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Abstract

This paper deals with the problem of learning a skill-conditioned policy that1

acts meaningfully in the absence of a reward signal. Mutual information based2

objectives have shown some success in learning skills that reach a diverse set of3

states in this setting. These objectives include a KL-divergence term, which is4

maximized by visiting distinct states even if those states are not far apart in the5

MDP. This paper presents an approach that rewards the agent for learning skills that6

maximize the Wasserstein distance of their state visitation from the start state of7

the skill. It shows that such an objective leads to a policy that covers more distance8

in the MDP than diversity based objectives, and validates the results on a variety of9

Atari environments.10

1 Introduction11

This paper considers the unsupervised reinforcement learning problem of learning a set of skill-12

conditioned policies that act meaningfully in an environment in the absence of an extrinsic reward13

signal. Some previous works [16, 13, 6] approached this problem by using a mutual information14

objective to maximize the empowerment of the skill-conditioned policies. In essence, such a mutual15

information objective is maximized by learning goal-conditioned policy and a discriminator such that16

the discriminator can infer which skill was executed by considering the states visited by the policy17

conditioned on that skill.18

This type of objective has been shown to learn diverse skills which can be useful for exploration19

and heirarchical reinforcement learning (HRL) [13, 6]. However, one potential issue with mutual20

information-based objectives is that they can learn skills that are discriminable but do not move far21

from the agent’s starting state [9].22

This paper instead presents an approach which considers the Wasserstein distance between the state23

visitation distribution of the agent’s skill-conditioned policy and its start state distribution and trains24

the agent to maximize this distance, an approach we term Wasserstein distance maximizing Intrinsic25

Control (WIC). WIC also encourages the learning of diverse skills by constructing the reward function26

to prefer each skill maximizing the Wasserstein distance in a unique direction. We hypothesize that27

maximizing the Wasserstein distance will lead to policies that cover more distance in the underlying28

environment. This hypothesis is validated on two grid world environments where the policy learned29

using WIC maximizes the number of states that it visits, whereas VIC and related techniques are30

content to reach states that are discernible from each other.31

Finally, we end with some preliminary results on the Atari benchmark that suggest that WIC is a32

promising approach to unsupervised intrinsic control.33
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2 Related Work34

Intrinsic motivations [3, 26, 25] are rewards presented by an agent to itself in addition to the external35

task-specific reward. Intrinsic motivation has been proposed as a way to encourage RL agents to learn36

skills [5, 4, 32, 29] that might be useful across a variety of tasks, or as a way to encourage exploration37

[7, 31, 2, 14]. The optimal reward framework [33, 35] and shaped rewards [23] (if generated by38

the agent itself) also consider intrinsic motivation as a way to assist an RL agent in learning the39

optimal policy for a given task. Such an intrinsically motivated reward signal has previously been40

learned through various methods such as evolutionary techniques [24, 30], meta-gradient approaches41

[34, 39, 40], and others. The Wasserstein distance, in particular, has been used to present a valid42

reward for speeding up learning of goal-conditioned policies [11], imitation learning [37, 10, 38], as43

well as program synthesis [15].44

Mutual information based objectives have been used to learn skill-conditioned policies that act45

meaningfully in the absence of an external reward [16, 13, 9, 6]. This paper considers the same46

problem but uses the Wasserstein distance as the objective the agent seeks to maximize.47

3 Background and Setup48

In this section we set up the problem and go over some of the concepts relevant to the setting.49

3.1 Problem Setting50

Our environment is a special case of Markov decision processes without a reward function denoted51

by the tuple M : 〈S,A,P, µ〉. S is the state space, A is the action space, P : S × A 7 −→ 4(S) is52

the conditional distribution denoting the transition dynamics when taking action a ∈ A from state53

s ∈ S (4 denotes a distribution over the set given as the argument), and µ : 4(S) is the initial state54

distribution.55

Agents interact with the environment with a skill conditioned policy πθ : S×Ω 7 −→ 4(A) where Ω56

is the space of skills, and θ denotes the parameters of the policy. We assume that skills are sampled57

with some probability P (ω) which we assume to be fixed as a uniform distribution over a discrete58

set of skills in this paper. In particular, we assume skills are sampled uniformly from set Ω and are59

then followed for a fixed number of T time steps. A skill-episode starts when a skill to be followed60

ω ∈ Ω is sampled from the skill distribution, and continues for T time steps. The trajectory of states61

and actions that are obtained while the agent executing skill ω interacts with the environment is62

denoted by s0, a0, s1, . . . , sT−1, aT−1, sT . sT at the end of one skill episode acts as the first state s063

for the next skill episode. We will refer to s0 and sT as the start state and end state of a skill episode64

respectively.65

Finally we define the state visitation distribution of the policy πθ conditioned on skill ω and starting66

at state s0 as:67

ρθ(s|s0, ω) =
1

T

T∑
t=1

P (st = s|πθ, s0, ω) (1)

3.2 Intrinsic Control by maximizing Mutual Information68

Variational Intrinsic Control (VIC) [16] takes the above setting and sets up the problem of learning69

the skill-conditioned policy as one of maximizing the mutual information between the random70

variable ω denoting the skill and the states ST reached after executing the skill conditioned policy πθ71

conditioned on ω. Practically, this approach is implemented by learning a discriminator Dφ(ω|sT , s0)72

with parameters φ that tries to predict the skill the agent policy was conditioned on given the start73

and end states of the skill-episode.74

The output of this discriminator is then used as the reward signal to train the skill-conditioned policy75

πθ. This approach encourages the learning of skills that can be distinguished by the end states of their76

trajectories. However, it does not encourage the learning of skills that travel as far as possible in the77

environment.78
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Other works that utilize this mutual information objective use a similar setup, but encourage the79

discriminator to predict the skill based on the relative direction of the states reached compared to the80

start state (RVIC, Baumli et al. [6]) or try to discriminate the entire trajectory (DIAYN, Eysenbach81

et al. [13]).82

3.3 Wasserstein Distance and Optimal Transport83

The field of optimal transport [27] considers the question of how to transport one distribution to84

another while minimizing the amount of effort expended. The Wasserstein distance estimates the85

amount of work that needs to be done to convert one probability distribution to the other, as measured86

by the ground metric d. More concretely, consider a metric space (M, d) where M is a set and d87

is a metric on M. The Wasserstein-p distance between two distributions µ and ν on M with finite88

moments can be defined as:89

W p
d (µ, ν) := min

ζ∈Z
Ex,y∼ζ [d(x, y)p]

1/p (2)

where Z is the space of joint distributions ζ ∈ 4(M×M) whose marginals are µ and ν respectively.90

While prior work on using the Wasserstein distance in reinforcement learning has used Euclidean91

distance in the state space as the ground metric [15], it may not be appropriate since it does not reflect92

the structure of the reinforcement learning problem. In MDPs, if we consider the metric space on the93

set of states S, then the number of time-steps it would take to go from state x to state y under the94

current agent policy π is a quasimetric (metric that might not be symmetric between x and y) that95

could be considered more appropriate for measuring this work [11, 18] since it reflects distance in96

the MDP instead of distance in observation space.97

If we restrict our attention to the Wasserstein-1 metric, the Kantorovich-Rubinstein duality allows us98

to express the Wasserstein-1 distance (which we refer to simply as the Wasserstein distance hereafter)99

in the following manner:100

W 1
d (µ, ν) = sup

Lip(f)≤1

Ey∼ν [f(y)]− Ex∼µ [f(x)] (3)

where the supremum is over all 1-Lipschitz functions f : M 7 −→ R in the metric space. If this metric101

space is based on the time-step metric alluded to above, then the Lipschitz constraint can be enforced102

using the following equation for Lipschitz smoothness based on transitions experienced by the policy103

[11]:104

Lip(f) = max
s∈S

Es′∼π,P [|f(s′)− f(s)|] (4)

The Wasserstein distance between two distributions can then be estimated by means of a function105

approximator such as a neural network [1, 17, 11] by solving for equation 3 and ensuring smoothness106

according to Equation 4. In Section 4, we lay out the exact objective to train such a function107

approximator.108

4 Wasserstein Distance Maximizing Intrinsic Control109

This section describes how the Wasserstein distance can be used to learn a skill conditioned policy,110

an approach we term Wasserstein distance maximizing Intrinsic Control (WIC). At a high level, it111

proposes a method to learn a skill conditioned policy that attempts to get as far away from the skill’s112

start state as measured through transitions in the MDP, and attempt to go in unique directions for each113

skill. That is, WIC will train a policy to maximize Eω∼P (·|Ω)

[
W 1
d (δ(s0), ρθ(s|s0, ω))

]
, and penalize114

this policy for maximizing Eω′ 6=ω
[
W 1
d (δ(s0), ρθ(s|s0, ω

′))
]

for any other skill ω′ 6= ω.115

For a particular skill ω ∈ Ω that starts executing at a state s0, the above Wasserstein distances are116

estimated between a Dirac distribution at the skill’s start state δ(s0) and the skill’s state visitation117

distribution ρθ(s|s0, ω) (Equation 1) with a potential function fφ : S×S×Ω 7 −→ R with parameters118

φ. The potential function fφ is trained by minimizing the following objective:119

Lf (s0, ρθ, ω) = fφ(s0, s0, ω)− Es∼ρθ(·|s0,ω) [fφ(s, s0, ω)] (5)
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(a) End points of skills
learned by VIC

(b) Rewards learned by
VIC

(c) End points of skills
learned by WIC

(d) Rewards learned by
WIC

Figure 1: The endpoints reached after executing all the skills multiple times starting in the middle of
the room, and reward functions learned for VIC and WIC respectively in a 15× 15 grid world where
the features are a one-hot encoding. The agent starts executing each skill from the center of the grid

world.

while also enforcing that the potential function fφ is 1-Lipschitz with the following objective:120

Lc(s0, ρθ, ω) = Es,s′∼ρθ(·|s0,ω)maximum(‖fφ(s′, s0, ω)− fφ(s, s0, ω)‖2−1, 0) (6)

where s is a state drawn according to the state visitation distribution ρθ and s′ is a sample of the next121

state the agent would visit if following policy πθ conditioned on skill ω in that state. Maximizing the122

Wasserstein distance thus estimated will lead to a skill that attempts to get as far away from the start123

state as possible.124

In order to maximize this distance, the agent is trained with rewards that encourage it to move its125

state visitation distribution to regions of higher potential, and thus increase the Wasserstein distance126

of the state visitation distribution. Since the potential function is state-based, it is enough for the127

reward to be a difference in potentials [23]. Further, WIC also includes a term to encourage diverse128

skills, meaning ones that move in unique directions in the state space. This diversity is encouraged129

by including a penalty term for overlapping with the positive potential gradient of any other skill.130

Consequently, the reward we present to the agent is as follows:131

r(st, at, st+1, s0, ω) := [f(st+1, s0, ω)− f(st, s0, ω)]−
η max
ω′ 6=ω

[f(st+1, s0, ω
′)− f(st, s0, ω

′)] (7)

where η ∈ [0, 1] specifies how much of a penalty skills get for encouraging a direction that overlaps132

with other skills.133

5 Experiments134

We compare WIC with VIC in domains with increasing order of complexity in order to probe the135

difference between the skills learned by maximizing the Wasserstein distance to its start state136

as opposed to maximizing a mutual information objective with respect to a fixed skill sampling137

distribution.138

5.1 Tabular139

First, we evaluate WIC and VIC on a tabular grid world domain. The grid is 15× 15 giving us 225140

distinct states with 5 possible actions (up, down, left, right, and no-op), and the agent starts off in the141

center of the grid. Since this domain is tabular, the agent’s state is communicated as a one-hot vector.142

There are no obstacles, and |Ω|= 4 skills which are sampled uniformly. Once the skill ω is sampled,143

the agent executes its skill-conditioned policy for T = 10 time steps. After executing this policy for144

T time steps, the state is reset back to the center, a new skill is sampled, and the policy executes again145

for T time steps. We compare two methods to learn and present the intrinsic reward, VIC and WIC.146

Both the agent policy and the discriminator (VIC) or potential function (WIC) are linear functions of147

the features. For WIC, a penalty η = 0.9 is used to avoid learning skills that overlap in their state148

visitation.149
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(a) End points of skills
learned by VIC

(b) Rewards learned by
VIC

(c) End points of skills
learned by WIC

(d) Rewards learned by
WIC

Figure 2: Visualizing the endpoints after executing all the skills multiple times starting in the middle
of the bottom-left room, and the reward functions used to learn them by VIC and WIC respectively in
the Four Rooms environment. The features of the state here are the (x, y) coordinates of the point at

which the agent is. The agent starts executing each skill from the center of the bottom left room.

The agent policy is trained using REINFORCE [36] with a state-conditioned baseline. The policy is150

additionally regularized with an entropy loss weighted by 0.01 to prevent premature convergence.151

Both the discriminator and the policy are trained using stochastic gradient descent [28, 19] with a152

learning rate of 0.003.153

Figure 1 shows the states reached after executing each skill multiple times from the same start state at154

the middle of the room (Figure 1a) and the reward function used to train the policy (Figure 1b) for155

VIC. Figures 1c and 1d show the same respectively for WIC. As hypothesized, VIC is satisfied with156

reaching states that are distinct enough for the discriminator to tell apart, and does not necessarily157

attempt to learn a policy that travels far in the environment. WIC on the other hand, learns a reward158

function and a policy that attempt to travel as far away from the start state as possible.159

5.2 Four Rooms160

Next, we evaluate how WIC and VIC behave differently when the features are not one-hot vectors. We161

use a four room domain with the location of the agent communicated as its (x, y) coordinate, and162

each feature scaled to [−1, 1]. The agent starts in the center of the bottom left room and each skill is163

allowed T = 40 time steps to execute. This duration is enough for an agent to make it to the room164

diagonally opposite if the skill-conditioned policy is deterministic.165

The number of skills |Ω|= 4 and they are sampled uniformly. After the agent finishes executing one166

skill it samples a new skill and begins executing it from the state that was reached. The agent is reset167

to the middle of the bottom left room after sampling and executing skills 17 times.168

Both the policy and the potential function (WIC) or discriminator (VIC) are instantiated as multi-layer169

perceptrons with 2 hidden layers of 128 units each, and ReLU [22] activation functions internally.170

The other training details remain the same as in the tabular case, except for the use of the Adam171

optimizer [20] with its default learning rate of 0.001.172

The end states reached after executing the skill-conditioned policy for each skill multiple times from173

the middle of the bottom-left room are shown in Figure 2. Here again, we see that the discriminative174

objective of VIC is satisfied with learning skills that go to the corners of the bottom left room, whereas175

WIC learns a policy that travels deep into the adjoining two rooms. The reward functions visualized176

in both these domains makes it clear that the Wasserstein distance maximizing approach pushes the177

agent to go as far from the start state as it can.178

5.3 Atari179

So far, we have validated that WIC encourages the learning of skill-conditioned policies that try to go180

as far away from the state that the skill was invoked. We now apply WIC to the Atari domain [8, 21]181

and evaluate how well this approach scales to image based inputs and deeper function approximators.182

WIC is compared to VIC and RVIC, and the metrics we use for comparison are average episodic183

coverage, average lifetime coverage, and average episodic return.184
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Figure 3: Comparing how well WIC does compared to mutual information based methods in Atari
domains
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The potential function (WIC) or discriminator (RVIC and VIC) are trained just as before, but the185

agent’s policy is now instantiated as a Q-function trained using Q(λ) with λ = 0.9 and discount186

factor γ = 0.98. A replay buffer of size 5× 105 is used to store the data, and each minibatch samples187

64 trajectories of length T = 40 from the buffer to train from. The Q-function and the potential188

function share a common torso in this setting, and the architecture of this torso is equivalent to the189

one suggested in IMPALA [12].190

As can be seen from Figure 3, the skill-conditioned policy learned through WIC leads to episodic191

returns better than VIC or RVIC on three of the six games we test on: Hero, Montezuma’s Revenge,192

and Ms. Pacman, and roughly equivalent returns on the other three. These improved returns are193

indicative of more directed policies, even in games where the episodic coverage is similar to the194

mutual information based approaches (Hero and Seaquest). In the game Berzerk, we additionally195

see that even though the episodic returns do not outperform VIC, in terms of lifetime coverage WIC196

widens the gap over time.197

6 Conclusion198

This paper considers the question of unsupervised learning of skills in an environment, and hypothe-199

sizes that maximizing the Wasserstein distance from the start state distribution of a skill could lead to200

skill-conditioned policies that cover more distance in the underlying MDP than mutual information201

based approaches like VIC and RVIC. This approach is crystallized as Wasserstein distance maximiz-202

ing intrinsinc control (WIC), and the above hypothesis is validated on a tabular grid world as well as203

a continuous four rooms domain. Finally, we have validated that the approach scales up to visual204

inputs and complex environments by evaluating it on the Atari domain.205
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