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ABSTRACT

Diffusion Probabilistic Models (DPMs) have shown remarkable potential in im-
age generation, but their sampling efficiency is hindered by the need for numer-
ous denoising steps. Most existing solutions accelerate the sampling process by
proposing fast ODE solvers. However, the inevitable discretization errors of the
ODE solvers are significantly magnified when the number of function evaluations
(NFE) is fewer. In this work, we propose PFDiff, a novel training-free and orthog-
onal timestep-skipping strategy, which enables existing fast ODE solvers to oper-
ate with fewer NFE. Specifically, PFDiff initially utilizes score replacement from
past time steps to predict a “springboard”. Subsequently, it employs this “spring-
board” along with foresight updates inspired by Nesterov momentum to rapidly
update current intermediate states. This approach effectively reduces unneces-
sary NFE while correcting for discretization errors inherent in first-order ODE
solvers. Experimental results demonstrate that PFDiff exhibits flexible applicabil-
ity across various pre-trained DPMs, particularly excelling in conditional DPMs
and surpassing previous state-of-the-art training-free methods. For instance, us-
ing DDIM as a baseline, we achieved 16.46 FID (4 NFE) compared to 138.81 FID
with DDIM on ImageNet 64x64 with classifier guidance, and 13.06 FID (10 NFE)
on Stable Diffusion with 7.5 guidance scale.

1 INTRODUCTION

In recent years, Diffusion Probabilistic Models (DPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2020b) have demonstrated exceptional modeling capabilities across various domains in-
cluding image generation (Dhariwal & Nichol, 2021; Peebles & Xie, 2023; Karras et al., 2024),
video generation (Dehghani et al., 2023), text-to-image generation (Rombach et al., 2022; Betker
et al., 2023), speech synthesis (Song et al., 2022), and text-to-3D generation (Poole et al., 2022;
Lin et al., 2023). They have become a key driving force advancing deep generative models. DPMs
initiate with a forward process that introduces noise onto images, followed by utilizing a neural net-
work to learn a backward process that incrementally removes noise, thereby generating images (Ho
et al., 2020; Song et al., 2020b). Compared to other generative methods such as Generative Adver-
sarial Networks (GANs) (Goodfellow et al., 2014) and Variational Autoencoders (VAEs) (Kingma
& Welling, 2013), DPMs not only possess a simpler optimization target but also are capable of pro-
ducing higher quality samples (Dhariwal & Nichol, 2021). However, the generation of high-quality
samples via DPMs requires hundreds or thousands of denoising steps, significantly lowering their
sampling efficiency and becoming a major barrier to their widespread application.

Existing techniques for rapid sampling in DPMs primarily fall into two categories. First, training-
based methods (Salimans & Ho, 2022; Liu et al., 2022b; Song et al., 2023; Yin et al., 2024), which
can significantly compress sampling steps, even achieving single-step sampling. However, this com-
pression often comes with a considerable additional training cost, and these methods are challenging
to apply to large pre-trained models. Second, training-free samplers (Song et al., 2020a; Lu et al.,
2022a;b; Bao et al., 2022b;a; Liu et al., 2022a; Li et al., 2023; Zheng et al., 2023; Ma et al., 2024;
Wimbauer et al., 2024; Zhao et al., 2023; Xue et al., 2023), which typically employ implicit or ana-
lytical solutions to Stochastic Differential Equations (SDE)/Ordinary Differential Equations (ODE)
for lower-error sampling processes. For instance, Lu et al. (Lu et al., 2022a;b), by analyzing the
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Figure 1: (a) The trend of the MSE of the noise network output ϵθ(xt, t) over time step size ∆t,
where η comes from σ̄t in Eq. (6). Solid lines: ODE solvers, dashed lines: SDE solvers. (b) MSE
of the status separately updated using “springboard” x̃ti+h

and future score ϵθ(x̃ti+h
, ti+h), relative

to the sampling process with 1000 NFE, is given by: ∥x̃ti+(k+1)
− x̃gt

ti+(k+1)
∥2. (c) Comparison

of partial sampling trajectories between PFDiff-1 and a first-order ODE solver, where the update
directions are guided by the tangent direction of the sampling trajectories.

semi-linear structure of the ODE solvers for DPMs, have sought to analytically derive optimally
the solutions for DPMs’ ODE solvers. These training-free sampling strategies can often be used
in a plug-and-play fashion, compatible with existing pre-trained DPMs. However, when the NFE
is below 10, the discretization error of these training-free methods will be significantly amplified,
leading to convergence issues (Lu et al., 2022a;b), which can still be time-consuming.

To further enhance the sampling speed of DPMs, we have analyzed the potential for improvement
in existing training-free accelerated methods. Initially, we observed a high similarity in the model’s
outputs for the existing ODE solvers when time step size ∆t is not extremely large, as illustrated
in Fig. 1a. This observation led us to utilize the scores that have been computed from past time
steps to approximate current scores, thereby predicting a “springboard”. Furthermore, due to the
similarities between the sampling process of DPMs and Stochastic Gradient Descent (SGD) (Rob-
bins & Monro, 1951) as noted in Remark 1, we incorporated a foresight update mechanism using
Nesterov momentum (Nesterov, 1983), known for accelerating SGD training. Specifically, we first
predict future scores using the “springboard” to reduce errors, as shown in Fig. 1b. Then, we further
replace the current scores with the future scores to facilitate a larger update step size ∆t, as shown
in Fig. 1c.

Motivated by these insights, we propose PFDiff, a timestep-skipping sampling algorithm that rapidly
updates the current intermediate state combining past and future scores. Notably, PFDiff is training-
free and orthogonal to existing DPMs sampling algorithms, providing a new orthogonal axis for
DPMs sampling. Furthermore, we prove that PFDiff, despite utilizing fewer NFE, corrects for er-
rors in the sampling trajectories of first-order ODE solvers, as visualized in Fig. 1c. This ensures
that improving sampling speed does not compromise sampling quality; it only reduces unnecessary
NFE in existing ODE solvers. To validate the orthogonality and effectiveness of PFDiff, extensive
experiments were conducted on both unconditional (Ho et al., 2020; Song et al., 2020b;a) and con-
ditional (Dhariwal & Nichol, 2021; Rombach et al., 2022) pre-trained DPMs, with the visualization
experiment of conditional DPMs depicted in Fig. 7. The results indicate that PFDiff significantly
enhances the sampling performance of existing ODE solvers. Particularly in conditional DPMs,
PFDiff, using only DDIM as the baseline, surpasses the previous state-of-the-art training-free sam-
pling algorithms.

2 BACKGROUND

2.1 DIFFUSION SDES

Diffusion Probabilistic Models (DPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020b) aim to generate D-dimensional random variables x0 ∈ RD that follow a data distribution
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q(x0). Taking Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) as an example,
these models introduce noise to the data distribution through a forward process defined over discrete
time steps, gradually transforming it into a standard Gaussian distribution xT ∼ N (0, I). The
forward process’s latent variables {xt}t∈[0,T ] are defined as follows:

q(xt | x0) = N (xt | αtx0, σ
2
t I), (1)

where αt is a scalar function related to the time step t, with α2
t +σ2

t = 1. In the model’s reverse pro-
cess, DDPM utilizes a neural network model pθ(xt−1 | xt) to approximate the transition probability
q(xt−1 | xt, x0),

pθ(xt−1 | xt) = N (xt−1 | µθ(xt, t), σ
2
θ(t)I), (2)

where σ2
θ(t) is defined as a scalar function related to the time step t. By sampling from a standard

Gaussian distribution and utilizing the trained neural network, samples following the data distribu-
tion pθ(x0) =

∏T
t=1pθ(xt−1 | xt) can be generated.

Furthermore, Song et al. (2020b) introduced SDE to model DPMs over continuous time steps, where
the forward process is defined as:

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ q(x0), (3)
where wt represents a standard Wiener process, and f and g are scalar functions of the time step
t. It’s noteworthy that the forward process in Eq. (1) is a discrete form of Eq. (3), where f(t) =
d logαt

dt and g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t . Song et al. (2020b) further demonstrated that there exists an

equivalent reverse process from time step T to 0 for the forward process in Eq. (3):
dxt =

[
f(t)xt − g2(t)∇x log qt(xt)

]
dt+ g(t)dw̄t, xT ∼ q(xT ), (4)

where w̄ denotes a standard Wiener process. In this reverse process, the only unknown is the score
function ∇x log qt(xt), which can be approximated through neural networks.

2.2 DIFFUSION ODES

In DPMs based on SDE, the discretization of the sampling process often requires a significant num-
ber of time steps to converge, such as the T = 1000 time steps used in DDPM (Ho et al., 2020).
This requirement primarily stems from the randomness introduced at each time step by the SDE.
To achieve a more efficient sampling process, Song et al. (2020b) utilized the Fokker-Planck equa-
tion (Øksendal & Øksendal, 2003) to derive a probability flow ODE related to the SDE, which
possesses the same marginal distribution at any given time t as the SDE. Specifically, the reverse
process ODE derived from Eq. (3) can be expressed as:

dxt =

[
f(t)xt −

1

2
g2(t)∇x log qt(xt)

]
dt, xT ∼ q(xT ). (5)

Unlike SDE, ODE avoids the introduction of randomness, thereby allowing convergence to the data
distribution in fewer time steps. Song et al. (2020b) employed a high-order RK45 ODE solver (Dor-
mand & Prince, 1980), achieving sample quality comparable to SDE at 1000 NFE with only 60
NFE. Furthermore, research such as DDIM (Song et al., 2020a) and DPM-Solver (Lu et al., 2022a)
explored discrete ODE forms capable of converging in fewer NFE. For DDIM, it breaks the Markov
chain constraint on the basis of DDPM, deriving a new sampling formula expressed as follows:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, t)√

αt

)
+
√

1− αt−1 − σ̄2
t ϵθ(xt, t) + σ̄tϵt, (6)

where σ̄t = η
√
(1− αt−1) / (1− αt)

√
1− αt/αt−1, and αt corresponds to α2

t in Eq. (1). When
η = 1, Eq. (6) becomes a form of DDPM; when η = 0, it degenerates into an ODE, the form
adopted by DDIM, which can obtain high-quality samples in fewer time steps.

Remark 1. In this paper, we regard the score dx̄t, the noise network output ϵθ(xt, t), and the
score function ∇x log qt(xt) as expressing equivalent concepts. This is because Song et al. (2020b)
demonstrated that ϵθ(xt, t) = −σt∇x log qt(xt). Moreover, we have discovered that any first-order
solver of DPMs can be parameterized as xt−1 = x̄t−γtdx̄t+ξϵt. Taking DDIM (Song et al., 2020a)

as an example, where x̄t =
√

αt−1

αt
xt, γt =

√
αt−1

αt
− αt−1 −

√
1− αt−1, dx̄t = ϵθ(xt, t), and

ξ = 0. This indicates the similarity between SGD and the sampling process of DPMs, a discovery
also implicitly suggested in the research of Xue et al. (2023) and Wang et al. (2024).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHOD

3.1 SOLVING FOR REVERSE PROCESS DIFFUSION ODES

By substituting ϵθ(xt, t) = −σt∇x log qt(xt) (Song et al., 2020b), Eq. (5) can be rewritten as:

dxt

dt
= s(ϵθ(xt, t), xt, t) := f(t)xt +

g2(t)

2σt
ϵθ(xt, t), xT ∼ q(xT ). (7)

Given an initial value xT , we define the time steps {ti}Ti=0 to progressively decrease from t0 = T
to tT = 0. Let x̃t0 = xT be the initial value. Using T steps of iteration, we compute the sequence
{x̃ti}Ti=0 to obtain the solution of this ODE. By integrating both sides of Eq. (7), we can obtain the
exact solution of this sampling ODE:

x̃ti = x̃ti−1
+

∫ ti

ti−1

s(ϵθ(xt, t), xt, t)dt. (8)

For any p-order ODE solver, Eq. (8) can be discretely represented as:

x̃ti−1→ti ≈ ϕ(Q, x̃ti−1
, ti−1, ti) := x̃ti−1

+

p−1∑

n=0

h(ϵθ(x̃t̂n
, t̂n), x̃t̂n

, t̂n) ·∆t̂, i ∈ [1, . . . , T ]. (9)

Here, Q =
({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti−1, ti

)
stores the set of p scores computed over the intervals ti−1

and ti, where t̂0 = ti−1, t̂p = ti, and ∆t̂ = t̂n+1 − t̂n denote the time step size. Particularly, when
p = 1, Q = ϵθ(x̃ti−1

, ti−1). The function ϕ is any p-order ODE solver that updates the current state
x̃ti−1

from time point ti−1 to ti, using the scores stored in Q. The function h represents the way
in which different p-order ODE solvers handle the function s, and its specific form depends on the
solver’s design. For example, in the DPM-Solver (Lu et al., 2022a), an exponential integrator is used
to transform s into h in order to eliminate linear terms. In the case of a first-order Euler-Maruyama
solver (Kloeden et al., 1992), it serves as an identity mapping of s.

When using the ODE solver defined in Eq. (9) for sampling, the choice of T = 1000 leads to
significant inefficiencies in DPMs. The study on DDIM (Song et al., 2020a) first revealed that
by constructing a new forward sub-state sequence of length M + 1 (M ≤ T ), {x̃ti}Mi=0, from a
subsequence of time steps [0, . . . , T ] and reversing this sub-state sequence, it is possible to converge
to the data distribution in fewer time steps. However, as illustrated in Fig. 1a, for ODE solvers,
as the time step size ∆t = ti − ti−1 increases, the score direction changes slowly initially, but
undergoes abrupt changes as ∆t → T . This phenomenon indicates that under minimal NFE (i.e.,
maximal time step size ∆t) conditions, the discretization error in Eq. (9) is significantly amplified.
Consequently, existing ODE solvers, when sampling under minimal NFE, must sacrifice sampling
quality to gain speed, making it an extremely challenging task to reduce NFE to below 10 (Lu et al.,
2022a;b). Given this, we aim to develop an efficient timestep-skipping sampling algorithm, which
reduces NFE while correcting discretization errors, thereby ensuring that sampling quality is not
compromised, and may even be improved.

3.2 SAMPLING GUIDED BY PAST SCORES

As illustrated in Fig. 1a, when the time step size ∆t (i.e., ti−ti−1) is not excessively large, the MSE
of the noise network, defined as 1

T−∆t

∑T−∆t−1
t=0 ∥ϵθ(xt, t) − ϵθ(xt+∆t, t + ∆t)∥2, is remarkably

similar. This phenomenon is especially pronounced in ODE-based sampling algorithms, such as
DDIM (Song et al., 2020a) and DPM-Solver (Lu et al., 2022a). This observation suggests that there
are many unnecessary time steps in ODE-based sampling methods during the complete sampling
process (e.g., when T = 1000), which is one of the reasons these methods can generate samples in
fewer steps. Based on this, we propose replacing the noise network of the current timestep with the
output from a previous timestep to reduce unnecessary NFE without compromising the quality of
the final generated samples. Specifically, for any p-order ODE solver ϕ, the sampling process from
x̃ti−1 to x̃ti can be reformulated according to Eq. (9) as follows:

x̃ti ≈ ϕ(
{
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, x̃ti−1 , ti−1, ti). (10)
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Then, we store the noise network output in a buffer for use in the next timestep, as follows:

Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti−1, ti

)
, (11)

where ti−1 and ti represent the intervals over which the set of p scores are computed. For the
sampling process from x̃ti to x̃ti+1

, we directly use the noise network output saved in the buffer
from the previous timestep to replace the current timestep’s noise network, thereby updating the
intermediate states to the next timestep (i.e., the “springboard” x̃ti+1

), as detailed below:

x̃ti+1
≈ ϕ(Q, x̃ti , ti, ti+1), where Q =

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti−1, ti

)
. (12)

By using this approach, we can reduce unnecessary NFE, thereby accelerating the sampling process.

Remark 2. Notably, when the time step size ∆t is very large (NFE<10), the similarity between
past and current scores decreases sharply, making “springboard” x̃ti+1

unreliable in Eq. (12).
Therefore, in Sec. 3.3, we use x̃ti+1

solely to predict a foresight update direction (i.e., future score)
to reduce errors caused by the replacement, as shown in Fig. 1b and Fig. 1c. Both past and future
scores are complementary and indispensable, as demonstrated by the ablation study in Sec. 4.3.

3.3 SAMPLING GUIDED BY FUTURE SCORES

As stated in Remark 1, considering the similarities between the sampling process of DPMs and
SGD, and inspired by Nesterov momentum (Nesterov, 1983), we introduce a foresight update direc-
tion (i.e., future score) to assist the current intermediate state in achieving more efficient leapfrog
updates. Notably, employing future scores is more reliable than directly using the “springboard”,
as discussed in Remark 2. Specifically, during the sampling process from x̃ti to x̃ti+2 , we consider
using future scores (corresponding to time point ti+1) to replace the current scores (corresponding
to ti). Continuing from Eq. (12), we estimate the future score using the “springboard” x̃ti+1 and
update the buffer as follows:

Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+1, ti+2

)
. (13)

Subsequently, leveraging the concept of foresight updates, we predict a further future intermediate
state x̃ti+2 using the current intermediate state x̃ti along with the future score corresponding to time
point ti+1, as shown below:

x̃ti+2
≈ ϕ(Q, x̃ti , ti, ti+2), where Q =

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+1, ti+2

)
. (14)

Furthermore, we analyze how to correct the errors of the first-order ODE solvers in the discretized
Eq. (8) using future scores. Let sθ(xt, t) := s(ϵθ(xt, t), xt, t), we further analyze the term from Eq.
(8) that may cause errors,

∫ ti
ti−1

sθ(xt, t)dt. Assuming that s(n)θ (xr, r), r ∈ [ti−1, ti] exists and is
continuous, applying Taylor’s expansion at t = r, we derive:
∫ ti

ti−1

sθ (xt, t) dt =

∫ ti

ti−1

[ ∞∑

n=0

s
(n)
θ (xr, r)

n!
(t− r)n +Rn(t)

]
dt

≈
∫ ti

ti−1

[ ∞∑

n=0

s
(n)
θ (xr, r)

n!
(t− r)n

]
dt

=

∞∑

n=0

(ti − r)
n+1 − (ti−1 − r)

n+1

(n+ 1)!
s
(n)
θ (xr, r)

= sθ (xr, r) (ti − ti−1) +

∞∑

n=1

(ti − r)
n+1 − (ti−1 − r)

n+1

(n+ 1)!
s
(n)
θ (xr, r)

︸ ︷︷ ︸
”higher-order derivative terms”

.

(15)

Proposition 3.1. For any given DPM first-order ODE solver, the absolute values of the coefficients
for higher-order derivative terms in Eq. (15) are smaller when using the future time point r = ε
score compared to the current time point r = ti−1 score, as follows (Proof in Appendix B.2):∣∣∣∣

(ti − ε)n − (ti−1 − ε)n

n!

∣∣∣∣ <
∣∣∣∣
(ti − ti−1)

n

n!

∣∣∣∣ , where ε ∈ (ti−1, ti), n ≥ 2. (16)
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Figure 2: Illustration of a single iteration update of PFDiff-k h combined with any first-order ODE
solver ϕ. Given specific values of k and h (k ≤ 3 (h ≤ k)), PFDiff first uses the past score Q stored
in the Buffer from the previous iteration to replace the current score, updating to the “springboard”
xti+h

; then the future score is calculated using the “springboard”; finally, the future score is used to
replace the current score, completing a full update iteration. The future score will also be passed to
the next iteration as the “past” score for the next round of updates.

Proposition 3.1 indicates that neglecting higher-order derivative terms has less impact when sam-
pling with future scores, correcting for the discretization errors inherent in first-order ODE solvers.
However, higher-order ODE solvers approximate higher-order derivative terms by estimating the
noise network’s output multiple times (Lu et al., 2022a;b; Zheng et al., 2023). Future scores
and higher-order ODE solvers reduce the discretization errors caused by neglecting higher-order
derivative terms in two parallel manners, complicating the error analysis when both methods are
used simultaneously. Therefore, when using higher-order ODE solvers as a baseline, the sam-
pling process is accelerated by only using past scores. It is only necessary to modify Eq. (14)
to x̃ti+2

≈ ϕ(Q, x̃ti+1
, ti+1, ti+2) while keeping Q constant.

3.4 PFDIFF: SAMPLING GUIDED BY PAST AND FUTURE SCORES

Combining Sec. 3.2 and Sec. 3.3, the “springboard” x̃ti+1
obtained through Eq. (12) is used to

update the buffer Q in Eq. (13). In this way, we achieve our proposed efficient timestep-skipping
algorithm, which we name PFDiff. Notably, during the iteration from intermediate state x̃ti to x̃ti+2

,
we only perform a single batch computation (NFE = p) of the noise network in Eq. (13). Further-

Algorithm 1 PFDiff-1

Require: initial value xT , NFE N , model ϵθ, any p-order solver ϕ
1: Define time steps {ti}Mi=0 with M = 2N − 1p
2: x̃t0 ← xT

3: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, t0, t1

)
▷ Initialize buffer

4: x̃t1 = ϕ(Q, x̃t0 , t0, t1)
5: for i← 1 to M

p − 2 do
6: if (i− 1) mod 2 = 0 then
7: x̃ti+1

= ϕ(Q, x̃ti , ti, ti+1) ▷ Updating guided by past scores

8: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+1, ti+2

)
▷ Update buffer (overwrite)

9: if p = 1 then
10: x̃ti+2 = ϕ(Q, x̃ti , ti, ti+2) ▷ Anticipatory updating guided by future scores
11: else if p > 1 then
12: x̃ti+2

= ϕ(Q, x̃ti+1
, ti+1, ti+2) ▷ The higher-order solver uses only past scores

13: end if
14: end if
15: end for
16: return x̃tM
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more, we propose that in a single iteration process, x̃ti+2
in Eq. (14) can be modified to x̃ti+(k+1)

,
achieving a k-step skip to sample more distant future intermediate states. Also, when k ̸= 1, the
buffer Q from Eq. (13) has various computational origins. This can be accomplished by modify-
ing “springboard” x̃ti+1 in Eq. (12) to x̃ti+h

, which represents h (h ≤ k) different springboard
selections. We collectively refer to this multi-step skipping and different “springboard” selection
strategy as PFDiff-k h (h ≤ k). The algorithmic process is illustrated in Fig. 2 and Algorithm
1, with further details provided in Appendix C. Additionally, through the comparison of sampling
trajectories between PFDiff-1 and a first-order ODE sampler, as shown in Fig. 1c, PFDiff-1 show-
cases its capability to correct the sampling trajectory of the first-order ODE sampler while reducing
the NFE. Meanwhile, we observed that PFDiff completes two updates with just one score compu-
tation (1 NFE), which is equivalent to achieving an update process of a second-order ODE solver
with 2 NFE. This effectiveness is derived from PFDiff’s information-efficient update process, which
utilizes both past and future scores that are complementary and indispensable. The convergence
of PFDiff’s sampling outcomes to the data distribution consistent with solver ϕ relies on the Mean
Value Theorem, as detailed in Appendix B.3. Finally, it is important to emphasize that although
PFDiff is orthogonal to an arbitrary ODE solver, PFDiff can also be viewed as an independent ODE
solver, depending on the perspective.

3.5 ANALYSIS OF EFFECTIVENESS BASED ON THE SHAPE OF THE TRAJECTORY

In Proposition 3.1, we theoretically analyze how PFDiff corrects the error of the first-order ODE
solver to achieve efficient sampling. In this section, we explain the effectiveness of PFDiff from the
perspective of the trajectory’s geometric shape. Previous studies have explored the sampling trajec-
tories of diffusion models (Sabour et al., 2024; Zhou et al., 2024; Chen et al., 2024). Zhou et al.
(2024) pointed out that the sampling trajectories of DPMs lie in a low-dimensional subspace em-
bedded in a high-dimensional space, and the trajectory shapes closely resemble a straight line. This
finding supports the strategy of using past scores to replace the current score in PFDiff as reliable.
Moreover, Chen et al. (2024) further noted that the sampling trajectories exhibit a “boomerang”
shape, meaning the curvature of the sampling trajectory starts small, then increases, and finally de-
creases. Based on this observation, we can analyze that the first-order ODE solver, which samples
along the tangent direction, leads to larger discretization errors in regions of the trajectory with
large curvature. On the other hand, PFDiff uses future scores to predict the future update direc-
tion, thereby correcting the discretization errors introduced by sampling along the tangent direction.
In Fig. 1c, we vividly demonstrate the sampling correction process of PFDiff for first-order ODE
solvers, thereby validating the effectiveness of PFDiff.

4 EXPERIMENTS

In this section, we validate the effectiveness of PFDiff as an orthogonal and training-free sam-
pler through a series of extensive experiments. This sampler can be integrated with any order
of ODE solvers, thereby significantly enhancing the sampling efficiency of various types of pre-
trained DPMs. To systematically showcase the performance of PFDiff, we categorize the pre-trained
DPMs into two main types: conditional and unconditional. Unconditional DPMs are further subdi-
vided into discrete and continuous, while conditional DPMs are subdivided into classifier guidance
and classifier-free guidance. In choosing ODE solvers, we utilized the widely recognized first-
order DDIM (Song et al., 2020a), Analytic-DDIM (Bao et al., 2022b), and the higher-order DPM-
Solver (Lu et al., 2022a) as baselines. For each experiment, we use the Fréchet Inception Distance
(FID↓) (Heusel et al., 2017) as the primary evaluation metric, and provide the experimental results
of the Inception Score (IS↑) (Salimans et al., 2016) in the Appendix D.7 for reference. Lastly, apart
from the ablation studies on parameters k and h discussed in Sec. 4.3, we showcase the optimal
results of PFDiff-k h (where k = 1, 2, 3 and h ≤ k) across six configurations as a performance
demonstration of PFDiff. As described in Appendix C, this does not increase the computational
burden in practical applications. All experiments were conducted on an NVIDIA RTX 3090 GPU.

4.1 UNCONDITIONAL SAMPLING

For unconditional DPMs, we selected discrete DDPM (Ho et al., 2020) and DDIM (Song et al.,
2020a), as well as pre-trained models from continuous ScoreSDE (Song et al., 2020b), to assess
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Figure 3: Unconditional sampling results. We report the FID↓ for different methods by varying the
number of function evaluations (NFE), evaluated on 50k samples.
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Figure 4: Conditional sampling results. We report the FID↓ for different methods by varying the
NFE. Evaluated: ImageNet 64x64 with 50k, others with 10k samples. ∗AutoDiffusion (Li et al.,
2023) requires additional search costs. †We borrow the results reported in DPM-Solver-v3 (Zheng
et al., 2023) directly.

the effectiveness of PFDiff. For these pre-trained models, all experiments sampled 50k samples to
compute evaluation metrics.

For unconditional discrete DPMs, we first select first-order ODE solvers DDIM (Song et al., 2020a)
and Analytic-DDIM (Bao et al., 2022b) as baselines, while implementing SDE-based DDPM (Ho
et al., 2020) and Analytic-DDPM (Bao et al., 2022b) methods for comparison, where η = 1.0 is
from σ̄t in Eq. (6). We conduct experiments on the CIFAR10 (Krizhevsky et al., 2009) and CelebA
64x64 (Liu et al., 2015) datasets using the quadratic time steps employed by DDIM. By varying the
NFE from 6 to 20, the evaluation metric FID↓ is shown in Figs. 3a and 3b. Additionally, experiments
with uniform time steps are conducted on the CelebA 64x64, LSUN-bedroom 256x256 (Yu et al.,
2015), and LSUN-church 256x256 (Yu et al., 2015) datasets, with more results available in Appendix
D.2. Our experimental results demonstrate that PFDiff, based on pre-trained models of discrete
unconditional DPMs, significantly improves the sampling efficiency of DDIM and Analytic-DDIM
samplers across multiple datasets. For instance, on the CIFAR10 dataset, PFDiff combined with
DDIM achieves a FID of 4.10 with only 15 NFE, comparable to DDIM’s performance of 4.04 FID
with 1000 NFE. This is something other time-step skipping algorithms (Bao et al., 2022b; Ma et al.,
2024) that sacrifice sampling quality for speed cannot achieve. Furthermore, in Appendix D.2, by
varying η from 1.0 to 0.0 in Eq. (6) to control the scale of noise introduced by SDE, we observe
that as η decreases (reducing noise introduction), the performance of PFDiff gradually improves.
This is consistent with the trend shown in Fig. 1a, where reducing noise introduction leads to an
improvement in the similarity of the model’s outputs.

For unconditional continuous DPMs, we choose the DPM-Solver-1, -2 and -3 (Lu et al., 2022a) as
the baseline to verify the effectiveness of PFDiff as an orthogonal timestep-skipping algorithm on
the first and higher-order ODE solvers. We conducted experiments on the CIFAR10 (Krizhevsky
et al., 2009) using quadratic time steps, varying the NFE. The experimental results using FID↓ as
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Table 1: Sample quality measured by FID↓ on the MSCOCO2014 dataset (Lin et al., 2014), using
Stable-Diffusion (Rombach et al., 2022) pre-trained model with a guidance scale of 7.5, varying the
number of function evaluations (NFE). Evaluated with 10k samples.

Method NFE

4 6 8 10 15 20

DPM-Solver-1 (Lu et al., 2022a) 35.48 20.33 17.46 16.78 16.08 15.95
+ PFDiff 29.02 15.47 13.26 13.06 13.57 13.97

DPM-Solver-2 (Lu et al., 2022a) 184.21 157.95 148.67 135.81 92.62 40.47
+ PFDiff 147.20 106.24 57.07 31.66 17.87 14.13

the evaluation metric are shown in Fig. 3c. More experimental details can be found in Appendix
D.3. We observe that PFDiff consistently improves the sampling performance over the baseline
with fewer NFE settings, particularly in cases where higher-order ODE solvers fail to converge with
a small NFE (below 10) (Lu et al., 2022a).

4.2 CONDITIONAL SAMPLING

For conditional DPMs, we selected the pre-trained models of the widely recognized classifier guid-
ance paradigm, ADM-G (Dhariwal & Nichol, 2021), and the classifier-free guidance paradigm,
Stable-Diffusion (Rombach et al., 2022), to validate the effectiveness of PFDiff. We employed
uniform time steps setting and the DDIM (Song et al., 2020a) ODE solver as a baseline across all
datasets. Evaluation metrics were computed by sampling 50k samples on the ImageNet 64x64 (Deng
et al., 2009) dataset for ADM-G and 10k samples on other datasets, including ImageNet 256x256 in
ADM-G and MS-COCO2014 (Lin et al., 2014) in Stable-Diffusion.

For conditional DPMs employing the classifier guidance paradigm, we conducted experiments on
the ImageNet 64x64 dataset with a guidance scale (s) set to 1.0. For comparison, we implemented
DPM-Solver-2 and -3 (Lu et al., 2022a), and DPM-Solver++(2M) (Lu et al., 2022b), which ex-
hibit the best performance on conditional DPMs. Additionally, we introduced the AutoDiffusion
method (Li et al., 2023) using DDIM as a baseline for comparison, noting that this method incurs
additional search costs. We compared FID↓ scores by varying the NFE as depicted in Fig. 4a, with
corresponding visual comparisons shown in Fig. 7b. We observed that PFDiff reduced the FID
from 138.81 with 4 NFE in DDIM to 16.46, achieving an 88.14% improvement in quality. The
visual results in Fig. 7b further demonstrate that, at the same NFE setting, PFDiff achieves higher-
quality sampling. Furthermore, we evaluated PFDiff’s sampling performance based on DDIM on
the large-scale ImageNet 256x256 dataset. Detailed results are provided in Appendix D.4.

For conditional, classifier-free guidance paradigms of DPMs, we employed the sd-v1-4 check-
point and computed the FID↓ scores on the validation set of MS-COCO2014 (Lin et al., 2014). We
conducted experiments with a guidance scale (s) set to 7.5 and 1.5. For comparison, we implemented
DPM-Solver-2 and -3 (Lu et al., 2022a), and DPM-Solver++(2M) (Lu et al., 2022b) methods. At
s = 7.5, we introduced the state-of-the-art method reported in DPM-Solver-v3 (Zheng et al., 2023)
for comparison, along with DPM-Solver++(2M) (Lu et al., 2022b), UniPC (Zhao et al., 2023), and
DPM-Solver-v3(2M). The FID↓ metrics by varying the NFE are presented in Figs. 4b and 4c, with
additional visual results illustrated in Fig. 7a. We observed that PFDiff, solely based on DDIM,
achieved state-of-the-art results during the sampling process of Stable-Diffusion, thus demonstrat-
ing the efficacy of PFDiff. Further experimental details can be found in Appendix D.5. Additionally,
to further validate the orthogonality of PFDiff, we conducted experiments on the original (single-
step) DPM-Solver-1 and -2, comparing the performance with and without the PFDiff, using the
Stable-Diffusion pre-trained model, as shown in Tab. 1. The experimental results demonstrate that
PFDiff effectively enhances the performance of DPM-Solver across different orders.

4.3 ABLATION STUDY

We conducted ablation experiments on the six different algorithm configurations of PFDiff men-
tioned in Appendix C, with k = 1, 2, 3 (h ≤ k). Specifically, we evaluated the FID↓ scores on
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the unconditional and conditional pre-trained DPMs (Ho et al., 2020; Dhariwal & Nichol, 2021).
Detailed experimental setups and results can be found in Appendix D.6.1. The experimental re-
sults indicate that for various pre-trained DPMs, the choice of parameters k and h is not critical,
as most combinations of k and h within PFDiff can enhance the sampling efficiency over the base-
line. Moreover, with k = 2 and h = 1 fixed, PFDiff-2 1 can always improve the baseline’s sampling
quality within the range of 4∼20 NFE. For even better sampling quality, one can sample a small sub-
set of examples (e.g., 5k) to compute evaluation metrics or directly conduct visual analysis, easily
identifying the most effective k and h combinations. Furthermore, in Appendix D.6.1, we propose
an automatic search strategy with almost no additional cost, which can more rapidly obtain more
competitive combinations of k and h based on truncation error.

To validate the effectiveness of PFDiff, a key factor is its information-efficient update process, which
utilizes past and future scores that are complementary and indispensable to jointly guide first-order
ODE solvers. We employ DDIM (Song et al., 2020a) as the baseline, removing past and future
scores separately. Moreover, we introduce methods (Ma et al., 2024) that cache part of past scores
for comparison. As shown in Appendix D.6.2, experimental results indicate that only past (including
cache) or only future scores can slightly improve sampling performance, but their combination (i.e.,
the complete PFDiff) significantly enhances the performance of first-order ODE solvers, especially
with very few NFE (<10). Additionally, we provide experimental results on inference time in Ap-
pendix D.6.2, revealing that methods (Ma et al., 2024) that cache part of past scores not only incur
additional inference costs but also exhibit relatively weak acceleration effects with few NFE (<10).
However, PFDiff and the used baseline have consistent inference times and exhibit significantly
accelerated effects, further validating its effectiveness.

5 CONCLUSION

In this paper, based on the recognition that the ODE solvers of DPMs exhibit significant similarity in
model outputs when the time step size is not excessively large, and with the aid of a foresight update
mechanism, we propose PFDiff, a novel method that leverages past and future scores to rapidly
update the current intermediate state. This approach effectively reduces the unnecessary number
of function evaluations (NFE) in the ODE solvers and significantly corrects the errors of first-order
ODE solvers during the sampling process. Extensive experiments demonstrate the orthogonality
and effectiveness of PFDiff on both unconditional and conditional pre-trained DPMs, especially
in conditional pre-trained DPMs where PFDiff outperforms previous state-of-the-art training-free
sampling methods.

ETHICS STATEMENT

DPMs, like GANs and VAEs, may be utilized as deep generative models for generating fake and ma-
licious content. The proposed PFDiff can accelerate the generation of DPMs, which may facilitate
the rapid creation of such content, thereby posing a potential negative impact on society.

REPRODUCIBILITY STATEMENT

Our code is based on the official implementations of DDIM (Song et al., 2020a), DPM-Solver (Lu
et al., 2022a), and Analytic-DPM (Bao et al., 2022b). We utilized unconditional checkpoints from
DDPM (Ho et al., 2020), DDIM (Song et al., 2020a), and ScoreSDE (Song et al., 2020b), as well
as conditional checkpoints from AMD-G (Dhariwal & Nichol, 2021) and Stable-Diffusion (Rom-
bach et al., 2022). Detailed experimental settings and algorithm implementations are described in
Appendices C and D. The code used in this study is submitted as supplementary material.
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A RELATED WORK

While the solvers for Diffusion Probabilistic Models (DPMs) are categorized into two types, SDE
and ODE, most current accelerated sampling techniques are based on ODE solvers due to the obser-
vation that the stochastic noise introduced by SDE solvers hampers rapid convergence. ODE-based
solvers are further divided into training-based methods (Salimans & Ho, 2022; Liu et al., 2022b;
Song et al., 2023; Yin et al., 2024) and training-free samplers (Song et al., 2020a; Lu et al., 2022a;b;
Bao et al., 2022b;a; Liu et al., 2022a; Li et al., 2023; Zheng et al., 2023; Ma et al., 2024; Wim-
bauer et al., 2024; Zhao et al., 2023; Xue et al., 2023). Training-based methods can notably reduce
the number of sampling steps required for DPMs. An example of such a method is the knowledge
distillation algorithm proposed by Song et al. (2023), which achieves one-step sampling for DPMs.
This sampling speed is comparable to that of GANs (Goodfellow et al., 2014) and VAEs (Kingma
& Welling, 2013). However, these methods often entail significant additional costs for distillation
training. This requirement poses a challenge when applying them to large pre-trained DPM models.
Therefore, our work primarily focuses on training-free, ODE-based accelerated sampling strategies.

Training-free accelerated sampling techniques based on ODE can generally be applied in a plug-and-
play manner, adapting to existing pre-trained DPMs. These methods can be categorized based on the
order of the ODE solver—that is, the NFE required per sampling iteration—into first-order (Song
et al., 2020a; Bao et al., 2022b;a; Liu et al., 2022a) and higher-order (Lu et al., 2022a;b; Zheng
et al., 2023; Zhao et al., 2023; Dormand & Prince, 1980). Typically, higher-order ODE solvers
tend to sample at a faster rate but may fail to converge when the NFE is low (below 10), sometimes
performing even worse than first-order ODE solvers. In addition, there are orthogonal techniques for
accelerated sampling. For instance, Li et al. (2023) build upon existing ODE solvers and use search
algorithms to find optimal sampling sub-sequences and model structures to further speed up the
sampling process; Ma et al. (2024) and Wimbauer et al. (2024) observe that the low-level features
of noise networks at adjacent time steps exhibit similarities, and they use caching techniques to
substitute some of the network’s low-level features, thereby further reducing the number of required
time steps.

The algorithm we propose belongs to the class of training-free and orthogonal accelerated sampling
techniques, capable of further accelerating the sampling process on the basis of existing first-order
and higher-order ODE solvers. Compared to the aforementioned orthogonal sampling techniques,
even though the skipping strategy proposed by Ma et al. (2024) and Wimbauer et al. (2024) effec-
tively accelerates the sampling process, it may do so at the cost of reduced sampling quality, making
it challenging to reduce the NFE below 50. Although Li et al. (2023) can identify more optimal
subsampling sequences and model structures, this implies higher search costs. In contrast, our pro-
posed orthogonal sampling algorithm is more efficient in skipping time steps. First, our skipping
strategy does not require extensive search costs. Second, we can correct the sampling trajectory
of first-order ODE solvers while reducing the number of sampling steps required by existing ODE
solvers, achieving more efficient accelerated sampling.

B PROOF OF CONVERGENCE AND ERROR CORRECTION FOR PFDIFF

In this section, we first prove that neglecting higher-order derivative terms has a smaller impact on
the first-ODE solvers when using future scores (i.e., Proposition 3.1). Subsequently, we prove the
convergence of PFDiff based on the Mean Value Theorem for Integrals.

B.1 ASSUMPTIONS

For PFDiff-k h we make the following assumptions:

Assumption B.1. The higher-order derivatives s
(n)
θ (xr, r) (as a function of r), as defined in Eq.

(15), where r ∈ [ti−1, ti] and n ≥ 1, exist and are continuous.

Assumption B.2. When the time step size ∆t = ti− ti−(k−h+1) is not excessively large, the output
estimates of the noise network based on the p-order ODE solver at different time steps are approxi-
mately the same, that is,

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti, ti+h

)
≈

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti−(k−h+1), ti

)
.
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Assumption B.3. For the integral from time step ti to ti+(k+1),
∫ ti+(k+1)

ti
s(ϵθ(xt, t), xt, t)dt,

there exist intermediate time steps ts̃, ts ∈ [ti, ti+(k+1)] such that
∫ ti+(k+1)

ti
s(ϵθ(xt, t), xt, t)dt =

s(ϵθ(xts̃ , ts̃), xts̃ , ts̃) · (ti+(k+1) − ti) = h(ϵθ(xts , ts), xts , ts) · (ti+(k+1) − ti) holds, where the
definition of the function h remains consistent with Sec. 3.1.

The first assumption ensures the application of Taylor expansion in Eq. (15). The second assumption
is based on the observation in Fig. 1a that when ∆t is not excessively large, the MSE of the noise
network remains almost unchanged across different time steps. The last one is based on the Mean
Value Theorem for Integrals, which states that if f(x) is a continuous real-valued function on a closed
interval [a, b], then there exists at least one point c ∈ [a, b] such that

∫ b

a
f(x)dx = f(c)(b−a) holds.

Remark 3. It is important to note that the Mean Value Theorem for Integrals originally applies to
real-valued functions and does not directly apply to vector-valued functions (Cheney et al., 2001).
However, the study by Zhou et al. (2024), which uses Principal Component Analysis (PCA) on the
trajectories of the ODE solvers for DPMs, demonstrates that these trajectories almost lie in a two-
dimensional plane. The finding ensures the applicability of the Mean Value Theorem for Integrals in
Assumption B.3.

B.2 PROOF OF PROPOSITION 3.1

In this section, we prove that Eq. (16) holds, where ε ∈ (ti−1, ti) and n ≥ 2. First, given ε ∈
(ti−1, ti), we have:

|ti − ε|+ |ti−1 − ε| = |ti − ti−1| . (B.1)
Next, we analyze the Eq. (16) based on the parity of n.

When n is even (n ≥ 2): We derive:∣∣∣∣
(ti − ε)n − (ti−1 − ε)n

n!

∣∣∣∣ =
∣∣∣∣
|ti − ε|n − |ti−1 − ε|n

n!

∣∣∣∣

< max

( |ti − ε|n
n!

,
|ti−1 − ε|n

n!

)

<
|ti − ti−1|n

n!
=

∣∣∣∣
(ti − ti−1)

n

n!

∣∣∣∣ .

(B.2)

Here, the second “<” holds because: due to ε ∈ (ti−1, ti) and Eq. (B.1), we have |ti − ε| <
|ti − ti−1| and |ti−1 − ε| < |ti − ti−1|, thus validating the second “<”.

When n is odd (n ≥ 3): Since ε ∈ (ti−1, ti), if ti − ε > 0, then ti−1 − ε < 0; if ti − ε < 0, then
ti−1 − ε > 0. Therefore, we obtain:∣∣∣∣

(ti − ε)n − (ti−1 − ε)n

n!

∣∣∣∣ =
|ti − ε|n + |ti−1 − ε|n

n!
. (B.3)

Let a = |ti − ε|, b = |ti−1 − ε|, and c = |ti − ti−1|; we have a, b, c > 0 and c > a, b. Next, using
mathematical induction, we prove an + bn < cn, where n ≥ 3 and a+ b = c (Eq. (B.1)).

• When n = 3, we have:
c3 = (a+ b)3 = a3 + 3a2b+ 3ab2 + b3 > a3 + b3, (B.4)

which holds.
• When n = k (k ≥ 3, k ∈ N), suppose a ≤ b, then ak + bk < ck holds.
• When n = k + 1, we have:

ak+1 + bk+1 = a · ak + b · bk ≤ b · ak + b · bk = b · (ak + bk) < b · ck < ck+1, (B.5)
which holds.

Thus, an + bn < cn holds, where n ≥ 3 and a+ b = c. Furthermore, we obtain:
|ti − ε|n + |ti−1 − ε|n

n!
<
|ti − ti−1|n

n!
=

∣∣∣∣
(ti − ti−1)

n

n!

∣∣∣∣ . (B.6)

In conclusion, by combining Eq. (B.2), Eq. (B.3), and Eq. (B.6), we have proven Eq. (16).
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B.3 PROOF OF CONVERGENCE FOR PFDIFF

Assumption B.2 ensures the convergence of PFDiff-k h using past scores. Starting from Eq.
(8), we consider an iteration process of a p-order ODE solver from x̃ti to x̃ti+h

, where h is the
“springboard” choice determined by PFDiff-k h. This iterative process can be expressed as:

x̃ti+h
= x̃ti +

∫ ti+h

ti

s(ϵθ(xt, t), xt, t)dt. (B.7)

Discretizing Eq. (B.7) yields:

x̃ti→ti+h
≈ x̃ti +

p−1∑

n=0

h(ϵθ(x̃t̂n
, t̂n), x̃t̂n

, t̂n) · (t̂n+1 − t̂n)

= x̃ti +

i+h−1∑

n=i

h(ϵθ(x̃tn , tn), x̃tn , tn) · (tn+1 − tn),

(B.8)

where the function h represents the different solution methodologies applied by various p-order
ODE solvers to the function s, consistent with Sec. 3.1. To accelerate sampler convergence
and reduce unnecessary NFE, we adopt Assumption B.2, namely guiding the sampling of the
current intermediate state by utilizing past score information. Specifically, we approximate that({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti, ti+h

)
≈

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti−(k−h+1), ti

)
, where k represents the num-

ber of steps skipped in one iteration by PFDiff-k h. Eq. (B.8) can be further rewritten as:

x̃ti→ti+h
≈ x̃ti +

i−1∑

n=i−(k−h+1)

h(ϵθ(x̃tn , tn), x̃tn , tn) · (tn+1 − tn)

= ϕ(
({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti−(k−h+1), ti

)
, x̃ti , ti, ti+h),

(B.9)

where ϕ is any p-order ODE solver. Eq. (B.9) demonstrates that under Assumption B.2, PFDiff-
k h utilizes past scores to replace current scores, converging to the same data distribution as that
of any p-order ODE solver ϕ. However, as noted in Remark 2, the time step size ∆t is very large
(NFE<10), making “springboard” x̃ti+h

unreliable in Eq. (B.9). Therefore, we only use x̃ti+h

to predict a foresight update direction (i.e., the future score). The introduction of the future score
can reduce the impact of neglecting higher-order derivative terms, thus correcting the discretization
errors of the first-order ODE solvers.

Convergence of PFDiff-k h using future scores. As described in Sec. 3.3, higher-order ODE
solvers and future scores reduce the discretization error caused by neglecting higher-order derivative
terms in two parallel manners. Therefore, PFDiff combines a higher-order ODE solver using only
past scores, with convergence guarantees based on Assumption B.2. Next, we consider an iteration
process of a first-order ODE solver from x̃ti to x̃ti+(k+1)

, which can be expressed as:

x̃ti+(k+1)
= x̃ti +

∫ ti+(k+1)

ti

s(ϵθ(xt, t), xt, t)dt

≈ x̃ti + h(ϵθ(x̃ti , ti), x̃ti , ti) · (ti+(k+1) − ti)

= ϕ(ϵθ(x̃ti , ti), x̃ti , ti, ti+(k+1)),

(B.10)

where the second line is obtained by discretizing the first line with an existing first-order ODE
solver, and the definitions of ϕ and h are consistent with Sec. 3.1. It is well known that the “≈” in
Eq. (B.10) introduces discretization errors. We have revised Eq. (B.10) based on Assumption B.3,
as follows:

x̃ti+(k+1)
= x̃ti +

∫ ti+(k+1)

ti

s(ϵθ(xt, t), xt, t)dt

= x̃ti + s(ϵθ(x̃ts̃ , ts̃), x̃ts̃ , ts̃) · (ti+(k+1) − ti)

= x̃ti + h(ϵθ(x̃ts , ts), x̃ts , ts) · (ti+(k+1) − ti)

= ϕ(ϵθ(x̃ts , ts), x̃ti , ti, ti+(k+1)).

(B.11)
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Eq. (B.11) indicates that there is an optimal time point ts ∈ [ti, ti+(k+1)] corresponding to the
optimal score ϵθ(x̃ts , ts) that can correct the discretization error of Eq. (B.10). Furthermore, when
the time step size ∆t = ti+(k+1) − ti is very large (for example, NFE<10), using the score at
the current time point ti leads to non-convergence of the sampling process. This implies that the
sampling trajectory of DPMs is not a straight line (if it were a straight line, a larger sampling step
size could be used). Therefore, the optimal time point is not achieved at the endpoints, i.e., ts ̸=
ti and ts ̸= ti+(k+1), and we adjust that ts falls within the interval (ti, ti+(k+1)). Additionally,
to approximate the optimal score, we introduce the foresight update mechanism of the Nesterov
momentum (Nesterov, 1983), and guide the current intermediate state sampling with future score
information. In other words, we replace ϵθ(x̃ts , ts) with ϵθ(x̃ti+h

, ti+h), as follows:

x̃ti+(k+1)
= ϕ(ϵθ(x̃ts , ts), x̃ti , ti, ti+(k+1))

≈ ϕ(ϵθ(x̃ti+h
, ti+h), x̃ti , ti, ti+(k+1)),

(B.12)

where k and h are determined by the selected PFDiff-k h. According to the definition of PFDiff-
k h, ti+h also lies within the interval (ti, ti+(k+1)). For six different versions of PFDiff-k h defined
in Appendix C, we believe the optimal ts within the interval (ti, ti+(k+1)) has been approximated,
thereby completing the convergence proof of using future scores. Finally, we note that PFDiff using
future scores to replace current scores is an approximation of the optimal score. Together with this
section and Proposition 3.1 (future scores have less impact at neglecting higher-order derivative
terms), we jointly verify that future scores can more effectively guide a first-order ODE solver in
sampling.

C ALGORITHMS OF PFDIFFS

As described in Sec. 3.4, during a single iteration, we can leverage the foresight update mech-
anism to skip to a more distant future. Specifically, we modify Eq. (14) to x̃ti+(k+1)

≈
ϕ(Q, x̃ti , ti, ti+(k+1)) to achieve a k-step skip. We refer to this method as PFDiff-k. Additionally,
when k ̸= 1, the computation of the buffer Q, originating from Eq. (13), presents different selection
choices. We modify Eq. (12) to x̃ti+h

≈ ϕ(Q, x̃ti , ti, ti+h), h ≤ k to denote different “springboard”

Algorithm 2 PFDiff-2

Require: initial value xT , NFE N , model ϵθ, any p-order solver ϕ, skip type h
1: Define time steps {ti}Mi=0 with M = 3N − 2p
2: x̃t0 ← xT

3: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, t0, t1

)
▷ Initialize buffer

4: x̃t1 = ϕ(Q, x̃t0 , t0, t1)
5: for i← 1 to M

p − 3 do
6: if (i− 1) mod 3 = 0 then
7: if h = 1 then ▷ PFDiff-2 1
8: x̃ti+1 = ϕ(Q, x̃ti , ti, ti+1) ▷ Updating guided by past scores

9: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+1, ti+3

)
▷ Update buffer (overwrite)

10: else if h = 2 then ▷ PFDiff-2 2
11: x̃ti+2

= ϕ(Q, x̃ti , ti, ti+2) ▷ Updating guided by past scores

12: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+2, ti+3

)
▷ Update buffer (overwrite)

13: end if
14: if p = 1 then
15: x̃ti+3 = ϕ(Q, x̃ti , ti, ti+3) ▷ Anticipatory updating guided by future scores
16: else if p > 1 then
17: x̃ti+3 = ϕ(Q, x̃ti+h

, ti+h, ti+3) ▷ The higher-order solver uses only past scores
18: end if
19: end if
20: end for
21: return x̃tM
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Algorithm 3 PFDiff-3

Require: initial value xT , NFE N , model ϵθ, any p-order solver ϕ, skip type h
1: Define time steps {ti}Mi=0 with M = 4N − 3p
2: x̃t0 ← xT

3: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, t0, t1

)
▷ Initialize buffer

4: x̃t1 = ϕ(Q, x̃t0 , t0, t1)
5: for i← 1 to M

p − 4 do
6: if (i− 1) mod 4 = 0 then
7: x̃ti+4

= ϕ(Q, x̃ti , ti, ti+h) ▷ Updating guided by past scores

8: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+h, ti+4

)
▷ Update buffer (overwrite)

9: if p = 1 then
10: x̃ti+4

= ϕ(Q, x̃ti , ti, ti+4) ▷ Anticipatory updating guided by future scores
11: else if p > 1 then
12: x̃ti+4

= ϕ(Q, x̃ti+h
, ti+h, ti+4) ▷ The higher-order solver uses only past scores

13: end if
14: end if
15: end for
16: return x̃tM

choices with the parameter h. This strategy of multi-step skips and varying “springboard” choices is
collectively termed as PFDiff-k h (h ≤ k). Consequently, based on modifications to parameters k
and h in Eq. (12) and Eq. (14), Eq. (13) is updated to Q

buffer←−−−
({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti+h, ti+(k+1)

)
,

and Eq. (11) is updated to Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti−(k−h+1), ti

)
.

When k = 1, since h ≤ k, then h = 1, and PFDiff-k h is the same as PFDiff-1, as shown in
Algorithm 1 in Sec. 3.4. When k = 2, h can be either 1 or 2, forming Algorithms PFDiff-2 1
and PFDiff-2 2, as shown in Algorithm 2. Furthermore, when k = 3, this forms three different
versions of PFDiff-3, as shown in Algorithm 3. In this study, we utilize the optimal results from the
six configurations of PFDiff-k h (k = 1, 2, 3 (h ≤ k)) to demonstrate the performance of PFDiff.
As described in Appendix B.3, this is essentially an approximation of the optimal time point ts.
Through these six different algorithm configurations, we approximately search for the optimal ts. It
is important to note that despite using six different algorithm configurations, this does not increase
the computational burden in practical applications. This is because, by visual analysis of a small
number of generated images or computing specific evaluation metrics, one can effectively select
the algorithm configuration with the best performance. Moreover, even without any selection, with
k = 2 and h = 1 fixed, PFDiff-2 1 can always improve the baseline’s sampling quality within the
range of 4∼20 NFEs, as shown in the ablation study results in Sec. 4.3.

D ADDITIONAL EXPERIMENT RESULTS

In this section, we provide further supplements to the experiments on both unconditional and con-
ditional pre-trained Diffusion Probabilistic Models (DPMs) as mentioned in Sec. 4. Through these
additional supplementary experiments, we more fully validate the effectiveness of PFDiff as an or-
thogonal and training-free sampler. Unless otherwise stated, the selection of pre-trained DPMs,
choice of baselines, algorithm configurations, GPU utilization, and other related aspects in this sec-
tion are consistent with those described in Sec. 4.

D.1 LICENSE

In this section, we list the used datasets, codes, and their licenses in Table 2.
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Table 2: The used datasets, codes, and their licenses.

Name URL License

CIFAR10 (Krizhevsky et al., 2009) cs.toronto.edu \
CelebA 64x64 (Liu et al., 2015) mmlab.ie.cuhk.edu.hk \
LSUN-Bedroom (Yu et al., 2015) yf.io \
LSUN-Church (Yu et al., 2015) yf.io \
ImageNet (Deng et al., 2009) image-net.org \
MS-COCO2014 (Lin et al., 2014) cocodataset.org CC BY 4.0
ScoreSDE (Song et al., 2020b) github.com/yang-song Apache-2.0
DDIM (Song et al., 2020a) github.com/ermongroup MIT
Analytic-DPM (Bao et al., 2022b) github.com/baofff \
DPM-Solver (Lu et al., 2022a) github.com/LuChengTHU MIT
DPM-Solver++ (Lu et al., 2022b) github.com/LuChengTHU MIT
Guided-Diffusion (Dhariwal & Nichol, 2021) github.com/openai MIT
Stable-Diffusion (Rombach et al., 2022) github.com/CompVis CreativeML Open RAIL-M

Table 3: Sample quality measured by FID↓ on the CIFAR10 (Krizhevsky et al., 2009), CelebA
64x64 (Liu et al., 2015), LSUN-bedroom 256x256 (Yu et al., 2015), and LSUN-church 256x256 (Yu
et al., 2015) datasets using unconditional discrete-time DPMs, varying the number of function eval-
uations (NFE). Evaluated on 50k samples. PFDiff uses DDIM (Song et al., 2020a) and Analytic-
DDIM (Bao et al., 2022b) as baselines and introduces DDPM (Ho et al., 2020) and Analytic-
DDPM (Bao et al., 2022b) with η = 1.0 from Eq. (6) for comparison.

+PFDiff Method NFE

4 6 8 10 12 15 20

CIFAR10 (discrete-time model (Ho et al., 2020), quadratic time steps)

× DDPM(η = 1.0) (Ho et al., 2020) 108.05 71.47 52.87 41.18 32.98 25.59 18.34
× Analytic-DDPM (Bao et al., 2022b) 65.81 56.37 44.09 34.95 29.96 23.26 17.32
× Analytic-DDIM (Bao et al., 2022b) 106.86 24.02 14.21 10.09 8.80 7.25 6.17
× DDIM (Song et al., 2020a) 65.70 29.68 18.45 13.66 11.01 8.80 7.04

✓ Analytic-DDIM 289.84 23.24 7.03 4.51 3.91 3.75 3.65
✓ DDIM 22.38 9.84 5.64 4.57 4.39 4.10 3.68

CelebA 64x64 (discrete-time model (Song et al., 2020a), quadratic time steps)

× DDPM(η = 1.0) (Ho et al., 2020) 59.38 43.63 34.12 28.21 24.40 20.19 15.85
× Analytic-DDPM (Bao et al., 2022b) 32.10 39.78 32.29 26.96 23.03 19.36 15.67
× Analytic-DDIM (Bao et al., 2022b) 69.75 16.60 11.84 9.37 7.95 6.92 5.84
× DDIM (Song et al., 2020a) 37.76 20.99 14.10 10.86 9.01 7.67 6.50

✓ Analytic-DDIM 360.21 28.24 5.66 4.90 4.62 4.55 4.55
✓ DDIM 13.29 7.53 5.06 4.71 4.60 4.70 4.68

CelebA 64x64 (discrete-time model (Song et al., 2020a), uniform time steps)

× DDPM(η = 1.0) (Ho et al., 2020) 65.39 49.52 41.65 36.68 33.45 30.27 26.76
× Analytic-DDPM (Bao et al., 2022b) 102.45 42.43 34.36 33.85 30.38 28.90 25.89
× Analytic-DDIM (Bao et al., 2022b) 90.44 24.85 16.45 16.67 15.11 15.00 13.40
× DDIM (Song et al., 2020a) 44.36 29.12 23.19 20.50 18.43 16.71 14.76

✓ Analytic-DDIM 308.58 56.04 14.07 10.98 8.97 6.39 5.19
✓ DDIM 51.87 12.79 8.82 8.93 7.70 6.44 5.66

LSUN-bedroom 256x256 (discrete-time model (Ho et al., 2020), uniform time steps)

× DDIM (Song et al., 2020a) 115.63 47.40 26.73 19.26 15.23 11.68 9.26
✓ DDIM 140.40 18.72 11.50 9.28 8.36 7.76 7.14

LSUN-church 256x256 (discrete-time model (Ho et al., 2020), uniform time steps)

× DDIM (Song et al., 2020a) 121.95 50.02 30.04 22.04 17.66 14.58 12.49
✓ DDIM 72.86 18.30 14.34 13.27 12.05 11.77 11.12
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D.2 ADDITIONAL RESULTS FOR UNCONDITIONAL DISCRETE-TIME SAMPLING

In this section, we report on experiments with unconditional, discrete DPMs on the CI-
FAR10 (Krizhevsky et al., 2009) and CelebA 64x64 (Liu et al., 2015) datasets using quadratic time
steps. The FID↓ scores for the PFDiff algorithm are reported for changes in the number of func-
tion evaluations (NFE) from 4 to 20. Additionally, we present FID scores on the CelebA 64x64 (Liu
et al., 2015), LSUN-bedroom 256x256 (Yu et al., 2015), and LSUN-church 256x256 (Yu et al., 2015)
datasets, utilizing uniform time steps. The experimental results are summarized in Table 3. Results
indicate that using DDIM (Song et al., 2020a) as the baseline, our method (PFDiff) nearly achieved
significant performance improvements across all datasets and NFE settings. Notably, PFDiff facil-
itates rapid convergence of pre-trained DPMs to the data distribution with NFE settings below 10,
validating its effectiveness on discrete pre-trained DPMs and the first-order ODE solver DDIM. It is
important to note that on the CIFAR10 and CelebA 64x64 datasets, we have included the FID scores
of Analytic-DDIM (Bao et al., 2022b), which serves as another baseline. Analytic-DDIM modifies
the variance in DDIM and introduces some random noise. With NFE lower than 10, the presence
of minimal random noise amplifies the error introduced by the score information approximation in
PFDiff, reducing its error correction capability compared to the Analytic-DDIM sampler. Thus, in
fewer-step sampling (NFE<10), using DDIM as the baseline is more effective than using Analytic-
DDIM, which requires recalculating the optimal variance for different pre-trained DPMs, thereby
introducing additional computational overhead. In other experiments with pre-trained DPMs, we
validate the efficacy of the PFDiff algorithm by combining it with the overall superior performance
of the DDIM solver.

Furthermore, to validate the motivation proposed in Sec. 3.2 based on Fig. 1a—that at not exces-
sively large time step size ∆t, an ODE-based solver shows considerable similarity in the noise net-
work outputs—we compare it with the SDE-based solver DDPM (Ho et al., 2020). Even at smaller
∆t, the mean squared error (MSE) of the noise outputs from DDPM remains high, suggesting that
the effectiveness of PFDiff may be limited when based on SDE solvers. Further, we adjusted the η
parameter in Eq. (6) (which controls the amount of noise introduced in DDPM) from 1.0 to 0.0 (at

Table 4: Sample quality measured by FID↓ on the CIFAR10 (Krizhevsky et al., 2009) and CelebA
64x64 (Liu et al., 2015) using unconditional discrete-time DPMs with and without our method
(PFDiff), varying the number of function evaluations (NFE) and η from Eq. (6). Evaluated on 50k
samples.

Method NFE

4 6 8 10 12 15 20

CIFAR10 (discrete-time model (Ho et al., 2020), quadratic time steps)

DDPM(η = 1.0) (Ho et al., 2020) 108.05 71.47 52.87 41.18 32.98 25.59 18.34
+PFDiff (Ours) 475.47 432.24 344.96 332.41 285.88 158.90 28.05

DDPM(η = 0.5) (Song et al., 2020a) 71.08 34.32 22.37 16.63 13.37 10.75 8.38
+PFDiff (Ours) 432.50 349.09 311.62 167.65 59.93 23.17 10.61

DDPM(η = 0.2) (Song et al., 2020a) 66.33 30.26 18.94 14.01 11.25 9.00 7.18
+PFDiff (Ours) 316.15 189.02 18.55 7.73 5.70 4.53 4.00

DDIM(η = 0.0) (Song et al., 2020a) 65.70 29.68 18.45 13.66 11.01 8.80 7.04
+PFDiff (Ours) 22.38 9.48 5.64 4.57 4.39 4.10 3.68

CelebA 64x64 (discrete-time model (Song et al., 2020a), quadratic time steps)

DDPM(η = 1.0) (Ho et al., 2020) 59.38 43.63 34.12 28.21 24.40 20.19 15.85
+PFDiff (Ours) 433.25 439.19 415.41 317.43 324.58 326.50 171.41

DDPM(η = 0.5) (Song et al., 2020a) 40.58 23.72 16.74 13.15 11.27 9.36 7.73
+PFDiff (Ours) 435.27 417.58 314.63 310.10 252.19 69.31 19.23

DDPM(η = 0.2) (Song et al., 2020a) 38.20 21.35 14.55 11.22 9.47 7.99 6.71
+PFDiff (Ours) 394.03 319.02 45.15 12.71 7.85 5.10 4.96

DDIM(η = 0.0) (Song et al., 2020a) 37.76 20.99 14.10 10.86 9.01 7.67 6.50
+PFDiff (Ours) 13.29 7.53 5.06 4.71 4.60 4.70 4.68
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η = 0.0, the SDE-based DDPM degenerates into the ODE-based DDIM (Song et al., 2020a)). As
shown in Fig. 1a, as η decreases, the MSE of the noise network outputs gradually decreases at the
same time step size ∆t, indicating that reducing noise introduction can enhance the effectiveness of
PFDiff. To verify this motivation, we utilized quadratic time steps on CIFAR10 and CelebA 64x64
datasets and controlled the amount of noise introduced by adjusting η, to demonstrate that PFDiff
can leverage the temporal redundancy present in ODE solvers to boost its performance. The exper-
imental results, as shown in Table 4, illustrate that with the reduction of η from 1.0 (SDE) to 0.0
(ODE), PFDiff’s sampling performance significantly improves at fewer time steps (NFE≤20). The
experiment results regarding FID variations with NFE as presented in Table 4, align with the trends
of MSE of noise network outputs with changes in time step size ∆t as depicted in Fig. 1a. This
reaffirms the motivation we proposed in Sec. 3.2.

D.3 ADDITIONAL RESULTS FOR UNCONDITIONAL CONTINUOUS-TIME SAMPLING

In this section, we supplement the specific FID↓ scores for the unconditional, continuous pre-trained
DPMs models with first-order and higher-order ODE solvers, DPM-Solver-1, -2 and -3, (Lu et al.,
2022a) as baselines, as shown in Table 5. For all experiments in this section, we conducted tests on
the CIFAR10 dataset (Krizhevsky et al., 2009), using the checkpoint checkpoint_8.pth under
the vp/cifar10_ddpmpp_deep_continuous configuration provided by ScoreSDE (Song
et al., 2020b). For the hyperparameter method of DPM-Solver (Lu et al., 2022a), we adopted
singlestep_fixed; to maintain consistency with the discrete-time model in Appendix D.2,
the parameter skip was set to time_quadratic (i.e., quadratic time steps). Unless otherwise
specified, we used the parameter settings recommended by DPM-Solver. The results in Table 5
show that by using the PFDiff method described in Sec. 3.4 and taking DPM-Solver as the baseline,
we were able to further enhance sampling performance on the basis of first-order and higher-order
ODE solvers. Particularly, in the 6∼12 NFE range, PFDiff significantly improved the convergence
issues of higher-order ODE solvers under fewer NFEs. For instance, at 9 NFE, PFDiff reduced
the FID of DPM-Solver-3 from 233.56 to 5.67, improving the sampling quality by 97.57%. These
results validate the effectiveness of using PFDiff with first-order or higher-order ODE solvers as the
baseline.

Table 5: Sample quality measured by FID↓ of different orders of DPM-Solver (Lu et al., 2022a) on
the CIFAR10 (Krizhevsky et al., 2009) using unconditional continuous-time DPMs with and without
our method (PFDiff), varying the number of function evaluations (NFE). Evaluated on 50k samples.

Method order NFE

4 6 8 10 12 16 20

CIFAR10 (continuous-time model (Song et al., 2020b), quadratic time steps)

DPM-Solver-1 (Lu et al., 2022a) 1 40.55 23.86 15.57 11.64 9.64 7.23 6.06

+PFDiff (Ours) 1 113.74 11.41 5.90 4.23 3.92 3.73 3.75

DPM-Solver-2 (Lu et al., 2022a) 2 298.79 106.05 41.79 14.43 6.75 4.24 3.91

+PFDiff (Ours) 2 85.22 16.30 9.67 6.64 5.74 5.12 4.78

6 9 12 15 21

DPM-Solver-3 (Lu et al., 2022a) 3 382.51 233.56 44.82 7.98 3.63

+PFDiff (Ours) 3 103.22 5.67 5.72 5.62 5.24

D.4 ADDITIONAL RESULTS FOR CLASSIFIER GUIDANCE

In this section, we provide the specific FID scores for pre-trained DPMs in the conditional, clas-
sifier guidance paradigm on the ImageNet 64x64 (Deng et al., 2009) and ImageNet 256x256
datasets (Deng et al., 2009), as shown in Table 6. We now describe the experimental setup
in detail. For the pre-trained models, we used the ADM-G (Dhariwal & Nichol, 2021) pro-
vided 64x64_diffusion.pt and 64x64_classifier.pt for the ImageNet 64x64 dataset,
and 256x256_diffusion.pt and 256x256_classifier.pt for the ImageNet 256x256

21
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Table 6: Sample quality measured by FID↓ on the ImageNet 64x64 (Deng et al., 2009) and ImageNet
256x256 (Deng et al., 2009), using ADM-G (Dhariwal & Nichol, 2021) model with guidance scales
(s) of 1.0 and 2.0, varying the number of function evaluations (NFE). Evaluated: ImageNet 64x64
with 50k, ImageNet 256x256 with 10k samples. ∗We directly borrowed the results reported by
AutoDiffusion (Li et al., 2023), and AutoDiffusion requires additional search costs. “\” represents
missing data in the original paper.

Method Step NFE

4 6 8 10 15 20

ImageNet 64x64 (pixel DPMs model (Dhariwal & Nichol, 2021), uniform time steps, s = 1.0)

DDIM (Song et al., 2020a) S 138.81 23.58 12.54 8.93 5.52 4.45
DPM-Solver-2 (Lu et al., 2022a) S 327.09 292.66 264.97 236.80 166.52 120.29
DPM-Solver-2 (Lu et al., 2022a) M 48.64 21.08 12.45 8.86 5.57 4.46
DPM-Solver-3 (Lu et al., 2022a) S 383.71 376.86 380.51 378.32 339.34 280.12
DPM-Solver-3 (Lu et al., 2022a) M 54.01 24.76 13.17 8.85 5.48 4.41
DPM-Solver++(2M) (Lu et al., 2022b) M 44.15 20.44 12.53 8.95 5.53 4.33
∗AutoDiffusion (Li et al., 2023) S 17.86 11.17 \ 6.24 4.92 3.93

DDIM+PFDiff (Ours) S 16.46 8.20 6.22 5.19 4.20 3.83

ImageNet 256x256 (pixel DPMs model (Dhariwal & Nichol, 2021), uniform time steps, s = 2.0)

DDIM (Song et al., 2020a) S 51.79 23.48 16.33 12.93 9.89 9.05
DDIM+PFDiff (Ours) S 37.81 18.15 12.22 10.33 8.59 8.08

dataset. All experiments were conducted with uniform time steps and used DDIM as the base-
line (Song et al., 2020a). We implemented the second-order and third-order methods from DPM-
Solver (Lu et al., 2022a) for comparison and explored the method hyperparameter provided by
DPM-Solver for both singlestep (corresponding to “S” in Table 6) and multistep (cor-
responding to “M” in Table 6). Additionally, we implemented the best-performing method from
DPM-Solver++ (Lu et al., 2022b), multi-step DPM-Solver++(2M), as a comparative measure. Fur-
thermore, we also introduced the superior-performing AutoDiffusion (Li et al., 2023) method as
a comparison. ∗We directly borrowed the results reported in the original paper, emphasizing that
although AutoDiffusion does not require additional training, it incurs additional search costs. “\”
represents missing data in the original paper. The specific experimental results of the configurations
mentioned are shown in Table 6. The results demonstrate that PFDiff, using DDIM as the base-
line on the ImageNet 64x64 dataset, significantly enhances the sampling efficiency of DDIM and
surpasses previous optimal training-free sampling methods. Particularly, in cases where NFE≤10,
PFDiff improved the sampling quality of DDIM by 41.88%∼88.14%. Moreover, on the large Ima-
geNet 256x256 dataset, PFDiff demonstrates a consistent performance improvement over the DDIM
baseline, similar to the improvements observed on the ImageNet 64x64 dataset.

D.5 ADDITIONAL RESULTS FOR CLASSIFIER-FREE GUIDANCE

In this section, we supplemented the specific FID↓ scores for the Stable-Diffusion (Rombach et al.,
2022) (conditional, classifier-free guidance paradigm) setting with a guidance scale (s) of 7.5 and
1.5. Specifically, for the pre-trained model, we conducted experiments using the sd-v1-4.ckpt
checkpoint provided by Stable-Diffusion. All experiments used the MS-COCO2014 (Lin et al.,
2014) validation set to calculate FID↓ scores, with uniform time steps. PFDiff employs the
DDIM (Song et al., 2020a) method as the baseline. Initially, under the recommended s = 7.5
configuration by Stable-Diffusion, we implemented DPM-Solver-2 and -3 as comparative methods,
and set the method hyperparameters provided by DPM-Solver to multistep (corresponding
to “M” in Table 7). Additionally, we introduced previous state-of-the-art training-free methods,
including DPM-Solver++(2M) (Lu et al., 2022b), UniPC (Zhao et al., 2023), and DPM-Solver-
v3(2M) (Zheng et al., 2023) for comparison. The experimental results are shown in Table 7. †We
borrow the results reported in DPM-Solver-v3 (Zheng et al., 2023) directly. The results indicate that
on Stable-Diffusion, PFDiff, using only DDIM as a baseline, surpasses the previous state-of-the-art
training-free sampling methods in terms of sampling quality in fewer steps (NFE<20). Particularly,
at NFE=10, PFDiff achieved a 13.06 FID, nearly converging to the data distribution, which is a
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Table 7: Sample quality measured by FID↓ on the validation set of MS-COCO2014 (Lin et al.,
2014) using Stable-Diffusion model (Rombach et al., 2022) with guidance scales (s) of 7.5 and
1.5, varying the number of function evaluations (NFE). Evaluated on 10k samples. †We borrow the
results reported in DPM-Solver-v3 (Zheng et al., 2023) directly.

Method Step NFE

5 6 8 10 15 20

MS-COCO2014 (latent DPMs model (Rombach et al., 2022), uniform time steps, s = 7.5)

DDIM (Song et al., 2020a) S 23.92 20.33 17.46 16.78 16.08 15.95
DPM-Solver-2 (Lu et al., 2022a) M 18.97 17.37 16.29 15.99 14.32 14.38
DPM-Solver-3 (Lu et al., 2022a) M 18.89 17.34 16.25 16.11 14.10 13.44
†DPM-Solver++(2M) (Lu et al., 2022b) M 18.87 17.44 16.40 15.93 15.84 15.72
†UniPC (Zhao et al., 2023) M 18.77 17.32 16.20 16.15 16.06 15.94
†DPM-Solver-v3(2M) (Zheng et al., 2023) M 18.83 16.41 15.41 15.32 15.30 15.23

DDIM+PFDiff (Ours) S 18.31 15.47 13.26 13.06 13.57 13.97

MS-COCO2014 (latent DPMs model (Rombach et al., 2022), uniform time steps, s = 1.5)

DDIM (Song et al., 2020a) S 70.36 54.32 37.54 29.41 20.54 18.17
DPM-Solver-2 (Lu et al., 2022a) M 37.47 27.79 19.65 18.39 17.27 16.85
DPM-Solver-3 (Lu et al., 2022a) M 35.90 25.88 18.26 19.10 17.21 16.67
DPM-Solver++(2M) (Lu et al., 2022b) M 36.58 26.78 18.92 20.26 18.61 17.78

DDIM+PFDiff (Ours) S 24.31 20.99 18.09 17.00 16.03 15.57

14.25% improvement over the previous state-of-the-art method DPM-Solver-v3 at 20 NFE, which
had a 15.23 FID. Furthermore, to further validate the effectiveness of PFDiff on Stable-Diffusion,
we conducted experiments using the s = 1.5 setting with the same experimental configuration as
s = 7.5. For the comparative methods, we only experimented with the multi-step versions of DPM-
Solver-2 and -3 and DPM-Solver++(2M), which had faster convergence at fewer NFE under the
s = 7.5 setting. As for UniPC and DPM-Solver-v3(2M), since DPM-Solver-v3 did not provide
corresponding experimental results at s = 1.5, we did not list their comparative results. The experi-
mental results show that PFDiff, using DDIM as the baseline under the s = 1.5 setting, demonstrated
consistent performance improvements as seen in the s = 7.5 setting, as shown in Table 7.

D.6 ADDITIONAL ABLATION STUDY RESULTS

D.6.1 ADDITIONAL RESULTS FOR PFDIFF HYPERPARAMETERS STUDY

In this section, we extensively investigate the impact of the hyperparameters k and h on the perfor-
mance of the PFDiff algorithm, supplementing with the results of ablation experiments and experi-
mental setups. Specifically, for the unconditional DPMs, we conducted experiments on the CIFAR10
dataset (Krizhevsky et al., 2009) using quadratic time steps, based on pre-trained unconditional dis-
crete DDPM (Ho et al., 2020). For the conditional DPMs, we used uniform time steps in classifier
guidance ADM-G (Dhariwal & Nichol, 2021) pre-trained DPMs, setting the guidance scale (s) to
1.0 for experiments on the ImageNet 64x64 dataset (Deng et al., 2009). All experiments were con-
ducted using the DDIM (Song et al., 2020a) algorithm as a baseline, and PFDiff-k h configurations
(k = 1, 2, 3 (h ≤ k)) were tested in six different algorithm configurations. The FID↓ scores are
presented in Table 8, by varying the number of function evaluations (NFE) and the sample number
used to compute the evaluation metrics.

We first analyze the impact of the hyperparameters k and h using 50k samples to compute the FID
scores, which is a common method for evaluating the performance of sampling algorithms. The
experimental results demonstrate that, under various combinations of k and h, PFDiff is able to
enhance the sampling performance of the DDIM baseline in most cases across different types of
pre-trained DPMs. Particularly when setting k = 2 and h = 1, PFDiff-2 1 can always improve the
sampling performance of the DDIM baseline within the range of 4∼20 NFE. Furthermore, we have
an exciting discovery regarding the further optimization of algorithm performance: Searching with
just 1/10 of the data provides consistent results compared to searches using the full 50k samples,
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Table 8: Ablation study of the impact of k and h on PFDiff in CIFAR10 (Krizhevsky et al., 2009) and
ImageNet 64x64 (Deng et al., 2009) datasets using DDPM (Ho et al., 2020) and ADM-G (Dhariwal
& Nichol, 2021) models. We report the FID↓ and MSE↓, varying the number of function evaluations
(NFE) and the number of samples for evaluating algorithm performance.

Samples Method NFE

4 6 8 10 12 15 20

CIFAR10 (unconditional DPMs model (Ho et al., 2020), quadratic time steps)

50k
(FID)

DDIM (Song et al., 2020a) 65.70 29.68 18.45 13.66 11.01 8.80 7.04
+PFDiff-1 124.73 19.45 5.78 4.95 4.63 4.25 4.14
+PFDiff-2 1 59.61 9.84 7.01 6.31 5.58 5.18 4.78
+PFDiff-2 2 167.12 53.22 8.43 4.95 4.41 4.10 3.78
+PFDiff-3 1 22.38 13.40 9.40 7.70 6.73 6.03 5.05
+PFDiff-3 2 129.18 19.35 5.64 4.57 4.39 4.19 4.08
+PFDiff-3 3 205.87 76.62 20.84 5.71 4.73 4.41 3.68

5k
(FID)

DDIM (Song et al., 2020a) 69.79 34.20 22.84 17.39 15.56 12.87 11.62
+PFDiff-1 127.82 23.96 10.35 9.73 9.29 9.09 8.74
+PFDiff-2 1 63.59 14.34 11.40 11.08 9.23 10.03 9.38
+PFDiff-2 2 170.58 57.74 12.94 9.86 10.08 9.02 8.44
+PFDiff-3 1 26.85 17.93 13.95 12.37 9.59 10.89 9.65
+PFDiff-3 2 132.45 23.80 10.11 9.58 9.16 9.09 8.69
+PFDiff-3 3 208.80 80.13 24.84 10.73 11.16 9.14 8.34

256
(MSE)

DDIM (Song et al., 2020a) 0.1009 0.0608 0.0414 0.0314 0.0255 0.0199 0.0152
+PFDiff-1 0.0542 0.0217 0.0131 0.0100 0.0089 0.0082 0.0081
+PFDiff-2 1 0.0277 0.0137 0.0110 0.0104 0.0098 0.0093 0.0088
+PFDiff-2 2 0.1001 0.0468 0.0277 0.0184 0.0145 0.0122 0.0105
+PFDiff-3 1 0.0218 0.0167 0.0146 0.0130 0.0120 0.0107 0.0098
+PFDiff-3 2 0.0614 0.0228 0.0133 0.0101 0.0089 0.0083 0.0082
+PFDiff-3 3 0.1790 0.0820 0.0444 0.0299 0.0224 0.0165 0.0126

ImageNet 64x64 (conditional DPMs model (Dhariwal & Nichol, 2021), uniform time steps, s = 1.0)

50k
(FID)

DDIM (Song et al., 2020a) 138.81 23.58 12.54 8.93 6.74 5.52 4.45
+PFDiff-1 26.86 11.39 7.47 5.83 5.16 4.76 4.39
+PFDiff-2 1 17.14 8.94 6.38 5.46 5.46 4.30 3.83
+PFDiff-2 2 23.66 9.93 6.86 5.72 5.17 4.49 3.94
+PFDiff-3 1 16.74 9.43 7.19 5.86 5.07 4.69 4.44
+PFDiff-3 2 16.46 8.20 6.22 5.19 4.62 4.20 4.28
+PFDiff-3 3 23.06 9.73 6.92 5.55 5.21 4.47 4.49

5k
(FID)

DDIM (Song et al., 2020a) 146.03 29.61 19.11 15.13 13.15 11.65 10.81
+PFDiff-1 32.82 17.80 13.61 12.16 11.20 10.99 10.82
+PFDiff-2 1 23.70 14.81 12.38 11.82 11.53 10.77 10.24
+PFDiff-2 2 30.10 16.35 13.09 11.80 11.68 10.67 10.56
+PFDiff-3 1 23.09 15.78 13.21 12.09 11.71 11.00 10.77
+PFDiff-3 2 22.54 14.23 12.24 11.27 11.16 10.47 10.48
+PFDiff-3 3 29.45 16.12 13.25 11.90 11.29 10.68 10.66

significantly reducing the cost of hyperparameter searching for k and h. Specifically, for the same
NFE, the optimal combinations of k and h based on FID scores are consistent for both 5k and 50k
samples. For instance, when NFE=6, the best FID values for both 5k and 50k samples are achieved
with k = 2 and h = 1. For the six combinations used in this study with k ≤ 3(h ≤ k), only a total
of 30k samples are required to search the optimal k and h combination for each NFE—this is even
less than the cost of evaluating algorithm performance normally with 50k samples. Additionally,
in practical applications where only a small number of samples are needed for visual analysis, we
can minimize training resources and rapidly identify the optimal k and h combination. In summary,
the hyperparameters k and h do not impede the practical application of PFDiff in accelerating the
sampling of DPMs.

Furthermore, we propose an automatic search strategy with almost no additional cost based on
truncation errors for selecting k and h. Specifically, in Sec. 3.5, we discuss how PFDiff can correct
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(b) DDIM + PFDiff-1
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(c) DDIM + PFDiff (k ≤ 3)

Figure 5: The trend (mean and standard deviation (std)) of accumulated truncation error over time
step t on the CIFAR10 (Krizhevsky et al., 2009) dataset, relative to DDIM (Song et al., 2020a) with
1000 NFE, varying the number of function evaluations (NFE) ∈ {6, 10, 20}.

the discretization error of the baseline solver in regions with large curvature along the sampling
trajectory, which means that PFDiff accumulates less truncation error. To validate this conclusion,
we conducted experiments on the CIFAR10 dataset, where we sampled 256 samples using DDIM,
PFDiff-1, and PFDiff (k ≤ 3) with varying NFE values. The truncation errors were calculated using
MSE relative to DDIM with 1000 NFE, and the results are shown in Fig. 5. The results demonstrate
that PFDiff significantly corrects DDIM’s truncation errors in regions with large curvature of the
sampling trajectory (i.e., regions where truncation errors increase rapidly). Based on these findings,
we propose an automatic search strategy: by varying the hyperparameters k and h, we “warm up”
with only 256 samples respectively, calculate the average truncation error using MSE, and use this
value to guide the selection of k and h. On the CIFAR10 dataset, by varying NFE, k, and h, we
sampled 256 samples and computed the average truncation errors relative to DDIM with 1000 NFE.
The results are presented in Tab. 8. Based on Tab. 8, we select the values of k and h corresponding
to the minimum truncation error, and further refer to the corresponding FID values found in Tab. 8,
which are {22.38, 9.84, 7.01, 4.95, 4.63/4.39, 4.25, 4.14} for NFE ∈ {4, 6, 8, 10, 12, 15, 20}. This
set of FID values is comparable to the optimal FID, indicating that determining k and h based on
truncation error is reasonable. Notably, in Tab. 8, we “warmed up” only 256 samples to compute
the truncation error, so the additional cost introduced by the automatic search strategy is negligible.
The 256 samples are sufficient to capture the dataset’s statistical properties because the shapes of
sampling trajectories are highly similar (Chen et al., 2024).

D.6.2 ABLATION STUDY OF PAST AND FUTURE SCORES

To further investigate the impact of scores from the past or future on first-order ODE solvers on the
rapid updating of current intermediate states, this section supplements related ablation study results
and their settings. Specifically, we first use PFDiff with the first-order ODE solver DDIM as a base-
line, removing past and future scores separately based on the discrete-time pre-trained models (Ho
et al., 2020; Song et al., 2020a). On the CIFAR10 (Krizhevsky et al., 2009) and CelebA 64x64 (Liu
et al., 2015) datasets, we alter the number of function evaluations (NFE) to compute the FID↓ met-
ric. Additionally, we introduce a method from previous literature (Ma et al., 2024) that accelerates
sampling by caching part of past scores for comparison. Specifically, we configure the hyperpa-
rameters based on the DeepCache (Ma et al., 2024) codebase, setting cache_interval to 2 and
branch to 0, with all other settings remaining unchanged. As shown in Table 9, the experimental
results indicate that using only past scores or only future scores can slightly improve the first-order
ODE solvers sampling performance. However, their combined use (i.e., the complete PFDiff) sig-
nificantly enhances first-order ODE solvers sampling performance, especially with very few steps
(NFE<10), a phenomenon particularly evident. These results further validate the efficiency of the
PFDiff algorithm when NFE<10, benefiting from its information-efficient update process, which
utilizes past and future (complementing each other) scores to jointly guide the current intermediate
state.

Furthermore, to verify whether the update process of the PFDiff algorithm increases additional in-
ference time, we employed the same experimental settings as in Table 9 and provided a specific
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Table 9: Ablation study of the impact of the past and future scores on PFDiff, using DDIM (Song
et al., 2020a) as the baseline, in CIFAR10 (Krizhevsky et al., 2009) and CelebA 64x64 (Liu et al.,
2015) datasets using discrete-time models (Ho et al., 2020; Song et al., 2020a). We report the FID↓,
varying the number of function evaluations (NFE). Evaluated on 50k samples.

+PFDiff Method NFE

4 6 8 10 12 16 20

CIFAR10 (discrete-time model (Ho et al., 2020), quadratic time steps)

× DDIM (Song et al., 2020a) 65.70 29.68 18.45 13.66 11.01 8.80 7.04

× +Cache (Ma et al., 2024) 49.02 24.04 15.23 11.31 9.40 7.25 6.25
× +Past 52.81 27.47 17.87 13.64 10.79 8.20 7.02
× +Future 66.06 25.39 11.93 8.06 6.04 4.17 4.07
✓ +Past & Future 22.38 9.84 5.64 4.57 4.39 4.10 3.68

CelebA 64x64 (discrete-time model (Song et al., 2020a), uniform time steps)

× DDIM (Song et al., 2020a) 44.36 29.12 23.19 20.50 18.43 16.13 14.76

× +Cache (Ma et al., 2024) 33.86 25.95 22.29 19.83 18.28 16.05 14.45
× +Past 28.45 21.56 18.65 17.03 15.89 14.05 12.73
× +Future 39.85 16.30 14.40 12.79 12.13 9.73 8.13
✓ +Past & Future 51.87 12.79 8.82 8.93 7.70 6.44 5.66

inference time comparison under different NFE. The inference time↓ (second, mean±std) required
per 1k samples on a single NVIDIA 3090 GPU is shown in Table 10. The experimental results
reveal that PFDiff+DDIM has consistent inference times with DDIM alone under the same NFE,
indicating that the PFDiff algorithm does not add extra inference time. Additionally, methods (Ma
et al., 2024) that cache part of past scores not only incur additional inference costs but also exhibit
relatively weak acceleration effects with a small number of steps (NFE<10). These results collec-
tively demonstrate that the PFDiff algorithm can significantly enhance sampling quality without any
increase in inference time, further proving its effectiveness.

Table 10: Inference time↓ (second, mean±std) required per 1k samples on a single NVIDIA 3090
GPU, varying the number of function evaluations (NFE). We additionally present the inference time
with only past or only future scores, at the same NFE. Moreover, we introduce methods (Ma et al.,
2024; Wimbauer et al., 2024) that cache part of past scores for comparison.

+PFDiff Method NFE

4 10 16 20

CIFAR10 (discrete-time model (Ho et al., 2020), quadratic time steps)

× DDIM (Song et al., 2020a) 6.14±0.010 9.81±0.022 13.58±0.090 15.90±0.081

× +Cache (Ma et al., 2024) 6.31±0.150 13.55±0.019 19.42±0.091 24.07±0.185
× +Past 6.17±0.029 9.88±0.040 13.66±0.257 15.81±0.062
× +Future 6.16±0.036 9.77±0.153 13.73±0.345 15.67±0.096
✓ +Past & Future 6.10±0.006 9.74±0.036 13.48±0.220 15.79±0.036

CelebA 64x64 (discrete-time model (Song et al., 2020a), uniform time steps)

× DDIM (Song et al., 2020a) 13.65±0.116 27.29±0.543 40.55±0.618 49.43±0.497

× +Cache (Ma et al., 2024) 19.82±0.130 45.60±0.131 71.70±0.266 89.45±0.085
× +Past 13.67±0.057 26.88±0.144 40.24±0.151 49.82±0.081
× +Future 13.61±0.304 26.38±0.067 39.95±0.440 49.05±0.543
✓ +Past & Future 13.21±0.060 26.41±0.042 40.26±0.186 49.38±0.257
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D.7 INCEPTION SCORE EXPERIMENTAL RESULTS

To evaluate the effectiveness of the PFDiff algorithm and the widely used Fréchet Inception Dis-
tance (FID↓) metric (Heusel et al., 2017) in the sampling process of Diffusion Probabilistic Models
(DPMs), we have also incorporated the Inception Score (IS↑) metric (Salimans et al., 2016) for both
unconditional and conditional pre-trained DPMs. Specifically, for the unconditional discrete-time
pre-trained DPMs DDPM (Ho et al., 2020), we maintained the experimental configurations de-
scribed in Table 3 of Appendix D.2, and added IS scores for the CIFAR10 dataset (Krizhevsky et al.,
2009). For the unconditional continuous-time pre-trained DPMs ScoreSDE (Song et al., 2020b),
the experimental configurations are consistent with Table 5 in Appendix D.3, and IS scores for the
CIFAR10 dataset were also added. For the conditional classifier guidance paradigm of pre-trained
DPMs ADM-G (Dhariwal & Nichol, 2021), the experimental setup aligned with Table 6 in Appendix
D.4, including IS scores for the ImageNet 64x64 and ImageNet 256x256 datasets (Deng et al., 2009).
Considering that the computation of IS scores relies on features extracted using InceptionV3
pre-trained on the ImageNet dataset, calculating IS scores for non-ImageNet datasets was not
feasible, hence no IS scores were provided for the classifier-free guidance paradigm of Stable-
Diffusion (Rombach et al., 2022). The experimental results are presented in Table 11. A comparison
between the FID↓ metrics in Tables 3, 5, and 6 and the IS↑ metrics in Table 11 shows that both IS
and FID metrics exhibit similar trends under the same experimental settings, i.e., as the number of
function evaluations (NFE) changes, lower FID scores correspond to higher IS scores. Further, Figs.
7a and 7b, along with the visualization experiments in Appendix D.9, demonstrate that lower FID

Table 11: Sample quality measured by IS↑ on the CIFAR10 (Krizhevsky et al., 2009), ImageNet
64x64 (Deng et al., 2009) and ImageNet 256x256 (Deng et al., 2009) using DDPM (Ho et al.,
2020), ScoreSDE (Song et al., 2020b) and ADM-G (Dhariwal & Nichol, 2021) models, varying
the number of function evaluations (NFE). Evaluated: ImageNet 256x256 with 10k, others with
50k samples. ∗We directly borrowed the results reported by AutoDiffusion (Li et al., 2023), and
AutoDiffusion requires additional search costs. “\” represents missing data in the original paper
and DPM-Solver-2 (Lu et al., 2022a) implementation.

+PFDiff Method NFE

4 6 8 10 15 20

CIFAR10 (discrete-time model (Ho et al., 2020), quadratic time steps)

× DDPM(η = 1.0) (Ho et al., 2020) 4.32 5.66 6.55 7.08 7.91 8.25
× Analytic-DDPM (Bao et al., 2022b) 5.76 6.29 6.93 7.42 8.07 8.33
× Analytic-DDIM (Bao et al., 2022b) 4.46 7.47 8.11 8.43 8.72 8.89
× DDIM (Song et al., 2020a) 5.68 7.21 7.92 8.26 8.62 8.81

✓ Analytic-DDIM 1.62 8.78 9.43 9.61 9.35 9.29
✓ DDIM 7.79 9.29 9.62 9.43 9.29 9.29

CIFAR10 (continuous-time model (Song et al., 2020b), quadratic time steps)

× DPM-Solver-1 (Lu et al., 2022a) 7.20 8.30 8.85 8.98 9.43 9.51
× DPM-Solver-2 (Lu et al., 2022a) 1.70 5.29 7.94 9.09 \ 9.74

✓ DPM-Solver-1 4.29 9.25 9.76 9.86 9.85 9.97
✓ DPM-Solver-2 6.96 8.58 8.75 9.26 \ 9.69

ImageNet 64x64 (pixel DPMs model (Dhariwal & Nichol, 2021), uniform time steps, s = 1.0)

× DDIM (Song et al., 2020a) 7.02 31.13 40.51 46.06 54.37 59.09
× DPM-Solver-2(Multi) (Lu et al., 2022a) 19.03 33.75 44.65 51.79 62.18 67.69
× DPM-Solver-3(Multi) (Lu et al., 2022a) 17.46 29.80 41.86 50.90 62.68 68.44
× DPM-Solver++(2M) (Lu et al., 2022b) 20.72 34.22 43.62 50.02 60.00 65.66
× ∗AutoDiffusion (Li et al., 2023) 34.88 43.37 \ 57.85 64.03 68.05

✓ DDIM 35.67 50.14 58.42 59.78 64.54 69.09

ImageNet 256x256 (pixel DPMs model (Dhariwal & Nichol, 2021), uniform time steps, s = 2.0)

× DDIM (Song et al., 2020a) 37.72 95.90 122.13 144.13 165.91 179.27

✓ DDIM 55.90 122.56 158.57 169.72 183.07 192.70
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Figure 6: (a) The trend of the MSE of the noise network output ϵθ(xt, t) over time step size ∆t in
the EDM framework (Karras et al., 2022). (b) MSE relative to the sampling process with 1000 NFE:
“Springboard”, ∥x̃ti+h

− x̃gt
ti+h
∥2; Future Score, ∥ϵθ(x̃ti+h

, ti+h)− ϵθ(x̃
gt
ti+h

, ti+h)∥2.

scores and higher IS scores correlate with higher image quality and richer details generated by the
PFDiff sampling algorithm. These results further confirm the effectiveness of the PFDiff algorithm
and the FID metric in evaluating the performance of sampling algorithms.

D.8 EXPERIMENTAL SETUP AND ADDITIONAL RESULTS CLARIFYING THE MOTIVATION

In this section, we provide a detailed explanation of the experimental in Fig. 1a and Fig. 1b.
Additionally, we further extend the experiments from Fig. 1a and Fig. 1b, as shown in Fig. 6.

For Fig. 1a, we first store the noise network output at all time steps, with 1000 NFE:
{ϵθ(xti , ti)}999i=0. We then compute the mean of the MSE of the noise network output over the
time interval ∆t. For instance, when ∆t = 2, we compute the following mean: ∥ϵθ(xt0 , t0) −
ϵθ(xt2 , t2)∥2, · · · , ∥ϵθ(xt997 , t997) − ϵθ(xt999 , t999)∥2. By varying the value of ∆t from 0 to 999,
we are able to compute the mean of the MSE of the noise network output, respectively, and ulti-
mately obtain Fig. 1a. Notably, in Fig. 1a, the curves for DDPM (Ho et al., 2020) and DDIM (Song
et al., 2020a) are derived from the pre-trained model of DDPM (Ho et al., 2020); the curves for
DPM-Solver (Lu et al., 2022a) and DPM-Solver++ (Lu et al., 2022b) are obtained from the pre-
trained model of ScoreSDE (Song et al., 2020b). Additionally, in Fig. 6a, we present experimental
results from a more advanced diffusion model framework — the EDM (Karras et al., 2022) pre-
trained model, including DDIM, DPM-Solver, and Heun’s 2nd (Karras et al., 2022) solvers. For the
three different architecture pre-trained models, when the time step size ∆t is not excessively large,
the noise network outputs exhibit remarkable similarity. This validates that the method we propose
in Sec. 3.3, using past scores to guide sampling, is reliable.

For Fig. 1b, during the sampling process from x̃ti to x̃ti+(k+1)
, based on the PFDiff, we first compute

the “springboard” x̃ti+h
, and then further obtain the future score ϵθ(x̃ti+h

, ti+h). Next, we compute
the MSE of the status x̃ti+(k+1)

, which is updated using the “springboard” and future score, respec-
tively. The MSE is calculated relative to the sampling process with 1000 NFE, resulting in Fig. 1b.
Moreover, We also directly evaluate the MSE of the “springboard” and the future score at different
ti+h moments, relative to the sampling with 1000 NFE, as shown in Fig. 6b. Notably, both Fig. 1b
and Fig. 6b exhibit the same trend, demonstrating that the future gradient is more reliable than the
“Springboard”.

D.9 VISUALIZE STUDY RESULTS

To demonstrate the effectiveness of PFDiff, we present the visual sampling results on the CI-
FAR10 (Krizhevsky et al., 2009), CelebA 64x64 (Liu et al., 2015), LSUN-bedroom 256x256 (Yu
et al., 2015), LSUN-church 256x256 (Yu et al., 2015), ImageNet 64x64 (Deng et al., 2009), Ima-
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geNet 256x256 (Deng et al., 2009), and MS-COCO2014 (Lin et al., 2014) datasets in Figs. 7-13.
These results illustrate that PFDiff, using different orders of ODE solvers as a baseline, is capa-
ble of generating samples of higher quality and richer detail on both unconditional and conditional
pre-trained Diffusion Probabilistic Models (DPMs).
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Text Prompts: Winter night with snow -covered rooftops and soft yellow lights. (Left)
A Corgi running towards me in Times Square. (Right)

(a) Results from Stable-Diffusion on MS-COCO2014 (Classifier-Free Guidance, s = 7.5)
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(b) Results from Guided-Diffusion on ImageNet 64x64 (Classifier Guidance, s = 1.0)

Figure 7: Sampling by conditional pre-trained DPMs (Rombach et al., 2022; Dhariwal & Nichol,
2021) using DDIM (Song et al., 2020a) and our method PFDiff (dashed box) with DDIM as a
baseline, varying the number of function evaluations (NFE).
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(a) DDIM (Song et al., 2020a)

FID = 106.86 FID = 10.09 FID = 69.75 FID = 9.37FID = 14.21 FID = 11.84

(b) Analytic-DDIM (Bao et al., 2022b)

FID = 22.38 FID = 4.57 FID = 13.29 FID = 4.71FID = 5.64 FID = 5.06

(c) DDIM+PFDiff (Ours)

Figure 8: Random samples by DDIM (Song et al., 2020a), Analytic-DDIM (Bao et al., 2022b), and
PFDiff (baseline: DDIM) with 4, 8, and 10 number of function evaluations (NFE), using the same
random seed, quadratic time steps, and pre-trained discrete-time DPMs (Ho et al., 2020; Song et al.,
2020a) on CIFAR10 (Krizhevsky et al., 2009) (left) and CelebA 64x64 (Liu et al., 2015) (right).
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(a) DDIM (Song et al., 2020a)

FID = 25.32 FID = 9.28 FID = 26.69 FID = 13.27

(b) DDIM+PFDiff (Ours)

Figure 9: Random samples by DDIM (Song et al., 2020a) and PFDiff (baseline: DDIM) with 5
and 10 number of function evaluations (NFE), using the same random seed, uniform time steps, and
pre-trained discrete-time DPMs (Ho et al., 2020) on LSUN-bedroom 256x256 (Yu et al., 2015) (left)
and LSUN-church 256x256 (Yu et al., 2015) (right).
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NFE = 6 NFE = 12

FID = 23.86 FID = 9.64

(a) DPM-Solver-1 (Lu et al., 2022a)

FID = 11.41 FID = 3.92

(b) DPM-Solver-1+PFDiff (Ours)

FID = 106.05 FID = 6.75

(c) DPM-Solver-2 (Lu et al., 2022a)

FID = 16.30 FID = 5.74

(d) DPM-Solver-2+PFDiff (Ours)

FID = 382.51 FID = 44.82

(e) DPM-Solver-3 (Lu et al., 2022a)

FID = 103.22 FID = 5.72

(f) DPM-Solver-3+PFDiff (Ours)

Figure 10: Random samples by DPM-Solver-1, -2, and -3 (Lu et al., 2022a) with and without
our method (PFDiff) with 6 and 12 number of function evaluations (NFE), using the same ran-
dom seed, quadratic time steps, and pre-trained continuous-time DPMs (Song et al., 2020b) on
CIFAR10 (Krizhevsky et al., 2009).
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NFE = 4 NFE = 8

FID = 138.81 FID = 12.54

(a) DDIM (Song et al., 2020a)

FID = 48.64 FID = 12.45

(b) DPM-Solver-2 (Lu et al., 2022a)

FID = 44.15 FID = 12.53

(c) DPM-Solver++(2M) (Lu et al., 2022b)

FID = 16.46 FID = 6.22

(d) DDIM+PFDiff (Ours)

Figure 11: Random samples by DDIM (Song et al., 2020a), DPM-Solver-2 (Lu et al., 2022a), DPM-
Solver++(2M) (Lu et al., 2022b), and PFDiff (baseline: DDIM) with 4 and 8 number of func-
tion evaluations (NFE), using the same random seed, uniform time steps, and pre-trained Guided-
Diffusion (Dhariwal & Nichol, 2021) on ImageNet 64x64 (Deng et al., 2009) with a guidance scale
of 1.0.
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FID = 51.79 FID = 16.33

(a) DDIM (Song et al., 2020a)

FID = 37.81 FID = 12.22

(b) DDIM+PFDiff (Ours)

Figure 12: Random samples by DDIM (Song et al., 2020a) and PFDiff (baseline: DDIM) with 4
and 8 number of function evaluations (NFE), using the same random seed, uniform time steps, and
pre-trained Guided-Diffusion (Dhariwal & Nichol, 2021) on ImageNet 256x256 (Deng et al., 2009)
with a guidance scale of 2.0.
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Text Prompts (listed from left to right):
A large bird is standing in the water by some rocks.
A candy covered cup cake sitting on top of a white plate.
People at a wine tasting with a table of wine bottles and glasses of red wine.
A bathtub sits on a tiled floor near a sink that has ornate mirrors over it while greenery grows on the
other side of the tub.
A kitchen and dining area in a house with an open floor plan that looks out over the landscape from a
large set of windows.
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Figure 13: Random samples by DDIM (Song et al., 2020a), DPM-Solver++(2M) (Lu et al., 2022b),
and PFDiff (baseline: DDIM) with 5 and 10 number of function evaluations (NFE), using the same
random seed, uniform time steps, and pre-trained Stable-Diffusion (Rombach et al., 2022) with a
guidance scale of 7.5. Text prompts are a random sample from the MS-COCO2014 (Lin et al.,
2014) validation set.
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