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ABSTRACT

In the deployment of Large Multi-modal Models (LMMs), researchers and prac-
titioners often rely on simplistic strategies for in-context learning (ICL), such as
reusing fixed demonstrations across diverse samples or retrieving candidates di-
rectly using the CLIP model. These approaches may not ensure that selected
demonstrations align optimally with LMM requirements. To bridge this gap, we
introduce DemoReranker, a novel framework that fine-tunes a specialized reranker
module to improve demonstration selection for LMMs. First, we assess demon-
stration quality by measuring its influence on model outputs. Second, our reranker
incorporates a scoring head atop the CLIP embedding model, evaluating compat-
ibility between test samples and candidate demonstrations. Third, we optimize
the reranker using list-wise ranking loss while keeping the CLIP backbone frozen.
Extensive experiments across 7 datasets spanning 3 multi-modal tasks confirm
that DemoReranker effectively enhances LMM performance in ICL by reranking
demonstrations to identify the most suitable candidates.

1 INTRODUCTION

In-context learning (ICL) is a simple yet powerful paradigm where a model learns to predict out-
comes on new, unseen tasks by analyzing a small set of input-output examples (few-shot demonstra-
tions). First showcased in GPT-3 Brown et al. (2020) and recognized as an emergent capability pri-
marily found in large-scale pre-trained models Wei et al. (2022), ICL has since attracted significant
interest within the artificial intelligence field. Numerous studies have highlighted the remarkable
ICL abilities of large language models (LLMs) across diverse natural language processing (NLP)
applications. ICL holds particular practical value, as it allows large pre-trained models to be quickly
adapted to novel tasks or specific user needs using minimal examples. Crucially, this approach
eliminates the requirement for model retraining or redeployment.

Significant advancements in Large Multi-modal Models (LMMs) have spurred considerable interest
in their in-context learning (ICL) capabilities Alayrac et al. (2022). State-of-the-art LMMs, includ-
ing DeepSeek-VL Wu et al. (2024) and Qwen-VL Bai et al. (2023), exhibit strong ICL performance
across diverse tasks like visual question answering (VQA), visual classification (VCLS), and visual
captioning (VCAP). Despite this success, prevailing strategies for enabling ICL in LMMs typically
utilize simplistic techniques—often fixed examples or examples prioritized using pre-trained vision-
language embedding models. A key drawback of these strategies is their neglect of the LMM’s own
feedback concerning the potential contribution of the examples to enhancing its output quality.

To address the aforementioned challenges, we propose a novel framework: Demonstration Reranker
(DemoReranker). DemoReranker aims to fine-tune a pre-trained vision-language embedding model
using linear probing, enabling it to learn how to re-rank retrieved examples. This process ultimately
produces an ordered list of examples tailored to the requirements of Large Vision-Language Mod-
els (LMMs) during inference. Specifically, DemoReranker operates as follows: (a) Re-ranking by
Example Quality Score: The framework first re-orders examples retrieved by the embedding model
based on a proposed example quality score, defined as the BARTScore of the response generated
conditioned on the given example. (b) Architecture: The example re-ranker is implemented as a
re-ranker module (or re-ranking head) attached atop the frozen CLIP embedding model. (c) Fine-
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tuning Objective: This re-ranker module is then fine-tuned using our proposed list-wise ranking
loss, while the parameters of the underlying CLIP backbone remain fixed. Through this fine-tuning
procedure, our approach effectively transfers the signal captured by the example quality score into
the learned parameters of the example re-ranker.

We carried out comprehensive testing on a range of public benchmarks and internal datasets, span-
ning three unique multimodal domains including Visual Question Answering (VQA), Visual Classi-
fication (VCLS), and Visual Captioning (VCAP). Our findings reveal that the DemoReranker frame-
work significantly improves the in-context learning (ICL) performance of large vision-language
models (LMMs). Notably, the fine-tuned reranking model developed through DemoReranker can be
adapted for use with commercial LMMs like GPT-4o, enhancing their capacity to access pertinent
contextual information. The core advancements of this work are highlighted below:

• We introduce DemoReranker, an innovative architecture engineered to elevate the in-
context learning efficiency of LMMs.

• Through rigorous analysis across diverse vision-language tasks and datasets, we confirm
that DemoReranker achieves substantial improvements in ICL outcomes.

2 RELATED WORKS

LMMs and In-Context Learning (ICL) Building on the achievements of Large Language Mod-
els (LLMs) in natural language understanding, researchers have developed Large Multimodal Mod-
els (LMMs) for processing both visual and textual information Du et al. (2022). Prominent examples
include BLIP-2 Li et al. (2023a), MiniGPT-4 Zhu et al. (2023), and LLaVA Liu et al. (2024), which
utilize adapter-based architectures Houlsby et al. (2019) to bridge visual and linguistic representa-
tions during pre-training, thus lowering resource demands. Despite the growing number of LMMs,
a key limitation is that many lack support for contextual learning, which necessitates the ability
to handle inputs combining images and text in a mixed format Alayrac et al. (2022). The explo-
ration of contextual learning within multimodal systems, particularly for LMMs, is still in its early
stages, with few works focusing on core methodologies. For instance, Yang et al. (2024b) studied
how contextual learning influences LMM performance in generating image descriptions, while Li
et al. (2024) evaluated its effectiveness and introduced methods for selecting relevant examples us-
ing pre-trained multimodal encoders such as CLIP Radford et al. (2021). In line with these efforts,
our research advances the field by introducing a new framework designed to enhance contextual
learning in LMMs.

The field of artificial intelligence has experienced transformative progress in the evolution of Large
Language Models (LLMs) over the past few years. As these models grow in complexity and the scale
of their training datasets expands, they have begun to exhibit unexpected capabilities, including
advanced reasoning, numerical problem-solving, and the ability to execute instructions based on
contextual cues Wei et al. (2022). The pioneering work on GPT-3 Brown et al. (2020) demonstrated
that sufficiently large models could infer and execute novel tasks from minimal input examples—a
concept later formalized as In-Context Learning (ICL). Subsequent studies have further validated the
robustness of ICL, showcasing its effectiveness across a wide spectrum of linguistic and cognitive
tasks Mosbach et al. (2023). A key component of leveraging ICL successfully hinges on curating
high-quality, contextually relevant example sequences Li et al. (2023b). However, much of the
existing body of research remains concentrated on text-based natural language processing (NLP)
applications and language-centric foundational architectures, underscoring a pressing need to adapt
and generalize these insights to multimodal or domain-specific scenarios.

3 METHOD

We now detail the technical aspects of our framework. During the renranking fine-tuning phase
of our method, the dataset for any vision-language task is partitioned into four distinct subsets: a
support set (Dsupp), a training set (Dtrain) for fine-tuning the embedding model E , a validation set
(Ddev), and a test set (Dtest) for evaluating the LMM’s in-context learning performance.
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Figure 1: The framework of our DemoReranker.

3.1 IN-CONTEXT LEARNING

Given a pre-trained LMM, denoted asM (e.g., Deepseek-VL2 Wu et al. (2024)), in-context learn-
ing (ICL) requires a multimodal context sequence Z = {z1, . . . , zn}. This sequence Z consists
of n exemplars (n-shot), where each exemplar zi is a tuple comprising an image, a prompt, and its
corresponding response: zi = (imagei, prompti, responsei). The context sequence Z is then con-
catenated with the test sample xtest = (imagetest, prompttest) and fed into the LMMM. The model
subsequently generates a response r̂test of length TA > 0 tokens:

r̂test =M(Z, xtest) = {â1, . . . , âTA
}. (1)

3.2 EMBEDDING STRATEGIES

Unlike approaches that retrieve demonstrations solely through images or text Li et al. (2024), our
method utilizes the concatenated vector of image embeddings and text embeddings generated by
the CLIP model Radford et al. (2021). This strategy is termed Image-Text Embedding (ITE). Each
demonstration zi = (imagei, prompti, responsei) is passed to the CLIP model, yielding an image
vector vimage

i and a text vector vtext
i . These vectors are subsequently concatenated to form the joint

embedding vector vclip
i . A vector database is constructed using the Faiss toolkit to perform efficient

similarity search for retrieval. During inference, the test sample xtest is likewise converted into its
corresponding CLIP vector vclip

test , which serves as the query input for the vector search.

3.3 RETRIEVAL OF DEMONSTRATION SAMPLES

The existing methods Li et al. (2024); Yang et al. (2024b) assumes that an embedding model E
(e.g., CLIP Radford et al. (2021)) is readily available and effective for retrieving the most beneficial
examples for a given query. For the current task, we first utilize the base CLIP model to construct a
vector database of examples from Dsupp. For a sample xq = (imageq , promptq , responseq) within
Ddev , we generate its embedding vector using the method described in Section 3.2. We then retrieve
n > 0 candidate examples {zj}nj=1 (corrected index from i to j for consistency). These candidates
are ranked based on their embedding similarity scores:

r0(zj) = sort
(
sim(xq, zj) | {zj}nj=1

)
, (2)

where sim(xq, zj) denotes the cosine similarity between the CLIP embedding vectors of xq and zj ,
and sort represents the ascending order sorting function.

3.4 CANDIDATE EXAMPLE EVALUATION

The core value of examples for LMMs lies in enhancing the quality of generated responses. There-
fore, the following evaluation method is proposed: First, an example zj assists the LMM in gener-
ating a response:

responsej =M(zj , imageq, promptq). (3)
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The surface-level and semantic similarity between responsej and the ground-truth response
responseq is measured using BARTScore Yuan et al. (2021). This similarity score serves as the
quality score for zj :

s(zj) = BARTScore(responseq, responsej). (4)

The candidate examples are then ranked based on their quality scores:

r(zj) = rank(s(zj) | {s(zi)}ni=1) (5)

A higher s(zj) value indicates that the example zj is more effective in improving the LMM’s re-
sponse quality; consequently, r(zj) will also be larger (indicating a higher rank).

3.5 EXPLORATORY EXPERIMENTS AND MOTIVATION

Given two distinct rankings of the same set of candidate examples, the ranking correlation can be
computed as:

Corrq = Spearman
(
{r(zj)}nj=1, {r0(zj)}nj=1

)
, (6)

where Spearman denotes Spearman’s rank correlation coefficient Dodge (2008). The average corre-
lation score is then given by:

Corravg =

∑
xq∈Ddev

Corrq
|Ddev|

. (7)

Exploratory experiments conducted by us reveal an extremely low correlation (Corravg) between the
rankings generated by the CLIP model and those generated by the LMM. This result suggests that
candidate demonstrations retrieved by E may not adequately meet the requirements of the LMM.

This observation aligns with findings reported in prior studies Li et al. (2023b); Rubin et al. (2021),
which indicate that examples retrieved using open-source embedding models are not necessarily
optimal for LMM performance. Consequently, it is necessary to construct an example re-ranker.
This re-ranker will reorder the n > 0 candidate examples, ultimately selecting the top n1 > 0
(n1 < n) most effective examples to enhance prompt efficacy.

3.6 EXPLORATORY EXPERIMENTS AND MOTIVATION

Algorithm 1 DRAFT’s demonstration reranker fine-tuning
Input: Reranker Er constructed on the embedding model E , LMM M, number of epochs N1,

number of steps per epoch N2, number of retrieved candidates n. support set Dsupp, model E’s
training set Dtrain, model E’s validation set Ddev , test set for the LMM Dtest.

1: return A fine-tuned reranker Er.
2: Embed each training example in Dsupp with E ;
3: i← 0;
4: for i = 1 to N1 do
5: j ← 0;
6: for j = 1 to N2 do
7: Sample an querying example xq from Dtrain;
8: Obtain its demonstration candidates {zk}nk=1 from Dsupp;
9: Re-rank {zk}nk=1 using Eq 5;

10: Calculate Lr using Eq 10;
11: Update Er;
12: j ← j + 1;
13: end for
14: i← i+ 1;
15: end for

We describe the construction and fine-tuning methodology for our framework’s core component: the
example re-ranker. The complete procedure is presented in Algorithm 1.

Re-ranker Architecture As illustrated in the right panel of Figure 1, the example re-rankerR is
built upon the CLIP model E . After encoding zj and xq into vectors vj and vq via E , we concatenate
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these representations and feed them into a reranking head module to predict quality scores ŝ(zj) ∈
[0, 1]:

ŝ(zj) = RerankHead (Concat ([vj , vq])) , (8)

where Concat(·) denotes vector concatenation. The reranking head is implemented as a multilayer
perceptron with a Sigmoid activation. During fine-tuning, only the RerankHead() parameters are
optimized while the CLIP backbone remains frozen. The predicted quality ranking is obtained by:

r̂(zj) = rank (ŝ(zj) | ŝ(zi)ni=1) . (9)

Loss Function Our training objective aligns the predicted ranking in Equation 9 with the ground-
truth ranking in Equation 5. We propose the following loss function to inject ranking signals:

Lr =
∑

1≤i,j≤n i̸=jmax (0,m(i, j) · (ŝ(zj)− ŝ(zi))) , (10)

where the weighting coefficient m(i, j) is defined as:

m(i, j) = max
(
0, r(zi)

2 − r(zj)
2
)
. (11)

This novel loss function in Equation 10 extends the pairwise comparison approach of Wang et al.
(2014) by incorporating listwise ranking information through m(i, j), which dynamically adjusts
pair weights.

Intuitive Interpretation: Consider example pair (zi, zj). When r(zj) ≥ r(zi), m(i, j) = 0,
excluding this pair from loss contribution. When r(zj) < r(zi), m(i, j) > 0. If the re-ranker’s
predictions satisfy ŝ(zi) > ŝ(zj) (consistent with Equation 4), the loss remains zero. However, if
ŝ(zi) ≤ ŝ(zj), the term (ŝ(zj) − ŝ(zi)) ≥ 0 incurs positive loss, driving parameter adjustments to
correct the score ordering.

Retrieval VQA VCLS VCAP
Methods VQAv2 VizWiz OK-VQA Plants52 Hateful-Memes Flicker30K NoCaps

Null 58.3 27.6 42.3 14.6 58.8 27.7 29.6
Random 68.5 46.2 56.3 31.5 64.7 37.5 40.4

Fixed 68.6 46.7 57.9 32.3 64.5 38.1 40.7
SparseRetrieval 70.0 37.5 55.8 25.7 60.1 33.9 35.3

Dino 71.7 49.6 59.9 35.7 66.6 39.0 39.6
BGE 71.1 41.7 61.2 26.6 60.2 34.3 36.2

CLIPRetrieval 71.9 61.2 63.4 36.5 68.8 39.2 41.7
UDR 72.6 64.3 64.9 38.5 70.3 40.3 42.3

Lever-LLM 73.4 64.4 65.2 39.0 71.3 40.4 42.8
DemoReranker 76.1 66.8 67.5 41.2 74.3 41.7 45.2

Table 1: Results on the 7 tasks. Best scores are bolded.

4 EXPERIMENTS

4.1 DATASETS

We conducted experiments on seven multimodal tasks spanning three categories: five open bench-
marks and two proprietary tasks contributed by industrial partners. The tasks include: (a) VQAv2
Goyal et al. (2017), (b) VizWiz Gurari et al. (2018), (c) PS-VQA (a proprietary VQA dataset focused
on healthy dietary choices), (d) Hateful-Memes Kiela et al. (2020), (e) Plants52 (a proprietary plant
classification dataset), (f) Flickr30K Plummer et al. (2015), and (g) NoCaps Agrawal et al. (2019).

For each dataset, we repartitioned the original training/validation/test splits to create distinct subsets
required by our workflow: the support set (Dsupp), training set (Dtrain) and validation set (Ddev) for
fine-tuning the example retrieval model, and a test set (Dtest) for evaluating the in-context learning
performance of the language model.
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4.2 EVALUATION METRICS

Metrics for VQA We adopt the evaluation framework from Alayrac et al. (2022) and compute
accuracy for the VQA task using the following formula:

Accai
= min

(
1,

3×
∑9

k=0 match(ai, gk)
10

)
,

where ai represents the model’s predicted response, gk denotes the k-th reference answer among the
top 10 candidates, and the match() function outputs 1 if the predicted and reference answers align,
or 0 otherwise.

Metrics for VCLS For VCLS tasks, we consider accuracy, that is, the proportion of correctly
predicted class labels.

Metrics for VCAP To assess VCAP results, we report the ROUGE-L score Lin (2004), a met-
ric that quantifies the overlap between generated captions and reference captions in terms of re-
call, precision, and harmonic mean (F-score). This metric emphasizes both n-gram matching and
sequence-level coherence.

4.3 PROMPT TEMPLATES

We now present the prompt templates we use for the different tasks under ICL.

Prompt template for the VQA task If we do not use any demonstrations, the prompt template
for the VQA task is:
1 <image>
2 Question: [question]
3 Instruction: answer with a short phrase.
4 Answer:

in which <image> is the placeholder for the input image, [question] is the input question.

The prompt template for VQA with a group of demonstrations is:
1 <demo_image>
2 Question: [demo_question]
3 Answer: [demo_answer]
4
5 <demo_image>
6 Question: [demo_question]
7 Answer: [demo_answer]
8
9 Read the above demonstrations, and incorporate them when dealing with

the following query.
10
11 <image>
12 Question: [question]
13 Instruction: answer with a short phrase.
14 Answer:

in which <demo image> is the placeholder for the image in the demonstration sample,
[demo question] is the demonstration question, and [demo answer] is the corresponding ground-
truth answer.

The prompt templates for the other two types of tasks are presented in Appendix A.

5 BASELINES

Using the same inference LMM, we evaluate our DemoReranker approach against existing demon-
stration retrieval methods by comparing their downstream in-context learning (ICL) performance.
The compared methods include: (a) NoDemo: Uses no demonstrations. (b) RandomDemo: Ran-
domly selects demonstrations from the supporting set. (c) SparseRetrieval: A widely adopted sparse
retriever from prior literature Chen et al. (2017). (d) DINO: Retrieves demonstrations using image

6
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embeddings from the DINO model Caron et al. (2021). (e) BGE: Retrieves demonstrations using
text embeddings from the BGE model Chen et al. (2024). (f) CLIPRetrieval: Retrieves demonstra-
tions using the joint image-text embeddings provided by the CLIP model Radford et al. (2021), as
explored in Li et al. (2024). (g) UDR Li et al. (2023b): Evaluated solely on text-based tasks, this
method trains a classifier to score demonstrations. (h) Lever-LLM Yang et al. (2024a): Employs
a small language model as a demonstration selector. This approach differs from ours in both the
fine-tuned model architecture and its loss objectives.

Method VizWiz Hateful-Memes Flicker30K
DemoReranker 66.8 74.3 41.7

DemoReranker-1 66.1 73.2 40.3
DemoReranker-2 65.6 72.9 39.4
DemoReranker-3 66.3 73.7 41.5
DemoReranker-4 66.2 73.6 41.2

Table 2: Results of the ablation study on DemoReranker’s training strategy.

5.1 EXPERIMENTAL SETTINGS

Computing infrastures All experiments utilize NVIDIA V100 GPUs.

LMM models We adopt the DeepSeek-VL2 Tiny model (3B) Wu et al. (2024) as our Large
Multimodal Model (LMM) for evaluating the DemoReranker approach.

Decoding During response generation, we apply beam search decoding with a beam size of 3.

ICL Setup for the LMM Model M Under DemoReranker, each test sample triggers a two-
step process: First, 32 candidate demonstrations are retrieved. These are then reranked using our
demonstration reranker, from which the top n1 = 4 demonstrations are selected. The chosen demon-
strations are ordered by ascending similarity score and prepended to the test sample input.

Settings for embedding and retrieval This work employs the base CLIP model Radford et al.
(2021) for image-text embeddings by default. The ITE strategy from Section 3.2 serves as our
standard sample embedding approach. Efficient demonstration retrieval is implemented using the
Faiss toolkit Douze et al. (2024).

Settings for demonstration reranker The demonstration reranker employs a two-layer Multi-
layer Perceptron (MLP) utilizing ReLU activation functions. Its output is subsequently processed
by a Sigmoid activation layer. We adapted the fine-tuning procedure from the Huggingface Trans-
formers codebase Wolf et al. (2020). In Equation 10, the temperature parameter τ is set to 5.0.
Training involves N1 = 50 epochs for the embedding model, each comprising N2 = 200 steps.
During fine-tuning, the model retrieves n = 32 examples. For optimization, we utilize AdamW
Loshchilov & Hutter (2019) with a learning rate of 1e− 5 and a 50-step warmup phase. Remaining
hyperparameters are aligned with the Transformers library defaults. Performance on the Ddev set
is assessed after every epoch using Equation 7. An early stopping strategy with a patience of 10
epochs is implemented; training halts if the corravg metric shows no improvement over ten consec-
utive evaluations.

5.2 MAIN RESULTS

Table 1 presents the performance comparison of various methods across seven multi-modal tasks.
The results indicate that: (a) DemoReranker achieves significantly superior results over baseline
methods on the majority of tasks. This demonstrates its enhanced capability for detecting effective
demonstrations across diverse multi-modal applications. (b) Specifically, compared to UDR, De-
moReranker exhibits stronger overall performance, confirming the efficacy of our training method-
ology and loss function. Furthermore, it holds distinct advantages over directly employing CLIP as
the demonstration retriever Li et al. (2024). This directly demonstrates that our proposed framework
can develop an effective demonstration reranker via the fine-tuning procedure, thereby selecting
more beneficial demonstrations.

7
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Strategy Method VizWiz Hateful-Memes Flicker30K

ITE2ITE DemoReranker 66.8 74.3 41.7
UDR 64.3 70.3 40.3

TE2TE DemoReranker 51.3 64.5 37.2
UDR 50.1 64.4 37.2

IE2IE DemoReranker 65.7 74.1 41.7
UDR 63.5 69.9 40.3

Table 3: Results of the ablation study on the embedding strategy.

5.3 ABLATION STUDIES AND FURTHER ANALYSIS

Ablation Study on our DemoReranker framework To evaluate our DemoReranker’s each
component, we consider the following variant of DemoReranker: (a) DemoReranker-1 alters the
loss function in Eq 10 to the regression-based mean square error loss Das et al. (2004). That
is, the demonstration reranker directly learns to predict the demonstration quality score. (b)
DemoReranker-2 drops the weight coefficient m(i, j) from Eq 10. (c) DemoReranker-3 substitutes
the weight coefficient m(i, j) to m(i, j) = max(0, r(zi)− r(zj)). (4) DemoReranker-4 substitutes
the weight coefficient m(i, j) to m(i, j) = max(0, r(zj)−1 − r(zi)

−1). The results are reported in
Table 2.

The results in Table 2 show that: (a) The comparison between DemoReranker-1 and DemoR-
eranker demonstrates the directly modeling the demonstration reranker also works well, but per-
forms slightly worse than the loss function in Eq 10. (b) The comparison between DemoReranker-2
and DemoReranker proves the necessity of the weight coefficient m(i, j), which can effectively
inject listwise information into the loss function. (c) The comparison among DemoReranker-3,
DemoReranker-4 and DemoReranker proves the function form of m(i, j) is important, and the set-
ting in Eq 11 is valid, since it leads to the best performance.

LMM Method VizWiz Hateful-Memes Flicker30K

GPT-4o
CLIPRetrieval 72.1 76.9 41.1

UDR 75.6 79.0 42.9
DemoReranker 78.1 81.9 45.8

Claude 3 Opus
CLIPRetrieval 71.5 76.2 38.2

UDR 75.3 78.3 41.6
DemoReranker 77.8 80.7 43.2

Table 4: Experiments on the transfer learning capabilities of DemoReranker. We using the fine-
tuned reranker to retrieve demonstrations for GPT-4o and Claude 3 Opus.

Ablation on the embedding strategy This work uses the strategy of concatenating the image
and text embeddings (ITE) for sample embedding in the main experiment (Table 1). That is, the
demonstration sample embeddings in the Faiss index is obtained via the ITE strategy, and the search
input is obtained by embedding the test sample with the ITE strategy. To demonstrate the rationality
of this ITE2ITE setting, we conduct an ablation study on different sample embedding strategies. (a)
The demonstrations and search input use the strategy of embedding the text input (TE). This setting
is denoted as TE2TE. (b) The demonstrations and search input use the strategy of embedding the
image input (IE). This setting is denoted as IE2IE.

Table 3 presents the experimental results, demonstrating that: (a) The ITE2ITE strategy outperforms
the alternatives. This approach fuses image and text data for demonstration retrieval, leveraging
the richest semantic information available from the test sample. (b) Regardless of the embedding
strategy used, our DemoReranker method consistently surpasses the UDR approach.

Transferability across Different LMs Note that fine-tuning our DemoReranker methods requires
repeated inference on the Large Multimodal Model (LMM) M. This can lead to prohibitive API
costs ifM is a commercial model like GPT-4o. Given that different LMMs share similar training
mechanisms and are pre-trained on vast internet datasets, their internal representations exhibit sig-
nificant commonalities. Therefore, in this experiment, we utilize the demo reranker fine-tuned using
feedback signals from the DeepSeek-VL2 model – to perform demonstration reranking for powerful
commercial LMMs such as GPT-4o or Claude 3 Opus. The results are shown in Table 4.
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(a) VizWiz (b) Hateful-Memes

Figure 2: The effects of the number of demonstrations on DemoReranker, UDR, and CLIPRetrieval.

As evidenced by Table 4, the demo reranker, fine-tuned with DeepSeek-VL2 feedback, successfully
identifies suitable demonstrations given a test query. This leads to enhanced performance in com-
mercial LMMs like GPT-4o or Claude 3 Opus across different multi-modal tasks. This outcome
validates the practical value of the DemoReranker approach for industrial applications: an open-
source LMM can be used to train the demo reranker model, which is then deployed to improve the
in-context learning of commercial LMMs.

Impact of demonstration quantity In our primary experiments (Table 1), we fixed the demon-
stration list size at n1 = 4. We now evaluate DemoReranker against CLIPRetrieval and UDR across
varying demonstration quantities, with results shown in Figure 2.

DemoReranker consistently surpasses baseline methods regardless of demonstration volume. Two
key observations emerge: (a) Demonstration quantity exerts greater influence on the VizWiz gener-
ation task than the Hateful-Memes classification task. Specifically, increasing demonstrations yields
substantial performance gains for VizWiz but only marginal improvements for Hateful-Memes. (b)
Demonstration quality proves more critical than quantity. Notably, DemoReranker using just one or
two demonstrations still outperforms UDR with four demonstrations. These findings further demon-
strate DemoReranker’s robust demonstration retrieval capability.

6 CONCLUSION

This paper introduces DemoReranker, a unified framework tailored to large vision-language models
(LVLMs) for demonstration retrieval and reranking. We train DemoReranker by leveraging LVLM
evaluations of candidate demonstrations; this information is incorporated into the reranker through
a knowledge distillation loss. Experiments conducted on seven vision-language tasks demonstrate
that DemoReranker achieves significant performance gains over baseline retrieval methods. Further
analysis validates the efficacy of each core component in our framework and highlights its strong
transferability across LVLMs of varying scales (3B to 175B parameters) and different quantities of
demonstrations.
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Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-
domain questions. arXiv preprint arXiv:1704.00051, 2017.

Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. M3-embedding:
Multi-linguality, multi-functionality, multi-granularity text embeddings through self-knowledge
distillation. In Findings of the Association for Computational Linguistics ACL 2024, pp. 2318–
2335, 2024.

Kalyan Das, Jiming Jiang, and JNK Rao. Mean squared error of empirical predictor. 2004.

Y Dodge. The concise encyclopedia of statistics. Springer New York, 2008.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
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A PROMPT TEMPLATES

Prompt template for the image captioning task If we do not use any demonstrations, the prompt
template for the image captioning task is:
1 <image>
2 Instruction: write a concise caption for the image.
3 Response:

in which <image> is the placeholder for the input image.

The prompt template for VQA with a group of demonstrations is:
1 <demo_image>
2 Response: [demo_caption]
3
4 <demo_image>
5 Response: [demo_caption]
6
7 Read the above demonstrations, and incorporate them when dealing with

the following query.
8 <image>
9 Instruction: write a concise caption for the image.

10 Response:

in which <demo image> is the placeholder for the image in the demonstration sample,
[demo caption] is the ground-truth caption.

Prompt template for the image classification task If we do not use any demonstrations, the
prompt template for the image classification task is:
1 <image>
2 Instruction: assign one of the following labels to the input image.
3 [label_list]
4 Response:

in which <image> is the placeholder for the input image, and the [label list] is the collection of
label names specified in the given classification task.

The prompt template for VQA with a group of demonstrations is:
1 <demo_image>
2 Response: [demo_label]
3
4 <demo_image>
5 Response: [demo_label]
6
7 Read the above demonstrations, and incorporate them when dealing with

the following query.
8 <image>
9 Instruction: assign one of the following labels to the input image.

10 [label_list]
11 Response:

in which demo image is the placeholder for the image in the demonstration sample, [demo label] is
the ground-truth caption.
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