

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SATDREAMER360: MULTIVIEW-CONSISTENT GENERATION OF GROUND-LEVEL SCENES FROM SATELLITE IMAGERY

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Generating multiview-consistent 360° ground-level scenes from satellite imagery
 014 is a challenging task with broad applications in simulation, autonomous navigation,
 015 and digital twin cities. Existing approaches primarily focus on synthesizing individual
 016 ground-view panoramas, often relying on auxiliary inputs like height maps or
 017 handcrafted projections, and struggle to produce multiview consistent sequences. In
 018 this paper, we propose SatDreamer360, a framework that generates geometrically
 019 consistent multi-view ground-level panoramas from a single satellite image, given
 020 a predefined pose trajectory. To address the large viewpoint discrepancy between
 021 ground and satellite images, we adopt a triplane representation to encode scene fea-
 022 tures and design a ray-based pixel attention mechanism that retrieves view-specific
 023 features from the triplane. To maintain multi-frame consistency, we introduce a
 024 panoramic epipolar-constrained attention module that aligns features across frames
 025 based on known relative poses. To support the evaluation, we introduce VIGOR++,
 026 a large-scale dataset for generating multi-view ground panoramas from a satellite
 027 image, by augmenting the original VIGOR dataset with more ground-view images
 028 and their pose annotations. Experiments show that SatDreamer360 outperforms
 029 existing methods in both satellite-to-ground alignment and multiview consistency.

030 1 INTRODUCTION

031 Generating ground-level scenes from satellite imagery has attracted significant attention due to the
 032 broad coverage and low acquisition cost of satellite images. This task shows promising applications in
 033 autonomous driving (Villalonga Pineda (2021); Lu et al. (2024)), 3D reconstruction (Liu et al. (2024);
 034 Yan et al. (2024)) and data augmentation (Yang et al. (2023); Gao et al. (2023)) for downstream tasks.
 035 Many existing works (Li et al. (2024a); Lin et al. (2024); Xu & Qin (2024); Ze et al. (2025)) focus
 036 on generating individual ground images from satellite views, leaving the continuity of multi-ground
 037 views largely unaddressed. In this paper, we aim to synthesize multiple ground-view images from
 038 a single satellite image, controlled by a predefined trajectory. This introduces new challenges in
 039 maintaining both geometric consistency with the top-down satellite image and multiview coherence
 040 across the sequence of generated frames.

041 Early approaches (Isola et al. (2017a); Regmi & Borji (2018); Shi et al. (2022); Lu et al. (2020); Qian
 042 et al. (2023)) formulate cross-view synthesis as a one-to-one mapping problem, often implemented
 043 with Conditional Generative Adversarial Networks (cGANs). These methods focus on aligning
 044 representations at pixel or perceptual level. However, the extreme viewpoint disparity between
 045 top-down satellite views and street-level images leads to limited field-of-view overlap. Satellite
 046 images inherently miss key elements such as building facades, tree trunks, and other occluded details,
 047 making the ground view generation task highly under-constrained and naturally one-to-many.

048 Recent advances leverage latent diffusion models (LDMs) (Rombach et al. (2022)) to better handle
 049 this uncertainty (Li et al. (2024a); Lin et al. (2024); Deng et al. (2024); Xu & Qin (2024); Ze et al.
 050 (2025)). These methods introduce probabilistic modeling to produce diverse and high-fidelity ground
 051 images. However, they often rely on approximate projections (Lin et al. (2024); Ze et al. (2025)) or
 052 auxiliary data such as height maps (Li et al. (2024a); Deng et al. (2024); Xu & Qin (2024)), which can
 053 be difficult to obtain at scale. Moreover, while effective for single-view generation, these models fall

Figure 1: Given a satellite image and a sequence of query poses (colored stars), our goal is to synthesize coherent panoramic views along the trajectory. The proposed SatDreamer360 generates more realistic and geometrically consistent ground-level scenes compared to state-of-the-art methods, faithfully capturing spatial layouts and structural continuity across diverse environments.

short in producing multiview consistent sequences, which are critical for applications like simulation, planning, or digital twin city modeling. A recent effort (Xu & Qin (2025)) attempts to generate continuous ground-view videos by leveraging multi-angle satellite imagery in a two-stage pipeline: the first stage generates a base frame, followed by autoregressive generation of future frames. While this improves continuity, the reliance on multi-view satellite input and complex coordination for different generation stages reduces practical applicability.

In this paper, we present SatDreamer360, a unified framework that generates continuous and coherent ground-view sequences from a single satellite image and a target trajectory, as shown in Figure 1. The key idea is to embed explicit cross-view geometric reasoning between satellite and ground views, as well as across ground frames into the latent diffusion process.

We adopt a compact triplane representation (Huang et al. (2023); Bhattacharjee et al. (2024); Shue et al. (2023)) to encode scene geometry directly from the satellite image, avoiding the need of height maps (Deng et al. (2024); Xu & Qin (2025)) or handcrafted projections (Ze et al. (2025)). We further design a ray-based pixel attention mechanism that retrieves view-dependent features from the triplane and integrates them into conditional diffusion, enabling geometry-aware and controllable generation.

To enhance multiview consistency, we draw inspiration from the use of epipolar constraints in pinhole cameras (Tobin et al. (2019); He et al. (2020); Huang et al. (2022; 2024)) and extend the idea to panoramic images with equirectangular projections. We design an epipolar-constrained attention module for panoramic images, which aligns features across frames by leveraging the known relative camera poses.

Finally, to support large-scale evaluation, we construct VIGOR++, an extension of the VIGOR dataset with ground-truth trajectories and continuous ground-view sequences, providing a new benchmark for cross-view generation. To summarize, our contributions are as follows:

- A unified framework, SatDreamer360, for generating continuous and geometrically consistent ground-view sequences from a single satellite image and a target trajectory.
- A ray-guided cross-view feature condition mechanism that encodes the 3D scene with a triplane representation and aggregates spatial cues pixel by pixel via ray-based attention, enabling geometry-aware and controllable diffusion-based ground-view generation.
- An interframe attention module that uses panoramic epipolar constraints via equirectangular projections to align features across frames, enhancing multiview consistency.

108 • A new VIGOR++ dataset, which extends VIGOR with continuous sequences and trajectory
 109 annotations, providing a benchmark for cross-view sequence synthesis.
 110

111 **2 RELATED WORK**

112 **Cross-view ground scene generation** aims to reconstruct ground scenes from other perspectives,
 113 such as aerial (Xu et al. (2023); Gao et al. (2024)) or landmark images (Yang et al. (2023); Li et al.
 114 (2024b); Gao et al. (2023); Swerdlow et al. (2024)). Given the wide availability of satellite imagery,
 115 related research (Shi et al. (2022); Qian et al. (2023); Xu & Qin (2024); Ze et al. (2025); Li et al.
 116 (2021; 2024d); Xu & Qin (2025)) focuses on satellite-to-ground generation. Previous works (Isola
 117 et al. (2017a); Regmi & Borji (2018)) implicitly convert satellite image features into ground map
 118 representations, often causing geometric distortions. Later methods introduced approximate projec-
 119 tions (Lu et al. (2020); Shi et al. (2022); Lin et al. (2024); Ze et al. (2025)), height maps (Marí et al.
 120 (2022); Lu et al. (2020); Deng et al. (2024); Xu & Qin (2024); Li et al. (2024a); Xu & Qin (2025)),
 121 or estimating density maps (Qian et al. (2023)) as priors. However, their accuracy is constrained by
 122 errors in the estimation priors, and ground-image-based methods often over-rely on these inaccurate
 123 projections while neglecting the broader contextual information available from satellite imagery.
 124

125 **Multiview consistent image generation** aims to generate multiview continuous frames from given
 126 prompts. Early Gan-based approach (Vondrick et al. (2016); Rematas et al. (2022)) has been
 127 surpassed by methods utilizing the diffusion architecture (Blattmann et al. (2023b;a)), where Video
 128 Diffusion Models (VDM) (Blattmann et al. (2023b); Singer et al. (2022); Wu et al. (2023)) introduce
 129 spatiotemporal modules into U-Net to generate coherent sequences, though with high computational
 130 cost. Some methods designed for single-object multi-view generation, such as **MVDream** (Shi et al.
 131 (2023b)) and **Zero123++** (Shi et al. (2023a)), implicitly encode camera embeddings directly into the
 132 diffusion process. However, when applied to large-scale scene generation, such implicit conditioning
 133 is insufficient to enforce strict pose constraints. Recent works (Tseng et al. (2023); Huang et al.
 134 (2024)) incorporate epipolar constraints to enforce multiview consistency, but are mostly limited to
 135 pinhole cameras, with little exploration of panoramic settings. More broadly, methods such as (Liu
 136 et al. (2023); Kong et al. (2024); Voleti et al. (2024); Bourigault & Bourigault (2024)) generate
 137 multi-view images from single-object inputs, yet they focus on object-level generation and cannot
 138 address scene-level continuity.

139 **3 METHOD**

140 Given a satellite image S and a set of 4-DoF ground camera poses $\{p^i = [t^i, \psi^i]\}$, where t^i denotes
 141 spatial location and ψ^i the yaw angle, our goal is to synthesize a sequence of ground panoramic
 142 images G^i that are spatially aligned with the satellite view and consistent across multiple views.
 143

144 To obtain the optimal solution for ground image inference, as illustrated in Figure 2, we develop
 145 SatDreamer360 based on a latent diffusion model (Song et al. (2020); Blattmann et al. (2023b))
 146 to synthesize ground-level views conditioned on the satellite image and camera pose. It generates
 147 ground images by iteratively denoising a random Gaussian noise for T steps, learning to predict the
 148 Gaussian noise ϵ injected at each step t :
 149

$$\mathcal{L} = \mathbb{E}_{z_0, c, \epsilon, t} [\|\epsilon - \epsilon_\theta(\sqrt{\bar{\alpha}_t} z_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t, c)\|^2]. \quad (1)$$

150 Here, ϵ_θ is the denoising network using U-Net, c is the conditioning input—comprising the satellite
 151 image S and pose p^i , $\bar{\alpha}_t$ is the variance schedule, and ϵ is drawn from a standard Gaussian distribution.
 152 Ground images G are encoded using a VQ-VAE (Esser et al. (2021)) encoder $\mathcal{E}(G)$ to obtain latent
 153 codes z . For clarity, we refer to ground representations in latent space also as G in what follows.
 154

155 **3.1 RAY-GUIDED CROSS-VIEW FEATURE CONDITIONING**

156 **Spatial Representation via Triplanes.** To represent the 3D scene covered by the satellite image,
 157 we adopt a tri-plane structure (Chan et al. (2022); Huang et al. (2023)), a lightweight and expressive
 158 alternative, instead of the information-sparse BEV representation (Li et al. (2024c)) or the computa-
 159 tionally intensive voxel representation (Li et al. (2022)). Three orthogonal planes (XY , XZ , YZ)
 160 are defined in the tri-plane representation, with the XY plane parallel to the ground.
 161

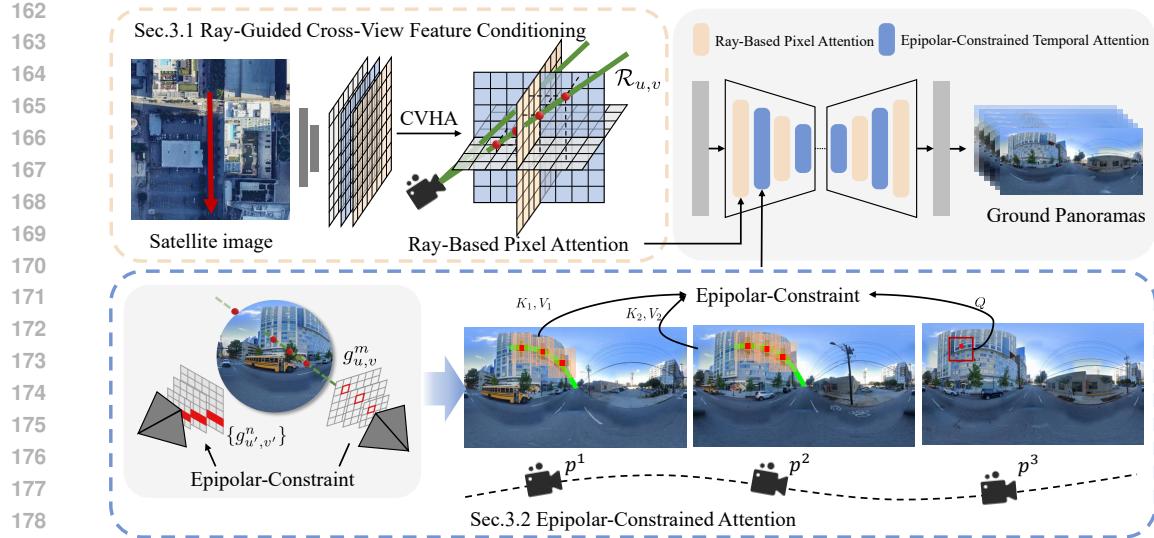


Figure 2: Overview of the proposed SatDreamer360 framework. Given a single satellite image and a target trajectory, our model synthesizes continuous ground-level panoramas along the path. A Ray-Based Pixel Attention mechanism retrieves view-specific features through cross-view geometric reasoning, guided by a tri-plane representation of the scene. An Epipolar-Constrained Attention module aligns features across frames using relative camera poses.

Given a point in 3D space, its feature F_{xyz} is obtained by aggregating the features from its projections onto the three planes:

$$F_{xyz} = F_{xy} \oplus F_{xz} \oplus F_{yz}, \quad (2)$$

where F_{xy} , F_{xz} , and F_{yz} denote the interpolated features from the corresponding 2D planes, and \oplus denotes their element-wise summation to obtain the final 3D feature.

To construct the triplane representation, we initialize the planes by extracting features from the satellite image using a ResNet (He et al. (2016)), which naturally aligns with the top-down XY plane. To enrich spatial reasoning across all three orthogonal planes, we apply Cross-view Hybrid Attention (CVHA Li et al. (2024c)), enabling interactions among the XY , XZ , and YZ planes. Each plane aggregates projections from the other two, enriching its features with complementary spatial context. For instance, the updated features on the XY plane are computed as:

$$F_{xy}^{\text{top}} = \text{CVHA} \left(F_{xy}^{\text{top}}, \text{Ref}_{xy}^{3D} \right), \quad \text{Ref}_{xy}^{3D} = F_{xy}^{\text{top}} \cup \{F_{xzi}^{\text{side}}\} \cup \{F_{xzi}^{\text{front}}\}. \quad (3)$$

Here, F_{xy}^{top} denotes the point feature on the XY plane. The reference set Ref_{xy}^{3D} contains local neighbors sampled along the Z -axis from the orthogonal XZ and YZ planes, denoted as $\{F_{xzi}^{\text{front}}\}$ and $\{F_{yzi}^{\text{side}}\}$. This cross-plane aggregation enables each point on the triplane to incorporate multi-view cues, thereby enhancing 3D spatial consistency. Moreover, in sequential settings, previously synthesized ground-view images can be projected back and integrated into the triplane to refine its representation. With CVHA, this incremental update yields a more expressive and temporally coherent scene model. Further architectural and implementation details are provided in the Appendix A.5.

Ray-Based Pixel Attention. Conventional cross-attention mechanisms (Rombach et al. (2022)) typically align global prompts with image-level semantics but often fail to respect underlying 3D scene geometry. This limits their ability to establish accurate cross-view correspondences, particularly in view synthesis tasks. To address this, we propose a Ray-Based Pixel Attention module that incorporates geometric priors by explicitly conditioning attention on camera rays.

Specifically, as illustrated in Figure 2 (top middle) and Appendix A.2, each pixel $g_{u,v}$ at location (u, v) in the panoramic ground-view image $G \in \mathbb{R}^{H \times W \times C}$ corresponds to a unique 3D ray $\mathcal{R}_{u,v}$, parameterized by yaw ψ and pitch θ angles:

$$\psi_{u,v} = (u - \frac{W}{2})/W \times 2\pi, \quad \theta_{u,v} = (\frac{H}{2} - v)/H \times \pi. \quad (4)$$

Figure 3: Overview of the VIGOR++ dataset. (a) The map of Seattle, USA, serves as an example of the ten cities in the dataset. The red boxes and blue boxes represent the districts for the training set and test set, respectively. (b) shows a road map. Dots and stars along the road represent locations of ground images and satellite images. Two of them, marked with the red star and green star, are shown in (c). (d) shows the continuous ground sequence within one satellite image.

These angular parameters define the direction of the ray $\mathcal{R}_{u,v}$ in the camera coordinate system. The ray originates from the ground-view camera position, and its direction is uniquely defined by $(\psi_{u,v}, \theta_{u,v})$. To encode spatial cues along each ray, we sample K points at evenly spaced depths $\{r_k\}_{k=1}^K$, and project them into the spatial coordinate system using the camera pose, yielding 3D positions $\mathbf{x}_{u,v,k}$. Features at these 3D positions are then extracted from the tri-plane representation using deformable attention:

$$F_{g_{(u,v)}} = \sum_{j=1}^J W_j \sum_{k=1}^K A_{k,j} \cdot F_{(\mathbf{x}_{u,v,k} + \Delta \mathbf{x}_{k,j})}, \quad (5)$$

where J is the number of attention heads, W_j is a learnable weight for head j , $\Delta \mathbf{x}_{k,j}$ is an offset along the ray around the sampled points, initialized to zero, and $A_{k,j}$ denotes the attention weight for these sampled points, normalized such that $\sum_{k=1}^K A_{k,j} = 1$ for each head. Both offsets and attention weights are dynamically refined across iterations, guided by the evolving ground latent feature map. $F_{(\mathbf{x}_{u,v,k} + \Delta \mathbf{x}_{k,j})}$ denotes features extracted from the triplane at the adjusted 3D positions using Eq. 2. The aggregated feature $F_{g_{(u,v)}}$ at pixel (u, v) guides the U-Net in integrating satellite information, effectively aggregating spatial cues pixel by pixel.

3.2 EPIPOLAR-CONSTRAINED ATTENTION

To maintain mutiview consistency across consecutive frames in a lightweight and efficient manner, we draw inspiration from epipolar-constrained attention in pinhole images (Tseng et al. (2023)) and extend it to outdoor panoramic imagery. Specifically, we introduce an attention mechanism tailored for equirectangular projections. For two frames of ground panoramas, G^m and G^n , a pixel $g_{u,v}^m$ on G^m corresponds to a set of candidate pixels on G^n , enforced by the underlying geometric constraint (proof in Appendix A.3):

$$(P^{-1}(g_{u',v'}^n))^\top \hat{t}_{mn} R_{mn} (P^{-1}(g_{u,v}^m)) = 0. \quad (6)$$

Here, the point set $\{g_{u',v'}^n\}$ on G^n denotes candidate matches that satisfy the constraint relationships. The terms R_{mn} and t_{mn} denote the relative rotation and translation between frames m and n , and \hat{t}_{mn} is the skew-symmetric matrix of t_{mn} . The mapping P is the equirectangular camera projection

270 defined in Eq. 4. Therefore, when establishing mutiview consistency, we do not need to perform
 271 pixel-wise correspondence for the entire image as in previous work (Wu et al. (2023); Xu & Qin
 272 (2025)). Instead, we restrict attention to points that satisfy the epipolar constraint, significantly
 273 reducing redundancy while preserving geometric fidelity:

$$274 \quad F_{g_{u,v}^m} = \text{softmax} \left(\frac{QK^\top}{\sqrt{d}} \right) V, Q = W^Q F_{g_{u,v}^m}, K = W^K F_{\{g_{u',v'}^n\}}, V = W^V F_{\{g_{u',v'}^n\}}, \quad (7)$$

275 where W^Q , W^K , and W^V are learnable matrices for query, key, and value. This epipolar-constrained
 276 attention is applied at multiple U-Net levels to fuse coarse and fine-grained features.

277 By restricting attention to points that satisfy the epipolar constraint, the computational complexity
 278 is reduced from $O(NHW \times NHW)$ to $O(NHW \times NM)$, where N is the number of frames in
 279 sequences, H and W denote the height and width of the feature map, and M is the number of sampled
 280 points satisfying epipolar constraints with $M \ll HW$. To further improve efficiency, we adopt a
 281 sparse querying strategy that uses only two reference frames: the very first frame of the sequence and
 282 the immediately preceding frame. The first frame acts as a global anchor, ensuring consistency in
 283 overarching scene characteristics such as weather and illumination. Simultaneously, the constraint
 284 with the previous frame preserves local geometric coherence.

285 3.3 VIGOR++: EXTENDING VIGOR FOR SATELLITE-TO-GROUND VIDEO GENERATION

286 Existing cross-view datasets lack continuous panoramic sequences. To address this, we construct
 287 VIGOR++, an extension of the VIGOR dataset (Zhu et al. (2021)) tailored for large-scale, consistent
 288 cross-view generation, enabling the dataset to be more widely used in 3D scene reconstruction,
 289 cross-view video localization tasks, as shown in Figure 3. To broaden the coverage of satellite
 290 maps for the task of large-scale scene generation, we expand the wide-area satellite map dataset
 291 by increasing it from the original $70\text{ m} \times 70\text{ m}$ to $200\text{ m} \times 200\text{ m}$ from Google Maps (goo (a)).
 292 Subsequently, we include additional cities. Apart from the initial cities of Chicago, New York, San
 293 Francisco, and Seattle, we integrate datasets for six additional regions: Atlanta, Bismarck, Kansas,
 294 Nashville, Orlando, and Phoenix. This augmentation enriches the variety of urban representations
 295 within the dataset.

296 To obtain continuous ground sequences, we extract all available Google Street View (goo (b)) images
 297 within the satellite region. Subsequently, we employed a semi-automatic approach to organize
 298 sampling paths for each satellite image. By leveraging sky color histograms and image embedding
 299 similarities, we constructed a connectivity graph and executed path extraction based on depth-first
 300 search to identify potential routes. Subsequent manual refinement ensured multiview coherence.

301 Our efforts yielded more than 90,000 novel cross-view satellite and ground video pairs. [As shown
 302 in Figure 11, these images are evenly distributed across ten cities, covering a total area of 117.47
 303 km². Most trajectories contain between 7 and 16 ground-view frames. The average frame interval is
 304 approximately 11 m, with the minimum interval being 0.079 m and the maximum reaching 20 m.](#) Of
 305 these, 84,055 pairs are designated for training, while 7,443 are allocated for testing. To evaluate the
 306 model’s generalization capabilities, the testing set is collected from locations entirely distinct from
 307 the training data.

308 4 EXPERIMENTS

309 **Experimental Setup.** We use 256×256 satellite images and the 4-DoF camera poses of ground-view
 310 images as input, aiming to generate continuous ground-view sequences at a resolution of 128×512
 311 for fair comparison with prior work. Our model is finetuned based on the pre-trained Stable Diffusion
 312 1.5 model (Rombach et al. (2022)). In our experiments, we set the default number of ray samples to
 313 $K = 8$, and the number of points sampled along the epipolar lines to $M = 4$. Detailed analysis is
 314 provided in Appendix A.14. We first perform 300 epochs of finetuning on a single-image generation
 315 task, followed by an additional 300 epochs on continuous sequence data dataset to learn temporal
 316 consistency. During inference, we adopt DDIM sampling with 50 steps for efficient generation. All
 317 experiments are conducted using four NVIDIA L40 GPUs.

318 **Datasets.** For the single ground-view image generation task, we use the CVUSA (Zhai et al. (2017))
 319 dataset, which primarily focuses on rural areas, and VIGOR (Zhu et al. (2021); Lentsch et al. (2022))

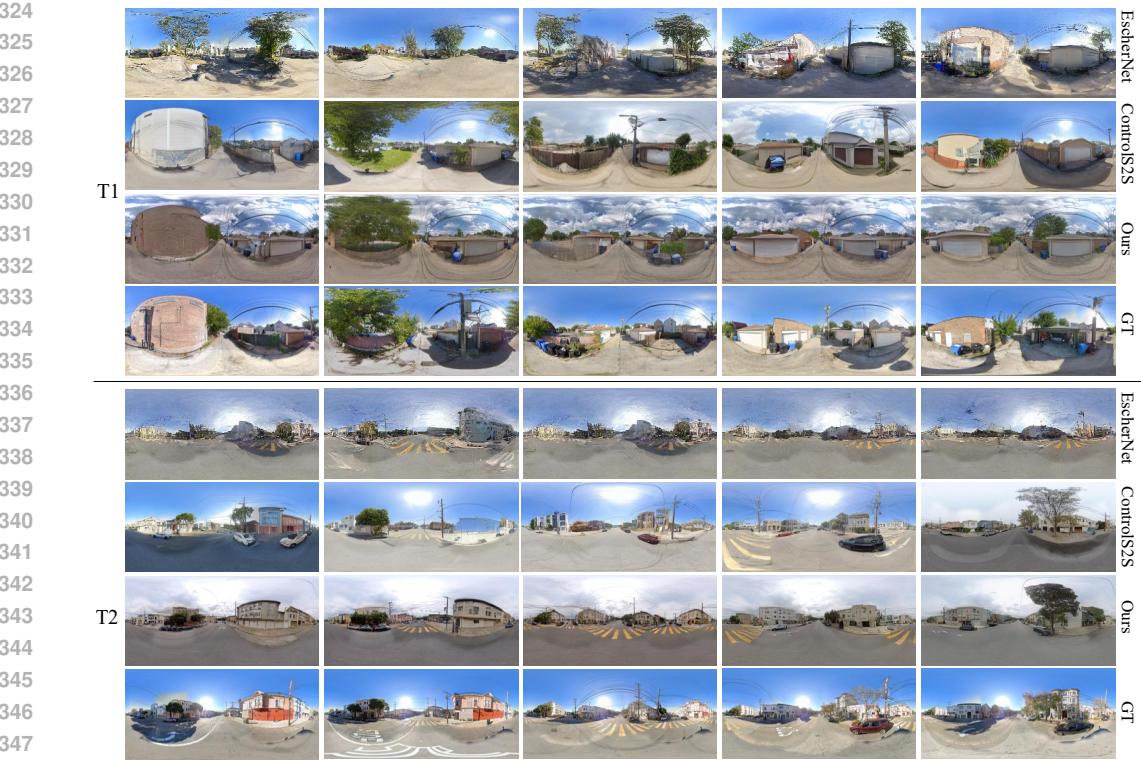


Figure 4: Qualitative comparison of ground-level image sequences along trajectories T1 and T2, shown from left to right. The corresponding satellite images and trajectories are provided in Figure 13. Our method produces more realistic textures and preserves structural and spatial continuity across frames, demonstrating stronger multiview coherence and environmental fidelity across diverse scenes.

Table 1: Quantitative comparison with existing algorithms on VIGOR++ dataset.

Method	Perceptual level		Semantic level		Pixel level		Multiview level					↓Depth
	↓ P_{alex}	↓FID	↓DINO	↓SegAny	↑SSIM	↑PSNR	↓FVD	↓CLIPSIM	↑3DPS	↑3DSS		
Sat2Den	0.4584	133.6	4.437	0.3729	0.3892	12.06	11.70	8.405	11.16	0.4868	7.671	
EscherNet	0.5581	84.21	4.942	0.3845	0.2587	11.23	7.282	8.250	11.09	0.3591	10.50	
ControlS2S	0.4433	29.48	4.567	0.3753	0.3718	11.84	4.871	10.81	11.86	0.4647	6.651	
Ours	0.3955	27.41	4.156	0.3563	0.3964	12.75	2.101	6.820	13.31	0.5196	5.623	

dataset, which covers four major cities, following the same protocol as prior works (Shi et al. (2022); Qian et al. (2023); Ze et al. (2025)). These cross-view datasets provide one-to-one correspondences between panoramic ground images and satellite images. CVUSA contains 35,532 pairs for training and 8,884 pairs for testing, with most scenes focusing on rural areas. VIGOR comprises data collected from four cities—New York, Seattle, San Francisco, and Chicago—resulting in 52,609 pairs for training and 52,605 pairs for testing. For the continuous scene generation task, we conduct experiments using our proposed VIGOR++ dataset, where the training and testing sets are collected from entirely distinct regions.

Evaluation Metrics. We evaluate the authenticity and multiview consistency of generated images. For authenticity, we compare results with ground truth (GT) using pixel-level metrics (SSIM, PSNR, SD) and perceptual metrics based on pretrained networks (P_{alex} (Krizhevsky et al. (2012)), $P_{squeeze}$ (Iandola et al. (2016)), and FID (Heusel et al. (2017))). Since real-world variations in weather and season can cause color shifts, strict pixel-level comparisons may be less informative. Following Ze et al. (2025), we emphasize structural and semantic similarity. We employ DINO (Caron et al. (2021)) and Segment Anything Kirillov et al. (2023) to extract semantic features, and use DepthAnything (Yang et al. (2024)) for depth consistency. In addition, we employ LRCE (Shen et al. (2022)) to measure the continuity of panoramic images along the left and right boundaries.

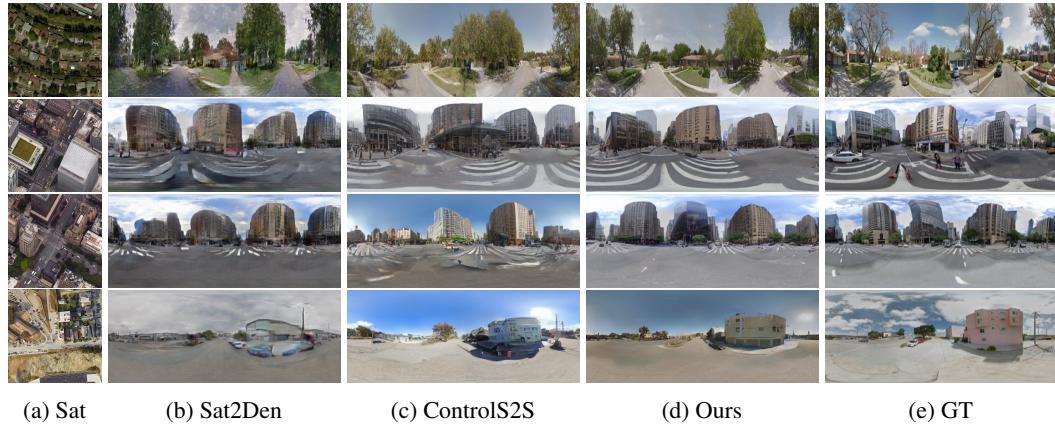


Figure 5: Qualitative comparison with previous works on satellite to single ground image generation, our model can effectively capture roadways, ground markings, and architectural details.

Table 2: Quantitative comparison with previous works on satellite to single ground image generation.

	Method	Perceptual Level			Semantic Level		Pixel Level			\downarrow Depth	\downarrow LRCE
		$\downarrow P_{squeeze}$	$\downarrow P_{alex}$	\downarrow FID	\downarrow DINO	\downarrow SegAny	\uparrow SSIM	\uparrow PSNR	\uparrow SD		
CVUSA	Pix2Pix	0.3468	0.5084	44.51	5.242	0.3847	0.3190	13.20	12.08	21.85	18.81
	S2S	0.3218	0.4830	29.49	5.112	0.3852	0.3508	13.40	12.30	21.05	19.10
	Sat2Density	0.3217	0.4634	47.85	4.945	0.3763	0.3307	13.46	12.27	19.83	16.17
	CrossDiff	-	-	23.67	-	-	0.3710	12.00	-	-	-
	ControlS2S	0.3192	0.4323	21.30	4.807	0.3612	0.3753	13.67	12.33	19.58	14.62
	Ours	0.3146	0.4255	17.00	4.807	0.3602	0.3812	13.88	12.42	19.36	14.53
VIGOR	Pix2Pix	0.3346	0.4513	67.96	4.717	0.3833	0.3714	13.33	12.93	8.647	6.569
	S2S	0.3694	0.4941	121.1	5.032	0.4037	0.3273	12.16	12.31	10.87	9.790
	Sat2Density	0.2828	0.3898	54.49	4.408	0.3627	0.3956	14.14	12.38	8.054	5.805
	ControlNet	0.3395	0.4594	23.68	4.950	0.3916	0.3397	12.02	12.59	10.02	7.499
	ControlS2S	0.2729	0.3770	28.01	4.335	0.3529	0.4228	13.80	13.07	7.095	5.176
	Ours	0.2598	0.3469	21.36	4.287	0.3471	0.4385	14.08	13.11	6.727	5.081

Multiview consistency across frames is assessed with FVD (Unterthiner et al. (2018)) and CLIP-SIM (Wu et al. (2021)) to measure sequence coherence and stability. Additionally, to further evaluate multiview geometric consistency, we perform 3D reconstruction using the generated views and compare the results with reconstructions synthesized from GT views. Specifically, we employ Pi3 (Wang et al. (2025)), a feed-forward 3D reconstruction network, to reconstruct the scene from image sequences, and then render images from the reconstructed 3D volumes using the same camera views. The rendered views are compared with the ground truth using standard image similarity metrics, including PSNR and SSIM, denoted as 3DPS and 3DSS.

4.1 COMPARISON WITH PRIOR WORK ON SATELLITE-TO-GROUND SEQUENCE GENERATION

Generating continuous and coherent ground-level Sequences from a single satellite image is highly challenging due to the extreme viewpoint gap and inherent spatial ambiguity. We compare our method against three representative baselines: Sat2Density (Qian et al. (2023)) and ControlS2S (Ze et al. (2025)), both designed for cross-view image generation, and EscherNet (Kong et al. (2024)), a recent diffusion-based model for general multiview synthesis.

Since neither the code nor data of Deng et al. (2024); Xu & Qin (2025) is released, comparisons with them cannot be conducted and thus are not included. StreetScape (Deng et al. (2024)) relies on ground-truth height maps, which indeed simplifies the problem but also creates a strong dependency on data that is often unavailable or costly to acquire. Sat2GroundScape (Xu & Qin (2025)) requires multiple satellite views to reconstruct a 3D model and uses a two-stage generation process, making it dependent on reconstruction quality and computationally expensive. In contrast, our method takes only a single satellite image as input and generates the entire sequence end-to-end. We introduce a triplane representation to encode the satellite scene and a Ray-Based Pixel Attention module to explicitly enforce geometric consistency between the generated ground views and the satellite

Figure 6: Qualitative comparison without (top) and with (middle) the proposed epipolar-constrained attention.

Table 4: Comparison of Full Cross-Attention and Epipolar-Constrained Temporal Attention for realism and temporal consistency.

	\downarrow FID	\downarrow DINO	\downarrow Depth	\downarrow FVD	\downarrow CLIPSIM
w/ Full Cross-Att	42.60	4.253	6.231	2.150	7.516
w/ Epipolar-Att	27.41	4.156	5.623	2.101	6.820

image. Furthermore, instead of using standard full cross-attention for multi-view consistency like Sat2GroundScape, we propose an epipolar-guided attention mechanism specifically designed for panoramic images, which greatly reduces computational cost (Figure 7) while achieving superior satellite-to-ground consistency and multi-view consistency (Table 4).

Moreover, their settings rely on multiple satellite images from different viewpoints or real ground-truth height maps, while ours requires only a single overhead satellite image as input.

Among these baselines, Sat2Density represents a Nerf-based method for cross-view generation. ControlS2S is a recent diffusion-based method that synthesizes ground-level images conditioned on a single satellite image. EscherNet is a state-of-the-art diffusion framework for multiview image generation. To adapt EscherNet to our satellite-to-ground task, we treat the satellite image as the reference view and assign it a virtual camera pose positioned above the image center and oriented vertically downward. Because satellite imagery is approximately orthographic, we model this virtual camera as being located at a high altitude to approximate its projection. Each ground-view camera pose in the trajectory is then expressed as a relative transformation with respect to this satellite reference pose. This formulation provides reference-target pose pairs in exactly the format required by EscherNet. For fair comparison, we retrain all methods on our proposed VIGOR++ dataset.

As shown in Table 1, EscherNet performs the worst across perceptual, semantic, pixel-wise, and depth-consistency metrics, mainly because it lacks an explicit mechanism to bridge the large domain gap between satellite and ground views. However, it achieves better multiview consistency (measured by FVD and CLIPSIM) than Sat2Density and ControlS2S, owing to its built-in multi-view coherence modeling. In contrast, SatDreamer360 explicitly addresses both cross-view appearance disparity and the challenge of multiview continuity. As a result, it achieves the best overall performance across all dimensions, combining high image fidelity with smooth and consistent video generation. Qualitative results in Figure 4 further support these findings. EscherNet, which relies on implicit scene encoding, struggles to produce realistic ground-level images. ControlS2S, as illustrated in Figure 1, lacks effective mechanisms for multiview consistency, leading to spatial discontinuities across frames. In comparison, SatDreamer360 preserves the underlying scene layout and produces ground-view sequences that are both spatially coherent and temporally smooth.

4.2 MODEL ANALYSIS

Our method consists of two key components: (1) a ray-guided cross-view feature conditioning mechanism that ensures geometric consistency between the satellite image and the generated ground views, and (2) an epipolar-constrained attention module that enforces multi-view consistency across frames in the generated ground-view sequences.

Table 3: Application to the downstream cross-view localization task. Experimental evaluation on the VIGOR dataset reveals the average localization error before and after synthetic data training.

	\downarrow Aligned	\downarrow Unaligned
w/o synth data	5.22	5.33
w/ Ours	4.99	5.11

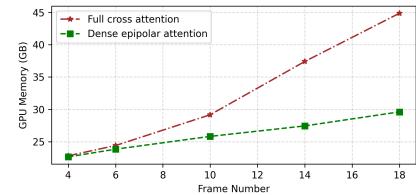


Figure 7: Memory comparison when generating different frame numbers in a video.

486 To validate the effectiveness of the proposed **Ray-Guided Cross-view Feature Conditioning**
 487 **Mechanism**, we conduct single-image satellite-to-ground generation experiments on CVUSA and
 488 VIGOR, removing the influence of sequential modeling and allowing direct comparison with state-of-
 489 the-art methods. We compare our method with Pix2Pix (Isola et al. (2017b)), S2S (Shi et al. (2022)),
 490 Sat2Density (Qian et al. (2023)), and ControlS2S (Ze et al. (2025)), while CrossDiff Li et al. (2024a)
 491 results are cited from the original paper. Note that pixel-wise metrics may not fully capture the quality
 492 of synthesized images in this task, as they are sensitive to factors such as lighting and sky appearance
 493 that are not explicitly modeled in satellite imagery. Quantitative and qualitative comparisons on both
 494 datasets (Table 2, Figure 5) clearly demonstrate that our method outperforms existing approaches in
 495 terms of overall generation quality and exhibits stronger left-right boundary consistency across the
 496 synthesized ground views. This performance gain primarily results from the proposed Ray-Based
 497 Pixel Attention module, which samples features along each viewing ray and explicitly incorporates
 498 geometric information from the satellite image. By doing so, the module ensures that the generated
 499 ground views are accurately aligned with the underlying satellite-view representation, preserving
 500 both local details and global spatial structure, and effectively mitigating artifacts that typically arise
 in boundary regions or complex geometries.

501 Next, we verify the necessity of the proposed **Epipolar-Constrained Temporal Attention**. As shown
 502 in Figure 6, incorporating this module significantly improves sequence consistency. Furthermore,
 503 Table 4 and Figure 7 demonstrate that replacing Epipolar-Constrained Attention with full cross-
 504 attention substantially increases computational cost, whereas our approach achieves both lower cost
 505 and stronger sequence consistency. The advantage stems from introducing geometric priors via
 506 epipolar geometry, which filters out irrelevant matches, suppresses noise propagation, and eliminates
 507 a large number of non-corresponding points before attention computation. Additionally, our sparse
 508 interframe attention, in which each frame attends only to its immediate neighbors, allows the model
 509 to scale efficiently to longer sequences without compromising performance.

510 **Application to Downstream Cross-View Localization Task.** SatDream360 can be leveraged to gen-
 511 erate synthetic ground-view data from satellite imagery, enabling enhanced training for downstream
 512 tasks. We evaluate this benefit in the context of cross-view localization using the state-of-the-art
 513 G2SWeakly (Shi et al. (2024)) model as a baseline. To ensure fair comparison, we follow the same
 514 training configuration as the baseline: 10 epochs with identical batch sizes. The only modification is
 515 the inclusion of SatDream360-generated data for training augmentation. As shown in Table 3, the
 516 augmented model achieves superior performance, demonstrating that the high-fidelity, geometrically
 517 consistent samples produced by SatDream360 provide meaningful improvements for cross-view
 518 localization tasks.

5 CONCLUSION

522 We propose a novel framework for satellite-to-ground multiview generation, addressing the chal-
 523 lenging task of synthesizing continuous ground-level panoramas from a single top-down satellite
 524 image. Our approach tackles both spatial and multiview consistency through two key modules: (1) a
 525 Ray-Guided Cross-View Feature Conditioning mechanism for accurately constructing satellite-and-
 526 ground-view correspondences, and (2) a Multi-scale Epipolar-Constrained Attention module that
 527 ensures multiview consistency with significantly reduced computational cost compared to standard
 528 cross-attention. To facilitate evaluation, we introduce VIGOR++, a large-scale benchmark dataset of
 529 aligned panoramic sequences and satellite views. Extensive experiments across multiple metrics and
 530 datasets demonstrate that our method outperforms state-of-the-art baselines in perceptual realism,
 531 semantic consistency, and multiview stability. We believe that this work provides a strong founda-
 532 tion for future research in cross-view generative modeling, with broad potential applications in 3D
 533 reconstruction, autonomous driving, and simulation environments.

534 REPRODUCIBILITY STATEMENT

535 The implementation details of our model are provided in Section 3, with training settings and
 536 evaluation protocols provided in Section 4 and Appendix A.7. Additional ablation studies are
 537 included in the Appendix A.8, A.9, A.11 to clarify the effect of individual components. We promise
 538 to release both the dataset and the code to facilitate reproducibility.

540 REFERENCES
541

542 <https://developers.google.com/maps/documentation/mapsstatic/intro>. a. URL <https://developers.google.com/maps/documentation/mapsstatic/intro>.

543

544 <https://developers.google.com/maps/documentation/streetview/intro>. b. URL <https://developers.google.com/maps/documentation/streetview/intro>.

545

546

547 Ananta R Bhattacharai, Matthias Nießner, and Artem Sevastopolsky. Triplanenet: An encoder for eg3d
548 inversion. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*,
549 pp. 3055–3065, 2024.

550 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
551 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
552 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023a.

553 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
554 and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
555 models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
556 pp. 22563–22575, 2023b.

557

558 Emmanuelle Bourigault and Pauline Bourigault. Mvdif: Scalable and flexible multi-view diffusion
559 for 3d object reconstruction from single-view. In *Proceedings of the IEEE/CVF Conference on*
560 *Computer Vision and Pattern Recognition*, pp. 7579–7586, 2024.

561 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
562 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the*
563 *IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

564

565 Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio
566 Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware 3d
567 generative adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision*
568 and pattern recognition, pp. 16123–16133, 2022.

569

570 Boyang Deng, Richard Tucker, Zhengqi Li, Leonidas Guibas, Noah Snavely, and Gordon Wetzstein.
571 Streetscapes: Large-scale consistent street view generation using autoregressive video diffusion.
572 In *ACM SIGGRAPH 2024 Conference Papers*, pp. 1–11, 2024.

573

574 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
575 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
576 pp. 12873–12883, 2021.

577

578 Ruiyuan Gao, Kai Chen, Enze Xie, Lanqing Hong, Zhenguo Li, Dit-Yan Yeung, and Qiang Xu. Mag-
579 icdrive: Street view generation with diverse 3d geometry control. *arXiv preprint arXiv:2310.02601*,
580 2023.

581

582 Zhiyuan Gao, Wenbin Teng, Gonglin Chen, Jinsen Wu, Ningli Xu, Rongjun Qin, Andrew Feng, and
583 Yajie Zhao. Skyeyes: Ground roaming using aerial view images. *arXiv preprint arXiv:2409.16685*,
584 2024.

585

586 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
587 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
588 pp. 770–778, 2016.

589

590 Yihui He, Rui Yan, Katerina Fragkiadaki, and Shou-I Yu. Epipolar transformers. In *Proceedings of*
591 *the ieee/cvf conference on computer vision and pattern recognition*, pp. 7779–7788, 2020.

592

593 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
594 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural*
595 *information processing systems*, 30, 2017.

596

597 Baoru Huang, Jian-Qing Zheng, Stamatia Giannarou, and Daniel S Elson. H-net: Unsupervised
598 attention-based stereo depth estimation leveraging epipolar geometry. In *Proceedings of the*
599 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4460–4467, 2022.

594 Yuanhui Huang, Wenzhao Zheng, Yunpeng Zhang, Jie Zhou, and Jiwen Lu. Tri-perspective view for
 595 vision-based 3d semantic occupancy prediction. In *Proceedings of the IEEE/CVF conference on*
 596 *computer vision and pattern recognition*, pp. 9223–9232, 2023.

597

598 Zehuan Huang, Hao Wen, Junting Dong, Yaohui Wang, Yangguang Li, Xinyuan Chen, Yan-Pei
 599 Cao, Ding Liang, Yu Qiao, Bo Dai, et al. Epidiff: Enhancing multi-view synthesis via localized
 600 epipolar-constrained diffusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 601 *and Pattern Recognition*, pp. 9784–9794, 2024.

602 Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
 603 Keutzer. SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and 0.5 mb model size.
 604 *arXiv preprint arXiv:1602.07360*, 2016.

605

606 Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
 607 conditional adversarial networks. In *Proceedings of the IEEE conference on computer vision and*
 608 *pattern recognition*, pp. 1125–1134, 2017a.

609 Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
 610 conditional adversarial networks. *CVPR*, 2017b.

611

612 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 613 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings*
 614 *of the IEEE/CVF International Conference on Computer Vision*, pp. 4015–4026, 2023.

615

616 Xin Kong, Shikun Liu, Xiaoyang Lyu, Marwan Taher, Xiaojuan Qi, and Andrew J Davison. Eschneret:
 617 A generative model for scalable view synthesis. In *Proceedings of the IEEE/CVF Conference on*
 618 *Computer Vision and Pattern Recognition*, pp. 9503–9513, 2024.

619

620 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
 621 neural networks. *Advances in neural information processing systems*, 25, 2012.

622

623 Ted de Vries Lentsch, Zimin Xia, Holger Caesar, and Julian FP Kooij. Slicematch: Geometry-guided
 624 aggregation for cross-view pose estimation. *arXiv preprint arXiv:2211.14651*, 2022.

625

626 Weijia Li, Jun He, Junyan Ye, Huaping Zhong, Zhimeng Zheng, Zilong Huang, Dahua Lin, and
 627 Conghui He. Crossviewdiff: A cross-view diffusion model for satellite-to-street view synthesis.
 628 *arXiv preprint arXiv:2408.14765*, 2024a.

629

630 Xiaofan Li, Yifu Zhang, and Xiaoqing Ye. Drivingdiffusion: Layout-guided multi-view driving
 631 scenarios video generation with latent diffusion model. In *European Conference on Computer*
 632 *Vision*, pp. 469–485. Springer, 2024b.

633

634 Yanwei Li, Yilun Chen, Xiaojuan Qi, Zeming Li, Jian Sun, and Jiaya Jia. Unifying voxel-based
 635 representation with transformer for 3d object detection. *Advances in Neural Information Processing*
 636 *Systems*, 35:18442–18455, 2022.

637

638 Zhiqi Li, Wenhui Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Qiao Yu, and Jifeng
 639 Dai. Bevformer: learning bird’s-eye-view representation from lidar-camera via spatiotemporal
 640 transformers. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024c.

641

642 Zuoyue Li, Zhenqiang Li, Zhaopeng Cui, Rongjun Qin, Marc Pollefeys, and Martin R Oswald.
 643 Sat2vid: Street-view panoramic video synthesis from a single satellite image. In *Proceedings of*
 644 *the IEEE/CVF International Conference on Computer Vision*, pp. 12436–12445, 2021.

645

646 Zuoyue Li, Zhenqiang Li, Zhaopeng Cui, Marc Pollefeys, and Martin R Oswald. Sat2scene: 3d urban
 647 scene generation from satellite images with diffusion. In *Proceedings of the IEEE/CVF Conference*
 648 *on Computer Vision and Pattern Recognition*, pp. 7141–7150, 2024d.

649

650 Tao Jun Lin, Wenqing Wang, Yujiao Shi, Akhil Perincherry, Ankit Vora, and Hongdong Li.
 651 Geometry-guided cross-view diffusion for one-to-many cross-view image synthesis. *arXiv preprint*
 652 *arXiv:2412.03315*, 2024.

648 Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
 649 Zero-1-to-3: Zero-shot one image to 3d object. In *Proceedings of the IEEE/CVF international*
 650 *conference on computer vision*, pp. 9298–9309, 2023.

651
 652 Xi Liu, Chaoyi Zhou, and Siyu Huang. 3dgs-enhancer: Enhancing unbounded 3d gaussian splatting
 653 with view-consistent 2d diffusion priors. *Advances in Neural Information Processing Systems*, 37:
 654 133305–133327, 2024.

655 Taiming Lu, Tianmin Shu, Alan Yuille, Daniel Khashabi, and Jieneng Chen. Generative world
 656 explorer. *arXiv preprint arXiv:2411.11844*, 2024.

657
 658 Xiaohu Lu, Zuoyue Li, Zhaopeng Cui, Martin R Oswald, Marc Pollefeys, and Rongjun Qin. Geometry-
 659 aware satellite-to-ground image synthesis for urban areas. In *Proceedings of the IEEE/CVF*
 660 *Conference on Computer Vision and Pattern Recognition*, pp. 859–867, 2020.

661 Roger Marí, Gabriele Facciolo, and Thibaud Ehret. Sat-nerf: Learning multi-view satellite pho-
 662 togrammetry with transient objects and shadow modeling using rpc cameras. In *Proceedings of the*
 663 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1311–1321, 2022.

664
 665 Ming Qian, Jincheng Xiong, Gui-Song Xia, and Nan Xue. Sat2density: Faithful density learning
 666 from satellite-ground image pairs. In *Proceedings of the IEEE/CVF International Conference on*
 667 *Computer Vision*, pp. 3683–3692, 2023.

668 Krishna Regmi and Ali Borji. Cross-view image synthesis using conditional gans. In *Proceedings of*
 669 *the IEEE conference on Computer Vision and Pattern Recognition*, pp. 3501–3510, 2018.

670 Konstantinos Rematas, Andrew Liu, Pratul P Srinivasan, Jonathan T Barron, Andrea Tagliasacchi,
 671 Thomas Funkhouser, and Vittorio Ferrari. Urban radiance fields. In *Proceedings of the IEEE/CVF*
 672 *Conference on Computer Vision and Pattern Recognition*, pp. 12932–12942, 2022.

673
 674 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 675 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 676 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

677 Zhijie Shen, Chunyu Lin, Kang Liao, Lang Nie, Zishuo Zheng, and Yao Zhao. Panoformer: panorama
 678 transformer for indoor 360 depth estimation. In *European Conference on Computer Vision*, pp.
 679 195–211. Springer, 2022.

680
 681 Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei, Linghao Chen,
 682 Chong Zeng, and Hao Su. Zero123++: a single image to consistent multi-view diffusion base
 683 model. *arXiv preprint arXiv:2310.15110*, 2023a.

684
 685 Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. Mvdream: Multi-view
 686 diffusion for 3d generation. *arXiv preprint arXiv:2308.16512*, 2023b.

687
 688 Yujiao Shi, Dylan Campbell, Xin Yu, and Hongdong Li. Geometry-guided street-view panorama
 689 synthesis from satellite imagery. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 690 44(12):10009–10022, 2022.

691
 692 Yujiao Shi, Hongdong Li, Akhil Perincherry, and Ankit Vora. Weakly-supervised camera localization
 693 by ground-to-satellite image registration. In *European Conference on Computer Vision*, pp. 39–57.
 694 Springer, 2024.

695
 696 J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, and Gordon Wetzstein. 3d
 697 neural field generation using triplane diffusion. In *Proceedings of the IEEE/CVF Conference on*
 698 *Computer Vision and Pattern Recognition*, pp. 20875–20886, 2023.

699
 700 Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
 701 Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video
 702 data. *arXiv preprint arXiv:2209.14792*, 2022.

703
 704 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 705 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 706 *arXiv:2011.13456*, 2020.

702 Alexander Swerdlow, Runsheng Xu, and Bolei Zhou. Street-view image generation from a bird's-eye
 703 view layout. *IEEE Robotics and Automation Letters*, 2024.

704

705 Joshua Tobin, Wojciech Zaremba, and Pieter Abbeel. Geometry-aware neural rendering. *Advances in
 706 Neural Information Processing Systems*, 32, 2019.

707

708 Hung-Yu Tseng, Qinbo Li, Changil Kim, Suhib Alsisan, Jia-Bin Huang, and Johannes Kopf. Con-
 709 sistent view synthesis with pose-guided diffusion models. In *Proceedings of the IEEE/CVF
 710 Conference on Computer Vision and Pattern Recognition*, pp. 16773–16783, 2023.

711

712 Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, and
 713 Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges. *arXiv
 714 preprint arXiv:1812.01717*, 2018.

715

716 Gabriel Villalonga Pineda. Leveraging synthetic data to create autonomous driving perception
 717 systems. 2021.

718

719 Vikram Voleti, Chun-Han Yao, Mark Boss, Adam Letts, David Pankratz, Dmitry Tochilkin, Christian
 720 Laforte, Robin Rombach, and Varun Jampani. Sv3d: Novel multi-view synthesis and 3d generation
 721 from a single image using latent video diffusion. In *European Conference on Computer Vision*, pp.
 722 439–457. Springer, 2024.

723

724 Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics.
 725 *Advances in neural information processing systems*, 29, 2016.

726

727 Yifan Wang, Jianjun Zhou, Haoyi Zhu, Wenzheng Chang, Yang Zhou, Zizun Li, Junyi Chen,
 728 Jiangmiao Pang, Chunhua Shen, and Tong He. pi3: Scalable permutation-equivariant visual
 729 geometry learning. *arXiv preprint arXiv:2507.13347*, 2025.

730

731 Chenfei Wu, Lun Huang, Qianxi Zhang, Binyang Li, Lei Ji, Fan Yang, Guillermo Sapiro, and
 732 Nan Duan. Godiva: Generating open-domain videos from natural descriptions. *arXiv preprint
 733 arXiv:2104.14806*, 2021.

734

735 Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
 736 Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
 737 models for text-to-video generation. In *Proceedings of the IEEE/CVF International Conference on
 738 Computer Vision*, pp. 7623–7633, 2023.

739

740 Lining Xu, Yuanbo Xiangli, Sida Peng, Xingang Pan, Nanxuan Zhao, Christian Theobalt, Bo Dai,
 741 and Dahua Lin. Grid-guided neural radiance fields for large urban scenes. In *Proceedings of the
 742 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8296–8306, 2023.

743

744 Ningli Xu and Rongjun Qin. Geospecific view generation geometry-context aware high-resolution
 745 ground view inference from satellite views. In *European Conference on Computer Vision*, pp.
 746 349–366. Springer, 2024.

747

748 Ningli Xu and Rongjun Qin. Satellite to groundscape-large-scale consistent ground view generation
 749 from satellite views. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 pp. 6068–6077, 2025.

750

751 Yunzhi Yan, Zhen Xu, Haotong Lin, Haian Jin, Haoyu Guo, Yida Wang, Kun Zhan, Xianpeng Lang,
 752 Hujun Bao, Xiaowei Zhou, et al. Streetcrafter: Street view synthesis with controllable video
 753 diffusion models. *arXiv preprint arXiv:2412.13188*, 2024.

754

755 Kairui Yang, Enhui Ma, Jibin Peng, Qing Guo, Di Lin, and Kaicheng Yu. Bevcontrol: Accurately
 756 controlling street-view elements with multi-perspective consistency via bev sketch layout. *arXiv
 757 preprint arXiv:2308.01661*, 2023.

758

759 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth
 760 anything: Unleashing the power of large-scale unlabeled data. In *Proceedings of the IEEE/CVF
 761 Conference on Computer Vision and Pattern Recognition*, pp. 10371–10381, 2024.

756 Xianghui Ze, Zhenbo Song, Qiwei Wang, Jianfeng Lu, and Yujiao Shi. Controllable satellite-to-street-
757 view synthesis with precise pose alignment and zero-shot environmental control. *arXiv preprint*
758 *arXiv:2502.03498*, 2025.

759 Menghua Zhai, Zachary Bessinger, Scott Workman, and Nathan Jacobs. Predicting ground-level
760 scene layout from aerial imagery. In *Proceedings of the IEEE Conference on Computer Vision and*
761 *Pattern Recognition*, pp. 867–875, 2017.

762 Sijie Zhu, Taojiannan Yang, and Chen Chen. Vigor: Cross-view image geo-localization beyond
763 one-to-one retrieval. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
764 *Recognition*, pp. 3640–3649, 2021.

765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A APPENDIX

812 A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)

814 Large Language Models (LLMs) were employed solely as writing and editing assistants during
 815 manuscript preparation. In particular, we used an LLM to refine language, improve readability, and
 816 enhance clarity across various sections. Its contributions included tasks such as sentence rephrasing,
 817 grammar correction, and improving the overall coherence and flow of the text.

818 Importantly, the LLM played no role in the conception of research ideas, methodological design,
 819 or experimental execution. All core concepts, analyses, and results were entirely developed and
 820 validated by the authors. The LLM's involvement was strictly limited to linguistic refinement and did
 821 not influence the scientific content or data interpretation. The authors take full responsibility for the
 822 entirety of the manuscript, including any portions polished with LLM assistance. We have ensured
 823 that all LLM-generated content adheres to ethical standards and does not contribute to plagiarism or
 824 scientific misconduct.

825 A.2 EXPLANATION OF PROJECTION GEOMETRY

826 We provide an explanation of Eq. 4, describing the correspondence between pixel coordinates in the camera
 827 coordinate system and the angles of the rays found. Any
 828 point (u, v) in the pixel coordinate system corresponds to
 829 a camera ray with angles (ψ, θ) , where ψ is the yaw angle
 830 ranging from $[-\pi, \pi]$ and θ is the pitch angle ranging
 831 from $[-\pi/2, \pi/2]$. For example, as shown in Figure 8,
 832 the pixel at coordinates (u', v') corresponds to the following
 833 ray angles:
 834

$$836 \quad \psi_{u',v'} = (u' - \frac{W}{2})/W \times 2\pi, \quad \theta_{u',v'} = (\frac{H}{2} - v')/H \times \pi, \quad (8)$$

838 where H and W are the height and width of the panoramic image.

840 A.3 PROOF OF EQ. 6

842 **Prepare.** For vectors $a = [a_1 \ a_2 \ a_3]^T$ and $b = [b_1 \ b_2 \ b_3]^T$, the outer product of the two vectors is
 843 defined as:

$$844 \quad a \otimes b = \begin{bmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{bmatrix} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} b = \hat{a}b. \quad (9)$$

847 Here, we introduce the skew-symmetric matrix notation, \hat{a} , which corresponds to the vector a . Using
 848 this notation, the outer product $a \otimes b$ is expressed compactly as the matrix-vector product $\hat{a}b$.

849 **Proof.** Consider the ground images of frames m and n , there is a spatial point $Q = (x, y, z)$ in the
 850 coordinate system of frame m corresponds to pixel points $g_{u,v}^m$ on frame m and $g_{u',v'}^n$ on frame n in
 851 panoramic images: These projections are given by:

$$853 \quad g_{u,v}^m = P(Q), \quad g_{u',v'}^n = P(R_{mn}Q + t_{mn}), \quad (10)$$

854 where P denotes the equirectangular camera projection transformation, R_{mn} and t_{mn} denote the
 855 relative rotation and translation between frames m and n . Perform the inverse projection transformation
 856 to obtain:

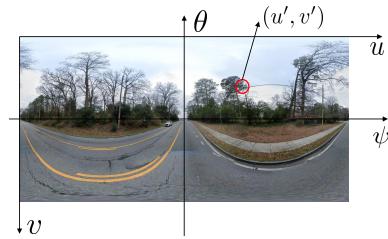
$$857 \quad P^{-1}(g_{u,v}^m) = Q, \quad P^{-1}(g_{u',v'}^n) = R_{mn}Q + t_{mn}. \quad (11)$$

858 Substitute Q from the left equation into the right gives:

$$860 \quad P^{-1}(g_{u',v'}^n) = R_{mn}(P^{-1}(g_{u,v}^m)) + t_{mn}. \quad (12)$$

862 By simultaneously left multiplying with skew-symmetric matrix \hat{t}_{mn} (corresponding to t_{mn}), as
 863 introduced in Eq. 9:

$$864 \quad \hat{t}_{mn}(P^{-1}(g_{u',v'}^n)) = \hat{t}_{mn}R_{mn}(P^{-1}(g_{u,v}^m)). \quad (13)$$



859 Figure 8: Correspondence between image
 860 pixel coordinates and camera ray angles.

864 Next, we multiply both sides on the left by the transpose $(p^{-1}(g_{u',v'}^n))^T$:
 865

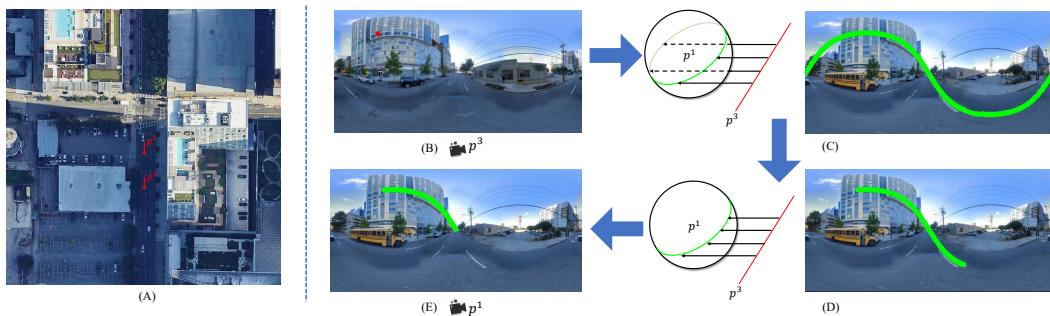
$$(P^{-1}(g_{u',v'}^n))^T \hat{t}_{mn} (P^{-1}(g_{u',v'}^n)) = (P^{-1}(g_{u',v'}^n))^T \hat{t}_{mn} R_{mn} (P^{-1}(g_{u,v}^m)). \quad (14)$$

866 Since the product $(P^{-1}(g_{u',v'}^n))^T \hat{t}_{mn} (P^{-1}(g_{u',v'}^n)) = 0$ (because $\hat{t}_{mn} (P^{-1}(g_{u',v'}^n))$ is orthogonal to
 867 $P^{-1}(g_{u',v'}^n)$), the above simplifies to:

$$(P^{-1}(g_{u',v'}^n))^T \hat{t}_{mn} R_{mn} (P^{-1}(g_{u,v}^m)) = 0. \quad (15)$$

872 This result implies that pixels $g_{u,v}^m$ on frame m and $g_{u',v'}^n$ on frame n that correspond to the same
 873 spatial point must satisfy this constraint relationship in Eq. 6. Therefore, during temporal attention,
 874 the points $g_{u,v}^m$ on frame m only need to focus on the set of points $\{g_{u',v'}^n\}$ on frame n that satisfy the
 875 above constraint. This significantly reduces the computational complexity compared to focusing on
 876 all pixels in the image.

878 A.4 EPIPOLAR-CONSTRAINED IN PANORAMIC IMAGES



890 Figure 9: (A) Example of camera positions p_3 and p_1 . (B) Selected point on source image plane p_3 . (C)
 891 (D) Simplified epipolar curve after removing non-intersecting portions. (E) potential correspondences refined by depth constraints.

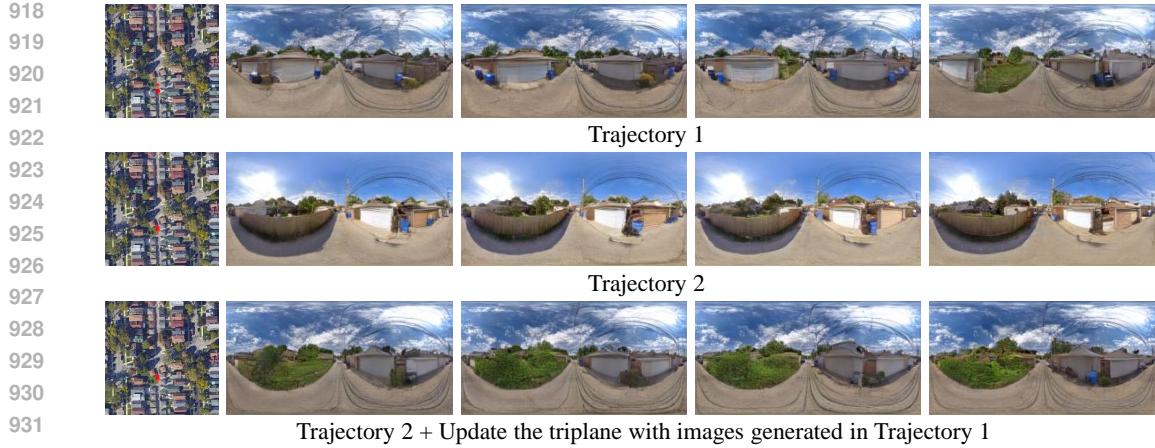
893 In Figure 9, we show the full derivation of the panoramic epipolar geometry. Taking the camera
 894 positions p^3 and p^1 shown in Figure 9(A) as an example, we consider the red point on the image plane
 895 of p^3 in Figure 9(B). As illustrated in Figure 9(C), because p^1 uses an equirectangular projection,
 896 the ray corresponding to this point on p^3 is projected onto the image plane of p^1 as a green wavy
 897 curve. Since the back side of the sphere does not intersect with this ray, it can be omitted, resulting
 898 in the simplified curve shown in Figure 9(D). Moreover, the valid portion of the ray from p^3 must
 899 lie in front of the camera, so points corresponding to negative ray directions can be removed. This
 900 yields the final green line segment in Figure 9(E), which represents the valid epipolar region. The
 901 true correspondence of the red point on p^3 must lie on this green segment.

902 By using this formulation, we no longer need to compare every point on the image plane of p^3 with all
 903 points on p^1 . Instead, attention is restricted to the green line segment in Figure 9(E). This significantly
 904 reduces computational complexity and avoids introducing noise through interactions with irrelevant
 905 points.

907 A.5 SCALING TO LARGE-SCALE SCENES

909 As described in Section 3, the proposed model leverages Ray-Guided Cross-View Feature Conditioning
 910 and Epipolar-Constrained Attention to generate ground-view images aligned with the satellite
 911 inputs and consistent across views. However, scaling the approach to larger scenes remains chal-
 912 lenging. Due to the inherent stochasticity of diffusion models, different batches conditioned on the
 913 same satellite image can produce noticeably different results, as illustrated in the first two rows of
 914 Figure 10. This highlights the need to establish connections across images generated from multiple
 915 batches to enhance the scalability of scene generation.

916 To incorporate information from previously generated images into the upcoming sequence, we update
 917 the triplane representation using Image Cross-Attention (ICA Li et al. (2024c)), which enriches each
 918 point on the XY, XZ, and YZ planes by referencing corresponding pixels from previously generated



Trajectory 2 + Update the triplane with images generated in Trajectory 1

Figure 10: Using the same satellite image as a condition, different trajectories are input to generate corresponding images. From top to bottom: results for trajectory 1, results for trajectory 2, and results for trajectory 2 after updating the triplane with images generated from trajectory 1. Updating the triplane ensures that newly generated results are related to prior sequences.

images. For example, points on the XY plane are sampled along the Z-axis, projected into camera space, and aligned with image coordinates, enabling feature transfer through ICA:

$$F_{xy}^{\text{top}} = \text{ICA} \left(F_{xy}^{\text{top}}, \text{Ref}_{xy}^{2D} \right), \quad \text{Ref}_{xy}^{2D} = \{F_{u_i, v_i}^j\}. \quad (16)$$

Here, $(u_i, v_i) = P(R_j(x, y, z_i) + t_j)$ projects sampled 3D points into the j -th image plane via rotation R_j , translation t_j , and projection P , where $\{(x, y, z_i)\}$ represents the set of sampled points along the Z-axis. By integrating ICA with CVHA, the triplane accumulates information from prior results, yielding coherent and scalable scene generation across multiple batches (Figure 10, bottom row). By combining ICA and CVHA mechanisms, the triplane’s features are enriched through the aggregation of information from previously generated images. As shown at the bottom of Figure 10, this approach enables the generation of extended image sequences across multiple batches, ensuring coherence and continuity in the outputs.

A.6 DETAILS OF VIGOR++

The VIGOR++ dataset includes 91,498 satellite images and the same number of street-view images, as shown in Figure 11(a). These images are evenly distributed across ten cities, covering a total area of 117.47 km².

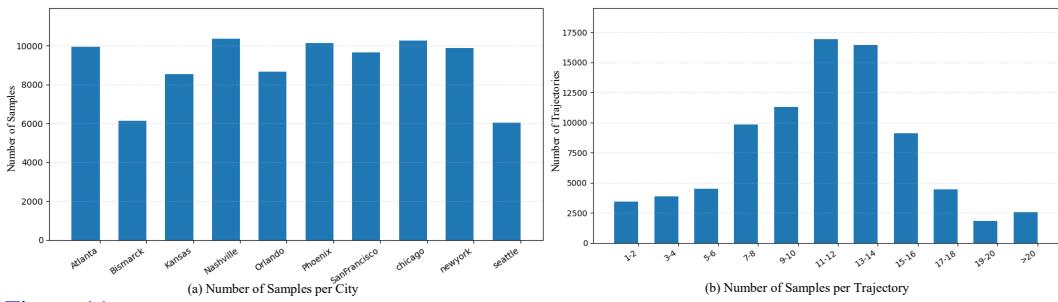


Figure 11: (a) Distribution of the Number of Samples Across Cities. (b) Distribution of Trajectory Sample Counts.

To construct trajectories, we first associate each ground-view image with its corresponding satellite patch, where the ground-view image lies at the center. Using this center point as the seed, we first filter out images captured under different weather conditions or on different dates, as these frames lack temporal consistency. We then construct a connectivity graph and apply depth-first search to extract all feasible routes. A semi-automatic procedure, combined with manual verification, then selects the longest and most temporally consistent route. Through this process, we obtain one trajectory for each satellite image.

972 Overall, we generate over 90,000 cross-view satellite–ground video pairs. Among them, 84,055 pairs
 973 are used for training and 7,443 pairs are used for testing. As shown in Figure 11(b), most trajectories
 974 consist of 7 to 16 ground-view frames. The average frame interval is approximately 11 m, with the
 975 smallest interval being 0.079 m and the largest reaching 20 m.
 976

977 A.7 ADDITIONAL EXPERIMENT DETAILS

979 Our model is fine-tuned based on the pre-trained Stable Diffusion 1.5 model (Rombach et al. (2022)),
 980 with the training process divided into three stages.

981 Initially, we train on single-image generation tasks with a batch size of 32 for 300 epochs, focusing
 982 on adapting the parameters of Ray-Guided Cross-View Feature Conditioning to generate ground-level
 983 images consistent with satellite geometry.

984 Next, we incorporate the Epipolar-Constrained Temporal Attention module to enable continuous
 985 ground scene generation. This phase involves a total of 300 epochs. The first 5 epochs focus on
 986 pre-heating the Temporal Attention module with a batch size of 8 and 3 images per sequence. This
 987 is followed by fine-tuning the entire model for 200 epochs with the same batch size and sequence
 988 length, and then further fine-tuning for long sequence generation with a batch size of 4 and 5 images
 989 per sequence until reaching 300 epochs.

990 As the Autoencoder was originally trained only on single-image tasks, it caused flickering artifacts
 991 when handling a temporally coherent sequence of images. Same to (Blattmann et al. (2023b)), we
 992 maintain the original parameters and introduce temporal modules (3D convolution) in the decoder.
 993 The Autoencoder is trained on VIGOR++ with a batch size of 4 and 3 images per sequence for 40
 994 epochs, focusing solely on training the added temporal module.

995 Throughout the training process, the learning rate is set to 7.0e-05, the optimizer used is AdamW,
 996 and all experiments are conducted on four NVIDIA L40 GPUs. This comprehensive training pipeline
 997 enables the model to generate geometrically accurate ground-level images and seamless, temporally
 998 coherent sequences.

1000 A.8 ABLATION STUDY ON SCENE REPRESENTATIONS

1002 The comparison between triplane and BEV scene representations is presented in Table 5, where the
 1003 BEV corresponds to using only the XY-plane from the triplane. The memory usage is measured with
 1004 a batch size of 32.

1005 Table 5: Quantitative comparison of Triplane and BEV(XY-plane) representations on the VIGOR dataset.

	$\downarrow P_{alex}$	\downarrow DINO	\downarrow SegAny	\uparrow SSIM	\uparrow PSNR	\uparrow SD	\downarrow Depth	Memory
BEV	0.3803	4.408	0.3549	0.4134	13.64	12.94	7.061	19011
Triplane	0.3469	4.287	0.3471	0.4385	14.08	13.11	6.727	20303

1011 These results show that the triplane representation consistently outperforms the BEV (XY-plane)
 1012 representation across all metrics, while introducing only a modest increase in computational overhead.
 1013 The improvement comes from the triplane’s ability to capture richer 3D structures. A pure XY-plane
 1014 representation lacks vertical information, which is critical for rendering views under varying pitch
 1015 angles. Moreover, our model samples features along camera rays. Relying solely on XY-plane
 1016 features leads to incomplete spatial support, especially for oblique rays. The triplane effectively
 1017 overcomes this limitation.

1018 A.9 ABLATION STUDY ON RAY-GUIDED CONDITION

1020 To validate the impact of the ray-guided conditioning mechanism, we compare our method with a
 1021 vanilla conditioning approach, which performs cross-attention between every 3D point feature in the
 1022 triplane and each image pixel. The corresponding ablation results on VIGOR are shown in Figure 6:
 1023

1024 The ray-guided conditioning substantially improves performance. This is because vanilla conditioning
 1025 lacks explicit geometric constraints, often resulting in geometric distortions, whereas ray-guided
 1026 conditioning leverages Ray-Based Pixel Attention to dynamically sample points along viewing rays

1026 Table 6: Quantitative comparison of vanilla Cross-Attention and Ray-Based Pixel Attention on the VIGOR
 1027 dataset.

	$\downarrow P_{alex}$	\downarrow DINO	\downarrow SegAny	\uparrow SSIM	\uparrow PSNR	\uparrow SD	\downarrow Depth	\downarrow Time(s)	\downarrow Memory(MB)
Vanilla Condition	0.5413	5.425	0.3911	0.3174	12.35	12.05	25.38	120.28	22506
Ray-guided condition	0.3469	4.287	0.3471	0.4385	14.08	13.11	6.727	39.64	18296

1032
 1033
 1034 using learnable offsets (Eq. 5). This approach ensures spatial coherence and improves geometric
 1035 alignment across views.

1036 Furthermore, we conduct an ablation study on the Dynamic Refinement of Offsets in Ray-Based
 1037 Pixel Attention, with results shown in Table 7:

1039 Table 7: Ablation study on the effect of dynamic refinement tested on the CVUSA dataset.

	$\downarrow P_{alex}$	\downarrow DINO	\downarrow SegAny	\uparrow SSIM	\uparrow PSNR	\uparrow SD	\downarrow Depth
w/o Dynamic	0.4647	4.935	0.3639	0.3736	13.45	12.38	19.69
w/ Dynamic	0.4255	4.807	0.3602	0.3812	13.88	12.42	19.36

1044
 1045 The goal of Ray-Based Pixel Attention is to aggregate meaningful features for each ground-level
 1046 pixel by sampling along its corresponding 3D ray projected into the triplane. However, Early in the
 1047 diffusion process, the latent features are dominated by noise, making accurate 3D correspondence
 1048 difficult. To address this, we begin with uniform sampling along each ray. But uniform sampling
 1049 often leads to sparse or suboptimal feature aggregation, leading to degraded performance, as shown
 1050 in the first row of Table 7.

1051 To mitigate this, we propose a mechanism to dynamically refine both the sampling offsets and their
 1052 corresponding weights during diffusion inference. As denoising progresses, latent features gradually
 1053 capture meaningful scene structure. The model uses these evolving features to predict offsets and
 1054 weights for each sampling point along the ray, enabling more accurate and view-consistent feature
 1055 aggregation. This leads to improved performance, as shown in the second row of Table 7.

1058 A.10 ABLATION STUDY ON EPIPOLAR-CONSTRAINED ATTENTION

1060 To more thoroughly evaluate the contribution of the Epipolar-Constrained Attention mechanism to
 1061 geometric consistency, we extend our ablation studies by removing this component and comparing it
 1062 against a vanilla inter-frame attention baseline (Full Cross-Att).

1063 Beyond FVD, we additionally measure the average inter-frame similarity using a CLIP-based metric
 1064 (CLIPSIM). We also conduct a user study, where we compute the Average User Ranking (AUR).
 1065 Specifically, we randomly sample 1,000 trajectories from the test set and collect rankings from five
 1066 users to obtain the final AUR scores. The results are summarized below:

1068 Table 8: Ablation Study of the Epipolar-Constrained Attention on the VIGOR++ Dataset.

	\downarrow DINO	\downarrow SegAny	\uparrow PSNR	\downarrow Depth	\downarrow FVD	\downarrow CLIPSIM	\uparrow AUR(seq)
w/o Epipolar-Att	4.2748	0.3626	12.86	6.174	3.439	10.20	0.174
w/ Full Cross-Att	4.253	0.3589	12.75	6.231	2.150	7.516	1.136
w/ Epipolar-Att	4.156	0.3563	12.75	5.623	2.101	6.820	1.690

1074
 1075
 1076 These results demonstrate that adding Epipolar-Constrained Attention yields a substantial improve-
 1077 ment over the variant without it. Compared with the vanilla inter-frame attention, our method
 1078 achieves a 10% gain in CLIPSIM, receives significantly higher user rankings, and, as shown in Fig. 7,
 1079 substantially reduces computational resources. Together, these findings provide strong evidence that
 the proposed Epipolar-Constrained Attention effectively enhances inter-frame geometric consistency.

1080 A.11 ABLATION STUDY ON SPARSE INTERFRAME ATTENTION
1081

1082 We adopt a sparse interframe strategy after careful comparison with the dense interframe strategy.
1083 Specifically, the sparse strategy queries only the two preceding frames for each target frame, whereas
1084 the dense strategy attends to all frames within the sequence. As shown in Table 9, both strategies
1085 achieve similar per-frame quality, but the sparse strategy yields better multiview consistency. This is
1086 because distant frames often contribute less meaningful information and may introduce noise, while
1087 nearby frames provide more relevant context.

1088 Table 9: Ablation study on the effect of sparse interframe strategy tested on the VIGOR++ dataset.
1089

	\downarrow FVD	\downarrow CLIPSIM	\downarrow P_{alex}	\downarrow DINO	\downarrow Depth	\uparrow PSNR
Dense	2.253	7.071	0.4085	4.153	5.791	12.91
Sparse	2.101	6.820	0.3955	4.156	5.623	12.75

1094 We further compare runtime and memory usage as the number of frames increases (with batch size
1095 set to 1 and 50 DDIM steps). Table 10 shows that the sparse strategy is significantly more efficient,
1096 particularly for longer sequences.

1097 Table 10: Ablation study on the resource consumption of the sparse interframe strategy.
1098

Strategy	Metric	10 Frames	20 Frames	30 Frames
Dense	Time(s)	20.33	59.12	120.75
	Memory(MB)	26174	31106	40520
Sparse	Time(s)	14.29	22.50	32.71
	Memory(MB)	25824	30242	35142

1105 In summary, the sparse inter-frame strategy achieves better multiview consistency while reducing both
1106 computation time and memory usage, making it the preferred choice for our generation framework.
1107

1108 A.12 ABLATION STUDY ON SATELLITE ENCODING MODELS
1109

1110 We choose a CNN-based ResNet encoder because our task imposes strong spatial-geometric con-
1111 straints, and the satellite features are expected to faithfully preserve the geometric structure of the
1112 overhead imagery. CNNs produce feature maps that are spatially continuous and locally coherent,
1113 making them naturally suitable for encoding geometry-aware local structures. In contrast, Vision
1114 Transformers partition the image into patches and apply global attention, a process that often disrupts
1115 the original geometric relationships in satellite imagery.

1116 We also conduct an empirical comparison on the CVUSA dataset using ResNet and ViT for satellite
1117 encoding. As shown in the table 11, the ResNet encoder consistently outperforms ViT across all
1118 metrics:

1119 Table 11: Ablation study on satellite encoding models.
1120

	\downarrow P.squeeze	\downarrow P.alex	\downarrow DINO	\downarrow SegAny	\uparrow SSIM	\uparrow PSNR	\uparrow SD	\downarrow Depth
Vit	0.3356	0.4469	5.049	0.3711	0.3371	13.30	12.11	20.96
	0.3146	0.4255	4.807	0.3602	0.3812	13.88	12.42	19.36

1125 A.13 INFLUENCE OF TRAJECTORY SEQUENCES
1126

1127 We analyze this effect of trajectory sequences from three perspectives: the trajectory length, the
1128 sampling interval, and the relative spatial relationship between the trajectory and the satellite
1129 image.

1130 **Trajectory length.** We reorganize the test set by grouping trajectories based on their total length
1131 into four ranges: <20 m, $20\text{--}40$ m, $40\text{--}60$ m, and >60 m. The results are shown below. The model
1132 performs well for trajectories shorter than 60 m, but we observe noticeable degradation when the
1133 trajectory length exceeds 60 m. This limitation primarily arises from our inability to train the model

1134

1135

1136

1137

1138

1139

1140

1141

1142

on sufficiently long sequences due to computational constraints. We expect this issue to be mitigated by incorporating longer trajectories during training in future work.

Sampling interval. To examine how sampling density affects generation quality, we reorganize the test set and evaluate trajectories under different frame-interval ranges. Specifically, we group trajectories into two categories: intervals < 10 m and intervals ≥ 10 m. The evaluation results are shown below. As the frame interval increases, the generation task becomes more challenging because the correlation between adjacent frames becomes significantly weaker. Consequently, we observe a consistent trend of performance degradation at larger sampling distances.

1150

1151

1152

1153

1154

1155

1156

1157

Relative spatial relationship between the trajectory and the satellite image. To evaluate how the relative spatial relationship between the trajectory and the satellite image affects generation quality, we shift the satellite image so that the trajectory appears at different locations within it. For example, when the satellite image is translated 20 m to the right, the trajectory—originally centered—becomes offset by 20 m. Using this setup, we test offsets of ± 20 m and ± 40 m. The results show that the generation quality is almost unaffected by these spatial shifts. This is primarily because our method does not naively use the entire satellite image as a global conditioning input. Instead, we extract geometry-aware features through Ray-Based Pixel Attention, which selectively samples informative points from the satellite representation along the ray directions. This sampling-based design effectively mitigates sensitivity to the global spatial alignment between the trajectory and the satellite image.

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

Table 14: Influence of relative spatial relationship between the trajectory and the satellite image.

Offset	$\downarrow P_{\text{alex}}$	$\downarrow \text{DINO}$	$\downarrow \text{SegAny}$	$\uparrow \text{SSIM}$	$\uparrow \text{PSNR}$	$\downarrow \text{Depth}$	$\downarrow \text{CLIPSIM}$
0	0.3955	4.156	0.3563	0.3964	12.75	5.623	6.820
± 20	0.3955	4.150	0.3560	0.3962	12.78	5.631	6.745
± 40	0.3973	4.164	0.3567	0.3959	13.73	5.674	6.706

A.14 HYPERPARAMETER ANALYSIS

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

The number of ray samples(K). We evaluate the effect of different numbers of ray samples K on the CVUSA dataset using a batch size of 16. The results are shown in Table 15. Although increasing the number of ray samples(K=12) allows the model to capture more features, the improvement over K=8 is relatively marginal. Considering that K=8 offers a significantly better balance between performance and memory consumption, we adopt K=8 as our default setting.

The number of sampled points satisfying epipolar constraints(M). We evaluate the influence of the number of epipolar sampling points on VIGOR++, and the results are summarized in Table 16. The experiments show that sampling four points already provides a strong geometric prior that effectively improves multi-view consistency. Increasing the number of samples offers only marginal gains while introducing substantial additional computational cost. Therefore, we adopt four sampling points as our default setting.

1188
1189
1190
1191
1192
1193

Table 15: Ablation study on the number of ray samples(K).

K	↓P.squeeze	↓P.alex	↓DINO	↓SegAny	↑SSIM	↑PSNR
4	0.3246	0.4386	4.920	0.3670	0.3606	13.62
8	0.3146	0.4255	4.807	0.3602	0.3812	13.88
12	0.3109	0.4206	4.807	0.3623	0.3708	13.91

1194
1195
1196
1197
1198
1199
1200
1201
1202

Table 16: Ablation study on the number of sampled points satisfying epipolar constraints(M).

M	↓FVD	↓CLIPPSIM
1	5.509	7.142
4	2.101	6.820
8	3.532	6.770

1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Triplane resolution. We extract features from 256×256 satellite images to a 32×32 resolution, maintaining an 8× downsampling rate consistent with the VAE encoder of the latent diffusion model. Preserving this feature resolution ensures that the triplane conditioning information is spatially aligned with the diffusion latent, which improves conditional guidance and training stability.

Training design. Empirically, the model reaches convergence after 300 epochs in each stage. In the first stage, it primarily learns consistency between ground views and the satellite image, while in the second stage, the Epipolar-Constrained Temporal Attention module is introduced to facilitate multi-view consistency. Convergence is assessed based on the clarity and structural coherence of generated samples, absence of obvious noise or artifacts, and stabilization of validation metrics such as SSIM and P_{alex} stabilize. The learning rate is set to 7e-05, following the successful practice of ControlS2S, which ensures stable training and consistent convergence. Finally, the batch size is gradually reduced from 32 → 8 → 4 across stages due to GPU memory constraints: as the number of frames per sequence increases from 1 → 3 → 5, memory consumption rises, necessitating smaller batches to accommodate longer sequences.

A.15 USER STUDY

To provide a more comprehensive evaluation of our method, we conduct a user study. Specifically, we compute the Average User Ranking (AUR). We randomly sample 1,000 trajectories from the test set and collect rankings from five users to obtain the final AUR scores. Each user ranks the methods for each sequence: the top-ranked method receives 2 points, the second receives 1 point, and the third receives 0 points. The final AUR is computed by averaging the scores across users. The evaluation considers two aspects: similarity between the generated ground scenes and satellite images (S2G-Sim) and multi-view consistency (MV-Cons). These results, shown in Table 17, demonstrate that our method generates ground scenes that better reflect the satellite imagery and achieves superior multi-view consistency.

Table 17: User study.

	↑S2G-Sim	↑MV-Cons
EscherNet	0.481	0.974
ControlS2S	1.057	0.051
Ours	1.462	1.975

A.16 EVALUATION OF GENERATION RESULTS UNDER DIFFERENT RANDOM SEEDS

To avoid potential bias, we conduct additional tests under different random noise seeds. On the VIGOR++ dataset, we evaluate our method using seeds 1, 25, 50, and 75. The corresponding results are presented in Table 18.

1242 **Table 18: Evaluation of generation results under different random seeds.**
1243

Seed	\downarrow P_alex	\downarrow FID	\downarrow DINO	\downarrow SegAny	\uparrow SSIM	\uparrow PSNR	\downarrow Depth	\downarrow FVD	\downarrow CLIPSIM
1	0.3955	27.39	4.157	0.3565	0.3965	12.75	5.616	2.127	6.815
25	0.3955	27.41	4.156	0.3563	0.3964	12.75	5.623	2.101	6.820
50	0.3954	27.52	4.155	0.3562	0.3966	12.76	5.620	2.126	6.798
75	0.3958	27.41	4.157	0.3564	0.3964	12.76	5.637	2.109	6.843
Average	0.3956	27.43	4.156	0.3564	0.3965	12.76	5.624	2.116	6.819
Std	0.0002	0.0591	0.0010	0.0001	0.0001	0.0058	0.0091	0.0128	0.0186

1251 **Figure 12: Failure case.**
1252
1253
1254
1255
1256
1257
1258
12591260 **A.17 LIMITATIONS AND DISCUSSIONS**
12611262 While SatDreamer360 can generate continuous ground scene images from a single satellite image
1263 and a given ground camera trajectory, it still faces several limitations and corresponding areas for
1264 improvement.
12651266 Although VIGOR++ covers diverse regions, it is still constrained by Google Maps coverage and
1267 existing road networks, which [may limit generalization to off-road or unstructured environments](#).
1268 As shown in Figure 12, our method occasionally produces [incorrect results when generating scenes](#)
1269 [in narrow alleyways that are not accessible to vehicles](#). Future work will incorporate additional
1270 data sources such as drone imagery, vehicle-mounted cameras, or crowd-sourced panoramic data to
1271 expand coverage and enhance the model’s generalization ability.
12721273 Additionally, Our method focuses primarily on modeling the static components of the scene and does
1274 not explicitly handle dynamic objects such as vehicles and pedestrians. As a result, the generated
1275 sequences may lack realistic dynamic behaviors. In future work, we plan to incorporate dynamic
1276 objects to establish more realistic satellite-to-ground correspondences.
12771278 **A.18 BROADER SOCIAL IMPACTS**
12791280 Our proposed system, SatDreamer360, can generate continuous ground scene images from a single
1281 satellite image and a given ground camera trajectory, making it a valuable tool for applications such
1282 as 3D reconstruction, simulation, and autonomous navigation. However, while it can produce visually
1283 plausible ground scenes, it still struggles to capture all real-world details, and caution should be
1284 exercised when deploying it in safety-critical scenarios.
12851286 Moreover, like many generative models, SatDreamer360 could be misused to synthesize misleading
1287 or fake visual content. To mitigate such risks, we recommend using it only in controlled research
1288 or industrial settings, incorporating usage licenses and watermarking techniques to trace generated
1289 content, and clearly disclosing when images are synthetic. These safeguards can help prevent misuse
1290 and ensure that the technology is applied responsibly.
12911292 **A.19 EXAMPLES OF SATELLITE IMAGES AND TRAJECTORIES**
12931294 Figure 13 presents example satellite images along with their corresponding trajectories, corresponding
1295 to the figure 4 shown in the main text.
1296

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307

1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 13: Satellite images and corresponding trajectory points.

A.20 MORE VISUALIZATION RESULTS

In Figure 14, we provide additional visualization results. Our method accurately follows the geometric layout of the satellite imagery while maintaining strong multiview consistency. It achieves robust performance both in densely built urban areas and rural regions. Even in challenging turning scenarios (middle of the figure), the generated results exhibit good continuity.

To further evaluate the generalization capability of our method, we test our model on cities in Africa, and Europe, despite training exclusively on U.S. cities. Under this challenging cross-continent setting, as shown in Figure 15 and Figure 16, other methods often fail, whereas our approach consistently produces plausible and coherent results, demonstrating strong generalization ability. This robustness stems from the tri-plane representation, which captures both horizontal and vertical structural cues across multiple orthogonal planes, providing sufficient geometric support for a wide variety of urban environments. Moreover, our Ray-Based Pixel Attention effectively aligns the ground-view generation with the satellite representation, enabling the model to maintain geometric consistency with the satellite imagery across diverse city layouts.

To evaluate the model’s generation capability on long trajectories, we provide additional visualizations in Figure 17. The images are arranged from left to right and top to bottom, showing the generated results of a vehicle navigating a left-turn scenario. The entire trajectory spans approximately 70 meters, and the results demonstrate that our method maintains high geometric consistency even for longer and curved paths.

Figure 14: Qualitative comparison of ground-level image sequences along trajectories. The left shows the satellite image and the corresponding trajectory, while the ground-level images progress along the trajectory from left to right.

1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

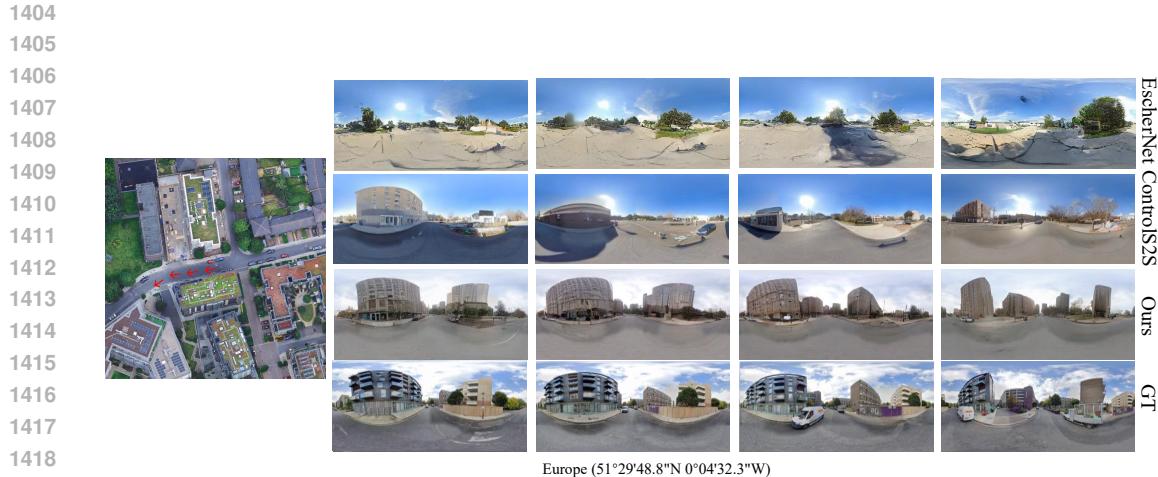


Figure 15: Results of ground-view generation using European satellite images as input.

Figure 16: Results of ground-view generation using African satellite images as input.

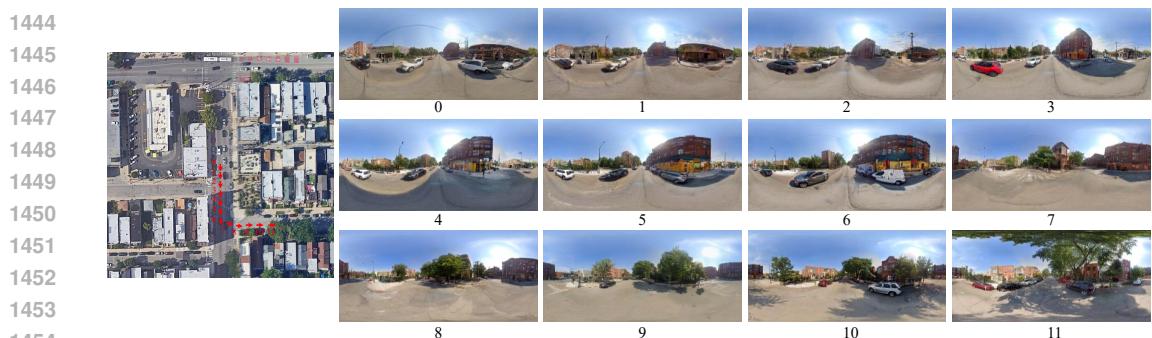


Figure 17: Generation results on long trajectories, where the images are ordered from left to right and top to bottom following the vehicle's forward motion.