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ABSTRACT

Causal discovery, or identifying causal relationships from observational data, is a
notoriously challenging task, with numerous methods proposed to tackle it. De-
spite this, in-the-wild evaluation is still lacking, as works frequently rely on syn-
thetic data evaluation and sparse real-world examples under critical theoretical
assumptions. Real-world causal structures, however, are often complex, evolv-
ing over time, non-linear, and influenced by unobserved factors, making it hard
for practitioners to select appropriate methods. To bridge this gap, we introduce
CausalRivers, the largest in-the-wild causal discovery benchmarking kit for time
series data to date. CausalRivers features an extensive dataset on river discharge
that covers the complete eastern German territory (666 measurement stations) and
the state of Bavaria (494 measurement stations). It spans the years 2019 to 2023
with a 15-minute temporal resolution. Further, we provide data from a recent flood
around the Elbe River, as an event with a pronounced distributional shift. Lever-
aging multiple sources of information and time-series meta-data, we constructed
two distinct causal ground truth graphs (Bavaria and eastern Germany). These
graphs can be sampled to generate thousands of subgraphs to benchmark causal
discovery across diverse and challenging settings. To demonstrate the utility of
our benchmarking kit, we evaluate several causal discovery approaches through
multiple experiments and introduce effective baselines, identifying several areas
for enhancement. CausalRivers has the potential to facilitate robust evaluations
and comparisons of causal discovery methods. Besides this primary purpose, we
also expect that this dataset will be relevant for connected areas of research, such
as time series forecasting and anomaly detection. Based on this, we hope to estab-
lish benchmark-driven method development that fosters advanced techniques for
causal discovery, as is the case for many other areas of machine learning.

1 INTRODUCTION

Causal discovery, the process of identifying causal relationships from observational data, has made
significant theoretical progress over the past decade (Pearl, 2009), (Peters et al., 2017). This has
led to the development of various methods (Vowels et al., 2022), (Assaad et al., 2022) that espe-
cially bear potential for fields where randomized controlled trials are impractical due to restrictions
concerning interventions, such as earth sciences, neuroscience, and economics. However, despite
this progress, causal discovery remains a predominantly theoretically motivated area of research.
We argue that one of the primary reasons for this is the challenge practitioners face in selecting
appropriate causal discovery strategies, especially given the strong assumptions these methods are
often required to make about the underlying data, e.g. causal sufficiency, linearity, or the absence of
hidden confounders. As an example, methods based on additive noise models (ANMs, (Peters et al.,
2011)) assume specific noise distributions, while constraint-based approaches like PC (Spirtes et al.,
2001) and FCI (Spirtes, 2001) assume that causal relationships underlying observational data are of
a faithful nature, an assumption that was criticized by Andersen (2013).

Violations of these assumptions are particularly very common in fields like neuroscience or climate
science, where the data-generating process is complex, often unknown, and typically influenced by
unobserved confounding factors. This, in turn, also limits the reliability of synthetic benchmarking,
as data-generating processes fail to meet the complexity of real-world scenarios, leading to inflated
assessments of method performance, as discussed in Reisach et al. (2021).
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(a) Eastern Germany (b) Bavaria

Figure 1: The causal ground truth graphs for river discharge measurement stations are provided with
this benchmarking kit. Jointly, these graphs hold over 1000 nodes. Different colors specify different
data origins that we specify in appendix A.1.

Additionally, even extensive survey papers like Vowels et al. (2022) can only provide limited guid-
ance for practitioners, as they cannot directly address which methods might provide meaningful
insights when assumptions are violated. Furthermore, a large part of the causal discovery literature
relies on either purely synthetic experiments (Pamfil et al., 2020) and simple real-world examples
with few nodes Mooij et al. (2016), (Runge et al., 2019). This situation seems to be especially pro-
nounced for time-series data, as even fewer datasets are available. Instead, the focus of many works
lies on proving theoretical guarantees under assumptions as proof of their validity. While these in-
sights are by no means unnecessary and provide an essential foundation for methods evaluation, they
provide, again, limited help when faced with the complexity and unpredictability of the real world.

Here, we feel like it is necessary to remind ourselves of the iron rule of explanation as the corner-
stone of modern science (Strevens, 2020): “scientists [...] resolve their differences of opinion by
conducting empirical tests”. In machine learning, this is implemented through benchmark datasets,
which provide standardized environments for rigorous evaluation of the performance of competing
methods. These benchmarks not only facilitate fair comparisons but also reveal systematic weak-
nesses, and, thus, actively contribute to method development. For instance, computer vision was
reshaped by the ImageNet challenge that brought the surprising performance of the AlexNet archi-
tecture to the field’s attention (Alom et al., 2018). In a similar vein, we believe that a large-scale and
realistic benchmark dataset for causal discovery could have a profound impact on the field. We also
find that no such benchmark has been established for causal discovery from time series for which
we provide evidence in the next chapter.

To bridge this gap, and inspired by a single five-node example in Muñoz-Marı́ et al. (2020), we
introduce CausalRivers, the by far largest in-the-wild causal discovery benchmarking kit, specif-
ically for time series data, to date. CausalRivers features an extensive dataset on river discharge,
spanning from the year 2019 to the end of 2023, with a 15-minute resolution. It covers the entirety
of the eastern German territory (666 measurement stations) and the state of Bavaria (494 measure-
ment stations). Further, we include an additional dataset from a subset of stations, which exhibits a
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pronounced distributional shift through a very recent extreme precipitation event. To complement
this dataset, we constructed two causal ground truth graphs (Figure 1), that include all measurement
stations. For this, we leveraged multiple informational sources such as Wikipedia crawls and remote
sensing. Further information on the data origins is included in appendix A.1. Importantly, as the
full ground truth graphs hold over 1000 nodes, a direct application of causal discovery approaches
to these time series is unfeasible. Instead, we provide sampling strategies to generate thousands
of subgraphs with a flexible amount of nodes and unique graph characteristics such as single-sink
nodes, root causes, hidden-confounding, or simply connected graphs. Along with the general char-
acteristics of river discharge, which we discuss later, the dataset allows us to assess the impact of
conditions such as e.g., high-dimensionality, non-linearity, non-stationarity, seasonal patterns, the
presence of hidden confounding (through weather), misalignment of causal lag and sampling rate,
and generally distributional shifts on method performance.

To demonstrate our benchmarking kit, we conducted three sets of experiments, providing an
overview of potential benchmarking use cases. First, we provide experiments on multiple sets of
subgraphs. For this, we report performances of well-known causal discovery approaches, provide
naive yet effective baselines, and evaluate some recent deep learning approaches. Here, we find that
simple strategies can be robust, where many causal discovery methods struggle. Second, we eval-
uate how the selection of specifically informative subsections of observational data can affect the
performance of different methods, something that could prove helpful in real-world applications.
Finally, we provide some examples of how domain adaption might be an interesting tool to cope
with the complex nature of the provided data distribution. Here we find mixed results, as the impact
of such a selection depends on the specific causal discovery approach. To make usage as accessible
as possible, we provide a ready-to-use benchmark package with many features as a repository here:
ANONYMOUS. With this benchmarking kit, we hope to pave the way for more benchmark-focused
method development and provide the groundwork for closing the gap between causal discovery re-
search and its potential applications. Finally, we are looking forward to seeing whether the provided
data, as the amount of time-series data is extensive, might also be interesting to related disciplines
such as time-series forecasting, anomaly detection, or regime change identification. To summarize,
this work provides the following contributions:

• The largest real-world benchmark for causal discovery from time series to date
• A comparison of established causal discovery methods on in-the-wild data.
• An introduction and a ready-to-use implementation of the complete benchmarking kit.

2 BACKGROUND

The impact of benchmarking becomes evident in various fields where large-scale and realistic
datasets have driven significant advances. As already mentioned, computer vision was reshaped
by the ImageNet challenge that brought the surprising performance of the AlexNet architecture to
the field’s attention (Alom et al., 2018). Other examples are GLUE (Wang et al., 2019), which has
become a standard for evaluating natural language processing models. Next to this, the SQuAD
benchmark (Rajpurkar et al., 2016) has pushed the state-of-the-art in question-answering. Further,
WMT-2014 (Bojar et al., 2014) helped with establishing Transformers (Vaswani et al., 2017) as the
dominant architecture in natural language processing. Similarly, the LAION-5B dataset (Schuh-
mann et al., 2022) has driven the development of vision foundation models. Moreover, RESISC45
(Cheng et al., 2017) helped cement deep learning for remote-sensing scene classification. Finally, the
Cityscapes benchmark (Cordts et al., 2016) has accelerated research in autonomous driving, while
the CASP13 benchmark has revolutionized protein folding, via AlphaFold (AlQuraishi, 2019).

In a similar vein, we believe that a large-scale and realistic benchmark dataset for causal discovery
could have a profound impact on the field. To date, however, such a benchmark is lacking. To visu-
alize this absence, we provide an overview of existing datasets (Table 1) that either cover real-world
data or attempt to imitate specific characteristics of real-world domains (semi-synthetic data). For
completeness’s sake, we also include datasets that only provide sample data (no temporal dimen-
sion) as well as some datasets that are considered for average treatment effect estimation, since it is
possible to repurpose them for causal discovery. As can be observed from our summary, while we
found almost 30 distinct datasets, few of them provide time-series data. Further, many datasets that
provide authentic, real-world data have a limited number of nodes included, making it hard to rely on
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Table 1: An extensive list, not only including time-series data, of works used to evaluate causal
discovery approaches. A ✓ for ”Time” denotes that the data source is a time series. A ✓ for ”Real
world” denotes that both observational data and ground truth causal graphs are not synthetic. Further,
⊘ denotes no theoretical limit on the number of variables as datasets have synthetic components. We
emphasize that there is no comparable-sized benchmark for time-series data to date.

Topic Origin Time Real
world

Number of
variables

Semi synthetic generationATE Neal et al. (2021) ✗ ✗ ⊘
Semi synthetic generationATE Shimoni et al. (2018) ✗ ✗ ⊘

Gen expressions Dibaeinia & Sinha (2020) ✗ ✗ ⊘
Production line Göbler et al. (2024) ✗ ✗ ⊘
Gen expressions Van den Bulcke et al. (2006) ✗ ✗ ⊘
Gen networks Pratapa et al. (2020) ✗ ✗ ⊘

Visual understanding McDuff et al. (2022) ✗ ✗ ⊘
Mixed ChallengeATE Dorie et al. (2019) ✗ ✗ ⊘
Mixed ChallengeATE Hahn et al. (2019) ✗ ✗ ⊘
Benchmark kit (LLM) Zhou et al. (2024b) ✗ ✓ 109

Single-cell perturbation Chevalley et al. (2023) ✗ ✓ 622
Mixed Challenge Guyon et al. (2008) ✗ ✓ 132
Cause-effect pairs Mooij et al. (2016) ✗ ✓ 100×2

Congenital heart disease Spiegelhalter et al. (1993) ✗ ✓ 20
Lung Cancer Lauritzen & Spiegelhalter (1988) ✗ ✓ 8

Food manufacturing Menegozzo et al. (2022) ✗ ✓ 34
Protein signaling Sachs et al. (2005) ✗ ✓ 11

Bridges Yoram Reich (1989) ✗ ✓ 12
Abalons Warwick Nash (1994) ✗ ✓ 8

Arrow of time Bauer et al. (2016) ✗ ✓ ⊘
Pain diagnosis Tu et al. (2019) ✗ ✓ 14

Aerosols Jesson et al. (2021) ✓ ✓ 14
Industrial systems Mogensen et al. (2024) ✓ ✓ 233

Semi synthetic generation Cheng et al. (2023) ✓ ✗ ⊘
ODE Kuramoto (1975) ✓ ✗ ⊘

Gen networks Greenfield et al. (2010) ✓ ✗ ⊘
FMRI Smith et al. (2011) ✓ ✗ 50

Benchmark kit (CauseMe) Muñoz-Marı́ et al. (2020) ✓ ✓/ ✗ 5 / ⊘
Benchmark kit (OCBD) Zhou et al. (2024a) ✓ ✓/ ✗ 11 / ⊘

Multi-Benchmark CausalRivers ✓ ✓ >1000

them for benchmarking as they become susceptible to overfitting. Of course, we are not the first to
recognize the difficulty of benchmarking and comparisons in the causal discovery literature. Often,
this situation is attributed to the fact that causal ground truth, along with proper observational data,
is notoriously hard to find (Mogensen et al., 2024), (Niu et al., 2024). Noteworthy, some works that
attempt to improve on this situation through other means are Montagna et al. (2023), which tries to
assess the robustness of causal discovery methods towards violations of their assumptions, or Faller
et al. (2024), which attempts to score methods based on their consistency on multiple subsets of
data. Further, some approaches such as Muñoz-Marı́ et al. (2020), Niu et al. (2024) or Zhou et al.
(2024b), aim to provide benchmarking through a collection of varying synthetic and semi-synthetic
data sources. While these approaches are, of course, a step in the right direction and should be
considered along real-world benchmarking, they are not sufficient to fully dissect performance dif-
ferences of varying causal discovery methods for in-the-wild applications. Finally, as on recent and
promising attempt to benchmark causal discovery performance, we want to mention Mogensen et al.
(2024) as complementing work. Here, the ground truth graph is of sufficient size (Table 1) to prop-
erly benchmark performance. Further, sufficient time series data is available. Importantly, as the
domain is completely distinct from ours, we see this work as a promising additional benchmarking
approach.
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3 BENCHMARK DESCRIPTION

Table 2: Overview of the three provided datasets in CausalRivers.

Name Nodes Edges Start date End date Resolution

RiversEastGermany 666 651 1.1.2019 31.12.2023 15min
RiversBavaria 495 490 1.1.2019 31.12.2023 15min

RiversElbeFlood 44 29 09.09.2024 10.10.2024 15min

Here we provide information on the origin of the data included in our benchmark kit, as well as
on the causal ground truth construction. Next, we discuss unique challenges for causal discovery
on in-the-wild datasets and some specific features that are native to our data domain: Hydrology.
Finally, to provide a comprehensive overview, we also include a list of features that we provide next
to the data in our benchmarking kit, such as sampling strategies and naive baselines.

3.1 BENCHMARK CONSTRUCTION

This benchmarking kit is concerned with river discharge, so the amount of water that flows through
a river. It is measured in m3/s. As the amount of water measured at an upstream station directly
influences the amount of water measured by all downstream stations at a later point in time, we
consider them as causal. Through causal discovery, these causal relationships are potentially recov-
erable from observational data, in this case, time series data, alone. To produce the datasets provided
in our benchmarking kit, we began by collecting information on available measurement stations in
our selected geographical area. Through cooperation with eight different German state agencies
(each state has its own network of measurement stations that serve primarily for flood prevention),
we were provided with raw time series data along with some measurement station metadata. After
some initial filtering (mostly removing duplicates and broken measurements), we ended up with
around 666 and 494 valid time series for the selected time intervals. To construct the causal ground
truth for these measurement stations, we leveraged a mixture of meta-information provided by the
state agencies, remote-sensing (Wickel et al., 2007), Wikipedia information crawls and handcrafting
for a semi-automatic construction of the graph. Further, all edges were double-checked by hand in
the final stage to correct for potential matching errors. For documentary purposes, we provide the
full construction pipeline in ANONYMOUS and note that it was specifically constructed in a way
that allows adding additional nodes in the future. With this, and especially as there was recently a
call for less static benchmarks (Shirali et al., 2023), we leave room to extend the provided data in
the future. In summary, we provide three distinct sets of time series as displayed in Table 2, along
with two ground truth causal graphs (Figure 1), as the RiversElbeFlood causal ground truth is a sub-
set of the RiversEastGermany graph. Importantly, we envision RiversEastGermany as the primary
benchmarking source as it is more diverse in terms of geography and data origin than RiversBavaria.
Alternatively, we suggest RiversBavaria as a tool for the exploration of domain adaptation.

3.2 BENCHMARKING KIT FEATURES

To maximize the usability of this benchmarking kit, we provide additional tools and resources along
with the time series and causal ground truth graphs. These tools and resources should allow re-
searchers to tailor the dataset to their specific needs and evaluate the performance of methods in a
more targeted and streamlined manner. Specifically, we provide:

• Tools to sample from ground truth causal graphs to access subgraphs with an arbitrary
number of nodes. Further, subgraphs can be restricted through specific graph characteristics
such as the connectivity or the geographical reality or data source. An example of such a
sample can be found in Figure 2

• Tools to assess climatic conditions, especially precipitation, around any node by building on
the German weather service DWD. These tools might be helpful for dissecting confounding
effects and selecting specifically interesting time-series windows.

• Preprocessing, data loaders, and display tools for all included datasets.

5
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Figure 2: A single randomly sampled causal relationship along with time series data, originating
from CausalRivers. A massive precipitation event is marked in red.

• An implementation of three naive baseline strategies that we deem necessary to evaluate
performance properly (listed below).

• Tutorials on the usage of all provided tools and reproduce the results of section 4.

3.3 BASELINE STRATEGIES

With our benchmarking kit, we provide three baseline causal discovery strategies. First, we deter-
mine the causal direction between two nodes (and the two corresponding time-series), here denoted
as x1 and x2, purely based on cross-correlation between x1 and lagged versions of x2. For this,
we look for the lag at which the cross-correlation is maximized. If this lag is negative, meaning
the highest correlation is between the present of x1 and the future of x2, x1 −→ x2 is inferred,
x1 ←− x2 otherwise. We call this strategy simply CC for Cross-Correlation.

Second, we rely on the actual magnitude of the time series, featuring a principle of causality that
can be found in physics, where the mass of an object determines the causal direction (e.g. gravity).
While in Physics, the arrow of causation typically points at the object with the lower mass, for rivers,
this is reversed, as it is technically impossible that a very big river flows in a smaller river (at least
without river splits). To leverage this principle, we simply asssume x1 −→ x2 if the mean of x1 is
bigger than the mean of x2 . We call this strategy Reverse Physical, in short, RP. Notably, both RP
and CC, decide on one direction for each potential edge. However, as it is typically the case that
rivers only flow in a single location, we additionally restrict these strategies to select only one of the
remaining links for each parent node. This is done either by selecting the next larger river (+N) or
the biggest river (+B) as the only link or the river with the highest cross-correlation as the successor
(+C). Finally, we evaluate the union between RP and CC, which we denote Combo and where we
also test each restriction.

3.4 UNIQUE CHARACTERISTICS

Because our benchmark dataset covers a large area of Germany and is combined from multiple
data sources, it exhibits a number of interesting unique features. Further, the domain of Hydrology
brings, of course, its unique characteristics. In the following, we will discuss these attributes to help
understand the complexity of the dataset. With this, we also hope to shine a light on the specific
challenges and opportunities it provides for causal discovery.

6
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Geographical Realities With over 1000 nodes, the datasets cover a wide range of geographical
conditions, such as mountainous, coastal, and urban areas, and a wide variety of distances between
stations. With this, it also covers a wide range of causal structures, lags, and strengths. Additionally,
while the geographic closeness of nodes, influences the difficulty of detecting a causal relationship,
other factors such as effect strength and elevation (and with this flow speed) also play a major
role. The dataset includes a range of interesting geographical anomalies, such as dams, pump water
storages, artificial canals, and tide effects, which can affect the causal relationships between nodes
by altering the flow rate, water level, and consistency of relationships. A full list of cases, that we
found particularly interesting is provided here: ANONYMOUS.

Weather Confounding Weather confounding plays a significant role in the innovation of all time
series in the dataset. Rainfall can occur in a single node, across all nodes, or in a subset of nodes.
Therefore, the impact of weather might be beneficial to determine causal direction (e.g., in the case
where precipitation occurs in a single location) or be detrimental (e.g., in the case where precipitation
occurs sequentially at different locations and in the reverse direction of the causal link). Further, as
rainfall appears suddenly, the dataset is characterized by non-stationarity, non-linearity, and seasonal
patterns. To visualize, Figure 2 displays the effect of a massive precipitation event at the end of the
time series that affects all nodes.

Causal Lag Due to the varying distance and elevation between nodes, the speed of the rivers, and,
in turn, the lag at which the causal effect occurs varies greatly throughout the dataset. Moreover, the
causal lag of a specific relationship differs throughout the years as it depends on the amount of water
that is present at a given time (the more water, the higher the velocity of the river.) We estimate this,
along with weather confounding, to be a core challenge of the benchmark, as many causal discovery
methods assume a static causal structure with a fixed lag.

Sampling Rate The sampling rate at which data is collected directly impacts the accuracy of
inferred causal relationships (Gong et al., 2017; 2015). If the sampling rate is too low, critical causal
interactions between variables are missed. Moreover, high-frequency sampling may increase the
computational burden and result in models that overfit transient fluctuations rather than true causal
interactions. As the dataset is provided in a 15-minute resolution, it allows researchers to explore the
impact of different sampling and aggregation rates on causal discovery performance in real-world
applications. Especially as the resolution far precedes the expected causal lag since stations often
lie multiple kilometers apart.

Domain Biases Causal discovery methods typically integrate, besides sometimes allowing for the
provision of a skeleton graph (Runge et al., 2019), little domain knowledge concerning potential
causal links. Here, we want to note that depending on the domain, this might be unnecessarily
agnostic. In the case of this benchmark kit, we note two specific features that, if leveraged, could be
beneficial to improve performance. First, rivers typically have a single endpoint. Therefore nodes in
this benchmark, with some exceptions in the form of river splits, also typically have a single child
node. Secondly, the magnitude of the time series can reveal unlikely relationships as the amount
of water is unlikely to reduce along the causal direction. While these specific biases here are quite
specific to Hydrology, we expect that other biases in a similar manner exist in other domains and
could also be utilized there. CausalRivers provides a foundation to explore such biases.

4 EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate our benchmark kit, we conducted three experiments demonstrating examples for
possible use cases and gaining interesting insights into the performance of various causal discov-
ery strategies. During these experiments, we deploy the following well-established methods from
the literature: PCMCI with a linear conditional independence test (Runge et al., 2019), Varlingam
(Hyvärinen et al., 2010), Dynotears (Pamfil et al., 2020) and a simple linear Granger causal ap-
proach (VAR), aiming at covering all archetypes (Assaad et al., 2022). Further, we evaluate two
recent approaches featuring deep-learning techniques. First, a nonlinear Granger causal approach
(CDMI, (Ahmad et al., 2022)), that analyzes residuals of deep networks under knockoff interventions
to determine Granger causal relationships. Second, Causal Pretraining (CP, (Stein et al., 2024)),
which learns a direct mapping (either a GRU or a Transformer) from multivariate time series to a

7
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causal graph from synthetic data and performs zero-shot inference for real-world samples. Notably,
we specifically chose to include CP as it directly allows for domain adaption via finetuning. Finally,
we always provide the performance of our proposed naive baselines along with these results.

As causal discovery methods typically come with at least some hyperparameters, we perform a rudi-
mentary hyperparameter search per method to select proper values. For all experiments we test
different resolutions (15min, 1H, 6H, 12H) and evaluate different max lags (3 and 5 for each reso-
lution) if necessary. While we also evaluate a few method-specific parameters, we typically select
default parameters. We report a full list of hyperparameter combinations evaluated in Appendix
A.2. Notably, methods that require few hyperparameter configurations are more likely to be suc-
cessful in practice, which should be considered when comparing methods. For all experiments, we
chose to report the maximum F1 score (so the peak of the F1 score threshold relationship) of the
best-performing hyperparameter combination as the final performance measure. Importantly, we
ignore autoregressive links as these are always present and could potentially skew results. Here, it
is important to keep in mind that this is a rather agnostic approach towards method failure. Perfor-
mance is potentially overestimated when either a high variance of performance between different
hyperparameter combinations exists or it is hard to determine decision thresholds. These are both
complications that should be kept in mind for actual real-world applications.

4.1 EXPERIMENT SET 1 - VARYING GRAPH STRUCTURES

As the first and most extensive experiment set, we perform causal discovery on subgraphs with
varying graph characteristics and with the full-time series available. We take RiversEastGermany
as the base graph for this experiment. For each set except the last one, we report results for graphs
with three or five nodes. Notably, while we find these sub-selection criteria to be a great start for
comparison, many other characteristics could be explored, such as, e.g., single-sink nodes, empty
graphs, or causal pairs, to name only a few. The following graph characteristics were analyzed:

Random: We sample all possible connected subgraphs with three or five nodes. Notably this
covers the entire dataset and with this, the complete diversity of conditions that the benchmarking
kit offers.

Close: We sample all possible connected sub-graphs where every edge has a maximum geographic
distance of five km. By excluding long distances, the causal effect should be more pronounced.
Notably, all subgraphs of this selection are also included in ”Random”.

Random + 1: We sample all possible connected sub-graphs that have two or four nodes. We then
add another disconnected node to the graph. To prevent confounding, we sample the random nodes
from the coast and border area where we have several completely disconnected nodes.

Root cause: We sample all possible connected sub-graphs that have three or five nodes and where
each has a maximum of one parent. With this, graphs are connected in the form of a single chain.
We consider this useful for works on root-cause analysis (Ikram et al., 2022). Notably, all subgraphs
of this selection are also included in ”Random”.

Confounding: Probably, the most interesting set, we here select sub-graphs with four or six nodes
and where a single node has multiple children (while rare, these examples exist when rivers are
naturally or artificially splitting). We then remove the node that has multiple children from the
sample to simulate permanent hidden confounding scenarios.

Disjoint: We sample all possible connected sub-graphs that have five nodes and combine two of
them into a single disjoint graph. To prevent connectivity, we choose to combine sampled with the
largest possible distance between them. With this, we aim to evaluate how methods perform under
a larger number of potential non-related variables.

The largest set, Random-5, holds more than 7500 subgraphs. The smallest set, Confounder-3, holds
only 24 subgraphs. A full list of set sizes is reported in Appendix A.3. We report the results of
this experiment in Table 3. With some exceptions, we found that our baselines are robust across the
board, often achieving the highest F1 max. Additionally, they require no hyperparameter selection,
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a feature that we earlier noted to be beneficial for in-the-wild applications. Concerning established
causal discovery approaches, we find the linear Granger causal approach (VAR) to be the most re-
liant. Further, we find that established causal discovery strategies often perform not better than even
a null model, suggesting that they struggle with the nature of the provided data. As an explanation
for these results, we propose that for some methods, the optimal decision boundary differs from
sample to sample. As we calculate the F1 max once on the full graph set, as we deemed this more
practical, the provided results do not account for this. We plan to further investigate this hypothesis
in the future. Interestingly, some methods can improve over others for certain graph characteristics
(e.g., PCMCI and CP on Random+1 with 3 variables). As the graph sets can be further split, Causal-
Rivers should allow us to further analyze the corresponding underlying principles. We denote this
as an additional future area of research. Finally, while both CP and CDMI allow for non-linearity
and, to some extent, seasonality, we found no evidence for their superiority over linear approaches.

Table 3: F1 max scores for Experiment Set 1. Null model refers to predicting no causal Links
which achieves the smallest possible F1 max. * CP networks are not able to process more than five
variables. The datasets are ordered after their assumed difficulty. With some exceptions, baseline
approaches achieve the most robust performance.

Close Root cause Random +1 Random Confounder Disjoint

Method 3 5 3 5 3 5 3 5 3 5 10

Null model 0.50 0.34 0.50 0.33 0.29 0.26 0.50 0.34 0.54 0.36 0.16
CC 0.57 0.46 0.61 0.45 0.37 0.36 0.61 0.48 0.57 0.38 0.24
CC+C 0.52 0.41 0.61 0.52 0.45 0.43 0.59 0.47 0.54 0.37 0.47
RP 0.73 0.54 0.68 0.47 0.45 0.42 0.71 0.52 0.56 0.47 0.29
RP+B 0.76 0.64 0.50 0.33 0.55 0.48 0.68 0.49 0.54 0.42 0.23
RP+N 0.58 0.37 0.75 0.63 0.47 0.39 0.63 0.43 0.54 0.36 0.35
RPCC 0.62 0.52 0.59 0.43 0.42 0.40 0.62 0.51 0.54 0.38 0.30
RPCC+B 0.62 0.55 0.50 0.33 0.48 0.41 0.57 0.44 0.54 0.36 0.20
RPCC+N 0.54 0.45 0.64 0.55 0.44 0.39 0.58 0.44 0.54 0.36 0.36
RPCC+C 0.58 0.49 0.58 0.48 0.49 0.44 0.60 0.47 0.54 0.39 0.50
VAR 0.72 0.59 0.66 0.50 0.51 0.47 0.70 0.54 0.58 0.49 0.39
Dynotears 0.50 0.42 0.50 0.34 0.29 0.37 0.50 0.42 0.55 0.37 0.37
Varlingam 0.50 0.35 0.50 0.35 0.33 0.29 0.50 0.35 0.56 0.39 0.21
PCMCI 0.50 0.34 0.50 0.35 0.42 0.37 0.51 0.36 0.56 0.37 0.39
CDMI 0.50 0.34 0.51 0.33 0.31 0.27 0.50 0.33 0.54 0.36 0.17
CP (Gru) 0.50 0.34 0.53 0.35 0.52 0.29 0.52 0.34 0.54 0.37 -*
CP (Transf) 0.50 0.34 0.52 0.40 0.54 0.34 0.50 0.38 0.55 0.36 -*

4.2 EXPERIMENT SET 2 - TIME SERIES SUBSAMPLING

Given that the full time-series is very long (roughly 175k time steps for the original resolution), we
were interested in whether selecting specific shorter, and hopefully informative, subsections might
influence the performance of causal discovery algorithms. As a motivation, one might imagine that
the full time-series most likely holds sections with little innovation, displays annual patterns, and
includes nonstationary windows with high amounts of change (such as RiversElbeFlood). To test
whether providing only a subselection can improve in-the-wild causal discovery, we restrict the
causal ground truth graph to the 44 nodes included in RiversElbeFlood. We then compare the causal
discovery performance on the RiversElbeFlood dataset with the performance on the full-time series
and with the performance on a month with almost no recorded precipitation (Oktober 2021) in the
selected region. Concerning subgraphs, we simply sample all possible graphs with five nodes, equal
to the sampling strategy ”random” from Experiment Set 1. We provide the results of this comparison
in Figure 3a. While our results suggest that Flood data generally decreases performance, the dataset
with little precipitation shows mixed results. Notably, however, it strongly reduces the performance
of Dynotears, which we take as evidence that it can affect method performance in some cases,
which has implications for real-world applications. We attribute this to the fact that Dynotears is a
gradient-based method that could be affected more by little innovation in the data. Next, we note
that the performance on this subset of the ground truth causal graph is generally higher than in
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(a) Changes in method performance depending on
the provided data. We find mixed results with
some pronounced differences, e.g. for Dynotears.

Full TS No Rain Flood

CC 0.56 0.51 ↓ 0.56
RP 0.62 0.62 0.52 ↓
RPCC 0.61 0.59 ↓ 0.56 ↓
VAR 0.62 ↑ 0.63 0.57 ↓
Dynotears 0.61 0.40 ↓ ↑ 0.62
Varlingam 0.39 ↑ 0.41 0.35 ↓
PCMCI 0.35 ↑ 0.37 0.34 ↓
CP 0.43 0.38 ↓ 0.41 ↓
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(b) Performance increase, achieved through finetuning
CP on domain samples. Such a domain adaptation
strongly increases performance.

Figure 3: F1 max scores for Experiment Set 2 (a) and Experiment Set 3 (b). In (a), we mark
increases and decreases in performance with ↑ and ↓, respectively. Further, the highest performance
per method is marked in bold.

experiment set 1. We attribute this to the geographical location and the data origin of the nodes
included in RiversElbeFlood. Despite clear results, focusing on such a selection strategy might be a
way forward to make causal discovery methods more robust in real-world applications.

4.3 EXPERIMENT SET 3 - DOMAIN ADAPTION

As a final evaluation, we leverage the fact that we include two distinct ground truth graphs to provide
results on whether domain adaptation can be leveraged to improve causal discovery performance.
As this area of research is not yet widely explored, we provide a first example of domain adaptation
via Causal Pretraining (CP), a method that specifically allows for it, as causally pre-trained neural
networks can be updated by finetuning in a supervised manner. We, therefore, investigate whether
the previously reported performance of CP on the RiversEastGermany dataset can be improved. To
execute this, we leverage RiversBavaria and sample training examples (identical to sampling strategy
”random” and for five variables) from it on which we finetune a pre-trained network provided by
Stein et al. (2024). We perform a small hyperparameter search, testing for different values of the
learning rate, weight decay, time-series resolution, normalization, and the CP architecture. After
training, we evaluate the network that achieved the highest F1 max during training (a GRU on
6H resolution and no normalization) again on all graph characteristics that were evaluated during
Experiment Set 1. We report the results in Figure 3b. With the exception of one graph set, finetuning
(and with that domain adaption) strongly improves the performance of CP. Further, on the graph
set characteristic that CP was fine-tuned on, the final performance of CP (0.633 F1 max) clearly
surpasses the previously best scoring method (VAR with an F1 max of 0.54). We take this as strong
evidence that domain adaptation should be explored further by the community.

5 CONCLUSION

In this paper, we presented CausalRivers, the largest in-the-wild causal discovery benchmarking kit
for time series data to date. After motivating the need for such a benchmark by summarizing al-
ternative datasets, we discussed the benchmarking kit and its unique challenges and opportunities.
Further, we conducted a set of experiments, aiming at an evaluation of causal discovery approaches
in real-world applications and an exploration of potential beneficial strategies. As our experiments
showed, many well-established causal discovery methods underperform in real-world applications
and are outperformed by simple but robust baseline strategies. With this, we conclude that more
research is necessary, focusing on in-the-wild robustness, potentially through selecting relevant sec-
tions of a given time series, and domain adaptation. To conclude, we hope that this work provides
the foundation for a benchmark-driven method development of causal discovery methods. We also
hope to inspire the development of other benchmarking approaches and are excited to see which
causal discovery approaches prove to be the most successful in the end.
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Spirtes, and Alexander Statnikov. Design and Analysis of the Causation and Prediction Chal-
lenge. In Proceedings of the Workshop on the Causation and Prediction Challenge at WCCI
2008, pp. 1–33. PMLR, December 2008. URL http://proceedings.mlr.press/v3/
guyon08a.html.
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