
Under review as submission to TMLR

LCEN: A Nonlinear, Interpretable Feature Selection and Ma-
chine Learning Algorithm

Anonymous authors
Paper under double-blind review

Abstract

Interpretable models can have advantages over black-box models, and interpretability is
essential for the application of machine learning in critical settings, such as aviation or
medicine. In this work, we introduce the LASSO-Clip-EN (LCEN) algorithm for nonlin-
ear, interpretable feature selection and machine learning modeling. LCEN is tested on a
wide variety of artificial and empirical datasets, frequently creating more accurate, sparser
modelscreating sparse and frequently more accurate models than other methods, including
sparse, nonlinear methods, on tested datasets. LCEN is robust against many issues typically
present in datasets and modeling, including noise, multicollinearity, and data scarcity, and
hyperparameter variance. As a feature selection algorithm, LCEN matches or surpasses the
thresholded elastic net (EN) but is, on average, 10.3-fold faster based on our experiments.
LCEN for feature selection can also rediscover multiple physical laws from empirical data.
As a machine learning algorithm, when tested on processes with no known physical laws,
LCEN achieves better results than many other dense and sparse methods — including being
comparable to or better than ANNs on multiple datasets.

1 Introduction

Many modeling methods and algorithms exist, including linear, ensemble-based, and deep learning models.
Complex models are claimed to have greater capability to model phenomena due to their lower bias, but
their intricate and numerous mathematical transformations prevent humans from understanding how an
output was predicted by a model, or the relative or absolute importance of the inputs. Moreover, a lack
of transparency may prevent the model from being trusted in critical or sensitive applications (Hong et al.,
2020).

In a modeling context, interpretability can be defined as “how an output y = f(X) was predicted for a
given input X — that is, provide f(·) in a form readily understandable to humans so that the model’s
outputs may be explainable”. There are two main methods to increase interpretability: the use of model-
agnostic algorithms, which extract interpretable explanations a posteriori and work for any model, or the
direct use of interpretable models (Ribeiro et al., 2016). Interpretable models include “decision trees, rules,
additive models, attention-based networks, and sparse linear models” (Ribeiro et al., 2016).1 Interpretable
models can have many advantages over black-box or a posteriori explanations, including the ability to assist
researchers in refining the model and data, or better highlighting scenarios in which the model fails or
lacks robustness (Rudin, 2019). Special attention should be given to sparse models, which identify the most
important features, can make the model more robust to variations in the input data, and can significantly
improve the model’s interpretability if an interpretable model is used (Rudin, 2019). A sparse model may
be defined as “a model that uses few input features, particularly relative to the total number of features
available”. However, even a linear model or decision tree/rules can become unwieldy and challenging to
interpret if hundreds or thousands of coefficients or rules are present. A recent work states that sparsity may
be achieved for individual predictions even if the overall model is not sparse (Sun et al., 2024).

1Nonlinear models may also be made sparse, and even interpretable, as described in this and many works.

1

Under review as submission to TMLR

Feature selection is the process of selecting the most important features in a model to increase its robustness,
interpretability, or sparsity. Many criteria for feature selection exist (Heinze et al., 2018), including signifi-
cance based on p-values (using a univariate, iterative/stepwise, or global method), using information criteria
(such as the AIC (Akaike, 1974) and BIC (Schwarz, 1978)), using penalties (such as in LASSO (Santosa
& Symes, 1986; Tibshirani, 1996) and elastic net (EN) (Zou & Hastie, 2005)), criteria based on changes
in estimates, and expert knowledge. More broadly, these methods can be classified as filter, wrapper, or
integrated methods. While no method is superior for all problems, different works have evaluated and crit-
icized these criteria. For example, stepwise regression is one of the most commonly used methods in many
fields thanks to its computational simplicity and ease of understanding (Whittingham et al., 2006; Heinze
et al., 2018; Smith, 2018). However, stepwise regression is prone to ignoring features with causal effects, in-
cluding irrelevant features, generating excessively small confidence intervals, and producing incorrect/biased
parameters (Whittingham et al., 2006; Smith, 2018). LASSO is simple and computationally cheap, and
has performed well for some problems (Hebiri & Lederer, 2013; Tian et al., 2015; Pavlou et al., 2016), but
can overselect irrelevant variables, tends to select only as many features as there are samples, and does not
handle multicollinear data well (Heinze et al., 2018; Zou & Hastie, 2005).2

Originally, most feature selection methods applied only in linear contexts (or have been applied primarily in
linear contexts). Highlighting this, the only sparse models referenced in the highly cited review by Ribeiro
et al. (2016) are linear. The most commonly used sparse methods (LASSO, EN, and their variants) are
linear regressors. To address this limitation, later works consider sparse nonlinear models. For example,
McConaghy (2011), Brewick et al. (2017), and Sun & Braatz (2020) defined sets of features consisting of
polynomials (all works), interactions (all works), and/or non-polynomials (McConaghy, 2011; Sun & Braatz,
2020). ALVEN (Sun & Braatz, 2020) uses an F-test for each feature (including the expanded set of features)
to determine whether to keep a feature in the final EN model, a filter approach. However, this F-test has very
poor feature selectivity, as nearly all features are selected when traditional values of α (0.001 ≤ α ≤ 0.05) are
used. Furthermore, the ordering of the features with respect to their p-values does not follow their relevance,
as many irrelevant features are among those with the lowest p-values, and relevant features can be among
those with the highest p-values (including p ≫ 0.05). Other relevant methods include the smoothly clipped
absolute deviation (SCAD) (Fan & Li, 2001); Sparse Additive Models (Ravikumar et al., 2009), which were
used with L0 and L2 regularization by Liu et al. (2022); the adaptive elastic net (Zou & Zhang, 2009);
the minimax concave penalty (MCP/MC+) (Zhang, 2010); the thresholded LASSO (van de Geer et al.,
2011); the two-stage regularized method of De Mol et al. (2009); two forms of modified, nonlinear LASSO
algorithms (Yamada et al., 2018); a novel cutting plane algorithm (Bertsimas & Parys, 2020); and Bayesian
symbolic regression approaches (Xu et al., 2021).

More recently, the L1 regularization has been applied to neural networks for nonlinear feature selection. In
its simplest form, group LASSO is applied to zero all the outputs of some neurons (sparsifying the network
and eliminating features when zeroing input-layer neurons) (Dinh & Ho, 2020; Scardapane et al., 2017; Wang
et al., 2021). LassoNet, a slightly modified version of this algorithm, applies the L1 penalty only to the input
layer and includes a skip-connection between that layer and the output layer (Lemhadri et al., 2021). More
complex applications of this method include the multi-modal neural networks of Zhao et al. (2015), the
concrete autoencoders of Balın et al. (2019), and the teacher-student network of Mirzaei et al. (2020). The
first two are notable for being at least partially unsupervised methods, suggesting they can select the most
relevant features for a given dataset no matter the task. Some works have also used approaches other than
the L1 norm for neural network-based feature selection, such as the L0 norm (Yamada et al., 2020). While
these deep learning models are powerful tools, two considerable limitations are present: first, they do not
provide any information on how the selected features are contributing to the final prediction, significantly
limiting interpretability. A posteriori methods to extract this information have been found unreliable (Rudin,
2019), even if useful. Second, these complex model architectures may take “shortcuts” to make apparently
accurate predictions (Rosenzweig et al., 2021; Lapuschkin et al., 2019). However, these “shortcuts” are not
really relevant to the task, preventing proper generalization and human interpretation.

2This last point is somewhat controversial in the literature; see Hebiri & Lederer (2013) and Dalalyan et al. (2017), for
example.

2

Under review as submission to TMLR

To create nonlinear, interpretable, and sparse machine learning models with high predictive and descriptive
power, we propose the LASSO-Clip-EN (LCEN) algorithm. This algorithm generates an expanded set of
nonlinear features (such as in ALVEN) and performs feature selection and model fitting. This feature set
expansion, together with the Clip step, provide LCEN with the ability to do nonlinear predictions. The
feature selection algorithm and the specific usage of thresholded LASSO (LC) followed by thresholded EN
(ENC) in a combined algorithm are the basis of novelty in this work. Variations and ablations are tested and
shown to not perform as well as LCEN. The algorithm is tested on artificial and empirical data, successfully
rediscovering physical laws from data belonging to multiple different areas of knowledge with errors < 0.5%
on the coefficients, a value within the empirical noise of the datasets. On datasets from processes whose
underlying physical laws are not yet known, LCEN attains lower root mean square errors (RMSEs) than many
sparse and dense methods, leads to sparser models than all but onetwo methods tested,3 and simultaneously
runs faster than most alternative methods. Important previous works that proved desirable theoretical
properties of the thresholded LASSO (a LASSO-Clip model) and the thresholded EN (an EN-Clip model)
include Zhou (2009), Meinshausen & Yu (2009), Zou & Zhang (2009), Zhou (2010), and van de Geer et al.
(2011). These works provide a theoretical scaffold to justify the high performance of LCEN.

2 Methods

2.1 The LCEN algorithm

The LCEN algorithm (Algorithm 1) begins with the LASSO step, which temporarily sets the l1_ratio to
1. Five-fold cross-validation (CV) on the training set is employed among all combinations of alpha, degree,
and lag values. The training dataset is split randomly for each fold (as per sklearn’s KFold function). First,
additional features are temporarily appended to the data based on the degree, lag, trans_type, interaction,
and transform_y hyperparameters. We developed a custom algorithm (Algorithm 2) to perform this feature
expansion. Due to this dependency on the degree and lag hyperparameters, this feature expansion occurs
within the cross-validation process, creating a temporary augmented dataset that is scaled to have mean =
0 and standard deviation = 1 and then input to the LASSO method. For each hyperparameter combination
and fold, a validation mean squared error (MSE) is recorded. The values of degree and lag corresponding to
the LASSO model with the lowest validation MSE (averaged across all five folds) are recorded, and a LASSO
model using this combination of hyperparameters is fit using the training data to obtain scaled parameters
(estimated coefficients).

The next step in the LCEN algorithm is the clip (thresholding) step, in which the features whose scaled
LASSO parameters have absolute values smaller than the cutoff hyperparameter are recorded so they can be
removed from the expanded dataset, and their coefficients are forced to 0. This step reduces the number of
features to be considered, speeding up the algorithm and increasing the accuracy of the model’s predictions
by removing irrelevant/less relevant features, which reduces the model’s bias.

The EN step involves cross-validation on the training set among all combinations of alpha and l1_ratio, using
the values of degree and lag obtained in the LASSO step. Once again, the training dataset is split randomly
for each fold (as per sklearn’s KFold function) and the features are expanded and scaled, then the features
recorded in the Clip step are removed. For each hyperparameter combination and fold, a validation MSE is
recorded. The values of alpha and l1_ratio corresponding to the EN model with the lowest validation MSE
(averaged across all five folds) are recorded, and an EN model using this combination of hyperparameters is
fit using the training data to obtain new scaled parameters.

A second clip (thresholding) step is done on these EN scaled parameters, zeroing the coefficients of the
features whose scaled EN parameters have absolute values smaller than the cutoff hyperparameter. Lastly,
some post-processing steps are done. The scaled coefficients are unscaled by multiplying the scaled coefficients
by the standard deviation of the y training data and dividing by the standard deviation of each corresponding
X feature. Then, a dot product of the train or test data and the unscaled coefficients is taken to obtain
the final predictions. This procedure returns the trained EN model after the second clip step, which is

3LCEN is approximately equivalent to other LASSO-based methods in terms of sparsity.

3

Under review as submission to TMLR

interpretable and nonlinear, and the predictions made with the unscaled coefficients on the training and
testing data.

Algorithm 1 LASSO-Clip-EN (LCEN)
Input: X and y data; lists of hyperparameters alpha, l1_ratio, degree, lag; hyperparameters cutoff,
trans_type, interaction, transform_y
LASSO step: filters features without requiring a combinatorially large number of potential hyperpa-
rameters, as l1_ratio is fixed. Determines the degree and lag hyperparameters for feature expansion.
Temporarily set l1_ratio = 1.
for each hyperparameter combination in (alpha × degree × lag) do

Generate additional features based on the trans_type, interaction, transform_y, the current degree, and
the current lag hyperparameters [Algorithm 2].
Temporarily append the new features to the X data for cross-validation.
Scale the data such that each feature’s mean = 0 and its standard deviation = 1.
Perform five-fold cross-validation with randoma user-selected data splitsCV algorithm and the LASSO
method.
For each fold, record the validation MSE for this hyperparameter combination.

end for
Obtain the combination of hyperparameters with the lowest average validation MSE from the above cross-
validation. Record the best degree and lag hyperparameters.
Fit a LASSO model on the scaled training data with these hyperparameters to obtain parameters.
Clip step: further reduces the number of features, speeding up the model and increasing sparsity.
Record all features whose scaled parameters have absolute values < cutoff from the training and test data
for removal during the EN training.
EN step: trains the final model on the features that passed the LASSO and Clip steps. EN is used for
its machine learning performance and stability.
Restore l1_ratio to its original list of values.
for each hyperparameter combination in (alpha × l1_ratio) do

Generate additional features based on the trans_type, interaction, transform_y, the optimal degree, and
the optimal lag hyperparameters [Algorithm 2].
Temporarily append the new features to the X data for cross-validation.
Remove the features not selected by LASSO or recorded in the Clip step.
Scale the data such that each feature’s mean = 0 and its standard deviation = 1.
Perform five-fold cross-validation with randoma user-selected data splitsCV algorithm and the EN
method.
For each fold, record the validation MSE for this hyperparameter combination.

end for
Obtain the combination of hyperparameters with the lowest average validation MSE from the above cross-
validation. Record the best alpha and l1_ratio hyperparameters.
Fit an EN model on the scaled training data with these hyperparameters to obtain parameters.
Clip step II
Remove all features whose scaled parameters have absolute values < cutoff.
Post-processing: returns the model with coefficients, predictions, and metrics in a human-readable way.
Unscale the coefficients of the selected parameters based on the standard deviations of the data.
Obtain train/test predictions by performing a dot product of the unscaled coefficients with the expanded
train/test data containing only the selected features.
return the trained EN model and, the predictions, and the evaluation metrics.

The LCEN algorithm (Algorithm 1) has five hyperparameters: alpha, which determines the regularization
strength (as in the LASSO, EN, and similar algorithms); l1_ratio, which determines how much of the
regularization of the EN step depends on the 1-norm as opposed to the 2-norm (as in the EN algorithm);
degree, which determines the maximum degree for the basis expansion of the data (Table A2); lag, which
determines the maximum number of previous time steps from which X and y features are included (relevant

4

Under review as submission to TMLR

only for dynamic models); and cutoff, which determines the minimum value a scaled parameter needs to
have to not be eliminated during the clip steps. Details on the cross-validated hyperparameter values for all
models are in Section A3. Three other hyperparameters are relevant to the expansion of features (Algorithm
2) but do not interact with the LCEN algorithm directly. The trans_type hyperparameter controls what
kinds of features are appended to the data. It can be set to ‘all’ to include all transforms (see Table A2
for an example of what features are included), ‘poly’ to include only polynomial and interaction terms, and
‘simple_interaction’ to include only interaction terms. The interaction hyperparameter is a boolean that
controls whether interaction terms are included in the feature expansion process. Finally, the transform_y
hyperparameter, which is relevant only when lag > 0, is a boolean that determines whether the y features
from previous time steps will also be transformed based on trans_type or only the raw values of y from
previous time steps will be included.

LCEN scales similarly to the thresholded and regular EN. For an N×P dataset under F -fold cross-validation
with A potential α values, L potential L1 ratio values, and C potential cutoff values, LCEN scales as
O(NP 2FALC). The degree hyperparameter increases the number of features P in a supralinear way. The
lag hyperparameter increases the number of features P in a linear way. Conversely, higher values for the
cutoff hyperparameter decrease the number of features P .

2.2 LCEN is optimal when compared to ablated and variant algorithms

The rationale behind this sequence of steps — LASSO, then Clip, then EN, then a second Clip — seeks
to balance the algorithm’s high accuracy and sparsity with a low runtime. As shown by the ablation
experiments (Section A4 and Table 2), other combinations/variants do not achieve the same performance as
LCEN. Specifically, as feature selection algorithms, the LCEN, LASSO-Clip (LC, the thresholded LASSO),
and LASSO-Clip-LASSO (LCL) algorithms perform much more accurate nonlinear feature selection than
LASSO-EN (LEN) or the methods starting with EN. Moreover, the methods that start with the LASSO are
considerably faster. As machine learning algorithms, the LASSO-Clip, EN-Clip (ENC, the thresholded EN),
and LASSO-EN combinations tend to have lower accuracy than LCEN. The EN-Clip combination is also
much slower and less sparse than LCEN, and the LASSO-EN combination is slower and slightly less sparse.
The LASSO-Clip-LASSO combination is less accurate than LCEN, although it is slightly faster and sparser.
The EN-Clip-EN (ENCEN) combination achieves similar accuracy, but is much slower and less sparse than
LCEN. It is possible to add a debiasing step at the end by using ordinary least-squares (OLS) to estimate
the coefficients of the features selected by LCEN (Belloni & Chernozhukov, 2013). This LCEN→OLS variant
model estimates coefficients more accurately for one of the ablation experiments, but performs worse in terms
of test-set MSE on empirical datasets.

The combinations that start with EN are slower than LCEN because EN has a greater number of hyperpa-
rameter combinations to be tested, and these combinations are tested with a higher number of features (as
the full expanded feature set has not been subject to any selection via the LASSO and Clip steps). These
combinations are also less sparse because the L1 and L2 norms compete during EN regularization, and a
combination that prioritizes the L2 norm may have a lower cross-validation MSE. Beginning with the LASSO
increases the algorithm’s sparsity and speed at no accuracy cost.

The use of hard-thresholding (Clip) steps improves LCEN’s accuracy and sparsity. The increase in sparsity
also lowers the algorithm’s runtime. The second Clip step is less impactful than the first and does not affect
the algorithm’s runtime, but it still improves LCEN’s feature selection capabilities. We highlight that the
Clip steps operate on the scaled parameters; thus, any issues that may arise due to the (relative) magnitude
of the coefficients are not significant.

2.3 Experimental setup

Multiple datasets (summarized in Table A1) are used to test the performance of the LCEN algorithm. These
datasets can be divided into three categories: artificial data, empirical data from processes with known
physical laws, and empirical data from processes with no known physical laws. Further description of these
datasets and how the artificial datasets are generated is available in Section A2; the empirical datasets
are also described in Section 3.2. All models tested in this work had their hyperparameters selected by

5

Under review as submission to TMLR

5-fold cross-validation (CV) and this CV procedure was repeated for 3 different seeds so that the average
± standard deviation of results can be reported, except for those trained on the “GEFCom 2014” dataset,
which used time series cross-validation. The separation between training and testing sets varied depending
on the dataset and is detailed in Section A2.

3 Results

3.1 Artificial data highlight LCEN’s feature selection capabilities and robustness to noise, and
multicollinearity, and hyperparameter variance

LCEN is evaluated both as a feature selection algorithm (this section and Table 2) and as a machine learning
algorithm (rest of Section 3.2). The first datasets used to validate the LCEN algorithm are multiple linear
datasets (“Artificial linear”). These datasets feature all combinations of {100, 500, 1000} samples × {100,
500, 1000} true features × {0%, 25%} noise level × {25%, 50%, 75%, 100%} additional false features. The
noise level is defined as mean(added noise/noiseless y)×100%. This added noise is Gaussian noise with µ = 0
and a suitable σ to reach the desired noise level. For each combination, 3 repeats with different random seeds
were created. This experiment contains multiple challenging conditions, including cases where the number
of features was much larger than the number of samples (P ≫ N), cases with a significant proportion of
false features, and cases with a high noise (low correlation between the input X and the output y).

The methods LASSO, EN, fastSparseGAMs (FS-GAMs) (Liu et al., 2022), SCAD, MCP, symbolic regression
(SymReg) (implemented by Stephens et al. (2022)), thresholded EN, and LCEN were tested on this feature
selection task. Overall, LCEN consistently performed similarly to the thresholded EN and outperformed all
other methods in this task, as measured by their Matthews Correlation Coefficients (MCCs)(Figs. A1 to A6).
Furthermore, LCEN was 4.7-fold more than 10-fold faster than the thresholded EN on these datasets, and
10.3-fold faster than the thresholded EN on average (Table A3). EN was typically completely unselective,
classifying all features as true except in a few scenarios with N > P . SymReg performed marginally better,
but still had a very low overall performance. LASSO, FS-GAMs, SCAD, and MCP performed better than
EN and SymReg, having similar performances among themselves; notable exceptions were cases in which
LASSO was completely unselective, and most scenarios with N > P and 0% noise, which allowed SCAD
and MCP to perform perfect classification. LCEN performed perfect classification in the scenarios with
N > P and 0% noise even more frequently than SCAD and MCP, and surpassed the methods (other than
thresholded EN) in the other scenarios in terms of absolute MCC by 19.8% on average when N = P and by
8.2% on average when N < P .

The first step of the LCEN algorithm uses LASSO, which has been claimed to underperform with multi-
collinear data (Heinze et al., 2018; Zou & Hastie, 2005). Therefore, tests using multicollinear data are done
next. The goal is to verify whether LCEN can determine the presence of two different but correlated variables
more accurately than LASSO. Noise ϵ1, at different levels (as defined above), was added to the X0 variable
to create a correlated variable X1. A second noise ϵ2, also at different levels, was added to the final y data.
When ϵ1 = 0, both variables are equal and separation is not possible. However, at other ϵ1 values, the LCEN
algorithm is very successful at identifying that two relevant variables exist and assigning correct coefficients
to them (Figure A7). Specifically, when the noise level ϵ1 associated with the X data (which indicates how
different the X variables are, as highlighted by the variance inflation factors [VIFs] in Fig. A7) is greater
than the noise level ϵ2 associated with the y data, LCEN can separate both variables with coefficient errors
≤ 5%. When both noise levels are similar, LCEN can separate both variables with coefficient errors between
5% and 10%. The X data used in this experiment has very high multicollinearity (as shown by the VIFs);
real data will typically have lower VIFs and thus be easier to separate using LCEN.

Next, a more complex equation is used to further validate LCEN. The “Relativistic energy” data contain
mass and velocity values used to calculate E2 = c4m2 + c2m2v2. As before, datasets with increasing noise
levels are created. The degree hyperparameter is allowed to vary between 1 and 6 in this experiment. These
degree values lead to expanded datasets with {8, 22, 42, 68, 100, 138} features respectively. Even though
there are only two true features, there are a significant number of false features, many of which have similar
functional forms to the true features. LCEN selected only relevant features for all noise levels tested (≤ 20%),
and the coefficients were typically equal to the ground truth (Table 1). The only major divergence happened

6

Under review as submission to TMLR

at a noise level of 20%, as the coefficient for m2 had a 25% relative error. This error led to our hypothesizing
that it is challenging to distinguish among the features involving m (such as m, m2, and m3) due to the
low range of the data. Thus, another dataset with the same properties but a larger range of values for m
is created. LCEN performed better on this dataset, again selecting only relevant features for all noise levels
tested (≤ 30%) and having much lower errors in the estimated coefficients (Table 1). These experiments
further highlight the robustness of LCEN and show how the range of the data can affect predictions. To
clarify our design choices and the relevance of each individual part of the LCEN algorithm, ablation tests
are performed with this dataset in Section A4 of the Appendix.

Table 1: Coefficient values and corresponding relative error to the ground truth for the “Relativistic energy”
dataset at different noise levels. The first coefficient is for m2 and should be c4 = 8.078×1033 m4/s4; the
second coefficient is for m2v2 and should be c2 = 8.988×1016 m2/s2. The left table is for the dataset with
1 ≤ m < 10, and the right table is for the dataset with 1 ≤ m < 100.

Noise Coefficients Error (%)
0% 8.077×1033, 8.987×1016 0.013, 0.009
5% 8.081×1033, 8.969×1016 0.043, 0.206
10% 8.085×1033, 8.951×1016 0.097, 0.410
15% 8.089×1033, 8.935×1016 0.139, 0.580
20% 6.027×1033, 8.912×1016 25.39, 0.844

Noise Coefficients Error (%)
0% 8.078×1033, 8.987×1016 0.001, 0.006
5% 8.078×1033, 8.986×1016 0.005, 0.022
10% 8.078×1033, 8.984×1016 0.009, 0.038
15% 8.079×1033, 8.983×1016 0.013, 0.054
20% 8.079×1033, 8.981×1016 0.017, 0.070
30% 8.080×1033, 8.978×1016 0.025, 0.103

Finally, LCEN is compared with the feature selection algorithm in ALVEN (Sun & Braatz, 2020), which
uses the same basis function expansion, but uses f-tests for feature selection. The “4th-degree, univariate
polynomial” dataset is created as per Sun & Braatz (2021), such that y = X +0.5X2 +0.1X3 +0.05X4 +ϵ, 30
X points are available for training, and 1,000 X points are available for testing. These conditions simulate
the scarcity of data potentially present in real datasets while ensuring test errors can be predicted with
high confidence. Sun & Braatz (2021) created four types of ALVEN models for this prediction. On this
same dataset and using the same four types of models, LCEN attained median errors that are typically over
60% smaller than those from ALVEN (Fig. 1). Discussion of these results are included in the Appendix
(Section A5.3), including discussions on how LCEN consistently selected the correct degree hyperparameter
via cross-validation despite the low number of training samples and high noise (Fig. A9).

3.2 LCEN surpasses many other methods when making predictions on empirical data

The applicability of an algorithm to real-world problems is judged only by its performance on real data,
as data sparsity or real noise may affect the algorithm’s capabilities. Tests done on empirical data gen-
erated by processes with known physical laws show that LCEN still displays exceptional feature selection
capabilities, consistently selecting only the right features with low coefficient relative errors even when high
hyperparameter variance — that is, scenarios where many potential combinations of hyperparameters exist
(which increase the variance in a bias-variance context) — is presentthe number of features is much higher
than the number of samples (Table 2).

The first test of an empirical dataset from a process with a known physical law uses the “CARMENES
star data” dataset from Schweitzer et al. (2019). This dataset contains information on temperature (T),
radius (R), and luminosity (L) of 293 white dwarf stars. These features are linked together by the Stefan-
Boltzmann equation, L = 4πR2σT 4, where σ is a constant. Normalizing this equation to values from another
star (typically, the Sun), conveniently sets the constant terms to 1. This normalization is applied to the
“CARMENES star data” dataset. LCEN with degrees from 1 to 10 was applied to this normalized dataset.
Despite the very large number of potential features (due to the high degree values used), LCEN correctly
selected only the R2T 4 feature. The coefficient assigned to R2T 4 is 1.0008, which is well within the 2–3%
empirical error on these data (as reported by Schweitzer et al. (2019)).

A potential limitation in real datasets is data scarcity. To evaluate the LCEN algorithm in a low-data
scenario, the “Kepler’s 3rd Law” dataset is created from the original data obtained by Kepler, first published

7

Under review as submission to TMLR

Figure 1: Test set median MSE for the “4th-degree, univariate polynomial” dataset. ALVEN results (left,
reproduced from Sun & Braatz (2021) with permission) show that the error is monotonically increasing with
noise and that the degree 4 “unbiased model” is the best at low noise levels, but is displaced by the degree 2
“biased model” at higher noise levels. On the other hand, LCEN results (right) show that the median errors
converge at higher noises. Furthermore, the LCEN median errors are typically over 60% smaller than the
ALVEN median errors, and the degree 4 “unbiased model” is always the best model no matter the noise.
The “noise level” and “Noise variance σ2” terms are equivalent in this figure. Fig. A8 contains interquartile
ranges for the LCEN model’s test MSEs.

in 1619 and republished in Kepler et al. (1997). From only 6 (slightly inaccurate) measurements, Kepler was
able to derive the eponymous Kepler’s 3rd law, which states that the period T of a celestial body is related
to the semi-major axis of its orbit a by T = ka3/2. The constant k depends on the masses of the central and
orbiting bodies; however, as the mass of the central body is typically much larger, the mass of the orbiting
body is ignored. In this and Kepler’s works, T is measured in Earth days, so the constant k is ≈365.25 when
using modern data and ≈365.15 when using Kepler’s original data. Again, LCEN with degrees from 1 to 10
was used to model this dataset. Despite the low number of data points, LCEN correctly selected only the
a3/2 feature. Moreover, the coefficient assigned to that feature was 366.82, an error of only 0.46% relative
to Kepler’s k = 365.15.

As mentioned in Section 2, the LCEN, LC, and LCL methods perform much more accurate nonlinear feature
selection than LEN or the methods starting with EN. Moreover, the methods that start with the LASSO are
considerably faster, a difference clearly visible with the larger “CARMENES star data” dataset. Although
LC performed perfect feature selection, the coefficients for the true feature it selected were significantly
distorted, especially in the “CARMENES star data” dataset. Only LCEN and LCL consistently selected
only the correct features with low coefficient errors in these experiments.

Table 2: Summary of LCENAverage (± standard deviation across 3 CV seeds) results for the empirical
datasets from processes with known physical laws. True feature % RE refers to the percent relative error of
the coefficient of the true features.

CARMENES star data (293×350) Kepler’s 3rd Law (6×130)
Model True feature % RE MCC (%) Runtime (s) True feature % RE MCC (%) Runtime (s)
LCEN 0.08±0.00 100%±0 6.01 0.46±0.00 100%±0 3.56

LC 78.3±0.00 100%±0 5.63 3.83±0.31 100%±0 3.12
ENC 85.3±2.97 34.1%±2.6 55.4 72.1±0.38 31.3%±3.5 13.1
LEN 79.3±2.77 16.2%±0.4 6.87 6.59±4.12 59.5%±6.2 3.50
LCL 0.08±0.00 100%±0 5.73 0.46±0.00 100%±0 3.17

ENCEN 67.5±2.64 57.4%±0 54.6 79.1±9.89 31.3%±3.5 13.6

8

Under review as submission to TMLR

The final experiments to validate LCEN’s performance involve comparisons to other algorithms on real
datasets from processes with unknown physical laws. As there is no (computational) way to validate the fea-
ture selection done by models trained on these datasets, this section focuses on investigating the capabilities
of LCEN as a machine learning algorithm by comparing prediction errors and sparsities of different models.
Thus, despite the fact that feature selection metrics such as discovery rates or MCCs would be of interest,
we highlight that it is impossible to obtain those metrics for these empirical datasets. The methods ordinary
least squares (OLS), ridge regression (RR) (Tikhonov, 1963), partial least squares (PLS) (Wold, 1975a;b),
LASSO, elastic net (EN) (Zou & Hastie, 2005), SCAD (Fan & Li, 2001), MCP (Zhang, 2010), random for-
est (RF) (Ho, 1995), gradient-boosted decision trees (GBDT) (Friedman, 2001), adaptive boosting (AdaB)
(Freund & Schapire, 1997), support vector machine with radial-basis functions (SVM) (Boser et al., 1992),
fastSparseGAMs (FS-GAMs) (Liu et al., 2022), multilayer perceptron (MLP), MLP with group LASSO
(MLP-GL1) (Scardapane et al., 2017), and LassoNet (Lemhadri et al., 2021) were compared with LCEN. To
clarify our design choices and the relevance of each individual part of the LCEN algorithm, ablation tests
are performed with many of the datasets tested here in Section A4 of the Appendix.

The first dataset analyzed is the “Diesel Freezing Point” dataset (Hutzler & Westbrook, 2000), which is
comprised of 395 diesel spectra measured at 401 wavelengths and used to predict the freezing point of these
diesels. The dense, nonlinear methods SVM and MLP had the best prediction performance, with a test
RMSEs equal to 4.72 and 4.81 ◦C respectively (Table 3). They wereIt was followed by LCEN and EN,
which had a test set RMSEs equal to 4.89 ◦C. The sparsest methods were LCEN, which selected only 37/401
features (9.2%) on average yet had an average prediction error only 3.6% higher than that of the best dense
method, LASSO, which performed similarly to LCEN, SCAD, which selected only 22/401 features (5.5%) on
average but had an average prediction error 11% higher than that of the best dense method, and FS-GAMs,
which selected only 2/401 features (0.5%) but had a prediction error 76.3% higher than that of the best
dense method. LCEN, FS-GAMs, and SVM were the only nonlinear methods that had a runtime faster than
10 seconds, a speed typically reserved for linear methods. LCEN is the best method that combines a low test
RMSE, interpretability, and a fast runtime. LASSO, the only other method that also has these properties,
has a slightly worse RMSE and less-stable sparsity, as most of its seeds selected more features than those
selected in any of the LCEN seeds.

We also consider a different scenario: that an end user could prioritize creating very sparse models, even at
the expense of increasing these models’ MSEs. To simulate this scenario, the LCEN cutoff hyperparameter
was increased from the value that minimizes the validation MSE to create sparser models. These models
have much fewer features, yet their test set RMSEs typically increase by only small values (Table A9). This
experiment illustrates how LCEN can select the most critical features to make models with high sparsity
and predictive power, and how these criteria can be prioritized by the end user.

LCEN is then tested on the “Concrete Compressive Strength” dataset (Yeh, 1998), which contains the
composition and age of 1,030 different types of concrete and their compressive strengths. The relationship
between these properties is nonlinear, and previous modeling attempts include algebraic expressions and
artificial neural networks (specifically, MLPs)4 (Yeh, 1998; 2006). LCEN is considerably better than the
previously published algebraic models (Table 4), and its performance is competitive with that of MLPs
(LCEN is 3.2% better than a dense MLP and only 1.53% worse than a dense MLP and MLP-GL1) and RF
(LCEN is only 9.3% worse) models without sacrificing interpretability. MLP, MLP-GL1, and RF models
surpass LCEN in terms of test RMSE, but LCEN has the lowest validation RMSE out of all methods tested.

LCEN is also successful at predicting phenomena caused by human activity instead of physical laws. The
“Boston housing” dataset contains the median value of owner-occupied houses and many internal and ex-
ternal measurements, such as the per-capita crime rate of the region, the average number of rooms, and
the concentration of nitric oxides in the area (Harrison & Rubinfeld, 1978). We modified this dataset to
detransform the B variable into its raw value; samples in which this detransformation led to multiple possible
values were discarded. In this modified “Boston housing” dataset, the linear models tended to perform very
similarly to each other but quite poorly. RF and SVM performed relatively well, but LassoNet and FS-GAMs
had the two worst performances among all models tested. A dense MLP was the best model in terms of test

4No type of validation is mentioned in Yeh (1998), so the test and validation sets are likely the same, making its MLP results
overoptimistic. Corroborating this hypothesis, the MLP and MLP-GL1 models trained in this work have higher test-set MSEs.

9

Under review as submission to TMLR

Table 3: Average (± standard deviation across 3 CV seeds) results of different models for the “Diesel
Freezing Point” dataset.

Model Test RMSE (◦C) Features Runtime (s)
OLS 11.75 401 0.09
PLS 5.21±0.00 401±0 4.44
RR 4.90±0.07 401±0 4.87
EN 4.89±0.06 280±209 19.6

LASSO 4.95±0.10 33±10 2.06
SCAD 5.26±0.11 22±7 28.2
MCP 5.22±0.07 30±10 33.6

FS-GAMs 8.32±0.00 2±0 3.75
RF 5.10±0.12 393±7 307

GBDT 5.21±0.18 383±25 2,649
AdaB 5.17±0.00 304±0 22.0
SVM 4.72±0.33 401±0 5.33
MLP 4.95±0.14 401±0 3,490

MLP-GL1 4.98±0.13 401±0 10,314
LassoNet 9.88±0.06 401±0 47,679

LCEN 4.89±0.06 37±1 6.54

Table 4: Average (± standard deviation across 3 CV seeds) results of different models for the “Concrete
Compressive Strength” dataset. All machine-learning models selected all 8 features except for FS-GAMs,
which selected 4.

Model Test RMSE (MPa)
Algebraic expression (Yeh, 1998) 7.79

Linear + interactions model (Yeh, 2006) 7.43
OLS 10.26

PLS = RR = EN = LASSO =
SCAD = MCP 10.26±0.00

RF 5.08±0.02
GBDT 5.97±0.67
AdaB 6.95±0.00
SVM 6.07±0.19
MLP 5.47±0.08

MLP-GL1 5.47±0.09
LassoNet 16.39±0.17
FS-GAMs 11.39±0.00

LCEN 5.55±0.04

RMSE, and the MLP-GL1 performed slightly worse. LCEN had a very high performance on this regression
task, reaching a test RMSE only 5.5% higher than that of the dense MLP and 2.0% lower than that of the
MLP-GL1 (Table 5). LCEN also had the lowest validation RMSE, which was 2612% lower than that of the
dense MLP. Once again, LCEN attains higher performance than many other methods in this dataset while
also being completely interpretable.

Finally, the “GEFCom 2014” dataset was used to highlight the abilities of LCEN in a complex and dynamic
task (Hong et al., 2016). Two versions of the “GEFCom 2014” dataset have been published: one that
contains only energy consumption levels and another that contains the same energy consumption data and
also temperature data from multiple weather stations. This work uses the former. “GEFCom 2014” is part
of an energy forecasting competition won by a LASSO-like model (Hong et al., 2016). More recently, deep
learning has been applied to this problem (Wilms et al., 2018; Gasparin et al., 2022), and deep learning
models have achieved strong 24-hour predictive performance (Gasparin et al., 2022). Despite the strong

10

Under review as submission to TMLR

Table 5: Average (± standard deviation across 3 CV seeds) results of different models for the “Boston
housing” dataset.

Model Test RMSE (Thousands USD)
OLS 6.38
PLS 6.50±0.19

RR = EN 6.42±0.03
LASSO 6.38±0.00
SCAD 6.37±0.01
MCP 6.37±0.01
RF 5.09±0.13

GBDT 6.42±0.21
AdaB 5.67±0.05
SVM 5.05±0.07
MLP 4.69±0.07

MLP-GL1 5.05±0.32
LassoNet 9.93±0.02
FS-GAMs 7.32±0.00

LCEN 4.95±0.10

performance of multiple, complex ANN architectures, LCEN models obtain a 13.1% lower test RMSE on
this forecasting task than the state-of-the-art Seq2Seq model from Gasparin et al. (2022) (Table 6). Unlike
the ANNs, LCEN requires only a CPU for training and forecasting, and provides interpretable coefficients.
LCEN can also be used for longer forecasts without significant increases in the prediction error, further
highlighting the robustness of the algorithm.

Table 6: Results of different models for the “GEFCom 2014” dataset. The deep learning models (TCN to
Seq2Seq) and their results come directly from Table 8 of Gasparin et al. (2022). Confidence intervals for
LCEN are all ±0 due to LCEN’s high resistance to variation due to model initialization changes and the fact
that changes in CV seed are not possible when using time series CV. A similar phenomenon occurs with the
ARIMA models of Gasparin et al. (2022), and with LASSO/RR/EN/LCEN models in general.

Model TCN RNN LSTM GRU Seq2Seq LCEN
Hours Forecast 24 24 24 24 24 24 48 72 120 168

Test RMSE (MW) 17.2±0.1 18.0±0.3 19.5±0.5 19.0±0.2 17.1±0.2 14.9 18.9 21.0 23.4 24.7
Relative Error (%) 9.8±0.06 10.2±0.2 11.1±0.3 10.8±0.1 9.7±0.1 8.5 10.7 11.9 13.2 13.9

4 Discussion

This work introduces LASSO-Clip-EN (LCEN), a nonlinear, interpretable feature selection and machine
learning algorithm (Algorithm 1). LCEN was first validated using artificial data (Section 3.1), which provide
an initial assessment of the algorithm’s performance under multiple, independently controllable conditions.
LCEN was then tested with data from processes with known physical laws (Section 3.2) and without known
physical laws (Sections 3.2 and A6.1).

Overall, these experiments have demonstrated the applicability of LCEN to a multitude of scientific and
nonscientific problems, even those with significant nonlinearities and complexity. On the real data from
processes with known physical laws, LCEN successfully selected only the correct features with very low
coefficient errors for all datasets used in this work, effectively rediscovering physical laws solely from data
(Table 2). LCEN models were robust to defects in the real data, including noise, multicollinearity, or sample
scarcity. LCEN models were typically as accurate as or more accurate than many alternative methods
Tables 3–6), yet were also much sparser (Table 3). LCEN models are also trivial to interpret, as they display
exactly how each input is contributing to the final output. This combination of accuracy and interpretability

11

Under review as submission to TMLR

is essential for the deployment of machine-learning models in performance-critical scenarios, from aviation
to medicine. Moreover, the additional interpretability can assist in data or model refinement efforts and can
make the models robust to changes in data or adversarial input. LCEN is free, open-source, and easy to
use, allowing even non-specialists in machine learning to benefit from and use it. The main limitations of
LCEN are that it is not a universal function approximator, as it can model only the functions present in the
expansion of dataset features, that the feature expansion algorithm is better suited to numerical data over
image or text data, and that it sometimes is not as accurate as a dense deep learning method. If enough
compute and time are available for model training, users in scenarios that focus on accuracy above anything
else or with non-numerical data types may prefer to use a deep learning method.

There are at least two clear future directions for this work. The first involves using the LCEN algorithm
in classification tasks, as many important problems in science and engineering involve classification. A
comprehensive analysis of the performance of LCEN in classification tasks will follow this paper. The
second involves applying the LCEN algorithm to automatically generate physical equations for hybrid model
architectures (such as physics-constrained or physics-guided ML), which have high potential for scientific
applications (Peng et al., 2021; Willard et al., 2022).

12

Under review as submission to TMLR

References
H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19

(6):716–723, 1974. URL https://doi.org/10.1109/TAC.1974.1100705.

Muhammed Fatih Balın, Abubakar Abid, and James Zou. Concrete autoencoders: Differentiable feature
selection and reconstruction. In Proceedings of the 36th International Conference on Machine Learning,
volume 97, pp. 444–453, 2019. URL https://proceedings.mlr.press/v97/balin19a.html.

Alexandre Belloni and Victor Chernozhukov. Least squares after model selection in high-dimensional sparse
models. Bernoulli, 19(2):521–547, 2013. URL https://doi.org/10.3150/11-BEJ410.

Dimitris Bertsimas and Bart Van Parys. Sparse high-dimensional regression: Exact scalable algorithms and
phase transitions. The Annals of Statistics, 48(1):300 – 323, 2020. URL https://doi.org/10.1214/
18-AOS1804.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152,
1992. URL https://doi.org/10.1145/130385.130401.

Patrick T. Brewick, Sami F. Masri, Biagio Carboni, and Walter Lacarbonara. Enabling reduced-order data-
driven nonlinear identification and modeling through naïve elastic net regularization. International Journal
of Non-Linear Mechanics, 94:46–58, 2017. URL https://doi.org/10.1016/j.ijnonlinmec.2017.01.
016.

D. Clark, Z. Schreter, and A. Adams. A quantitative comparison of dystal and backpropagation. In Pro-
ceedings of the Seventh Australian Conference on Neural Networks, pp. 132–137, 1996. URL https:
//www.tib.eu/de/suchen/id/BLCP%3ACN016972815.

Arnak S. Dalalyan, Mohamed Hebiri, and Johannes Lederer. On the prediction performance of the Lasso.
Bernoulli, 23(1):552–581, 2017. URL https://doi.org/10.3150/15-BEJ756.

Christine De Mol, Sofia Mosci, Magali Traskine, and Alessandro Verri. A regularized method for selecting
nested groups of relevant genes from microarray data. Journal of Computational Biology, 16(5):677–690,
2009. URL https://doi.org/10.1089/cmb.2008.0171.

Vu C Dinh and Lam S Ho. Consistent feature selection for analytic deep neural networks. In Advances in
Neural Information Processing Systems, volume 33, pp. 2420–2431, 2020. URL https://proceedings.
neurips.cc/paper_files/paper/2020/file/1959eb9d5a0f7ebc58ebde81d5df400d-Paper.pdf.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle properties.
Journal of the American Statistical Association, 96(456):1348–1360, 2001. URL https://doi.org/10.
1198/016214501753382273.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an application
to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997. URL https://doi.org/
10.1006/jcss.1997.1504.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics,
29(5):1189–1232, 2001. URL https://doi.org/10.1214/aos/1013203451.

Alberto Gasparin, Slobodan Lukovic, and Cesare Alippi. Deep learning for time series forecasting: The
electric load case. CAAI Transactions on Intelligence Technology, 7(1):1–25, 2022. doi: https://doi.org/
10.1049/cit2.12060. URL https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cit2.
12060.

D Jr Harrison and D L Rubinfeld. Hedonic housing prices and the demand for clean air. J. Environ. Econ.
Manage., 5:81–102, 1978. URL doi.org/10.1016/0095-0696(78)90006-2.

13

https://doi.org/10.1109/TAC.1974.1100705
https://proceedings.mlr.press/v97/balin19a.html
https://doi.org/10.3150/11-BEJ410
https://doi.org/10.1214/18-AOS1804
https://doi.org/10.1214/18-AOS1804
https://doi.org/10.1145/130385.130401
https://doi.org/10.1016/j.ijnonlinmec.2017.01.016
https://doi.org/10.1016/j.ijnonlinmec.2017.01.016
https://www.tib.eu/de/suchen/id/BLCP%3ACN016972815
https://www.tib.eu/de/suchen/id/BLCP%3ACN016972815
https://doi.org/10.3150/15-BEJ756
https://doi.org/10.1089/cmb.2008.0171
https://proceedings.neurips.cc/paper_files/paper/2020/file/1959eb9d5a0f7ebc58ebde81d5df400d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1959eb9d5a0f7ebc58ebde81d5df400d-Paper.pdf
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1214/aos/1013203451
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cit2.12060
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cit2.12060
doi.org/10.1016/0095-0696(78)90006-2

Under review as submission to TMLR

Mohamed Hebiri and Johannes Lederer. How correlations influence lasso prediction. IEEE Transactions on
Information Theory, 59(3):1846–1854, 2013. URL https://doi.org/10.1109/TIT.2012.2227680.

Georg Heinze, Christine Wallisch, and Daniela Dunkler. Variable selection – A review and recommendations
for the practicing statistician. Biometrical Journal, 60(3):431–449, 2018. URL https://doi.org/10.
1002/bimj.201700067.

Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Conference on Document Analysis
and Recognition, volume 1, pp. 278–282, 1995. URL doi.org/10.1109/ICDAR.1995.598994.

Sungsoo Ray Hong, Jessica Hullman, and Enrico Bertini. Human factors in model interpretability: Industry
practices, challenges, and needs. Proceedings of the ACM on Human-Computer Interaction, 4(68):1–26,
May 2020. URL https://doi.org/10.1145/3392878.

Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J. Hyndman. Prob-
abilistic energy forecasting: Global energy forecasting competition 2014 and beyond. International
Journal of Forecasting, 32(3):896–913, 2016. doi: https://doi.org/10.1016/j.ijforecast.2016.02.001. URL
https://www.sciencedirect.com/science/article/pii/S0169207016000133.

Scott A. Hutzler and S. R. Westbrook. Estimating chemical and bulk properties of middle distillate fuels
from near-infrared spectra. Technical report, Defense Technical Information Center, U.S. Army TARDEC,
Warren, Michigan, 2000. URL https://apps.dtic.mil/sti/citations/ADA394209. Report TFLRF No.
348.

J. Kepler, E. J. Aiton, A. M. Duncan, and J. V. Field. The Harmony of the World, pp. 418, 422. American
Philosophical Society, 1997. URL https://books.google.com/books?id=rEkLAAAAIAAJ.

Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek, and
Klaus-Robert Müller. Unmasking Clever Hans predictors and assessing what machines really learn. Nature
Communications, 10:1096, 3 2019. doi: 10.1038/s41467-019-08987-4.

Ismael Lemhadri, Feng Ruan, and Rob Tibshirani. LassoNet: Neural networks with feature sparsity. In
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume 130, pp.
10–18, 2021. URL https://proceedings.mlr.press/v130/lemhadri21a.html.

Jiachang Liu, Chudi Zhong, Margo Seltzer, and Cynthia Rudin. Fast sparse classification for generalized
linear and additive models. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.),
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume 151, pp.
9304–9333, 2022. URL https://proceedings.mlr.press/v151/liu22f.html.

Trent McConaghy. FFX: Fast, Scalable, Deterministic Symbolic Regression Technology, pp. 235–260.
Springer, New York, 2011. URL https://doi.org/10.1007/978-1-4614-1770-5_13.

Nicolai Meinshausen and Bin Yu. Lasso-type recovery of sparse representations for high-dimensional data.
The Annals of Statistics, 37(1):246–270, 2009. URL https://doi.org/10.1214/07-AOS582.

Ali Mirzaei, Vahid Pourahmadi, Mehran Soltani, and Hamid Sheikhzadeh. Deep feature selection using
a teacher-student network. Neurocomputing, 383:396–408, 2020. doi: https://doi.org/10.1016/j.neucom.
2019.12.017. URL https://www.sciencedirect.com/science/article/pii/S0925231219317199.

Warwick Nash, Tracy Sellers, Simon Talbot, Andrew Cawthorn, and Wes Ford. Abalone. UCI Machine
Learning Repository, 1995. URL https://doi.org/10.24432/C55C7W.

Menelaos Pavlou, Gareth Ambler, Shaun Seaman, Maria De Iorio, and Rumana Z Omar. Review and
evaluation of penalised regression methods for risk prediction in low-dimensional data with few events.
Statistics in Medicine, 35(7):1159–1177, 2016. URL https://doi.org/10.1002/sim.6782.

Grace C. Y. Peng, Mark Alber, Adrian Buganza Tepole, William R. Cannon, Suvranu De, Savador Dura-
Bernal, Krishna Garikipati, George Karniadakis, William W. Lytton, Paris Perdikaris, Linda Petzold, and
Ellen Kuhl. Multiscale modeling meets machine learning: What can we learn? Archives of Computational
Methods in Engineering, 28:1017–1037, 2021. URL doi.org/10.1007/s11831-020-09405-5.

14

https://doi.org/10.1109/TIT.2012.2227680
https://doi.org/10.1002/bimj.201700067
https://doi.org/10.1002/bimj.201700067
doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1145/3392878
https://www.sciencedirect.com/science/article/pii/S0169207016000133
https://apps.dtic.mil/sti/citations/ADA394209
https://books.google.com/books?id=rEkLAAAAIAAJ
https://proceedings.mlr.press/v130/lemhadri21a.html
https://proceedings.mlr.press/v151/liu22f.html
https://doi.org/10.1007/978-1-4614-1770-5_13
https://doi.org/10.1214/07-AOS582
https://www.sciencedirect.com/science/article/pii/S0925231219317199
https://doi.org/10.24432/C55C7W
https://doi.org/10.1002/sim.6782
doi.org/10.1007/s11831-020-09405-5

Under review as submission to TMLR

Pradeep Ravikumar, John Lafferty, Han Liu, and Larry Wasserman. Sparse Additive Models. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 71(5):1009–1030, 2009. URL https:
//doi.org/10.1111/j.1467-9868.2009.00718.x.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Model-agnostic interpretability of machine
learning. In ICML Workshop on Human Interpretability in Machine Learning, pp. 91–95, 2016. URL
https://arxiv.org/abs/1606.05386.

Julia Rosenzweig, Joachim Sicking, Sebastian Houben, Michael Mock, and Maram Akila. Patch shortcuts: In-
terpretable proxy models efficiently find black-box vulnerabilities. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pp. 56–65, 2021. doi: 10.1109/CVPRW53098.2021.00015.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use in-
terpretable models instead. Nature Machine Intelligence, 1:206–215, 2019. URL https://doi.org/10.
1038/s42256-019-0048-x.

Fadil Santosa and William W. Symes. Linear inversion of band-limited reflection seismograms. SIAM Journal
on Scientific and Statistical Computing, 7(4):1307–1330, 1986. URL https://doi.org/10.1137/0907087.

Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse regularization
for deep neural networks. Neurocomputing, 241:81–89, June 2017. URL http://dx.doi.org/10.1016/j.
neucom.2017.02.029.

Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978. URL
https://doi.org/10.1214/aos/1176344136.

A. Schweitzer, V. M. Passegger, C. Cifuentes, V. J. S. Béjar, M. Cortés-Contreras, J. A. Caballero, C. del
Burgo, S. Czesla, M. Kürster, D. Montes, M. R. Zapatero Osorio, I. Ribas, A. Reiners, A. Quirrenbach,
P. J. Amado, J. Aceituno, G. Anglada-Escudé, F. F. Bauer, S. Dreizler, S. V. Jeffers, E. W. Guenther,
T. Henning, A. Kaminski, M. Lafarga, E. Marfil, J. C. Morales, J. H. M. M. Schmitt, W. Seifert, E. Solano,
H. M. Tabernero, and M. Zechmeister. The CARMENES search for exoplanets around M dwarfs. Different
roads to radii and masses of the target stars. Astron. Astrophys., 625:A68, May 2019. URL https:
//doi.org/10.1051/0004-6361/201834965.

Gary Smith. Step away from stepwise. Journal of Big Data, 5:32, 2018. URL https://doi.org/10.1186/
s40537-018-0143-6.

Trevor Stephens et al. Genetic programming in Python with a scikit-learn inspired API: gplearn, 2022. URL
https://github.com/trevorstephens/gplearn.

Weike Sun and Richard D. Braatz. ALVEN: Algebraic learning via elastic net for static and dynamic
nonlinear model identification. Computers & Chemical Engineering, 143:107103, 2020. URL https:
//doi.org/10.1016/j.compchemeng.2020.107103.

Weike Sun and Richard D. Braatz. Smart process analytics for predictive modeling. Computers & Chemical
Engineering, 144:107134, 2021. URL https://doi.org/10.1016/j.compchemeng.2020.107134.

Yiyang Sun, Zhi Chen, Vittorio Orlandi, Tong Wang, and Cynthia Rudin. Sparse and faithful explanations
without sparse models. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li (eds.), Proceedings of
The 27th International Conference on Artificial Intelligence and Statistics, volume 238 of Proceedings of
Machine Learning Research, pp. 2071–2079. PMLR, May 2024. URL https://proceedings.mlr.press/
v238/sun24b.html.

Shaonan Tian, Yan Yu, and Hui Guo. Variable selection and corporate bankruptcy forecasts. Journal of
Banking & Finance, 52:89–100, 2015. URL https://doi.org/10.1016/j.jbankfin.2014.12.003.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:
Series B (Methodological), 58(1):267–288, 1996. URL https://doi.org/10.1111/j.2517-6161.1996.
tb02080.x.

15

https://doi.org/10.1111/j.1467-9868.2009.00718.x
https://doi.org/10.1111/j.1467-9868.2009.00718.x
https://arxiv.org/abs/1606.05386
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1137/0907087
http://dx.doi.org/10.1016/j.neucom.2017.02.029
http://dx.doi.org/10.1016/j.neucom.2017.02.029
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1051/0004-6361/201834965
https://doi.org/10.1051/0004-6361/201834965
https://doi.org/10.1186/s40537-018-0143-6
https://doi.org/10.1186/s40537-018-0143-6
https://github.com/trevorstephens/gplearn
https://doi.org/10.1016/j.compchemeng.2020.107103
https://doi.org/10.1016/j.compchemeng.2020.107103
https://doi.org/10.1016/j.compchemeng.2020.107134
https://proceedings.mlr.press/v238/sun24b.html
https://proceedings.mlr.press/v238/sun24b.html
https://doi.org/10.1016/j.jbankfin.2014.12.003
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

Under review as submission to TMLR

A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Doklady
Akademii Nauk SSSR, 4:1035–1038, 1963.

Sara van de Geer, Peter Bühlmann, and Shuheng Zhou. The adaptive and the thresholded Lasso for poten-
tially misspecified models (and a lower bound for the Lasso). Electronic Journal of Statistics, 5:688 – 749,
2011. URL https://doi.org/10.1214/11-EJS624.

Jian Wang, Huaqing Zhang, Junze Wang, Yifei Pu, and Nikhil R. Pal. Feature selection using a neural net-
work with group Lasso regularization and controlled redundancy. IEEE Transactions on Neural Networks
and Learning Systems, 32:1110–1123, 2021. URL doi.org/10.1109/TNNLS.2020.2980383.

S. Waugh. Extending and Benchmarking Cascade-Correlation: Extensions to the Cascade-Correlation Archi-
tecture and Benchmarking of Feed-forward Supervised Artificial Neural Networks. PhD thesis, University
of Tasmania, 1995. URL https://api.semanticscholar.org/CorpusID:53803349.

Mark J. Whittingham, Philip A. Stephens, Richard B. Bradbury, and Robert P. Freckleton. Why do we
still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology, 75(5):1182–1189, 2006.
URL https://doi.org/10.1111/j.1365-2656.2006.01141.x.

Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. Integrating scientific
knowledge with machine learning for engineering and environmental systems. ACM Comput. Surv., 55(4):
66, Nov 2022. URL https://doi.org/10.1145/3514228.

Henning Wilms, Marco Cupelli, and Antonello Monti. Combining auto-regression with exogenous variables in
sequence-to-sequence recurrent neural networks for short-term load forecasting. In IEEE 16th International
Conference on Industrial Informatics, pp. 673–679, 2018. URL doi.org/10.1109/INDIN.2018.8471953.

Herman Wold. 11 - Path models with latent variables: The NIPALS approach. In H. M. Blalock, A. Agan-
begian, F. M. Borodkin, Raymond Boudon, and Vittorio Capecchi (eds.), Quantitative Sociology, pp.
307–357. Academic Press, New York, 1975a. URL https://doi.org/10.1016/B978-0-12-103950-9.
50017-4.

Herman Wold. Soft modelling by latent variables: The non-linear iterative partial least squares (NI-
PALS) approach. Journal of Applied Probability, 12(S1):117–142, 1975b. URL doi.org/10.1017/
S0021900200047604.

Kai Xu, Akash Srivastava, Dan Gutfreund, Felix Sosa, Tomer Ullman, Josh Tenenbaum, and Charles Sutton.
A Bayesian-symbolic approach to reasoning and learning in intuitive physics. In Advances in Neural
Information Processing Systems, volume 34, pp. 2478–2490, 2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/147540e129e096fa91700e9db6588354-Paper.pdf.

Makoto Yamada, Jiliang Tang, Jose Lugo-Martinez, Ermin Hodzic, Raunak Shrestha, Avishek Saha, Hua
Ouyang, Dawei Yin, Hiroshi Mamitsuka, Cenk Sahinalp, Predrag Radivojac, Filippo Menczer, and
Yi Chang. Ultra high-dimensional nonlinear feature selection for big biological data. IEEE Transactions on
Knowledge and Data Engineering, 30(7):1352–1365, 2018. URL doi.org/10.1109/TKDE.2018.2789451.

Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature selection using stochastic
gates. In Proceedings of the 37th International Conference on Machine Learning, volume 119, pp. 10648–
10659, 2020. URL https://proceedings.mlr.press/v119/yamada20a.html.

I.-C. Yeh. Modeling of strength of high-performance concrete using artificial neural networks. Cement and
Concrete Research, 28(12):1797–1808, 1998. URL https://doi.org/10.1016/S0008-8846(98)00165-3.

I-Cheng Yeh. Analysis of strength of concrete using design of experiments and neural networks. Jour-
nal of Materials in Civil Engineering, 18(4):597–604, 2006. URL https://doi.org/10.1061/(ASCE)
0899-1561(2006)18:4(597).

I-Cheng Yeh. Concrete Compressive Strength. UCI Machine Learning Repository, 2007. URL https:
//doi.org/10.24432/C5PK67.

16

https://doi.org/10.1214/11-EJS624
doi.org/10.1109/TNNLS.2020.2980383
https://api.semanticscholar.org/CorpusID:53803349
https://doi.org/10.1111/j.1365-2656.2006.01141.x
https://doi.org/10.1145/3514228
doi.org/10.1109/INDIN.2018.8471953
https://doi.org/10.1016/B978-0-12-103950-9.50017-4
https://doi.org/10.1016/B978-0-12-103950-9.50017-4
doi.org/10.1017/S0021900200047604
doi.org/10.1017/S0021900200047604
https://proceedings.neurips.cc/paper_files/paper/2021/file/147540e129e096fa91700e9db6588354-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/147540e129e096fa91700e9db6588354-Paper.pdf
doi.org/10.1109/TKDE.2018.2789451
https://proceedings.mlr.press/v119/yamada20a.html
https://doi.org/10.1016/S0008-8846(98)00165-3
https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(597)
https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(597)
https://doi.org/10.24432/C5PK67
https://doi.org/10.24432/C5PK67

Under review as submission to TMLR

Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics,
38(2):894–942, 2010. URL https://doi.org/10.1214/09-AOS729.

Lei Zhao, Qinghua Hu, and Wenwu Wang. Heterogeneous feature selection with multi-modal deep neural
networks and sparse group LASSO. IEEE Transactions on Multimedia, 17(11):1936–1948, 2015. URL
doi.org/10.1109/TMM.2015.2477058.

Shuheng Zhou. Thresholding procedures for high dimensional variable selection and statistical estimation.
In Advances in Neural Information Processing Systems, volume 22, 2009. URL https://proceedings.
neurips.cc/paper_files/paper/2009/file/92fb0c6d1758261f10d052e6e2c1123c-Paper.pdf.

Shuheng Zhou. Thresholded lasso for high dimensional variable selection and statistical estimation, 2010.
URL https://arxiv.org/abs/1002.1583.

Hui Zou and Trevor Hastie. Regularization and Variable Selection Via the Elastic Net. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 67(2):301–320, 2005. URL https://doi.org/10.
1111/j.1467-9868.2005.00503.x.

Hui Zou and Hao Helen Zhang. On the adaptive elastic-net with a diverging number of parameters. The
Annals of Statistics, 37(4):1733 – 1751, 2009. URL https://doi.org/10.1214/08-AOS625.

17

https://doi.org/10.1214/09-AOS729
doi.org/10.1109/TMM.2015.2477058
https://proceedings.neurips.cc/paper_files/paper/2009/file/92fb0c6d1758261f10d052e6e2c1123c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/92fb0c6d1758261f10d052e6e2c1123c-Paper.pdf
https://arxiv.org/abs/1002.1583
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1214/08-AOS625

Under review as submission to TMLR

A1 Appendix — Feature Expansion Algorithm

Algorithm 2 Feature expansion for LCEN
Input: X and y data; hyperparameters degree, lag, trans_type, interaction, transform_y
if lag > 0 then

Append X data from the previous lag time steps (samples) to each time step.
if transform_y == True then

Append y data from the previous lag time steps (samples) to each time step.
end if
Discard the first lag time steps.

end if
Using sklearn’s PolynomialFeatures function, generate polynomial (and interaction if the hyperparameter
interaction is True) transforms of the X data for the given degree.
if trans_type == ‘all’ then

Generate logarithm transforms.
Generate square root transforms for the features with all values > 0.
Generate inverse [1/Xk] transforms.
if degree ≥ 2 then

Generate transforms with noninteger degrees [(Xk)N+1/2 for integers N such that |N | < degree]
for the features whose every sample is > 0.
Generate the log-inverse transforms [(ln Xk)N /(Xk)M for natural numbers N and M such that
N + M < degree].
Generate the log-sqrt-inverse transforms [(ln Xk)N /(Xk)M−1/2 for natural numbers N and M
such that N + M < degree − 1] for the features with all values > 0.

end if
end if
return the transformed X features

A2 Appendix — Description of datasets used in this work

Three types of data are used in this work: artificial data [“Artificial Linear”, “Multicollinear data”, “Rela-
tivistic energy”, and “4th-degree, univariate polynomial”], empirical data from processes with known physical
laws [“CARMENES star data” and “Kepler’s 3rd Law”], and empirical data from processes with no known
physical laws [“Diesel Freezing Point”, “Abalone”, “Concrete Compressive Strength”, “Boston housing”, and
“GEFCom 2014”]. The artificial data are generated by us as described in the next paragraph. These artificial
data are used for an assessment of the feature selection capabilities of the LCEN algorithm and to investigate
how properties of the data, such as noise or data range, affect its capabilities. Empirical data from processes
with known physical laws are described in Section 3.2 and used to verify whether the LCEN algorithm can
rediscover known physical laws using data with real properties. Empirical data from processes with no known
physical laws are described in Sections 3.2 and A6.1, and used to compare the machine learning performance
of the LCEN algorithm against other linear and nonlinear methods, including deep learning models.

The “Artificial Linear” datasets were created by drawing numbers from a uniform distribution between
−10 and 10 in intervals of 0.1 for the samples X and coefficients k and summing to generate the outputs
y =

∑n_samples
i=1 kiXi. These datasets feature all combinations of {100, 500, 1000} samples × {100, 500,

1000} true features × {0%, 25%} noise level × {25%, 50%, 75%, 100%} additional false features. The noise
level is defined as mean(added noise/noiseless y)×100%. The “Multicollinear data” dataset was created by
drawing numbers from a uniform distribution between 1 and 10 to create one variable X0, which was used
together with a small amount of noise to create a correlated variable X1 = X0 +ϵ1; finally, they were summed
such that y = 2X0 + 2X1 + ϵ2. The “Relativistic energy” dataset was created by drawing numbers from a
uniform distribution between 1 and 10 or 1 and 100 for masses, and 5×107 and 2.5×108 for velocities, which
represent the energy of a body as E2 = c4m2 + c2m2v2. With these velocity numbers, relativistic effects are
responsible for 20.4% of the total squared energy on average. The “4th-degree, univariate polynomial” dataset

18

Under review as submission to TMLR

was created by drawing numbers from a normal distribution with mean 0 and variance 5 and transforming
them into the polynomial y = X + 0.5X2 + 0.1X3 + 0.05X4 + ϵ.

All models tested in this work had their hyperparameters selected by 5-fold cross-validation, except for
those trained on the “GEFCom 2014” dataset, which used time series cross-validation. The separation
between training and testing sets varied depending on the dataset. None of the artificial datasets or datasets
containing empirical data from processes with known physical laws have a separate test set, as they are used
to investigate the feature selection capabilities of LCEN (which depend only on the training set). For the
“Diesel freezing point” dataset, 30% of the dataset was randomly separated to form the test set. For the
“Abalone” dataset, the last 1,044 entries (25%) were used as the test set as per Waugh (1995) and Clark
et al. (1996). For the “Concrete Compressive Strength” dataset, 25% of the dataset was randomly separated
to form the test set as per Yeh (1998). For the “Boston housing” dataset, 20% of the dataset was randomly
separated to form the test set. For the “GEFCom 2014” dataset, the data from task 1 were used as the
training set and all data from tasks 2–15 were used as the test set.

Table A1: Datasets used in this work and their sources. The artificial datasets are used in Section 3.1; the
real datasets from processes with known physical laws are used in Section 3.2; and the real datasets from
processes with unknown physical laws are used in Section 3.2.

Dataset Name Source
Artificial Linear Artificial data generated by us

Multicollinear data Artificial data generated by us
Relativistic energy Artificial data generated by us

4th-degree, univariate polynomial Artificial data generated by us
CARMENES star data Schweitzer et al. (2019) [link to dataset]

Kepler’s 3rd Law Kepler et al. (1997) (Original from 1619)
Diesel Freezing Point Hutzler & Westbrook (2000) [link to dataset]

Abalone Nash et al. (1995)
Concrete Compressive Strength Yeh (1998) [dataset: Yeh (2007)]
Boston housing (modified by us) Harrison & Rubinfeld (1978) [link to dataset]

GEFCom 2014 Hong et al. (2016) [link to dataset]

A3 Appendix — List of hyperparameters used in this work

All possible permutations of the hyperparameters below were cross-validated.

1. For the LASSO and Ridge regression models: α = 0 and 20 log-spaced values between −4.3 and 0
(as per np.logspace(-4.3,0,20)).

2. For the elastic net (EN) models: α as above and L1 ratios equal to [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 0.95, 0.97, 0.99].

3. For the SCAD models: α as above and the a parameter (also written as γ) equal to 3.7, the default
value. According to Fan & Li (2001), SCAD is invariant to changes in a.

4. For the MCP models: α as above and γ equal to [1, 1.5, 2, 2.5, 3, 3.5, 4].

5. For the symbolic regression (SymReg) models: most hyperparameters were set to their default
values as per Stephens et al. (2022), except for the following. population_size was increased to
2,000, p_crossover equal to [0.7, 0.8, 0.9, 0.95], p_subtree_mutation equal to [0.01, 0.025, 0.05, 0.1,
0.15], p_hoist_mutation equal to [0.01, 0.025, 0.05, 0.1], and p_point_mutation equal to [0.01, 0.025,
0.05, 0.1, 0.15] were tested. Because the sum of these probabilities must be ≤ 1, some combinations
are not feasible.

6. For the partial least squares (PLS) models: a number of components equal to all integers between 1
and a limit were used. This limit is either the number of features or 80% of the number of samples,
whichever is smaller.

19

https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/625/A68
https://eigenvector.com/data/SWRI/index.html
https://lib.stat.cmu.edu/datasets/boston
https://www.dropbox.com/s/pqenrr2mcvl0hk9/GEFCom2014.zip?dl=0

Under review as submission to TMLR

7. For the LCEN models: α and L1 ratios as above. degree values equal to [1, 2, 3] were typically used,
except when otherwise indicated (such as in the “Relativistic energy” dataset). lag = 0 was used,
except for the “GEFCom 2014” dataset, which used lag = 168. cutoff values between 1×10−3 and
5.5×10−1 were used; higher values were used only when intentionally creating models with fewer
selected features. A cutoff = 0 is used in the ablation tests for the LASSO-EN model (Section A4).

8. For the random forest (RF) and gradient-boosted decision tree (GBDT) models: [10, 25, 50, 100,
200, 300] trees, maximum tree depth equal to [2, 3, 5, 10, 15, 20, 40], minimum fraction of samples
per leaf equal to [0.01, 0.02, 0.05, 0.1], and minimum fraction of samples per tree equal to [0.1, 0.25,
0.333, 0.5, 0.667, 0.75, 1.0]. For the GBDT models, learning rates equal to [0.01, 0.05, 0.1, 0.2] were
also used.

9. For the AdaBoost (AdaB) models: [10, 25, 50, 100, 200, 300] trees/estimators and learning rates
equal to [0.01, 0.05, 0.1, 0.2] were used.

10. For the support vector machine (SVM) models: C values equal to [0.01, 0.1, 1, 10, 50, 100], epsilon
values equal to [0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3], and gamma values equal to [1/50, 1/10,
1/5, 1/2, 1, 2, 5, 10, 50] divided by the number of features in a dataset were used.

11. For the fast sparse GAMs (FS-GAMs): the L0L2 penalty, num_gamma = 20, gamma_min =
5×10−5, gamma_max = 1, and a max_support_size equal to the larger of 20% of the features or
8 were used.

12. For the multilayer perceptron (MLP), MLP with group LASSO (MLP-GL1), and LassoNet models:
the hidden layer sizes varied for each dataset. Representing an MLP with one hidden layer as [X],
and an MLP with two as [X, Y], and an MLP with three as [X, Y, Z], hidden layer sizes of

• {[800], [400], [200], [100], [800, 800], [800, 400], [800, 200], [800, 100], [400, 400], [400, 200], [400,
100], [200, 200], [200, 100], [100, 100], [800, 800, 800], [800, 800, 400], [800, 800, 200], [800, 800,
100], [800, 400, 400], [800, 400, 200], [800, 400, 100], [800, 200, 200], [800, 200, 100], [400, 400,
400], [400, 400, 200], [400, 400, 100], [400, 200, 200], [400, 200, 100], [200, 200, 200], [200, 200,
100], [200, 100, 100], [100, 100, 100]} were used with the “Diesel Freezing Point” dataset.

• {[18], [9], [4], [18, 18], [18, 9], [9, 9], [9, 4], [9, 2], [4, 4]} were used with the “Abalone” dataset.
• {[48], [40], [32], [24], [16], [8], [4], [48, 48], [48, 40], [48, 32], [48, 24], [48, 16], [48, 8], [40, 40],

[40, 32], [40, 24], [40, 16], [40, 8], [32, 32], [32, 24], [32, 16], [32, 8], [24, 24], [24, 16], [24, 8], [16,
16], [16, 8], [8, 8], [8, 4], [40, 40, 40], [40, 40, 32], [40, 40, 24], [40, 32, 32], [40, 32, 24], [40, 32,
16], [40, 24, 24], [40, 24, 16], [40, 16, 16], [32, 32, 32], [32, 32, 24], [32, 32, 16], [32, 24, 24], [32,
24, 16], [32, 16, 16], [24, 24, 24], [24, 24, 16], [24, 16, 16], [16, 16, 16], [16, 16, 8], [16, 8, 8], [8,
8, 8]} were used with the “Concrete Compressive Strength” dataset.

• {[78], [65], [52], [39], [26], [13], [6], [78, 78], [78, 65], [78, 52], [78, 39], [78, 26], [65, 65], [65, 52],
[65, 39], [65, 26], [65, 13], [52, 52], [52, 39], [52, 26], [52, 13], [39, 39], [39, 26], [39, 13], [26, 26],
[26, 13], [13, 13], [13, 6], [78, 78, 78], [78, 78, 65], [78, 78, 52], [78, 78, 39], [78, 78, 26], [78, 65,
65], [78, 65, 52], [78, 65, 39], [78, 65, 26], [78, 52, 52], [78, 52, 39], [78, 52, 26], [78, 39, 39], [78,
39, 26], [78, 26, 26], [65, 65, 65], [65, 65, 52], [65, 65, 39], [65, 65, 26], [65, 52, 52], [65, 52, 39],
[65, 52, 26], [65, 39, 39], [65, 39, 26], [65, 26, 26], [52, 52, 52], [52, 52, 39], [52, 52, 26], [52, 39,
39], [52, 39, 26], [52, 26, 26], [39, 39, 39], [39, 39, 26], [39, 26, 26], [26, 26, 26]} were used with
the “Boston housing” dataset.

Learning rates equal to [0.0005, 0.001, 0.005, 0.01, 0.05], the AdamW optimizer, the ReLU and
tanhshrink activation functions, a batch size of 32, weight decay with λ equal to [0, 0.01, 0.05,
0.08, 0.1], 100 epochs, and a cosine scheduler with a minimum learning rate equal to 1/16 of the
original learning rate with 10 epochs of warm-up were also used. For the MLP-GL1 and LassoNet,
regularization parameters equal to [1×10−4, 1×10−3, 1×10−2] were used.

20

Under review as submission to TMLR

Table A2: Additional features included for each value of the degree hyperparameter for a dataset with three
features labeled X0, X1, and X2 when the lag hyperparameter is set to 0, the trans_type hyperparameter is
set to ‘all’, and the interaction hyperparameter is set to True. If the trans_type hyperparameter were set to
‘poly’, only the features of the form (Xk)n and the interaction terms (if interaction were still set to True)
would be present. A degree of n (any natural number) also includes all features from degrees 1 to n − 1.

Degree Sample new features included [for all k] Features after expansion
1 intercept, Xk, ln Xk, (Xk)1/2, 1/Xk 13
2 (Xk)2, 2-way interactions, (ln Xk)2, (Xk)3/2, 1

(Xk)2 , ln Xk

Xk
37

3 (Xk)3, 3-way interactions, (ln Xk)3, (Xk)5/2, 1
(Xk)3 , (ln Xk)2

Xk
, ln Xk

(Xk)2 75
4 [. . .] 129
5 [. . .] 201

A4 Appendix — Ablation tests

To better clarify the design choices of the LCEN algorithm and highlight the relevance of each individual part
of the algorithm, ablation tests are performed. Three ablated algorithms – LASSO-Clip (LC, the thresholded
LASSO), EN-Clip (ENC, the thresholded EN), and LASSO-EN (LEN) – are compared with the original
LCEN algorithm. Three variant algorithms, LASSO-Clip-LASSO (LCL), EN-Clip-EN (ENCEN), and regular
LCEN followed by OLS for debiasing (LCEN→OLS), are also compared. The “Relativistic energy”, “Diesel
Freezing Point”, “Abalone”, “Concrete Compressive Strength”, and “Boston Housing” datasets are used in
the ablation tests in this section; Table 2 provides ablation test results with the “CARMENES star data”
and “Kepler’s 3rd Law” datasets.

Tests with the “Relativistic energy” dataset show that models with a Clip step had some degree of success
with selecting only relevant features (Table A4). However, the ablated algorithms (LC, ENC, and LEN) had
much higher prediction errors for the coefficients of the relevant features, even though LC and ENC were
able to select only the relevant features. The variant algorithms (LCL, ENCEN, and LCEN→OLS) had
performances closer to that of LCEN, but LCL was slightly worse in terms of error. LCEN→OLS was able
to estimate the coefficients with a lower error than LCEN, but this improvement in coefficient estimation
performance comes with an increase in test-set MSEs in other tasks.

Globally, the models that begin with EN (ENC and ENCEN) are approximately, on average, one order of
magnitude slower than LCEN on all datasets (Tables A4–A7), whereas LC was approximately 50% faster than
LCEN. In particular, LCEN is, on average, 10.30-fold faster the thresholded EN (ENC) in our experiments
(Table A3). However, LCEN consistently had the lowest validation RMSE in all datasets, and had the lowest
test-set RMSE in all but one dataset. As highlighted by Table A5, LCEN builttied for the sparsest and most
accurate model out of all ablated and variant algorithms trained with the “Diesel Freezing Point” dataset.
Overall, these ablation experiments highlight how LCEN is the optimal algorithm to maximize accuracy and
selectivity while maintaining a low runtime.

21

Under review as submission to TMLR

Table A3: Comparison of runtimes for LCEN and ENC, and overall LCEN fold improvement, for the
experiments in this work.

Dataset Name LCEN (s) Thresholded EN (ENC) (s) Fold Improvement
Artificial Linear

(1000×1000, 100% additional false features) 191 902 4.72

Relativistic energy 4.79 37.1 7.75
CARMENES star data 6.01 55.4 9.22

Kepler’s 3rd Law 3.56 13.1 3.68
Diesel Freezing Point 6.54 20.6 3.15

Abalone 19.2 297 15.47
Concrete Compressive Strength 39.7 800 20.15
Boston housing (modified by us) 167 3045 18.23

Average fold improvement: 10.30±6.77

Table A4: Relative error (%) to the ground truth for the “Relativistic energy” dataset with 1 ≤ m < 100
at different noise levels for ablated and variant LCEN algorithms. The first coefficient is for m2 and the
second coefficient is for m2v2. Compare with the right table of Table 1 and a runtime of 4.79 seconds for
LCEN.

Noise Level LC ENC LEN
0% 36.62, 18.08 41.52, 20.91 43.75, 22.32
5% 37.68, 18.85 41.30, 21.16 43.93, 23.45
10% 18.92, 1.647 44.31, 23.70 1.137, 0.468
15% 39.71, 20.61 44.31, 23.70 46.65, 26.40
20% 39.65, 21.13 39.99, 21.95 45.87, 27.23
30% 22.35, 2.603 22.93, 2.660 7.649, 1.036

Runtime (s) 3.70 37.1 5.40

Noise Level LCL ENCEN LCEN→OLS LCEN
0% 0.007, 0.012 0.001, 0.006 0, 0 0.001, 0.006
5% 0.011, 0.029 0.005, 0.022 0.004, 0.016 0.005, 0.022
10% 0.015, 0.045 0.009, 0.038 0.008, 0.032 0.009, 0.038
15% 0.019, 0.061 0.013, 0.054 0.012, 0.048 0.013, 0.054
20% 0.023, 0.077 0.017, 0.070 0.016, 0.064 0.017, 0.070
30% 0.031, 0.109 0.025, 0.103 0.024, 0.096 0.025, 0.103

Runtime (s) 3.86 38.5 4.79 4.79

Table A5: Results of different ablated and variant LCEN algorithms for the “Diesel Freezing Point” dataset.
Compare with Table 3.

Algorithm Test RMSE (◦C) Features Runtime (s)
LC 4.86±0.03 37.3±0.6 4.39

ENC 7.26±3.62 152±119 20.6
LEN 4.92±0.05 39.0±0.0 6.85
LCL 5.03±0.08 35.7±3.1 4.74

ENCEN 5.04±0.22 120±86 31.1
LCEN→OLS 5.02 36 6.54

LCEN 4.89±0.06 37.0±1.0 6.54

22

Under review as submission to TMLR

Table A6: Results of different ablated and variant LCEN algorithms for the “Abalone” dataset. Compare
with Table A10 and a runtime of 19.2 seconds for LCEN.

Algorithm Test RMSE (rings) Features Runtime (s)
LC 2.1 8 11.8

ENC 2.1 8 297
LEN 2.1 8 26.3
LCL 2.0 8 12.9

ENCEN 2.1 8 308
LCEN 2.0 8 19.2

Table A7: Results of different ablated and variant LCEN algorithms for the “Concrete Compressive
Strength” dataset. All models selected all 8 features, but a varying number of transforms of these fea-
tures. Compare with Table 4 and a runtime of 39.7 seconds for LCEN.

Algorithm Test RMSE (MPa) Runtime (s)
LC 5.44±0.12 24.6

ENC 8.29±3.60 800
LEN 5.63±0.15 44.9
LCL 5.77±0.31 26.4

ENCEN 5.73±0.15 863
LCEN 5.55±0.04 39.7

Table A8: Results of different ablated and variant LCEN algorithms for the “Boston Housing” dataset.
Compare with Table 5.

Algorithm Test RMSE (Thousands USD) Runtime (s)
LC 5.25±0.07 148

ENC 5.32±0.12 3045
LEN 5.10±0.06 167
LCL 5.31±0.10 147

ENCEN 5.23±0.14 3094
LCEN 4.95±0.10 167

A5 Appendix — Additional results with artificial data

A5.1 “Artificial Linear” datasets

Figures A1 to A4 provide plots for the “Artificial Linear” datasets with 0% noise, and Figures A5 to A6
provide plots for the datasets with 25% noise. Other additional results with artificial data follow from Fig.
A7 onwards.

23

Under review as submission to TMLR

Figure A1: Plots of the Matthews Correlation Coefficients (MCCs) for models tested on the “Artificial
Linear” dataset with 0% noise and 25% additional false features, as written in each subfigure’s title.

24

Under review as submission to TMLR

Figure A2: Plots of the Matthews Correlation Coefficients (MCCs) for models tested on the “Artificial
Linear” dataset with 0% noise and 50% additional false features, as written in each subfigure’s title.

25

Under review as submission to TMLR

Figure A3: Plots of the Matthews Correlation Coefficients (MCCs) for models tested on the “Artificial
Linear” dataset with 0% noise and 75% additional false features, as written in each subfigure’s title.

26

Under review as submission to TMLR

Figure A4: Plots of the Matthews Correlation Coefficients (MCCs) for models tested on the “Artificial
Linear” dataset with 0% noise and 100% additional false features, as written in each subfigure’s title.

27

Under review as submission to TMLR

Figure A5: Plots of the Matthews Correlation Coefficients (MCCs) for models tested on the “Artificial
Linear” dataset with 25% noise and 25% additional false features, as written in each subfigure’s title.

28

Under review as submission to TMLR

Figure A6: Plots of the Matthews Correlation Coefficients (MCCs) for models tested on the “Artificial
Linear” dataset with 25% noise and 50% additional false features, as written in each subfigure’s title.

29

Under review as submission to TMLR

A5.2 “Multicollinear data” dataset

Figure A7: LASSO (left) and LCEN/SCAD/MCP (right) model output at different X-data noise levels ϵ1
and y-data noise levels ϵ2 (“Multicollinear data” dataset). Bright red squares indicate both variables were
selected and their coefficients had errors ≤ 5%. Light red squares indicate that both variables were selected
and their coefficients had 5% < errors ≤ 10%. White squares indicate that both variables were selected and
their coefficients had 10% < errors ≤ 20%. Light blue squares indicate that both variables were selected and
their coefficients had errors > 20%. Bright blue squares indicate that only one of the variables was selected.

A5.3 “4th-degree, univariate polynomial” dataset

For the “4th-degree, univariate polynomial” dataset, Sun & Braatz (2020) created four models: one that
always uses degree = 4 (“unbiased model”), one that always uses degree = 2 (“biased model”), one that
selects a degree between 1 and 10 based on cross-validation (“cv”), and one that selects a degree equal to 2
or 4 based on cross-validation (“cv limited order”). Sun & Braatz (2021) noted that the degree 4 “unbiased
model” was the best at low noise levels, but its error quickly increases, leading to the degree 2 “biased model”
becoming the best for noise levels > 75 (Fig. 3 of Sun & Braatz (2021); reproduced with permission here
as the left subfigure of Fig. 1). The model with degree equal to 2 or 4 “cv limited order” was typically
very close in performance to the best model at all noise levels, whereas the model with a degree between 1
and 10 “cv” had lower performance. Sun & Braatz (2021) explain these observations with the bias-variance
tradeoff: at low noise levels, models should follow the ground truth as closely as possible; thus, the degree 4
“unbiased model” was the best. However, at sufficiently high noise levels, it becomes impossible to obtain
enough signal to compensate for the additional degrees of freedom (variance) in a 4th degree model; thus, the
degree 2 “biased model” becomes the best. The degree between 1 and 10 “cv” model had lower performance
due to its greater hyperparameter variance, and the degree equal to 2 or 4 “cv limited order” model struck
a balance between the “unbiased model” and the “biased model”.

Similarly to the models generated using ALVEN, the LCEN model with a degree between 1 and 10 “cv”
had the lowest performance and the LCEN model with degree equal to 2 or 4 “cv limited order” had a
performance between the degree 4 “unbiased model” and the degree 2 “biased model”. However, the degree
4 “unbiased model” was always the best model, no matter the noise level used (Fig. 1). We attribute this
considerable reduction in median test MSEs and the superiority of the degree 4 “unbiased model” created by
LCEN to the improved feature selection algorithm, which is able to better resist variance due to noise and

30

Under review as submission to TMLR

a large number of hyperparameters. This is corroborated by how the model with a degree between 1 and
10 “cv” tended to select degree = 4 at lower noise levels and degree = 2 at higher noise levels (Figure A9),
showing how LCEN can automatically follow the bias-variance tradeoff hypothesis.

Figure A8: 25% (squares) and 75% quartile (triangles) test set MSEs for the LCEN model trained for the
“4th-degree, univariate polynomial” dataset. The trends tend to match those from Fig. 1.

31

Under review as submission to TMLR

Figure A9: Degrees selected by the model with a degree between 1 and 10 “cv” trained using the LCEN
algorithm. At lower noise levels (noise variance σ2 ≤ 30), LCEN tends to primarily select degree = 4. At
higher noise levels, there is a shift to primarily select degree = 2.

32

Under review as submission to TMLR

A6 Appendix — Additional results with empirical data

A6.1 Datasets for which no physical law is available

Table A9: Results of LCEN models with forced higher cutoff values trained on the “Diesel Freezing Point”
dataset. Compare with Table 3 and the surrounding section.

Model Test RMSE (◦C) Features Runtime (s)

LCEN

4.89±0.06 37±1 6.54
4.91 29 6.27
5.52 13 5.76
7.40 6 5.53

Abalone (Haliotis sp.) are sea snails whose age can be determined by cutting their shells, staining them,
and counting the stained shell rings under a microscope. This process is laborious and error-prone. An
alternative is to estimate the number of rings based on readily available physical characteristics, such as
weight and size. As before, LCEN was compared with other dense and sparse machine learning models
(Table A10). In this problem, OLS, PLS, RR, LASSO, and EN all converged to the OLS solution (that
is, no regularization), selecting all 8 linear features and having an RMSE of 2.1 rings. On the other hand,
LCEN automatically detected that 2nd degree features would be relevant. The LCEN algorithm model also
selected all 8 features and had an RMSE of 2.0 rings, surpassing all linear models and tying with the best
nonlinear models in this task. Nonlinear models had test RMSEs between 2.0 and 2.5 rings, but most all
lack the interpretability of LCEN.

By increasing the cutoff hyperparameter, sparser LCEN models may be generated similarly to what was
done in Table A9. An LCEN model with only 3 features had an RMSE of 2.1 rings, and another with only 2
features had an RMSE of 2.2 rings. This experiment further illustrates LCEN’s robust feature selection, and
how very sparse LCEN models retain significant performance. Furthermore, LCEN models with the same
or lower number of selected features had a lower test set RMSE than FS-GAMs.

Table A10: Results of different models for the “Abalone” dataset. The number of features that minimizes
the cross-validation MSE is 6 for FS-GAMs and 8 for LCEN.

Model Test RMSE (rings) Features
OLS = PLS = RR =

LASSO = EN 2.1 8

SCAD 2.1 8
MCP 2.1 8

SymReg 2.3 3
RF 2.1 8

GBDT 2.2 8
AdaB 2.3 8
SVM 2.0 8
MLP 2.0 8

MLP-GL1 2.0 8
LassoNet 2.0 8

FS-GAMs
2.1 8
2.2 6
2.4 2

LCEN
2.0 8
2.1 3
2.2 2

33

Under review as submission to TMLR

A7 Appendix — Computational resources used

All experiments were done in a personal computer equipped with a 13th Gen Intel® Core™ i5-13600K CPU,
64 GB of DDR4 RAM, and an NVIDIA GeForce RTX 4090 GPU. Runtimes for the models trained on the
“Diesel Freezing Point” dataset are provided in Table 3, and runtimes for LCEN and ablated algorithms are
provided in the tables of Section A4.

34

	Introduction
	Methods
	The LCEN algorithm
	LCEN is optimal when compared to ablated and variant algorithms
	Experimental setup

	Results
	Artificial data highlight LCEN's feature selection capabilities and robustness to noisered, and multicollinearityred, and hyperparameter variance
	LCEN surpasses many other methods when making predictions on empirical data

	Discussion
	Appendix — Feature Expansion Algorithm
	Appendix — Description of datasets used in this work
	Appendix — List of hyperparameters used in this work
	Appendix — Ablation tests
	Appendix — Additional results with artificial data
	``Artificial Linear'' datasets
	``Multicollinear data'' dataset
	``4th-degree, univariate polynomial'' dataset

	Appendix — Additional results with empirical data
	Datasets for which no physical law is available

	Appendix — Computational resources used

