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Abstract
Simplicial neural network models are becoming
popular for processing and analyzing higher-order
graph data, but they suffer from high training com-
plexity and dependence on task-specific labels.
To address these challenges, we propose simpli-
cial scattering networks (SSNs), a parameter-free
model inspired by scattering transforms designed
to extract task-agnostic features from simplicial
complex data without labels in a principled man-
ner. Specifically, we propose a simplicial scat-
tering transform based on random walk matrices
for various adjacencies underlying a simplicial
complex. We then use the simplicial scattering
transform to construct a deep filter bank network
that captures high-frequency information at mul-
tiple scales. The proposed simplicial scattering
transform possesses properties such as permuta-
tion invariance, robustness to perturbations, and
expressivity. We theoretically prove that includ-
ing higher-order information improves the robust-
ness of SSNs to perturbations. Empirical evalua-
tions demonstrate that SSNs outperform existing
simplicial or graph neural models in many tasks
like node classification, simplicial closure, graph
classification, trajectory prediction, and simplex
prediction while being computationally efficient.

1. Introduction
Higher-order interactions between more than two entities
occur naturally in various fields, such as biochemistry, so-
cial networks, and coauthorship networks (Ilya et al., 2020).
A simplicial complex is a mathematical structure that cap-
tures not only pairwise interactions between entities but also
higher-order interactions among groups of entities (Schaub
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et al., 2020). Such higher-order interactions occur natu-
rally in social networks, email threads, and collaboration
networks, to name a few. While a graph can only represent
a pairwise friendship or a pairwise communication, simpli-
cial complexes can model friend circles or group emails. A
simplicial complex is a collection of simplices of different
orders, namely, nodes, edges, triangles, and so on. Unlike in
graphs, where an entity only has adjacency based on edges,
a simplex in a simplicial complex has multiple adjacencies,
allowing for a richer representation.

Building upon the success of graph neural networks
(GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017;
Xu et al., 2018) for analyzing graph-structured data, sim-
plicial neural networks (SNNs) are becoming popular for
learning representation from higher order simplices (Bodnar
et al., 2021; Yang et al., 2022; Roddenberry et al., 2021).
These neural networks overcome the limitations of GNNs
by processing higher-order interactions, thereby enriching
the function space learnt by the neural model and, in turn,
increasing the expressivity of representations (Bodnar et al.,
2021). Bodnar et al. (2021) also shows that MPSN outper-
forms graph-based neural models by clique lifting graph
data as this enables the model to increase the dimension of
the data and learning representations that are more expres-
sive than graph-based models. However, the requirement to
aggregate information from various types of neighborhoods
and different orders of simplices significantly increases the
number of trainable parameters involved in SNNs, increas-
ing its training complexity. Not only does this increase train-
ing time, but, as we show later on, it also requires substantial
training data, without which the performance of SNNs is
compromised. Another significant challenge in training the
parameters of SNN model is the need for task-specific labels.
It is hard to accurately label real-world, high-dimensional,
and complex data because of its complicated structures,
multiple true labeling schemes, and concerns about privacy.

Addressing these challenges and drawbacks of SNNs, we
propose a parameter-free model (i.e., a model without any
learnable parameters) to obtain topology preserving simpli-
cial representations in a principled manner. To do so, we
draw inspiration from scattering transforms (Mallat, 2012;
Bruna & Mallat, 2013a;b). In particular, we propose a
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scattering transform-based model to efficiently extract task-
agnostic features from simplicial complex data without la-
bels. Scattering transforms extract universal features using a
deep filter bank, which is designed, but not trained using any
labels. Scattering transform-based models are known for
their ability to extract representations with specific charac-
teristics, such as invariance to predetermined operations (i.e.,
node permutation), nonexpansiveness, robustness (or, sta-
bility) to perturbations, and expressivity. While invariance,
non-expansiveness, and stability of the scattering transform
can be established theoretically, its expressivity is shown
through empirical evidence (Bruna & Mallat, 2013a; Andén
& Mallat, 2014; Bruna & Mallat, 2013b; Angles & Mal-
lat, 2018). Although these methods are effective, they are
developed for Euclidean data, are more suited to image
and audio data, and do not account for relationships be-
tween entities in a dataset. Extending scattering transform
to graph-structured data, Gama et al. (2019b); Gao et al.
(2019); Zou & Lerman (2020) introduce geometric scatter-
ing based on diffusion transforms (Coifman & Maggioni,
2006) and spectral transforms (Hammond et al., 2009). Al-
though geometric scattering accounts for the interactions
between entities, similar to GNNs, it cannot capture the
higher-order interactions that exist between a set of entities.

In this work, we propose a simplicial scattering network
(SSN) to account for higher-order interactions that are
present in simplicial complexes. We show that SSN pre-
serves the characteristics of Euclidean and geometric scat-
tering transform: invariance to permutations in simplicial
complexes [cf. Theorem 5.1], non-expansiveness [cf. Theo-
rem 5.2], robustness to perturbations [cf. Theorem 5.4], and
expressivity through empirical evidence [cf. Section 6]. Fur-
thermore, we also show SSN extracts these features while
being computationally efficient [cf. Figure 2]. Our main
contributions are as follows:

• We propose random walk matrices to capture differ-
ent types of adjacency-based transition probabilities
among simplices in a simplicial complex. Unlike the
square random walk matrix used in geometric scatter-
ing, adjacency matrices of a simplicial complex are
not square and cannot be raised to integer powers. To
overcome this, we model the random walk matrices as
diffusion transforms on simplicial data through an itera-
tive process to formulate scattering transforms that can
capture high-frequency information across multiple
scales. By stacking multiple layers of simplicial scat-
tering transforms, we construct a simplicial scattering
network (SSN), which is interpretable as it follows a
principled approach to extract simplex representations
across varying frequency scales.

• Our approach to defining simplicial scattering trans-
forms, as mentioned earlier, involves an iterative pro-
cess for random walk-based diffusion of simplicial data

from various types of neighborhoods, which differs
from the traditional method of taking powers of ran-
dom walk matrices of graphs in geometric scattering.
Despite this difference, we theoretically demonstrate
that the specific design of SSN retains all the charac-
teristics of scattering transform, such as permutation
equivariance, non-expansiveness, and robustness to
structural perturbations. We theoretically prove the
advantage of incorporating higher-order information in
extracting representations of k-simplices. Specifically,
we provide theoretical evidence showing that including
higher-order information improves the robustness of
the model to perturbations.

We evaluate the SSN model on various tasks such as node
classification, graph classification, simplicial closure, tra-
jectory prediction, and simplex prediction. We demonstrate
that SSN performs better when incorporating boundary and
coboundary information rather than solely using upper and
lower adjacency information. We observe that SSN is supe-
rior to graph-based models by effectively capturing higher-
order information. SSN consistently outperforms or per-
forms on par with SNNs. Particularly, SSN excels in most
tasks as real-world labeled data is often insufficient for train-
ing complex SNN models, and many tasks require a global
view of the simplicial complex structure that SNNs fail to
capture. Importantly, SSN achieves these results with much
better time complexity, up to hundreds of times faster than
SNNs [cf. Fig. 2].

2. Geometric Scattering
As SSN is inspired by the layered geometric scattering net-
work, we briefly describe it in this section.

Diffusion-based geometric scattering transforms are based
on diffusion wavelets (Hammond et al., 2009). The wavelet
operators for graphs are constructed using the lazy random
walk matrix P = 1

2 (IN + AD−1) ∈ RN×N , where N
is the number of nodes in the graph with A and D being
its adjacency and degree matrices, respectively. When this
random walk matrix is applied to a graph signal x ∈ RN as
Px, the value x(v) for a node v is replaced with a localized
average of the neighboring nodes of v.

Diffusion operators act as low-pass filters when applied
to a graph signal x ∈ RN , which may lead to informa-
tion loss. To retain high-frequency information, wavelet
matrices ψj = P2j−1 − P2j are used at different scales
j = 1, 2, . . . , J . These matrices are sensitive to high-
frequency transitions of features at 2j hops. A nonlinear
modulus operator is then applied to the wavelet transformed
signal, resulting in an operation represented as |ψjx|. Fi-
nally, these transforms are applied in a layered manner,
forming a deep hierarchical representation with each layer
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capturing different features. The layers of the geometric
scattering transform can be mathematically represented as

Sx = f(x)

S|ψjx| = f(|ψjx|), for 1 ≤ j ≤ J

S|ψj′ |ψjx|| = f(|ψj′ |ψjx||), for 1 ≤ j ≤ j′ ≤ J, (1)

where, S is the scattering transform, f aggregates trans-
formed features, and j and j′ denote scales. The function
f is defined as a weighted sum or a simple summation
operator in Gama et al. (2019b) and Gao et al. (2019), re-
spectively. The resulting features S|ψjx| and S|ψj′ |ψjx||
are then concatenated to form an embedding vector for the
graph.

Theoretical results from Zou & Lerman (2020) and Gama
et al. (2019a) indicate the robustness of geometric scattering
transforms to perturbations in the graph structure. However,
these transforms are computed on graphs and only capture
pairwise interactions.

3. Simplicial Complexes
In this section, we describe a simplicial complex and the
types of adjacency matrices that represent a simplicial com-
plex.

Consider a set of nodes denoted by V . A k-simplex, repre-
sented as σk, refers to a simplex of order k and is a subset
of V consisting of k + 1 elements. A simplicial complex X ,
comprises a finite set of simplices. Simplicial complexes
satisfy the principle of inclusion, i.e., if σk is a part of X ,
then all non-empty subsets of σk are also included in X .
The order, K, of X is determined by the highest-ordered
simplex that it contains.

A k-simplex σk has four distinct types of neighbors in a sim-
plicial complex: lower, upper, boundary, and coboundary
adjacent neighbors. The lower adjacent neighbors repre-
sent simplices of the same order as σk that share a common
(k − 1)-simplex. Upper adjacent neighbors are simplices of
the same order as σk sharing a common (k + 1)-simplex.
The boundary adjacent neighbors represent all the (k − 1)-
simplices that are faces of σk. The coboundary adjacent
neighbors are all the (k + 1)-simplices for which σk is a
face. The incidence relationships between k-simplices and
(k − 1)-simplices are captured by the boundary matrix of
order k and is denoted by Bk ∈ RNk−1×Nk , where Nk

is the number of simplices of order k. Specifically, the
(i, j)th entry of the boundary matrix Bk is non-zero if the
ith (k − 1)-simplex forms a boundary of the jth k-simplex.
To model the orientation of simplices in Bk, the non-zero
entries in Bk can take values of either +1 or −1, reflecting
the relative orientations between the ith (k − 1)-simplex
and the jth k-simplex. However, for unoriented simplices,
unoriented incidence matrices are used where the (i, j)th

entry is 1 if the ith (k − 1)-simplex is a boundary of the
jth k-simplex and 0, otherwise. The upper and lower adja-
cencies between k-simplices can be represented using the
incidence matrices as Bk+1B

T
k+1 and BT

kBk, respectively.

We next introduce the proposed simplicial scattering trans-
forms in the following section.

4. Simplicial Scattering Network
Consider a simplicial complex of order K, denoted as X .
Let us collect the feature set of all simplices of all orders in
X = {X0,X1, . . . ,XK}, where Xk ∈ RNk×Dk , is the ma-
trix that is formed by stacking the features of all k-simplices.
Here, Dk denotes the dimension of the feature space for
k = 0, . . . ,K. Furthermore, the set of all the boundary
matrices of every order is collected as B = {B1, . . . ,BK}.

In what follows, we discuss the different components in a
simplicial scattering transform pipeline. Figure 1 illustrates
these different components.

Simplicial random walks. Let us introduce the concept
of random walk matrices, which are crucial in understand-
ing the interactions between the different elements in X .
These matrices represent the probability of transition be-
tween different simplices based on their adjacency relation-
ships. Specifically, we define four types of random walk
matrices, denoted as PC

k ∈ RNk×Nk+1 , PB
k ∈ RNk×Nk−1 ,

PL
k ∈ RNk×Nk , and PU

k ∈ RNk×Nk , corresponding to
the coboundary, boundary, lower, and upper adjacencies of
k-simplices, respectively. These matrices are defined as

PC
k+1 =

1

5
(DB

k+1)
−1Bk+1, PB

k =
1

5
B

T
k (D

B
k )

−1,

PL
k =

1

5
BT

kBk(D
L
k )

−1, and PU
k =

1

5
Bk+1B

T
k+1(D

U
k )

−1.

Here, DB
k = diag(Bk1), DL

k = diag(BT
kBk1), and

DU
k = diag(Bk+1B

T
k+11). The normalization of the kth

order boundary matrices by (DB
k )

−1 ensures that the tran-
sition probability from a k-simplex to a (k − 1)-simplex
is adjusted based on the number of k-simplices that each
(k − 1)-simplex is connected to. This prevents (k − 1)-
simplices connected to many k-simplices from dominat-
ing the random walk while ensuring that those with fewer
connections are adequately represented. Similarly, the nor-
malization of the kth order lower (or upper, respectively)
adjacency matrices by (DL

k )
−1 ensures a balanced transition

between k-simplices that share a (k−1)-simplex (or (k−1)-
simplex). This normalization prevents k-simplices that share
many (k − 1)-simplices (or (k − 1)-simplices) with other
k-simplices from dominating the random walk. In addition
to the previously defined random walk matrices, we also
introduce a random walk matrix PS

k = 1
5INk

∈ RNk×Nk

that corresponds to staying at the same simplex, where I is
the identity matrix. Given that we have four types of adja-
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Figure 1: Pipeline for embedding generation using simplicial scattering transform: (a) Initial features over nodes, edges, and triangles in
the complex. (b) Message propagation for all simplices from 1-hop neighbors. (c) Message propagation for edge e from 2-hop neighbors.
(d) Generation of simplicial scattering-based embedding for edge e at scale j = 1.

cencies and an additional possibility of staying at the same
simplex, we distribute the total probability equally among
these five possibilities. Therefore, we scale all the random
walk matrices by a factor of 1

5 , ensuring that the sum of the
probabilities across all possible movements (including stay-
ing put) equals 1. This scaling maintains the probabilistic
interpretation of the random walk matrices.

The boundary random walk matrices, denoted as PB
k , are

not square matrices, which inhibits the calculation of their
powers, as opposed to geometric scattering where the lazy
random walk matrices are square matrices. To address this,
we propose a series of transformations:

X
(j)
B,k = PB

kX
(j−1)
k−1 , X

(j)
C,k = PC

k+1X
(j−1)
k+1 ,

X
(j)
L,k = PL

kX
(j−1)
k , and X

(j)
U,k = PU

kX
(j−1)
k , (2)

to propagate information from the boundary, coboundary,
lower, and upper adjacent neighbors, respectively. In these
equations, the integer j signifies the scale of message pass-
ing. The final transformation aggregates self-information
with the information received from neighboring nodes as

X
(j)
k = AGGREGATE(PS

kX
(j−1)
k ,X

(j)
B,k,X

(j)
C,k,X

(j)
L,k,X

(j)
U,k). (3)

In our experiments, we choose the AGGREGATE function
to be summation. However, any aggregation function that
does not change the dimensions after aggregation, such
as average or weighted average, could be used. Fig. 1(a)
demonstrates message propagation for an edge e in a sim-
plicial complex. The process of aggregating features from
the self, boundary, coboundary, upper, and lower edge ad-
jacencies is demonstrated over the arrow from Fig. 1(a) to
Fig. 1(b). Next, the process is repeated to accumulate infor-
mation from the higher-hop neighbors. For instance, 2-hop
neighborhood aggregation, again corresponding to edge e,
is depicted over the arrow from Fig. 1(b) to Fig. 1(c).

Simplicial scattering transforms. With information gath-
ered from all four neighborhoods and across different scales,
the simplicial scattering transform is defined as

ψk,B
j X = X

(j−1)
B,k −X

(j)
B,k, ψk,C

j X = X
(j−1)
C,k −X

(j)
C,k,

ψk,L
j X = X

(j−1)
L,k −X

(j)
L,k, and ψk,U

j X = X
(j−1)
U,k −X

(j)
U,k. (4)

Taking differences between aggregated features from con-
secutive scales, as shown in (3), allows us to preserve high-
frequency information among different neighbors, result-
ing in discriminative features. The simplicial scattering
transforms at scale j = 1 involving computing the differ-
ence between the aggregated features from the 1-hop and
2-hop boundary, coboundary, upper, and lower adjacent
simplices, respectively, and aggregating these differences,
specifically for edge e, is shown in Fig. 1 over the arrow
from Fig. 1(c) to Fig. 1(d). This approach mitigates the
oversmoothing commonly encountered in message-passing
neural networks, where information from neighborhoods
is averaged, potentially leading to a loss of discriminative
power. By leveraging the differences between features from
different scales, our method thus ensures the retention of
valuable information while avoiding oversmoothing. Here,
ψk,N
j X denotes the high-frequency information between

the jth and j−1th neighborhood of type N ∈ {B, C,L,U}.
The features of k-simplices after the first order of scattering
transform at the scale j, denoted by |Ψk

jX|, are given by

|Ψk
jX| = |AGGREGATE(Xk, ψ

k,B
j X, ψk,C

j X, ψk,L
j X, ψk,U

j X)|

where | · | represents the nonlinear modulus operator. The
modulus operator is chosen due to its proven properties of
being equivariant to permutations, nonexpansiveness, and
stability (Zou & Lerman, 2020; Gama et al., 2019b), which
generalizes well to simplicial complexes, as we theoretically
show later on. Let J be a hyperparameter that represents the
maximum scale. At the final scale J , we assign the embed-
dings as |ΨJX| = {X(J)

0 ,X
(J)
1 , . . . ,X

(J)
K }, as calculated

by (3). We denote the set of embeddings of all orders by

|ΨjX| = {|Ψ0
jX|, |Ψ1

jX|, . . . , |Ψk
jX|}.

Deep simplicial scattering network. The computations
in (4) can be repeated multiple times, with the output of
one layer serving as the input to the next. This results in a
network for assigning representations for simplices, with
each layer capturing different types of features. We call
this network as the simplicial scattering network (SSN).
For example, in the second layer of SSN, we repeat the
computations from Equation (4), but this time we use |ΨjX|
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Figure 2: Runtime comparison of SSN with the geometric scat-
tering network (GSN) (Gao et al., 2019) and existing graph (Kipf
& Welling, 2017) and simplicial neural network models (Bodnar
et al., 2021; Yang et al., 2022).

as the input. Thus, we obtain

|Ψk
j′ |ΨjX|| =

∣∣∣[|Ψk
jX|+ ψk,B

j′ |Ψk
jX|+ ψk,C

j′ |Ψk
jX|

+ψk,L
j′ |Ψk

jX|+ ψk,U
j′ |Ψk

jX|
]∣∣∣ ,

where 1 ≤ j, j′ ≤ J . The set of embeddings for simplices
of all orders after the second layer of the SSN is denoted as

|Ψj′ |ΨjX|| = {|Ψ0
j′ |ΨjX||, . . . , |ΨK

j′ |ΨjX||}.

We sequentially concatenate M layers in this manner to
obtain the SSN embeddings. Finally, the embeddings of
k-simplices from these different layers can be pooled as

Sk(X,B) = COMBINE(Xk, |Ψk
jX|,Ψk

j′ |ΨjX|, . . .),

for 1 ≤ j, j′ ≤ J . In our experiments, we choose con-
catenation for the COMBINE function. Alternatively, any
aggregation function such as sum or average can be used.
The set containing embeddings of simplices of different
orders is denoted by ϕ(X ) = {Sk(X,B)}Kk=0.

In essence, SSN does not contain any learnable parame-
ters, enabling feature extraction without needing any train-
ing labels while being simple and computationally effi-
cient. We illustrate this in Fig. 2, wherein we compare
the runtimes required to compute the embeddings using
SSN with geometric scattering network (GSN) (Gao et al.,
2019) and existing neural network-based models such as the
graph convolutional network (GCN) (Kipf & Welling, 2017),
the message passing simplicial network (MPSN) (Bodnar
et al., 2021), and the simplicial convolutional neural net-
work (SCNN) (Yang et al., 2022), specifically for the task
of node classification on senate-bills dataset (Philip

et al., 2021). For the neural network-based models, we mea-
sure the time required to train a network with J layers. For
SSN and GSN, we compare the time taken to compute repre-
sentations using a maximum scale of J . We observe that the
runtime of the neural network models increases linearly with
the number of layers. However, since GSN and SSN involve
no training components, their runtime remains significantly
small for all J , with SSN running slightly slower compared
to GSN due to the inclusion of multiple adjacencies.

Next, we discuss the theoretical properties of the proposed
computationally efficient SNN model for learning simplicial
embeddings. Specifically, we present a theoretical demon-
stration that SSN satisfies all the fundamental properties
of scattering transforms, such as permutation equivariance,
nonexpansiveness, and robustness to perturbations. This
is achieved despite the fact that simplicial scattering trans-
forms do not involve powers of lazy random walk matrices,
but instead adopt a sequential approach, which is distinct
from the methods used in Euclidean and geometric scat-
tering transforms. Additionally, we study the impact of
higher-order interactions on the robustness of SSN and the-
oretically prove that incorporating higher-order information
enhances the robustness of SSN to perturbations.

5. Theoretical Characterization
Permutation equivariance. Permutation equivariance is an
essential property for SSN because the incidence matrix of
a simplicial complex can be represented with various per-
mutations. But, a permuted simplicial complex should have
the same representations as the original one. This property
of the SSN is encapsulated in the following theorem.

Theorem 5.1. Let {Πk ∈ Rnk×nk}Kk=0 represent permu-
tation matrices that act on the input feature matrices for
each order k = 1, . . . ,K. Define ΠX = {ΠkXk}Kk=0 and
ΠBΠT = {Πk−1BkΠ

T
k }Kk=0. Then, we have

Sk(ΠX,ΠBΠ
T
) = ΠSk(X,B).

The proof of this theorem is available in Appendix A. Ini-
tially, wherein we show that the computation of random
walk matrices and the proposed scattering transforms are
permutation equivariant. Given that the nonlinearity func-
tion (i.e., the modulus operator) and the COMBINE (Con-
catenation) function, which aggregates embeddings from
different scales, are permutation equivariant, it follows that
SSN, as a composition of these functions, is also permuta-
tion equivariant.

Non-expansiveness. The non-expansiveness property of the
scattering transform guarantees the conservation of signal
energy, which is important to preserve expressivity and
stability by bounding the scattering transform output. SSN
also exhibits non-expansiveness, i.e., energy conservation
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is guaranteed both before and after applying the scattering
transform. We formalize this in the following theorem.

Theorem 5.2. There exists a constant Ck > 0 for every
order k = 0, . . . ,K such that

Ck∥Xk∥ ≤
J∑

j=0

∥Ψk
jXk∥ ≤ ∥Xk∥.

The fact thatCk is greater than 0 implies that the information
in the signal is not entirely lost; hence, the transformed
features retain at least as much expressiveness as the initial
features of the simplices. Furthermore, the upper bound
suggests that the signal is not amplified, which indicates
stability of the simplicial scattering transform.

The proof of this theorem is provided in Appendix B. We
demonstrate non-expansiveness by showing that the pro-
posed sequential message passing-based transforms can be
represented in a form similar to that of scattering transforms
in existing geometric scattering methods. We show that this
representation holds even though the notion of adjacency
in our context differs, and our transforms do not involve
integer powers of lazy random walk matrices but instead
follow a sequential approach.

Stability. The stability of the scattering transform is mea-
sured by its ability to handle perturbations in the input data,
ensuring that similar inputs result in similar features in the
feature space. We analyze the stability of the simplicial
representations extracted using SSN. To characterize the
stability of the representations computed using SSN, we
define simplicial diffusion distance, extending the diffusion
distance used in geometric scattering to characterize stabil-
ity (Perlmutter et al., 2019).

Definition 5.3. Simplicial diffusion distance. Let X =
{Xk}Kk=0 and X̃ = {X̃k}Kk=0 be two simplicial complexes,
where Xk denotes the set of k-simplices. We have |Xk| =
|X̃k| for k = 0, . . . ,K, where |S| denotes the cardinality
of the set S. The random matrices corresponding to X are
denoted by PB

k , PL
k , and PU

k , and those corresponding to
X̃ are denoted by P̃B

k , P̃L
k , and P̃U

k . The diffusion distance
between the two simplicial complexes is defined as

dist(X , X̃ ) = min
{Πk∈P|X|k}

K
k=0

K∑
k=0

∥PB
k −Πk−1P̃

B
kΠ

T
k ∥2

+ ∥PL
k −ΠkP̃

L
kΠ

T
k ∥2 + ∥PU

k −Πk−1P
U
kΠ

T
k−1∥2. (5)

The following theorem formally states the stability of the
embeddings of SSN in terms of the simplicial diffusion
distance.

Theorem 5.4. Consider two simplicial complexes X =
{Xk}Kk=0 and X̃ = {X̃k}Kk=0 with |Xk| = |X̃k| for k =

0, . . . ,K. Let ϕ(X ) and ϕ(X̃ ) represent the SSN embed-
dings of the simplicial complexes X and X̃ , respectively.
Then, the following inequality holds∥∥∥ϕ(X )− ϕ(X̃ )

∥∥∥2
2
≤ Ldist(X , X̃ )

for L > 0.

This theorem suggests that SSN embeddings are robust to
small perturbations in the simplicial structure. In other
words, minor changes in the structure of the simplicial com-
plex will not significantly affect the resulting SSN embed-
dings. The proof of this theorem, which can be found in
Appendix C, utilizes a similar approach to that used in geo-
metric scattering. Despite the difference in the underlying
transforms, with SSN using sequential message passing-
based transforms as opposed to the powers of random walk
matrices used in geometric scattering, we demonstrate an
equivalence between the two, thereby establishing the sta-
bility of SSN embeddings with respect to perturbations in
the simplicial structure. Furthermore, we perform a numer-
ical experiment on the small-world graph (Watts & Stro-
gatz, 1998) consisting of 200 nodes to illustrate the stability
of SSN [cf. Fig. 3 in Appendix 3]. We observe that as
the rewiring probability increases (i.e., more the structure
changes), the simplicial diffusion distance increases, result-
ing in less stable representations.

Do we need aggregations from all the four adjacencies?
Next, we theoretically examine the impact of including
higher-order simplices on the stability of representations
produced by the SSN. Specifically, we prove that the repre-
sentations from SSN are more stable if (k+1)-simplices are
used for feature aggregation in the message passing-based
transformation stage of k-simplices, as opposed to using
only (k − 1) and k simplices. This is formally stated in the
following theorem.
Theorem 5.5. Consider two simplicial complexes X =
{Xk}Kk=0 and X̃ = {X̃k}Kk=0 with |Xk| = |X̃k| for k =
0, . . . ,K. Denote the simplicial scattering embeddings of
{Xk}Kk=0 in X (or {X̃k}Kk=0 in X̃ , respectively) as ϕ(X ) (or
ϕ(X̃ )). Consider a minor modification to the SSN model,
where the embeddings of simplices of a particular order, say
k, are now computed without propagating information from
(k+1)-simplices. Let the output of the simplicial scattering
model with such a modification be denoted by ϕ\k+1(X )
(or ϕ\k+1(X̃ )). Then, there exists constants L and L\k+1

such that ∥∥∥ϕ(X )− ϕ(X̃ )
∥∥∥2
2
≤ Ldist(X , X̃ )

and ∥∥∥ϕ\k+1(X )− ϕ\k+1(X̃ )
∥∥∥2
2
≤ L\k+1 dist(X , X̃ ),

with L ≤ L\k+1.
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This theorem suggests that for simplices of any order, utiliz-
ing information from higher-order simplices enhances the
stability of their representations.

While the computational efficiency, nonexpansivenss, and
stability can be demonstrated through theoretical analysis
and visual illustrations, the expressivity of SSN requires
validation through comprehensive numerical experiments.

6. Numerical Experiments
In this section, we empirically evaluate SSN, assessing its
performance across five downstream tasks: node classifi-
cation, graph classification, simplicial closure prediction,
trajectory prediction, and simplex prediction. 1 The embed-
dings computed using the SSN method can be utilized to
perform downstream tasks by feeding them into a simple
classifier. We employ a ridge classifier to classify nodes
from their embeddings, predict the closure of open sim-
plices from the embeddings of their constituent simplices,
predict trajectories from edge embeddings, and classify sim-
plices from their embeddings. However, for graph classi-
fication, we use a multi-layer perception. The code to run
the experiments is available at https://github.com/
HirenMadhu/SSN.

6.1. Baselines

We evaluate our approach by comparing it against vari-
ous supervised and unsupervised techniques, denoted as
S and US, respectively. More details about these meth-
ods are detailed in the following subsection. We compare
the performance of our unsupervised SSN model against
a variety of both supervised and unsupervised models.
This includes simplicial neural network-based supervised
models such as simplicial convolutional neural networks
(SCNN) (Yang et al., 2022) and message passing neural
networks (MPSN) (Bodnar et al., 2021). We also bench-
mark against graph neural network-based supervised mod-
els, including graph convolutional network (GCN) (Kipf &
Welling, 2017), graph attention networks (GAT) (Veličković
et al., 2018), graph isomorphism networks (GIN) (Xu et al.,
2018), and GraphSage (Hamilton et al., 2017). In addi-
tion, we compare our SSN model with the unsupervised
geometric scattering network (GSN) (Gao et al., 2019) and
other supervised geometric scattering models such as scat-
tering GCN (ScGCN) (Min et al., 2020b), and geometric
scattering attention network (GSAN) (Min et al., 2020a).
We also introduce a variant of our SSN model, denoted
by SSN-WOB, in which the aggregation is performed us-
ing only the Hodge Laplacians and ignoring boundary
and coboundary adjacencies. Additionally, we introduce

1Details related to the datasets, feature initialization, and exper-
imental setup can be found in Appendix E.

a method named Diffusion. In this approach, we only
concatenate X(j) across scales without computing the differ-
ence. Lastly, we include two additional baseline methods for
comparison. For simplicial closure prediction, we consider
logistic regression (Log. Reg.) as described in (Benson
et al., 2018). For trajectory prediction, we use a projection-
based method (denoted as Projection) from (Rodden-
berry et al., 2021), which is based on projecting the input
edge features onto the Hodge Laplacian kernel. For all the
graph-based baselines, we utilize the first-order simplicial
complexes as inputs wherever simplicial complex structures
are available, such as in all tasks other than graph classifi-
cation. When only graph structures are available, as in the
case of graph classification, the graph-based models take the
graph as input, while the simplicial complex-based models
take clique-lifted graphs as input.

6.2. Downstream Tasks

We discuss the details of these tasks next.

Node classification. Node classification involves pre-
dicting labels for 0-simplices, within a given simpli-
cial complex. We carry out node classification on pub-
licly available datasets, namely the primary-school,
high-school, and senate-bills datasets (Philip
et al., 2021). The performance metric utilized to evaluate
node classification is the accuracy of the classification.

Graph classification. Graph classification involves cate-
gorizing graphs (specifically, clique-lifted graphs) as be-
longing to different classes. Since this task requires the ex-
traction of representations for the entire graph, we concate-
nate embeddings of different simplices. Our experiments
are conducted on the PROTEINS, NCI1, REDDIT-B,
REDDIT-M, and IMDB-B datasets from the TUDatasets
repository (Morris et al., 2020). We employ mean accuracy
calculated after training over ten folds as the metric.

Simplicial closure prediction. For simplicial closure pre-
diction, we focus on predicting the closure of open triangles
within a time series of simplicial complex data. To obtain
a representation for an open triangle, we concatenate the
representations of its constituent nodes and edges. This rep-
resentation is then used for classification purposes. We carry
out this task on the email-Enron, primary-school,
and high-school datasets. The data is temporally split,
with the first 80% used for training the encoder and the
remaining 20% for inference. Given the skewed nature of
the dataset, we use the area under the precision-recall curve
(AUC-PR) as the performance metric.

Trajectory prediction. Trajectory prediction is a task that
involves predicting the next node in a sequence, given a
sequence of nodes. We assess the performance of trajec-
tory prediction on the Ocean (Roddenberry et al., 2021),
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Method Type high-school primary-school senate-bills
GCN S 98.2 ± 1.3 76.12 ± 2.89 80.34 ± 2.65

GraphSage S 95.2 ± 2.1 76.94 ± 3.54 78.47 ± 9.77
GAT S 93.9 ± 4.3 71.02 ± 5.38 80.51 ± 2.96
GIN S 94.7 ± 1.8 80.00 ± 3.63 68.31 ± 17.48

ScGCN S 42.4 ± 4.4 29.2 ± 2.2 66.4 ± 3.9
GSAN S 42.3 ± 5.0 28.4 ± 2.1 67.1 ± 3.1
GSN US 27 ± 2 31 ± 3.8 58.3 ± 5.4
SCNN S 86 ± 5 68.14 ± 3.18 77 ± 4
MPSN S 91 ± 2 72.65 ± 4.58 77.1 ± 4.1

Diffusion US 85 ± 3.13 76.3 ± 4.2 78.47 ± 4.59
SSN-WOB US 95.91 ± 3.32 81.63 ± 3.29 80.85 ± 1.86

SSN US 99.39 ± 0.74 91.43 ± 2.20 83.22 ± 3.9

Table 1: Accuracies of node classification on simplicial complex datasets.

Method Type PROTEINS NCI1 IMDB-B REDDIT-B REDDIT-M
DGCNN S 72.9 ± 3.5 76.4 ± 1.7 69.2 ± 3.0 87.8 ± 2.5 49.2 ± 1.2
GIN S 73.3 ± 4.5 80.0 ± 1.4 71.2 ± 3.9 89.9 ± 1.9 56.1 ± 1.7

GraphSage S 73.0 ± 4.5 76.0 ± 1.8 68.8 ± 4.5 84.3 ± 1.9 50.0 ± 1.3
GSN US 74.1 ± 4.0 79.1 ± 1.2 71.2 ± 3.2 89.6 ± 2 53.3 ± 1.4
MPSN S 76.5 ± 3.4 82.8 ± 2.2 75.6 ± 3.2 92.2 ± 1.0 57.3 ± 1.6
SSN US 78.2 ± 3.4 77.7 ± 2.6 74.8 ± 3.6 88.4 ± 3.2 52.2 ± 1.4

Table 2: Graph classification accuracies on TUDatasets.

Synthetic (Roddenberry et al., 2021), and Mesh (Cor-
donnier & Loukas, 2018) datasets. The metric used to ana-
lyze the performance of our model is classification accuracy.

Simplex prediction: Simplex prediction involves classify-
ing the type of a simplex within a given simplicial com-
plex. If a higher-order representation is available, we
use it to classify the simplex type. Otherwise, we aver-
age the node representations for classification. We report
the classification accuracy for the madison-reviews,
algebra-questions, and geometry-questions
datasets (Ilya et al., 2020).

In all the results presented as tables in the paper, bold indi-
cates the best and underline means the second best.

6.3. Discussion

Performance. The empirical results demonstrate that the
proposed unsupervised SSN method surpasses all graph-
based methods, including supervised graph neural network
methods and both supervised and unsupervised geometric
scattering methods. Notably, SSN also consistently out-
performs supervised simplicial complex-based baselines,
except for some graph classification experiments, wherein
MPSN slightly outperforms SSN on certain datasets.

In the case of node classification (Table 1), SSN exceeds
all the supervised graph methods and simplicial methods,
with an average increase of 5.23% compared to the best-
performing graph-based method and an average increase of
11.1% compared to the best-performing simplicial method.
For simplicial closure prediction (Table 3), SSN outper-
forms the non-neural network-based logistic regression
model by a substantial margin. It also surpasses the sim-
plicial neural network models MPSN and SCNN on all three
datasets. In the trajectory prediction task (Table 4), SSN
significantly outperforms existing methods on the ocean
drifters dataset and the synthetic dataset, with an average

Method Type email-Enron high-school primary-school
Random baseline (RB) Untrained 0.0537 0.0112 0.0105
Log. Reg. / RB S 0.55 ± 0.0 0.59 ± 0.0 1.79 ± 0.0

SCNN/RB S 14.17±0.1 9.10±0.0 20.19±0.0
MPSN/RB S 14.51±0.0 84.34±0.00 41.05±0.20

SSN-WOB/RB US 17.20 ± 0.97 68.48 ± 1.39 47.62±0.0
SSN/RB US 17.26 ± 0.87 85.36 ± 1.17 47.62±0.0

Table 3: AUC-PR scores for simplicial closure prediction on various datasets.

Method Type Ocean Synthetic Mesh
Projection S 27.15±0.0 52.0±0.0 30.9±0.0

SCoNe S 30.0±0.6 55.4±1.1 98.5±1.9
SCNN S 28.5±0.6 50.5±1.0 98.1±2.0
SSN US 49±2 61±0 97.7±0.05

Table 4: Accuracy results from trajectory prediction experiments.

increase of 11.9%. On the Mesh dataset, although SSN
does not achieve the best performance, it exhibits a lower
standard deviation than the other two methods. In the graph
classification task (Table 2), SSN outperforms graph meth-
ods on the PROTEINS and IMDB-B datasets. Finally, in
the simplex classification task (Table 5), SSN outperforms
all the graph-based models on all the datasets and simpli-
cial neural network-based models on the majority of the
datasets.

Taking differences in SSN preserves the discrimina-
tive power of the embeddings. We observe that using
Diffusion embeddings instead of the difference scat-
tering embeddings results in significantly poorer perfor-
mance. This highlights the advantage of computing differ-
ences between aggregated features at consecutive scales,
which enhances feature expressiveness and minimizes infor-
mation loss from averaging. Furthermore, we also notice
that Diffusion does outperform MPSN and requires the
learnable parameters from MPSN to compute discriminative
features for simplices.

SNNs require abundant data in order to achieve optimal
performance. An interesting observation from the node
classification results (Table 1) is that GNNs tend to perform
better than SNNs. This could be attributed to the increased
number of parameters in the simplicial models, which can-
not converge as effectively as simpler graph models with
fewer parameters. The increased parameter complexity of
the simplicial neural network-based models necessitates
more data to learn the optimal set of parameters. Thus,
simplicial-based methods do not perform as well compared
to graph-based models. However, because SSN does not
require training and considers the simplicial structure, the
extracted features are expressive and simplicial-aware, lead-
ing to superior performance. In contrast, in Table 2 and 5,
we observe that simplicial models perform well because
substantial higher-order data is available.

Method Type madison-reviews algebra-questions geometry-questions
GCN S 95.5±1.7 66.1±2.6 72.1 ± 2.5
GSN US 55.6 ± 2.1 37 ± 2.6 43.2 ± 2.3
SCNN S 89.9 ± 2.9 65 ± 2 79.1 ± 1.8
MPSN S 94 ± 2.4 66.9 ± 2.5 82.3 ± 2.1

Diffusion US 91.7 ± 2.5 61.5 ± 3.5 69.1 ± 2.2
SSN-WOB US 94.4 ± 1.4 55.20 ± 3.6 64.81 ± 3.49
SSN US 96.3 ± 1 73.2 ± 2.8 79.9 ± 2.1

Table 5: Simplex prediction accuracies on various datasets.
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SSN captures global information of simplicial complexes.
Another observation from the simplicial closure experiments
(Table 3) is that the ideal representation for simplicial clo-
sure should embed both local information of the simplex of
interest and global information in the simplicial complex.
This is achievable with SSN because increasing the scale J
enhances the information aggregation range and scattering
features take a global view of the simplicial complex.

SNNs outperform existing graph baselines on large
datasets with small graphs. For graph classification (Ta-
ble 2), we observe that MPSN outperforms all the meth-
ods. Since many graphs are available as training data, the
MPSN can learn an optimal set of parameters in a super-
vised training setting. Further, MPSN is as powerful as the
SWL test (Bodnar et al., 2021), i.e., it computes unique
representations of two simplicial complexes if they are not
isomorphic by the SWL test. This also contributes to the
superior performance of MPSN in graph classification tasks.

SSN performs on par with graph-based methods when
no higher-order data is available. From Table 2, we note
that SSN performs on par with certain graph-based meth-
ods, such as GIN, on NCI1. This is due to the absence of
cliques in these datasets, resulting in simplicial complexes
being identical to graphs. As a result, these simplicial com-
plexes fail to provide any supplementary information from
which SSN could benefit. In other datasets, SSN either
outperforms graph methods or yields similar performance
compared to graph methods, as ample cliques exist.

Summary. When sufficient higher-order information is
present, SSN performs better than graph-based models and
outperforms SNNs in tasks requiring a global view of the
data and in situations where sufficient training data is un-
available. Another common observation across all tasks is
that SSN benefits from including boundary and cobound-
ary information over only upper and lower adjacency data,
aligning with the theory in (Bodnar et al., 2021) that such
inclusion enhances embedding expressivity.

Ablation study. To illustrate the significance of the maxi-
mum scale J , we test SSN with varying values of J . The
results are presented in Appendix F (Table 8), where we
show that the performance of SSN increases with J until
it saturates. Additionally, we assessed the effectiveness of
SSN in low-resource settings by training it and the baselines
with different levels of training data. SSN is observed to
outperform MPSN, especially when less labeled data was
available, further underscoring the suitability of SSN in
data-limited scenarios.

7. Related works
The simplicial scattering model draws inspiration from scat-
tering methods initially developed for Euclidean data, such

as images and audio (Mallat, 2012). This approach was
later adapted into a layered structure, similar to convolu-
tional neural networks (CNNs), and has proven effective
in various audio and image processing applications, partic-
ularly in low-resource settings (Bruna & Mallat, 2013a;b;
Andén & Mallat, 2014; Angles & Mallat, 2018). However,
these methods primarily cater to Euclidean data and do not
account for relations between dataset samples.

Extending scattering transforms to graph data, Gama et al.
(2019b); Gao et al. (2019) employs diffusion wavelets in-
troduced in Coifman & Maggioni (2006) to extract graph
features. Following this work, methods that fuse scattering
features with some learning components have been intro-
duced (Tong et al., 2020; Castro et al., 2020; Angles &
Mallat, 2018; Min et al., 2020b). Note we can introduce
learning components in SSN by making the AGGREGATE
and COMBINE functions learnable. However, due to the
learnable components, they require labels to train the pa-
rameters. In a different approach, Zou & Lerman (2020) in-
troduces geometric scattering that utilizes spectral wavelets
introduced in Hammond et al. (2009). However, this method
is computationally expensive due to spectral decomposition.
Furthermore, similar to GNNs, all the above geometric scat-
tering methods are constrained to pairwise interactions.

The Hodgelets method (Roddenberry et al., 2022) extends
(Zou & Lerman, 2020) to simplicial complexes using spec-
tral decomposition of the Hodge Laplacian matrices. How-
ever, the Hodgelets method does not consider boundary and
coboundary adjacencies, which are known to enhance the
expressivity of simplicial models Bodnar et al. (2021). Fur-
ther, Hodgelets require spectral decomposition, which is
computationally expensive, hindering the scalability of the
method.

8. Conclusion
We introduced SSN, a computationally efficient, training-
free model for computing embeddings in a simplicial com-
plex. SSN uses lazy random walk matrices and a sequen-
tially designed filter bank to capture frequency components
in the input data, producing task-agnostic, simplicial-aware
representations. We showed that SSN exhibits permutation
equivariance, nonexpansiveness, and robustness to minor
simplicial structure perturbations. We also demonstrated
that using higher-order simplices for feature aggregation in
the transformation stage improves the stability of the out-
put representations. Numerical experiments also showed
that SSN performs better when it includes boundary and
coboundary information. SSN also outperformed graph-
based models when sufficient higher-order information is
available and surpasses other simplicial neural network mod-
els in tasks requiring a global view of the data or when
training data is limited.
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A. Proof of Theorem 5.1
With boundary matrices permuted as ΠBΠT = {Πk−1BkΠ

T
k }Kk=0, the random walk matrices corresponding to boundary,

upper, and lower adjacencies, are altered to
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respectively. Here, we have used the fact that ΠT
kΠk = I to simplify the expressions. The message passing-based transforms

in (2) corresponding to information propagation from boundary, coboundary, upper, and lower adjacent neighbors are
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(j)
U,k = P̄U

kΠkX
(j−1)
k = ΠkP

U
kX

(j−1)
k = ΠkX

(j)
U,k, (7)

respectively. The final update aggregation transform for the permuted data is therefore given by

X̄
(j)
k = X̄

(j−1)
k + X̄

(j)
B,k + X̄

(j)
C,k + X̄

(j)
L,k + X̄

(j)
U,k

= Πk

(
X

(j−1)
k +X

(j)
B,k +X

(j)
C,k +X

(j)
L,k +X

(j)
U,k

)
= ΠkX

(j)
k . (8)

This leads to the simplicial scattering transform being Πk(X
(j−1)
k −Xj

k), which is ΠkΨ
k
jX, i.e., when the data Xk and

the boundary matrices Bk for k = 0, 1, . . . ,K are permuted using set of permutation matrices Π = {Π0, . . . ,ΠK}, the
output of the simplicial scattering transform after one layer, denoted by Ψk

jX, is permuted by the same permutation matrix.
Hence, the operations involved in simplicial scattering are proved to be permutation equivariant. As the subsequent layer in
the model involves the same operations but with ΠkΨjX as input, the model continues to be permutation equivariant. The
same reasoning could to applied to the subsequent J layers that follow. Since we choose the final COMBINE function to be
concatenation, which preserves permutation equivariance, the permutation equivariance SSN is proved.

B. Proof of Theorem 5.2
Despite the fact that SSN incorporates multiple aggregations from various types of adjacent simplices of different orders,
the complete set of random walk-based diffusion transforms as given in (2) can be compactly represented using a single
diffusion matrix. Specifically, consider the following matrix T ∈ RN×N

T =


In0 +PU

0 PC
1 0 0 · · · 0 0 0

PB
1 In1

+PU
1 +PL

1 PC
2 0 · · · 0 0 0

0 PB
2 In2 +PU

2 +PL
2 PC

3 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 PB

K InK
+PL

K

 (9)

where N =
∑k

i=0Nk. Consider a matrix X̄ that stacks the features of simplices of different orders, denoted as X̄ =

[X
(j)
0

T

,X
(j)
1

T

, · · · ,X(j)
K

T

]T. When we multiply the diffusion matrix T with X̄, it equates to executing the random walk-
based diffusion transforms for simplices of all orders. More specifically, the operations that correspond to the multiplication
of the kth row in T with the kth entry in X̄ yield results equivalent to those in equation (2). Let X̄j+1 = T(j)X̄. The SSN
embeddings of all orders after the first layer, denoted as |ΨjX̄|, can now be computed by |ΨjX̄| = |X̄(j−1) − X̄(j)|, for
j < J and as |ΨJX̄| = X̄(J) for j = J . By appropriately indexing the entries of |ΨjX̄|, first order simplicial scattering
features for simplices of order k can be obtained. This procedure can be extended to the further layers in the SSN model.

12



Unsupervised Parameter-free Simplicial Representation Learning with Scattering Transforms

While the simplicial scattering transform differs from geometric scattering transforms due to its sequential application
of random walk-based transforms from various neighbor types, we find a parallel in the way the simplicial complex is
represented. This representation is similar to the form of geometric scattering as detailed in the work by Gama et al. (2019b).
Building on the nonexpansiveness proof of geometric scattering found in Gama et al. (2019b), we can similarly establish the
nonexpansiveness of SSN.

C. Proof of Theorem 5.4
Let the diffusion operators of the simplicial complexes X and X̃ , denoted by T and T̃, respectively, be defined as in (9).
These diffusion matrices enable us to represent the simplicial scattering transform in a manner analogous to the presentation
of geometric scattering. This is achieved despite not taking the powers of lazy random walk matrices, as is done in geometric
scattering transforms, as detailed in Appendix B. This representation also enables us to extend the stability properties
inherent to geometric scattering models to simplicial scattering models. It has been proved in Gama et al. (2019b) that the
stability of the geometric scattering models is dependent solely on the spectral gap of the graph diffusion matrices or the
lazy random walk matrix associated with a graph. The spectral gap of a matrix is defined as the difference between its two
largest eigenvalues. Observing the similarity in the structure of the two transforms, where the graph diffusion matrix in
geometric scattering is replaced by T in (9) for SSN, we can assert that the stability of SSN is entirely dependent on the
spectral gap of the diffusion matrix T.

Let the eigenvalues of T and T̃ be denoted by 1 = λ0 > λ1 ≥ . . . ≥ λN ≥ 0 and 1 = λ̃0 > λ̃1 ≥ . . . ≥ λ̃N ≥ 0,
respectively. Note that the largest eigenvalues of these matrices are 1, a result of the construction of random walk matrices.
Specifically, because all individual random walk matrices corresponding to all five possible movements (including staying
put) are normalized and further scaled by a factor of 1

5 . Consequently, the spectral gaps of T and T̃, denoted by β and β̃, are

1− λ1 and 1− λ̃1, respectively. Let us define β∗ = max
{
β, β̃

}
. Then, from Lemma 5.1 of (Gama et al., 2019b), we have

∥∥∥ϕ(X )− ϕ(X̃ )
∥∥∥2
2
≤ 2

√
β∗2(1 + β∗2)

(1− β∗2)3
dist(X , X̃ ) = Ldist(X , X̃ ),

where L is a constant that is solely dependent on β∗.

D. Proof of Theorem 5.5
Consider two simplicial complexes as defined in Definition 5.3. Let the simplicial scattering embeddings of {Xk}Kk=0 in X
(or {X̃k}Kk=0 in X̃ , respectively) output by SSN be denoted by ϕ(X ) (or ϕ(X̃ )). Consider a minor modification to the SSN
model, where the embeddings of simplices of a particular order, say k, are now computed without propagating information
from (k + 1)-simplices. Let the output of the simplicial scattering model with such a modification be denoted by ϕ\k+1(X )
(or ϕ\k+1(X̃ )). From Theorem 5.4, we know that there exists two constants, L and Lk+1 that satisfy

∥∥∥ϕ(X )− ϕ(X̃ )
∥∥∥2
2
≤ Ldist(X , X̃ )

and

∥∥∥ϕ\k+1(X )− ϕ\k+1(X̃ )
∥∥∥2
2
≤ L\k+1 dist(X , X̃ ). (10)

The objective here is to show L ≤ L\k+1, which implies that the bound corresponding to simplicial scattering that uses
information from k + 1 simplices to assign embeddings to simplices is tighter than simplicial scattering that does not use
(k + 1)-simplices.

As in Appendix B, we can represent ϕ(X ) using T defined in (9). We can define a similar matrix, denoted by T\k+1, which
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compactly represents the diffusion operators that result in the simplicial scattering embeddings ϕ\k+1(X ) as

T\k+1 =



In0
+ PU

0 PC
1 0 0 · · · 0 0 0 0 · · · 0 0

PB
1 In1

+ PU
1 + PL

1 PC
2 0 · · · 0 0 0 0 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 · · · PB
k INk

+ PL
k 0 0 · · · 0 0

0 0 0 0 · · · 0 PB
k+1 Ink+1

+ PL
k+1 + PU

k+1 PC
k+1 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 0 · · · 0 0 0 0 · · · PB
k−1 InK

+ PL
K


.

Here, the random walk matrices corresponding to information aggregation from upper and coboundary adjacent simplices
of k-simplices, i.e., aggregations that depend on k + 1 simplices are ignored. Similarly, we can define T̃ and T̃\k+1 by
replacing random walk matrices in T and T\k+1, respectively, with random walk matrices constructed using the boundary
matrices of X̃ . With T, T\k+1, T̃, and T̃\k+1 as defined above, we observe that

T = T\k+1 +



0 0 0 0 · · · 0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0 0 0 · · · 0 0

...
...

...
. . .

...
...

...
...

...
...

...
...

0 0 0 0 · · · 0 PU
k PC

k+1 0 · · · 0 0
0 0 0 0 · · · 0 0 0 · · · 0 0

...
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 0 0 0 · · · 0 0


= T\k+1 + T̄\k+1. (11)

Notice that the stability bound given by (10) increases with increasing β∗ = max(β1, β̃1). Therefore, proving L ≤ L\k+1

is equivalent to showing

β(T)∗ = max(1− λ1(T), 1− λ̃1(T))

≥ β(T\k+1)
∗ = max(1− λ1(T\k+1), 1− λ̃1(T\k+1)),

where λ1(A) and β(A) denote the second largest eigenvalue and the spectral gap of a matrix A, respectively.

Notice that T̄\k+1 is a block upper triangular matrix with the only block along the diagonal being PU
k . The smallest

eigenvalue of T̄\k+1 is thus 0. Using Weyl’s inequality and the bound on the smallest eigenvalue of T̄\k+1, denoted by
λnk

(T̄\k+1), we can relate the second largest eigenvalues of T\k+1 and T. Specifically, we have

λ1 (T)− λ1
(
T\k+1

)
≥ λN (T̄\k+1) = 0. (12)

Similarly, we could decompose T̃ as T̃ = T̃\k+1 +
¯̃T\k+1 and prove that

λ1

(
T̃
)
− λ1

(
T̃\k+1

)
≥ λN ( ¯̃T\k+1) = 0. (13)

where λN ( ¯̃T\k+1) denotes the smallest eigenvalue of ˜̄T\k+1. From (12) and (13), we have

β(T)∗ = max
(
1− λ1 (T) , 1− λ1

(
T̃
))

≤ max
(
1− λ1

(
T\k+1

)
, 1− λ1

(
T̃\k+1

))
= β(T\k+1)

∗. (14)

This, from Appendix C, proves that L ≤ L\k+1, i.e., the simplicial scattering embeddings ϕ(X ) are more stable than
ϕ\k+1(X ).

E. Details Related to Experiments
Datasets. The datasets used in the experiments and the number of simplices of various orders in them are summarized in
Table 6. These include high-school, primary-school, senate-bills, email-Enron, madison-reviews,
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Dataset Simplex #0-simplicies #1-simplicies #2-simplicies Order
high-school Group of people 327 5818 2370 3

primary-school Group of people 242 8317 5139 3
senate-bills Co-sponsors 294 6974 3013 3
email-Enron Email groups 142 1655 6095 3

madison-reviews Users who reviewed 566 2916 4962 10
algebra-questions Users who answered questions 584 3084 8444 9
geometry-questions Users who answered questions 429 4296 13894 9

Table 6: Dataset statistics.

Method Type 20-80 40-60 60-40 80-20
GCN S 68.30 ± 3.05 72.33 ± 2.67 74.33 ± 4.08 76.12 ± 2.89

ScGCN S 23.5 ± 1.4 23.8 ± 1.2 25.1 ± 1.5 29.2 ± 2.2
GSAN S 22.9 ± 1.2 25.4 ± 1.8 25.2 ± 1.9 28.4 ± 2.1
GSN US 26.3 ± 2.5 28.2 ± 2.3 29.4 ± 2.7 31 ± 3.8
SCNN S 55.57 ± 5.44 62.53 ± 2.64 66.53 ± 6.90 68.14 ± 3.18
MPSN S 57.01 ± 2.87 64.59 ± 2.47 67.73 ± 3.60 72.65 ± 4.58
SSN US 62.8 ± 3.8 71 ± 3.2 75.2±3.5 85.6±4

(a) Node classification accuracies on primary-school
Method Type 20-80 40-60 60-40 80-20
GCN S 91.6 ± 1 94.2 ± 1.2 94.6 ± 1.1 95.5 ± 1.7
GSN US 46.7 ± 1.2 52.4 ± 2 54.2 ± 1.6 55.6 ± 2.1
SCNN S 78.4 ± 1.6 84.7 ± 1.9 89.1 ± 1.9 89.9 ± 2.9
MPSN S 79.8 ± 1.8 88.1 ± 2.2 91 ± 1.6 94 ± 2.4
SSN US 92.9 ± 1 96.4 ± 1.2 96.5 ± 1 96.3 ± 1

(b) Simplex classification accuracies on madison-reviews

Method Type 20-80 40-60 60-40 80-20
GCN S 67.2 ± 1.5 70.0 ± 1.7 71.1 ± 2.5 72.1 ± 2.5
GSN US 39.2 ± 2.4 41.8 ± 3 42.6 ± 2.2 43.2 ± 2.3
SCNN S 72 ± 1 76 ± 4 76.4 ± 1 79.1 ± 1.8
MPSN S 73.2 ± 1.8 79.3 ± 1.3 81.7 ± 2.1 82.3 ± 2.1
SSN US 71.1 ± 1.7 74.7 ± 1.6 76.3 ± 1.0 79.9 ± 2.1

(c) Simplex classification accuracies on geometry-questions

Table 7: Experimental results with partially labeled data.

algebra-questions, and geometry-questions. In the high-school and primary-school datasets, a
simplex represents a group of individuals in close proximity, with the classes denoting the locations of the students. For the
senate-bills dataset, a simplex is a group of individuals co-sponsoring bills in the Senate, with the class indicating the
political party of the sponsors. In the email-Enron dataset, a simplex signifies a group of people in an email group. In
the madison-reviews dataset, a simplex is a group of people who have reviewed a certain type of restaurant, and the
simplex class is the type of the restaurant. Lastly, in the algebra-questions and geometry-questions datasets,
simplices are groups of people who answered a certain type of question, with the simplex labels being the question tags.

Feature Initialization. To initialize features for the simplices of the simplicial complexes, we adopt the procedure outlined
in (Madhu & Chepuri, 2023). This procedure is based on anchor nodes and is used for the node classification, simplicial
closure, and simplex prediction tasks. For the task of trajectory prediction, the initial features are already provided with the
dataset. In the case of graph classification, we utilize the degrees of the nodes as features. The features of a simplex are
initialized as the sum of the features of the nodes that constitute the simplex.

Setup. To ensure a fair comparison, we standardize the use of two message passing layers for all neural models, which
include SNNs and GNNs. However, we adjust the hidden dimensions and learning rate for each encoder to optimize
performance. The encoder parameters are optimized using the Adam optimizer. For SSN, we employ two scattering layers
and experiment with different Js, ranging from 1 to 10. We present the best performance achieved using all Js. The entire
process, which includes reading the data, running feature extraction for all Js, applying these features for any downstream
application, and evaluating system performance, takes approximately 1 to 2 minutes. This highlights the efficiency of SSN
in handling these tasks.

F. Additional Experiments
To demonstrate the effectiveness of SSN in low-resource settings, we conduct an experiment where we first extract features
using SSN and then partition the data into different splits, such as 20 − 80, 40 − 60, 60 − 40, and 80 − 20. Here, the
split notation a-b represents a% of the data used for training and b% for testing the linear classifier trained at the end. We
carry out node classification on the primary-school dataset and simplex prediction on the madison-reviews and
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high-school primary-school senate-bills
J = 1 62.58 ± 5.83 34.29 ± 3.85 67.63 ± 4.51
J = 2 72.58 ± 6.34 45.71 ± 4.85 75.25 ± 5.32
J = 3 87.12 ± 4.56 53.47 ± 3.51 75.42 ± 4.63
J = 4 94.85 ± 2.46 65.10 ± 5.43 78.31 ± 3.77
J = 5 95.45 ± 2.35 73.47 ± 4.56 80.34 ± 3.14
J = 6 96.36 ± 2.27 77.14 ± 5.90 78.98 ± 3.73
J = 7 98.03 ± 2.04 82.45 ± 5.79 80.34 ± 4.30
J = 8 98.33 ± 1.06 87.76 ± 2.41 83.22 ± 3.90
J = 9 99.39 ± 0.74 91.22 ± 2.05 81.53 ± 6.80
J = 10 99.39 ± 0.74 91.43 ± 2.20 80.68 ± 2.86

Table 8: Results with varying J on node classification datasets

Figure 3: Stability of SSN for varying degrees of perturbations in simplicial complexes.

geometry-questions datasets. As depicted in Tables 7a, 7b, and 7c, performance improves as the size of the training
data increases. Notably, SSN significantly outperforms SNNs in scenarios with less labeled data (20-80 and 40-60 splits),
indicating that SSN is a superior choice when there is a scarcity of labeled data.

We demonstrate the importance of the maximum scale J through comparison across different J values, ranging from 1 to
10, as shown in Table 8. The results reveal that performance significantly improves with an increase in J at lower scales, but
it eventually stagnates as J continues to increase.

We demonstrate the stability of SSN in Fig. 3, where we conduct a numerical experiment on a small-world graph (Watts
& Strogatz, 1998) consisting of 200 nodes. Following this, we transform the graph into a simplicial complex, X , using
the clique lifting method. We then generate an additional 200 graphs and convert them into 200 simplicial complexes,
denoted as {X ′

i}200i=1, using the same procedure. We employ SSN to extract embeddings from these simplicial complexes
and compute the distance between simplicial embeddings of X and each of the X ′

i . We then calculate the mean of all these
distances. We repeat the procedure for incrementally increasing rewiring probabilities and plot the mean distances as a
function of rewiring probabilities. As the rewiring probability increases, the simplicial diffusion distance increases, resulting
in less stable representations.
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