
Under review as a conference paper at ICLR 2022

SPACEMAP:
VISUALIZING HIGH-DIMENSIONAL DATA BY SPACE
EXPANSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Dimensionality reduction (DR) and visualization of high-dimensional data is of
theoretical and practical value in machine learning and related fields. In theory,
there exists an intriguing, non-intuitive discrepancy between the geometry of high-
dimensional space and low-dimensional space. Based on this discrepancy, we
propose a novel DR and visualization method called Space-based Manifold Ap-
proximation and Projection (SpaceMAP). Our method establishes a quantitative
space transformation to address the “crowding problem” in DR. With the pro-
posed equivalent extended distance (EED) and function distortion (FD) theory,
we are able to match the capacity of high-dimensional and low-dimensional space
in a principled manner. To handle complex high-dimensional data with different
manifold properties, SpaceMAP makes distinctions between the near field, mid-
dle field, and far field of data distribution in a data-specific, hierarchical manner.
We evaluated SpaceMAP on a range of artificial and real datasets with different
manifold properties, and demonstrated its excellent performance in comparison
with classical and state-of-the-art DR methods. In addition, the concept of space
expansion provides a generic framework for understanding nonlinear DR meth-
ods including t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform
Manifold Approximation and Projection (UMAP).

1 INTRODUCTION

Real-world data, including images, videos, genetic expressions, natural languages, or financial
statistics, usually have a high dimensionality. The intrinsic dimensionality of these data, however,
is typically much lower than its ambient dimension, which property is recognized as an important
underlying reason for modern machine learning to work (Levina & Bickel, 2004; Pope et al., 2021;
Wright & Ma, 2021). To capture useful information from high-dimensional data, dimensionality
reduction (DR) is of both theoretical and practical value.

DR is essential for data visualization. A space with a dimensionality higher than 3, however,
is already beyond our accustomed way of observing data, and our intuition in 2-dimensional or
3-dimensional space may not apply. High-dimensional space is not a trivial extension of low-
dimensional space; theoretical research on high-dimensional geometry and statistics revealed a num-
ber of intriguing, non-intuitive phenomena in high-dimensional space (Giraud, 2021). Imagine a
hyper-sphere with a radius r in a d-dimensional Euclidean space whose central point is at the origin.
Consider a “crust” of the d-dimensional hyper-sphere, which is between the surfaces of this hyper-
sphere and a slightly smaller concentric hyper-sphere with radius (1−ϵ)r, where ϵ is small (Figure 1
a). The ratio of the volume of the “crust” Cd(r) to the hyper-sphere is Vd(r) is Cd(r)

Vd(r)
= 1− (1−ϵ)d.

Take ϵ = 0.01, it is easy to show that when d is small, the ratio is tiny (as our intuition goes), however
this ratio grows exponentially fast to near 100% with the increase of dimensionality, as illustrated
in figure 1 a-b. The volume of a high-dimensional hyper-sphere is therefore counter-intuitively con-
centrated on a crust (1 c). Such concentration explains the “crowding problem” of DR (van der
Maaten & Hinton, 2008): a faithful preservation of distances in high-dimensional space would lead
to crowded data points.
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Figure 1: Upper panel: (a) The “crust” of a ball in 3-dimensional spaces with Euclidean distance
metric. (b) The calculated fraction of volume between crust and sphere, with respect to the dimen-
sionality. (c) Distributions of the distances of data points following Gaussian distribution from the
origin (χ− distribution) in 2-dimensional (gray) and 300-dimensional (red) spaces. Lower panel:
(d) Sampling points following 3D Gaussian distribution. (e) DR result of the same data points by
SNE, showing the “crowding problem” as all the points are tied together without reasonable dis-
tances and density. (f) DR by t-SNE, showing the false clusters generated by the t-distribution
function. (g) DR by SpaceMAP, showing both the reasonable local fluctuation and the global den-
sity.

t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and
Projection (UMAP) are among the most established DR methods today, both of which mitigate this
crowding problem by modeling the low-dimensional similarity measure with a longer-tail distribu-
tion than high-dimensional similarity measure (e.g. t distribution vs. Gaussian in the case of t-SNE).
Such a disparity in similarity measure amounts to a distortion of distance between two spaces, but
in a highly implicit manner. Both methods perform well empirically, but the underlying distortion
of distance measure in two spaces cannot be analytically expressed or validated. Furthermore, the
implicity of distance transformation deters us from imposing priors in data if there is any (e.g. a
Swiss Roll has an intrinsic dimensionality of 2).

Another important property of real-world high-dimensional data is that they often exhibit a hierar-
chical structure (sub-manifolds on large manifolds), governed by the underlying generative models.
Such hierarchy demands different treatment of data points by DR at different relative position. The
state-of-the-art DR methods, such as UMAP (McInnes et al., 2018) and Barnes-Hut t-SNE (van der
Maaten, 2014), commonly consider on a selected neighborhood (as a hyper-parameter) while dis-
carding the far field beyond it. Isomap (Balasubramanian et al., 2002), on the other hand, taking
both near and far field into account by calculating distances on a connected graph. t-SNE and
UMAP works well on data of disjoint manifolds such as MNIST, while Isomap works well on data
of continuous manifold such as Swiss roll. However, it is generally difficult for one method to
succeed in both disjoint and continuous data manifolds.

In this paper, we seek to develop a novel DR method that is based on the following two key ideas,
and strive to address the two aforementioned issues:

• Space Expansion: Matching the “capacity” in high-dimensional and low-dimensional
space, by explicit, quantitative transformation of distance measure;

• Hierarchical Manifold Approximation: Data-specific, hierarchical modeling of similarities
in high-dimensional data, to accommodate both disjoint and continuous data manifolds.
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2 RELATED WORK

Over the past decades, there have been active development of DR methods, which can be roughly
categorized into global and local methods. The most well-known global method is principal compo-
nent analysis (PCA) (Jolliffe, 2014), which finds a low number of directions that accounts for most
variations. While PCA is linear, Laplacian eigenmaps (Belkin & Niyogi, 2001; 2003) and multidi-
mensional scaling (MDS) (Buja et al., 2008) are nonlinear global methods. Local methods, including
Isomap, Locally Linear Embedding (LLE) (Roweis, 2000), stochastic neighbor embedding (SNE)
(Hinton & Roweis, 2003), and maximum variance unfolding (MVU) (Weinberger & Saul, 2006), fo-
cus on preserving local structure in data. While outperforming global methods on nonlinear datasets,
local methods generally suffer from poor scalability, low speed, and stochasticity.

In 2008, t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten & Hinton, 2008), a
variant of SNE, was proposed and later became one of the most popular DR methods in research
community. t-SNE alleviates the “crowding problem” by assuming t-distribution in low-dimensional
space (in contrast to Gaussian distribution in the high-dimensional space). t-SNE is followed up by a
number of prominent work to improve its scalability and speed, including among others Barnes-Hut
t-SNE (BH t-SNE) (van der Maaten, 2014), fast Fourier-transform-accelerated interpolation-based
t-SNE (FIt-SNE) (Linderman et al., 2019), and parametric t-SNE (ptSNE) (van der Maaten, 2009).

Recently, uniform manifold approximation and projection McInnes et al. (2018) (UMAP) was pro-
posed, which shows competitive performance to t-SNE. UMAP is grounded in the mathematical
theories of Riemannian geometry and algebraic topology. It computes local neighbor graph as a
fuzzy simplicial set, which glues together the high-dimensional sparse data and differentiates local
and global topology. UMAP further incorporates a number efficient algorithms such as approx-
imated nearest neighbor and stochastic gradient descent (SGD) to improve speed and scalability.
TriMAP (Amid & Warmuth, 2019) was recently proposed, which uses a triplet loss instead of pair-
wise. UMAP and TriMAP are reported to better preserve the global structure than t-SNE McInnes
et al. (2018); Amid & Warmuth (2019).

We note that a different definition of “distance” in the low-dimensional space than in the high-
dimensional space is core to these successful DR algorithms. In t-SNE, with a heavier tail, t-
distribution implicitly expands the low dimensional space distance metrics, to allow more space for
data points to be arranged. Likewise, the definition of distances of UMAP in low-dimensional space
is much more heavy-tailed (inverse of polynomial) than in high-dimensional space (exponential),
which also leads to implicit distortion of space.

3 METHOD

3.1 SPACE EXPANSION

High-dimensional space, irrespective of the distances defined, possesses exponentially higher ca-
pacity to express data than low-dimensional space. Here we define “capacity” as a measure of space
volume to accommodate data points. Our intuition is therefore to expand the low-dimensional space
to make up for this space capacity lost due to DR. To transfer the high-dimensional geometry into
a low-dimensional one, we introduce the concept of equivalent extended distance (EED) in Section
3.1.1 and function distortion (FD) in Section 3.1.2.

3.1.1 EQUIVALENT EXTENDED DISTANCE (EED)

We first define space capacity to quantitatively calculate the amount of distortion needed to match
low-dimensional space to high-dimensional space.
Definition 3.1 (Space Capacity). Let Rij = l(xi,xj) ∈ R be the distance between data point xi

and xj in the D-dimensional space. The space capacity VD(Rij) from point i to point j is defined
as the volume a D-dimensional ball with a radius Rij .

In Euclidean space, the capacity VD(Rij) is simply the volume of a D-dimensional hyper-sphere
SD(Rij):

VD(Rij) = SD(Rij) =
πD/2

Γ(D/2 + 1)
RD

ij (1)
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As high-dimensional space has higher capacity than low-dimensional space, to preserve the capacity
of the high-dimensional space in the low-dimensional space, the equivalent distance in the low-
dimensional space naturally extends, hence Equivalent Extended Distance (EED):
Definition 3.2 (Equivalent Extended Distance (EED)). Let Rij = l(xi,xj) ∈ R be the distance
between data point xi and xj in the D-dimensional space. The equivalent extended distance (EED)
R̃ij,D→d is defined as the equivalent distance between xi and xj in d-dimensional space which can
reach the same Space Capacity:

Vd(R̃ij,D→d) = VD(Rij) (2)

Example 3.1 (2-dimensional EED in Euclidean space). Consider a D-dimensional Euclidean space,
the distance between two points i and j is Rij = ∥xi − xj∥. The 2-dimensional EED of Rij is:

R̃ij,D→2 =
√

SD(Rij)
π = αR

D/2
ij where α = π(D−2)/4√

Γ(D/2+1)
and Γ is the gamma function.

Example 3.1 shows that when embedding D-dimensional Euclidean space into d-dimensional space,
EED can be expressed in a generic form of R̃ij,D→d = αRβ where β = D

d and α is a constant
determined by D and d.

In the following, we present prior theory of intrinsic dimension by the maximum likelihood estima-
tion (MLE) method by Levina & Bickel (2004), and show that our proposed EED fits in this classical
framework.
Theorem 3.1 (MLE of the intrinsic dimension (Levina & Bickel, 2004)). Let Rik ∈ R be the
Euclidean distance between point i and its k-th nearest neighbor. Assume the distribution of the
data points in the small sphere Si(R) is uniform. The maximum likelihood estimation (MLE) of the
intrinsic dimension of the data around point i is:

d̂i(Rik) =

 1

k − 1

k−1∑
j=1

log
Rik

Rij

−1

(3)

The MLE method provides a way to estimate the intrinsic dimension at point i in its k neighborhood
based on the distribution of distances.

By applying EED transformation to a space with intrinsic dimension D, the following Lemma holds:
Lemma 3.2 (Transformation of the intrinsic dimension by applying EED). ∀Rij = l(xi,xj) ∈ R,
if the MLE of the intrinsic dimension of the high-dimensional dataset around point i is d̂i(Rij) = D,
then the MLE of the intrinsic dimension after applying EED is d̂i(R̃ij,D→d) = d.

Proof. By replacing Rij with R̃ij,D→d = αR
D/d
ij into Equation (3), we have

d̂i(R̃ik,D→d) =

 1

k − 1

k−1∑
j=1

log
αR

D/d
ik

αR
D/d
ij

−1

=

 1

k − 1

k−1∑
j=1

D

d
log

Rik

Rij

−1

=
d

D
d̂i(Rik) = d

(4)

Specifically, when d = 2 for visualization purposes, the MLE of the intrinsic dimension of the
expanded space will be exactly 2. Essentially, the validity of this statement arises from the proposed
EED transformation R̃ij,D→d = αR

D
d , where the exponential form of D

d transforms the intrinsic
dimension from D to d, based on the MLE formula (3) where the distances are taken logarithmic. In
the following sections, the distance Rij between point i and point j is described as l(xi,xj), which
is suitable for several different distance metrics.

3.1.2 FUNCTION DISTORTION (FD)

Function distortion (FD) is the implementation to realize EED between high-dimensional and low-
dimensional space similarity measures during optimization. Given that EED is well defined as
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R̃ij,D→d = αRβ , FD between spaces can be explicitly computed. Figure 2 illustrates how FD
transforms the similarity functions (Pj|i and Qij) in high-dimensional and low-dimensional spaces.
A much heavier tail can be observed in the low-dimensional space similarity measure, arising from
EED.

Figure 2: EED is the direct transformation of distance Rij , e.g. distance between xi and xj , also
expressed by l(xi,xj), while FD integrates EED into the similarity measure, which is used for
optimization. A much heavier tail can be observed in the low-dimensional similarity measure after
FD (bottom-right). By matching the similarity in high-dimensional (blue) and low-dimensional
(orange) spaces, we intuitively show how points are moved around by the optimization process
(bottom-middle).

3.2 HIERARCHICAL MANIFOLD APPROXIMATION

Another fundamental assumption of SpaceMAP is that real world data often lie on a complex mani-
fold, of a hierarchical structure (Figure 3 a). In SpaceMAP, we divided the high-dimensional space
with respect to each data point i into near field Si,near, middle field Si,middle, and far field Si,far.
Such a definition of neighborhood is point-specific, implying that we can treatment different points
differently, depending on their relative location on the manifold. An analogue can be made to UMAP,
which defines a different distance metric for each data point depending on its nearest neighbor. Sim-
ilarly, for a generic formulation, the determination of the fields is based on K-nearest neighbors in
SpaceMAP:

Si,near = {xj

∣∣ l(xi,xj) ≤ l(xi,xk1)}, k1 = nnear (5)

Si,middle = {xj

∣∣ l(xi,xk1
) < l(xi,xj) ≤ l(xi,xk2

)}, k2 = nnear + nmiddle (6)

Si,far = {xj

∣∣ l(xi,xj) > l(xi,xk2
)} (7)

where nnear is the number of the nearest neighbors in near field, and nmiddle is the number of nearest
neighbors in the middle field. Like UMAP, we can use a fixed number to define the neighborhood by
empirically setting nnear = 20, nmiddle = 50, or setting the number based on our prior knowledge
on data. Additional experiments in Appendix (Figure 10) shows that the results are not particularly
sensitive to these two parameters.

To describe hierarchical manifoldM, two intrinsic dimensionalities, namely, dlocal(i) of the near
field of point i, and dglobal of the middle and far field of point i, can be calculated based on the MLE
method with nnear and nmiddle set. (Alternatively, dlocal or dglobal can also be set manually with
prior knowledge of data, e.g. the dlocal and dglobal of a Swill Roll dataset are both 2. However in
this work, for simplicity, we used nnear and nmiddle to calculate the two dimensionalities.)

Base on dglobal and dlocal, the conditional similarities of the data points Pj|i are defined as:

Pj|i =


exp

(
−( l(xi,xj)

αi
)

2dlocal,i
d

)
, xj ∈ Snear

exp

(
− (l(xi,xj)−l(xi,xk1

)+
√
− ln η)

2

σi

)
, xj ∈ Smiddle

0, xj ∈ Sfar

(8)
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Figure 3: (a) Illustration of a hierarchical manifold: sub-manifolds (dark blue), on which the
data points are distributed, are within the global manifold with different geometric properties, re-
flecting the necessity of local-specific and hierarchical similarity functions. (b) The definition of
near/middle/far fields and the shape of the corresponding similarity functions (high-dimensional
similarity kernel) of SpaceMAP. UMAP (c) glues the nearest neighbor of each point with similarity
1. (d) The Gaussian similarity kernel of t-SNE.

where αi, d and dlocal denotes FD in the near field, η ∈ (0, 1) is a constant representing Pk1|i at
the border of near field and middle field. In Appendix (Figure 11) we tested a range of η values and
showed the choice of its value is not critical to the final results. σi is the normalization factor of the
middle field Smiddle defined in the similar way as in UMAP (McInnes et al., 2018):

k2∑
j=k1+1

Pj|i = η log(nmiddle) (9)

The operation in equation amounts to hierarchical space expansion in the near field and middle field.
The definition is in a large part for the ease of computation, as by modeling P instead of Q, we keep
the expression of Q as simple as possible for better differentiality during optimization.

The resulting hierarchical similarity function is illustrated in Figure 3, where the computation of
Pj|i in near field, middle field, and far field are shown for SpaceMAP (b), UMAP (c), and t-SNE
(c), respectively. It can be seen from the figure that t-SNE makes no distinction between fields, with
a uniform Gaussian function, while UMAP differentiates three fields, but with a uniform profile for
near field (1 nearest neighbor). In comparison, SpaceMAP has a subtle perception of both near and
middle fields.

To symmetrise the conditional similarity Pj|i and Pi|j into a symmetric metric Pij , we use the
average between the two: Pij =

Pj|i+Pi|j
2 . We next define the the pairwise similarities in the

low-dimensional space:

Qij = exp

(
−(∥yi − yj∥

α
)

2d
dglobal

)
(10)

Where α, d and dglobal denotes FD in the middle field. Figure 2.a shows the exact effect of our
method to model Pj|i and Qij , where the high-dimensional neighbors of point i (blue points on Pj|i
function) are distorted to match the pattern of geometry in low-dimensional space during optimiza-
tion, which is illustrated in the next section.

3.3 OPTIMIZATION PIPELINE

The loss function of SpaceMAP is defined in a similar way as in UMAP:

C = L(Pij∥Qij) =
∑
i

∑
j

[
Pij log

Pij

Qij
+ (1− Pij) log

1− Pij

1−Qij

]
(11)

where the first term is the KL divergence between two probability distributions, and the second term
generates the repulsive force between point pairs, contributing to the global structure preservation.
For stochastic gradient descent, the derivative of the loss with respect to the coordinates of each
point in low-dimensional space ∂C

∂yi
is calculated and divided into two parts during iteration, which
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can be seen as the attractive force Fij,attractive and the repulsive force Fij,repulsive between point
pairs:

Fij,attractive = −
[

2d

dglobalα2d/dglobal
∥yi − yj∥

( 2d
dglobal

−2)
Pij

]
(yi − yj) (12)

Fij,repulsive =

[
2d

dglobalα2d/dglobal

Qij(∥yi − yj∥)
1−Qij(∥yi − yj∥)

∥yi − yj∥
( 2d
dglobal

−2)
(1− Pij)

]
(yi − yj)

(13)

In the implementation, the neighbors to generate the forces can be chosen as the full batch or stochas-
tically (therefore stochastic gradient descent, SGD) to achieve scalability of SpaceMAP to large
datasets. The overall algorithm of SpaceMAP is describe in Appendix A.1 Algorithm 1 followed by
the detailed functions.

4 EXPERIMENTS AND RESULTS

4.1 DATASETS AND EVALUATION METRICS

We applied the proposed SpaceMAP to a variety of datasets and computed quantitative metrics to
evaluate the performance of DR. The method is benchmarked by other classical or state-of-the-art
methods including PCA, Laplacian Eigenmaps, t-SNE, and UMAP.

We tested on a large range of high-dimensional datasets, including the standard MNIST (LeCun,
1998), Fashion-MNIST (Xiao et al., 2017), Swiss Roll (Van der Maaten et al., 2007) (Here we arti-
ficially created a hole on the Swiss Roll to challenge the DR methods if they can preserve the local
property on a continuous manifold), COIL-20 (Nene et al., 1996), RNA-seq (Tasic et al., 2018),
and an experimental cardiac MRI dataset from three different vendors. Examples of cardiac MRI
are given in Fig. 14. The details of the chosen datasets are in Appendix A.6. Here the original
data is simply vectorized and taken as input of DR. We also tested all methods on the Google-
News Word2Vec 3 Million dataset (Mikolov et al., 2013). For quantitative evaluation, we computed
the 20-fold cross-validated k-nearest neighbor classifier accuracy (KNN accuracy), trustworthiness,
continuity, Shepard goodness, and normalized stress to evaluate both the local and global structure
preservation of the datasets (Espadoto et al., 2021; Nonato & Aupetit, 2019). KNN accuracy mea-
sures the local structure preservation along different neighborhood scale k. Trustworthiness and
continuity evaluate the local pattern of the embedding by calculating the true neighbor rate and the
missing neighbor rate. The Shepard goodness and the normalized stress are two measurements of
the goodness in global structure preservation. The detailed introduction of these evaluation metrics
is in Appendix A.7.

4.2 QUALITATIVE AND QUANTITATIVE RESULTS

We present the visualization results of SpaceMAP in Figure 4, along with PCA, Laplacian Eigen-
map, t-SNE, and UMAP. It can be seen that SpaceMAP nicely preserved the structures of the datasets
on both local and global scale, for real-world datasets with disjoint manifolds (MNIST, Fashion-
MNIST), as well as for synthetic data of continuous manifold (row 3: Swiss roll with a hole). The
space extension from dimensionality 3 to 2 nicely preserves the continuous manifold, while for t-
SNE and UMAP the degree of extension is more difficult to control, resulting in artificial clusters.
Figure 7 shows SpaceMAP DR results of GoogleNews Word2Vec 3 million data, in comparison
with UMAP. More distinctive clusters are observed in the SpaceMAP result, while a zoomed-in
view clearly shows the natural clustering of geographical semantics. Again the improvement can be
attributed to the strategy to explicitly expand the low-dimensional space, as in UMAP (or t-SNE)
the extent of expansion is difficult to calculate or control.

We further compare the quantitative measure of DR performance of all DR methods using the met-
rics described before. Figure 5 and Table 1 shows the superior, or non-inferior performance of
SpaceMAP compared to the classical and state-of-the-art methods in most datasets. As the opti-
mization pipeline resembles that of UMAP, the computation time of SpaceMAP is comparable to
UMAP.
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Figure 4: Results 2D visualization by SpaceMAP compared to PCA, Laplacian eigenmaps, t-SNE
and UMAP on different datasets. The detailed implementations of the datasets and the hyper-
parameters are introduced in Appendix A.6.

5 DISCUSSION AND CONCLUSION

We propose a new DR method called SpaceMAP, which, in principle, can map data of any dimen-
sionality onto a 2-dimensional space for visualization with the calculated space expansion. Different
from established methods such as t-SNE or UMAP that perform implicit transformation of distances,
we analytically derived a quantitative EED transformation of distances between high-dimensional
space and low-dimensional spaces. We further show that the EED transformation fits in the classi-
cal framework of MLE of intrinsic dimension, effectively altering the intrinsic dimension thereby
realizing low-dimensional mapping.

We argue that all successful DR methods, including among others t-SNE and UMAP, make use
of the rationale of space expansion to enable data visualization in a space of drastically reduced
dimension. However, previous methods did such transformations in a highly implicit manner, with
the rules concealed in the self-defined similarity measure (e.g. t-distribution in t-SNE or inverse of
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Figure 5: 20-fold cross-validated k-NN classifier accuracy as a function of neighborhood size (k)
on different datasets. From left to right: MNIST, COIL-20, RNA-seq, and multi-vendor MRI. In
general, SpaceMAP outperforms UMAP in different neighborhood sizes (k), while t-SNE is com-
petitive to SpaceMAP when the neighborhood size (k) is small.

Table 1: Quantitative measure of DR performance by SpaceMAP and other reference methods: Mt,
Mc, Ms and Mσ indicate the trustworthiness, continuity, Shepard goodness and normalized stress,
respectively. Mt and Mc are local metrics (left side of the table) while Ms and Mσ are global
metrics (right side of the table) for the evaluation of the DR performance. Detailed introduction of
the metrics is in Appendix A.7.

Local Metrics (Mt and Mc)
Experiments PCA Laplacian t-SNE UMAP SpaceMAP

M
N

IS
T

Mt 0.74 0.81 0.98 0.96 0.97
Mc 0.94 0.93 0.97 0.97 0.98

FM
N

IS
T

Mt 0.91 0.89 0.98 0.98 0.99
Mc 0.98 0.87 0.98 0.99 0.99

C
O

IL
-2

0

Mt 0.86 0.92 0.99 0.99 1.00
Mc 0.93 0.79 0.99 0.99 1.00

R
N

A
-S

eq

Mt 0.89 0.85 1.00 0.99 1.00
Mc 0.98 0.94 0.99 1.00 1.00

M
R

I

Mt 0.90 0.59 0.99 1.00 1.00
Mc 1.00 0.51 0.99 1.00 1.00

Global Metrics (Ms and Mσ)
Experiments PCA Laplacian t-SNE UMAP SpaceMAP

M
N

IS
T

Ms 0.50 0.23 0.35 0.32 0.35
1−Mσ 0.42 0.33 0.54 0.53 0.55

FM
N

IS
T

Ms 0.88 0.41 0.64 0.58 0.67
1−Mσ 0.65 0.36 0.66 0.62 0.67

C
O

IL
-2

0

Ms 0.89 0.72 0.80 0.56 0.61
1−Mσ 0.55 0.19 0.62 0.58 0.60

R
N

A
-S

eq

Ms 0.80 0.11 0.61 0.22 0.63
1−Mσ 0.60 0.15 0.59 0.50 0.52

M
R

I

Ms 0.59 0.28 0.22 0.03 0.37
1−Mσ 0.54 0.00 0.53 0.50 0.58

polynomial in UMAP, with different parameters). Despite their empirical success, we posit that an
analytical form of distance transformation is desirable to deal with situations where we would like
to take more control of the DR results or impose prior knowledge for DR.

SpaceMAP further differentiates different range of neighborhoods to model the hierarchical struc-
ture existent in many real-world datasets. SpaceMAP is generic and has a limited number of hyper-
parameters, with the most important ones related to the selection of number of nearest neighbors in
the near field and middle field. We observed that the final results are not particularly sensitive to the
selection of these parameters (Appendix Figure 10).

In conclusion, we have proposed a new DR method, SpaceMAP, which is based on a principled way
to explicitly transform distances in high- and low-dimensional spaces, and models the hierarchical
structure of data based on the intrinsic dimension of local and global manifolds. Our experiments
on a diverse range of datasets demonstrated its excellent performance in comparison with other
state-of-the-art DR methods.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Ehsan Amid and Manfred K Warmuth. Trimap: Large-scale dimensionality reduction using triplets.
arXiv preprint arXiv:1910.00204, 2019.

Mukund Balasubramanian, Eric L Schwartz, Joshua B Tenenbaum, Vin de Silva, and John C Lang-
ford. The isomap algorithm and topological stability. Science, 295(5552):7–7, 2002.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In Nips, volume 14, pp. 585–591, 2001.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

Andreas Buja, Deborah F Swayne, Michael L Littman, Nathaniel Dean, Heike Hofmann, and Lisha
Chen. Data visualization with multidimensional scaling. Journal of Computational and Graphical
Statistics, 17(2):444–472, jun 2008. doi: 10.1198/106186008x318440.

Mateus Espadoto, Rafael M. Martins, Andreas Kerren, Nina S. T. Hirata, and Alexandru C. Telea.
Toward a quantitative survey of dimension reduction techniques. IEEE Transactions on Visual-
ization and Computer Graphics, 27(3):2153–2173, mar 2021. doi: 10.1109/tvcg.2019.2944182.

Christophe Giraud. Introduction to high-dimensional statistics. Chapman and Hall/CRC, 2021.

Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. In S. Becker, S. Thrun,
and K. Obermayer (eds.), Advances in Neural Information Processing Systems, volume 15.
MIT Press, 2003. URL https://proceedings.neurips.cc/paper/2002/file/
6150ccc6069bea6b5716254057a194ef-Paper.pdf.

Ian Jolliffe. Principal component analysis, sep 2014.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Elizaveta Levina and Peter J. Bickel. Maximum likelihood estimation of intrinsic dimension. In
Proceedings of the 17th International Conference on Neural Information Processing Systems,
NIPS’04, pp. 777–784, Cambridge, MA, USA, 2004. MIT Press.

George C. Linderman, Manas Rachh, Jeremy G. Hoskins, Stefan Steinerberger, and Yuval Kluger.
Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data. Nature
Methods, 16(3):243–245, feb 2019. doi: 10.1038/s41592-018-0308-4.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. February 2018.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information pro-
cessing systems, pp. 3111–3119, 2013.

Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al. Columbia object image library (coil-100).
1996.

Luis Gustavo Nonato and Michael Aupetit. Multidimensional projection for visual analytics: Link-
ing techniques with distortions, tasks, and layout enrichment. IEEE Transactions on Visualization
and Computer Graphics, 25(8):2650–2673, aug 2019. doi: 10.1109/tvcg.2018.2846735.

Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
dimension of images and its impact on learning. In International Conference on Learning Repre-
sentations, 2021. URL https://openreview.net/forum?id=XJk19XzGq2J.

S. T. Roweis. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):
2323–2326, dec 2000. doi: 10.1126/science.290.5500.2323.

10

https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://openreview.net/forum?id=XJk19XzGq2J


Under review as a conference paper at ICLR 2022

Bosiljka Tasic, Zizhen Yao, Lucas T. Graybuck, Kimberly A. Smith, Thuc Nghi Nguyen, Darren
Bertagnolli, Jeff Goldy, Emma Garren, Michael N. Economo, Sarada Viswanathan, Osnat Penn,
Trygve Bakken, Vilas Menon, Jeremy Miller, Olivia Fong, Karla E. Hirokawa, Kanan Lathia,
Christine Rimorin, Michael Tieu, Rachael Larsen, Tamara Casper, Eliza Barkan, Matthew Kroll,
Sheana Parry, Nadiya V. Shapovalova, Daniel Hirschstein, Julie Pendergraft, Heather A. Sullivan,
Tae Kyung Kim, Aaron Szafer, Nick Dee, Peter Groblewski, Ian Wickersham, Ali Cetin, Julie A.
Harris, Boaz P. Levi, Susan M. Sunkin, Linda Madisen, Tanya L. Daigle, Loren Looger, Amy
Bernard, John Phillips, Ed Lein, Michael Hawrylycz, Karel Svoboda, Allan R. Jones, Christof
Koch, and Hongkui Zeng. Shared and distinct transcriptomic cell types across neocortical areas.
Nature, 563(7729):72–78, oct 2018. doi: 10.1038/s41586-018-0654-5.

Laurens van der Maaten. Learning a parametric embedding by preserving local structure. In David
van Dyk and Max Welling (eds.), Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pp. 384–391,
Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR. URL
http://proceedings.mlr.press/v5/maaten09a.html.

Laurens van der Maaten. Accelerating t-sne using tree-based algorithms. Journal of Machine
Learning Research, 15(93):3221–3245, 2014. URL http://jmlr.org/papers/v15/
vandermaaten14a.html.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Ma-
chine Learning Research, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/
vandermaaten08a.html.

Laurens Van der Maaten, Eric O Postma, and Hendrik J van den Herik. Matlab toolbox for dimen-
sionality reduction. MICC, Maastricht University, 2007.

Kilian Q Weinberger and Lawrence K Saul. An introduction to nonlinear dimensionality reduction
by maximum variance unfolding. In AAAI, volume 6, pp. 1683–1686, 2006.

John Wright and Yi Ma. High-Dimensional Data Analysis with Low-Dimensional Models: Princi-
ples, Computation, and Applications. Cambridge University Press, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

A APPENDIX

A.1 SPACEMAP PSEUDO CODE

Algorithm 1 SpaceMAP algorithm
function SPACEMAP(X,nnear, nmiddle, near field range, η, n epochs, learning rate)

knn dist← NearestNeighbor(X,nnear, nmiddle)
dlocal, dmiddle ← MLEIntrinsicDimension(knn dist, nnear, nmiddle)
for xi ∈ X do ▷

α′[i]← FDScalingFactor(knn dist[i, nnear], η, dlocal[i], 2)
end for
dglobal ← 1

N

∑N
i dmiddle[i]

α← FDScalingFactor(near field range, dglobal)
Pij ← HierarchicalManifoldP(knn dist, nnear, nmiddle, dlocal, dglobal, α

′)
Y ← InitializeEmbedding(X)
Y ← OptimizeEmbedding(Y, Pij , dlocal, dglobal, α, learning rate, n epochs)
return Y

end function

11

http://proceedings.mlr.press/v5/maaten09a.html
http://jmlr.org/papers/v15/vandermaaten14a.html
http://jmlr.org/papers/v15/vandermaaten14a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html


Under review as a conference paper at ICLR 2022

Algorithm 2 Maximum likelihood estimation (MLE) of the intrinsic dimension
function MLEINTRINSICDIMENSION(knn dist, nnear, nmiddle)

k1 ← nnear

k2 ← nnear + nmiddle

for i← 1, ...,n-data do
Ri,k1 ← knn dist[i, k1]
Ri,k2

← knn dist[i, k2]

d̂near[i]← ( 1
k1−1

∑k1−1
j=1 log

Ri,k1

Ri,j
)−1

d̂middle[i]← ( 1
k2−1

∑k2−1
j=1 log

Ri,k2

Ri,j
)−1

end for
return d̂near, d̂middle

end function

Algorithm 3 Calculation of the FD scaling factor
function FDSCALINGFACTOR(r, η,D, d)

β ← D
d

α← r
(− ln η)β/2 ▷ α is chosen to satisfy F̃D→d(r) = η or f̃d→D(r) = η

return α
end function

Algorithm 4 Hierarchical Manifold Approximation in high-dimensional space (Pij calculation)
function HIERARCHICALMANIFOLDP(knn dist, nnear, nmiddle, dlocal, dglobal, α

′)
for i← 1, ...,n-data do

for rij ∈ knn dist[i] do ▷ knn dist is arranged in ascending order
if j ≤ nnear then ▷ Pj|i in near field

Pj|i ← exp (−( rij
α′[i] )

dlocal)

else if j ≤ nnear + nmiddle then ▷ Pj|i in middle field
r ← rij − knn dist[i, nnear]

Binary search for σi such that
∑nmiddle

j=nnear+1 e
(− (r−

√
− ln γ)2

σi
)
= η log2(nmiddle)

Pj|i ← exp (− r2ij
σi

)
else

Pj|i ← 0
end if

end for
end for
for all Pj|i do

Pij =
Pj|i+Pi|j

2 ▷ Symmetrization of the similarities
end for
return Pij

end function

A.2 MORE SPACEMAP: HIGH-DIMENSIONAL DATA VISUALIZATION

A.3 VISUALIZATION OF LARGE DATASETS

A.4 OTHER EXPERIMENTS

A.5 MNIST VISUALIZATION

A.6 IMPLEMENTATION

A.7 INTRODUCTION OF THE METRICS
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Figure 6: Upper panel: Swill Roll with a hole. Lower panel: Fashion MNIST. SpaceMAP can
handle both continuous and disjoint manifolds, while Isomap, t-SNE, and UMAP are more sensitive
to the manifold properties. In particular, both t-SNE and UMAP resulted in artificial clusters, broken
at the location of the hole.

Figure 7: Visualization of the GoogleNews Word2Vec 3 million dataset by UMAP (left) and
SpaceMAP (middle), where the SpaceMAP result is zoomed in for better visualization of the word
semantics (right).

13



Under review as a conference paper at ICLR 2022

Figure 8: Embedding integers from 0 to 1,000,000, as represented by the sparse binary vectors of
prime number divisibility, as described in UMAP (McInnes et al., 2018). Sub-structures of data can
be identified, which corresponds to divisibility of multiple prime numbers (zoomed-in windows).

Figure 9: Ablation study to compare the definition of similarity functions in SpaceMAP and UMAP,
on the MNIST dataset. Following the gray arrow, we adapted the P and Q from UMAP to
SpaceMAP. It can be observed that our proposed multi-scale P (differentiating near field and mid-
dle field) had a significant influence on the final visualization. Compared to UMAP, SpaceMAP
resulted in better separation of the clusters, and less uniform intra-class distribution. We argue that
the uniform distribution within classes, as promoted by the UMAP rationale, can be artificial as data
often have sub-structures within a class. See Figure 13 for a zoomed-in view of MNIST handwritten
digits.
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Figure 10: Ablation study to compare the definition of similarity functions in SpaceMAP and
UMAP, on the Swiss-Roll-with-a-Hole dataset. Different combinations of P and Q were tested.
Here we observed that SpaceMAP potentially better preserves the geometry of the manifold than
UMAP. As the Swiss Roll has a denser distribution of points on the purple end than on the red end,
UMAP resulted in a wider band on the purple end, promoted by the uniform approximation.
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Figure 11: Hyper-parameter selection in SpaceMAP: the influence of nnear and nmiddle.

Figure 12: Hyper-parameter selection in SpaceMAP: the influence of η.
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Figure 13: Visualizing MNIST images on SpaceMAP: the distribution of data points may not be
uniform by nature. For example, a split-up of digit 2, 3 can be observed depending on the style of
writing.
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Figure 14: The original images of the cardiac cine MRI datasets as described in Section 4.1 and
visualized in the last row of Figure. 4. The images depict human heart during one cardiac cycle
at different cross section levels (short-axis). The worm-like structure in t-SNE and SpaceMAP
visualization represents the spatial and temporal continuity in the image data.
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