74.64%)
(1.16, 43.45%)
(1.90, 71.16%)
(1.85, 69.33%)

Static-Balance
Static-Strong

e SDST-Balance (RigL)
e SDST-Strong (RigL)
o R-DDST (RigL)

Table 12: Training FLOPs (x10'7) and normalized training FLOPs with respect to dense training
of different sparse training methods with BigGAN on CIFAR-10 dataset.

Dataset CIFAR-10
Generator density 10% 20 % 30 % 50 %
(6.80, 100%)

(Dense Baseline)

Static-Balance
Static-Strong

e SDST-Balance (RigL)
e SDST-Strong (RigL)

(0.67, 9.78%)
(5.71, 83.90%)
(0.67, 9.91%)
(5.72, 84.04%)
(0.67,9.77%)

(1.30, 19.04%)
(5.78, 83.90%)
(1.32,19.41%)
(5.80, 85.22%)
(1.69, 24.85%)

(1.95, 28.69%)
(5.87, 86.34%)
(1.96, 28.82%)
(5.89, 86.54%)
(2.72, 40.00%)

(3.34, 49.09% )
(6.14, 90.26%)
(3.29, 48.38%)
(6.09, 89.56%)
(5.25,77.13%)

o R-DDST (RigL)

G.1 SNGAN ON THE CIFAR-10 DATASET

We first show the results of SNGAN (CIFAR-10) in Combined with the results shown in
it shows that generally e R-DDST is able to achieve promising performance with reasonable
computational costs. More precisely, R-DDST outperforms e SDST-Strong (RigL) with much
fewer training FLOPs. The reason is that @ SDST-Strong (RigL) uses unnecessarily strong
(dense) discriminators.

G.2 BIGGAN ON THE CIFAR-10 DATASET

In this subsection, we show the results of BigGAN (CIFAR-10). We have included the simplified

version in the Here we give more detailed results in The results are similar to
SNGAN on the CIFAR dataset.

H ONE-SHOT PRUNING AFTER TRAINING WITHOUT FINE-TUNING

In this section, we perform one-shot pruning after training for GANs without any fine-tuning. The
results of SNGANs on the CIFAR-10 and STL-10 datasets are shown in
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Table 13: FID () of different sparse training methods on CIFAR-10 and STL-10 datasets. The
density of the discriminator is constrained to be lower than 50%. Best results are in bold; second-
best results are underlined.

CIFAR-10 STL-10
Generator density 10% 20% 30% 50% 10% 20 % 30% S50%
(Dense Baseline) 10.74 29.71
PF without fine-tuning ~ 305.81 247.99 89.29 30.03 339.95 195.69 156.29 66.66
Static-balance 26.73 18.04 1438 12.22 50.08 44.19 4396 3721
Static-strong 22.35 16.57 1347 1222 50.28 4495 42.12 3721

+ DST-balance (SET) 32.02 18.54 1474 1323 4991 33771 3292 31.75
e DST-balance (RigL) 24.56 15.53 13.62 1251 6690 5034 4457 32.63

+ SDST-balance (SET)  27.80  18.13 14.15 1232 63,57 49.05 43.74 31.29
+ SDST-strong (SET) 16.00 1331 13.17 1232 4840 3356 3219 31.29
e SDST-balance (Rigl)  30.38 17.89 1495 12.09 46.17 38.12 3248 31.30
e SDST-strong (RigL) 15.66 13.20 1299 12.09 63.65 3345 32.09 31.30

+ S-DDST (SET) 1422 1330 1239 1197 51.72 3574 4236 31.68
e S-DDST (RigL) 1413  12.87 1215 1217 4428 32.84 32.00 30.28
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