
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PFDIFF: TRAINING-FREE ACCELERATION OF DIF-
FUSION MODELS COMBINING PAST AND FUTURE
SCORES

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion Probabilistic Models (DPMs) have shown remarkable potential in im-
age generation, but their sampling efficiency is hindered by the need for numer-
ous denoising steps. Most existing solutions accelerate the sampling process by
proposing fast ODE solvers. However, the inevitable discretization errors of the
ODE solvers are significantly magnified when the number of function evaluations
(NFE) is fewer. In this work, we propose PFDiff, a novel training-free and orthog-
onal timestep-skipping strategy, which enables existing fast ODE solvers to oper-
ate with fewer NFE. Specifically, PFDiff initially utilizes score replacement from
past time steps to predict a “springboard”. Subsequently, it employs this “spring-
board” along with foresight updates inspired by Nesterov momentum to rapidly
update current intermediate states. This approach effectively reduces unneces-
sary NFE while correcting for discretization errors inherent in first-order ODE
solvers. Experimental results demonstrate that PFDiff exhibits flexible applicabil-
ity across various pre-trained DPMs, particularly excelling in conditional DPMs
and surpassing previous state-of-the-art training-free methods. For instance, us-
ing DDIM as a baseline, we achieved 16.46 FID (4 NFE) compared to 138.81 FID
with DDIM on ImageNet 64x64 with classifier guidance, and 13.06 FID (10 NFE)
on Stable Diffusion with 7.5 guidance scale.

1 INTRODUCTION

In recent years, Diffusion Probabilistic Models (DPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2020b) have demonstrated exceptional modeling capabilities across various domains in-
cluding image generation (Dhariwal & Nichol, 2021; Peebles & Xie, 2023; Karras et al., 2024),
video generation (Dehghani et al., 2023), text-to-image generation (Rombach et al., 2022; Betker
et al., 2023), speech synthesis (Song et al., 2022), and text-to-3D generation (Poole et al., 2022;
Lin et al., 2023). They have become a key driving force advancing deep generative models. DPMs
initiate with a forward process that introduces noise onto images, followed by utilizing a neural net-
work to learn a backward process that incrementally removes noise, thereby generating images (Ho
et al., 2020; Song et al., 2020b). Compared to other generative methods such as Generative Adver-
sarial Networks (GANs) (Goodfellow et al., 2014) and Variational Autoencoders (VAEs) (Kingma
& Welling, 2013), DPMs not only possess a simpler optimization target but also are capable of pro-
ducing higher quality samples (Dhariwal & Nichol, 2021). However, the generation of high-quality
samples via DPMs requires hundreds or thousands of denoising steps, significantly lowering their
sampling efficiency and becoming a major barrier to their widespread application.

Existing techniques for rapid sampling in DPMs primarily fall into two categories. First, training-
based methods (Salimans & Ho, 2022; Liu et al., 2022b; Song et al., 2023; Yin et al., 2024), which
can significantly compress sampling steps, even achieving single-step sampling. However, this com-
pression often comes with a considerable additional training cost, and these methods are challenging
to apply to large pre-trained models. Second, training-free samplers (Song et al., 2020a; Lu et al.,
2022a;b; Bao et al., 2022b;a; Liu et al., 2022a; Li et al., 2023; Zheng et al., 2023; Ma et al., 2024;
Wimbauer et al., 2024; Zhao et al., 2023; Xue et al., 2023), which typically employ implicit or ana-
lytical solutions to Stochastic Differential Equations (SDE)/Ordinary Differential Equations (ODE)
for lower-error sampling processes. For instance, Lu et al. (Lu et al., 2022a;b), by analyzing the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 200 400 600 800 999
∆t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1
T
−
∆
t

∑∑ ∑
T
−
∆
t−

1
t=

0
‖ǫ

θ
(x

t,
t)

−
ǫ θ
(x

t+
∆
t,
t
+

∆
t)
‖2

DDPM(η = 1.0)

DDPM(η = 0.5)

DDPM(η = 0.2)

DDIM

DPM-Solver-1

DPM-Solver++-1

DPM-Solver-2

DPM-Solver-3

(a) Score Changes in SDE/ODE
Solvers

0 200 400 600 800 1000
Denoising timestep ti+h

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
S
E

(R
el

at
iv

e
to

10
00

N
F
E
)

NFE=6, x̃ti+(k+1)
(from Future Score)

NFE=6, x̃ti+(k+1)
(from Springboard)

NFE=8, x̃ti+(k+1)
(from Future Score)

NFE=8, x̃ti+(k+1)
(from Springboard)

NFE=10, x̃ti+(k+1)
(from Future Score)

NFE=10, x̃ti+(k+1)
(from Springboard)

NFE=20, x̃ti+(k+1)
(from Future Score)

NFE=20, x̃ti+(k+1)
(from Springboard)

NFE=50, x̃ti+(k+1)
(from Future Score)

NFE=50, x̃ti+(k+1)
(from Springboard)

(b) Future Score More Reliable
than “Springboard”

ODE trajectories

Buffer
B ffer

PFDiff-1

First-ord

Forecasting sample Gradients savingSampling trajectory

“Springboard”
“Springboard”

(c) Comparison of Sampling
Trajectories

Figure 1: (a) The trend of the MSE of the noise network output ϵθ(xt, t) over time step size ∆t,
where η comes from σ̄t in Eq. (6). Solid lines: ODE solvers, dashed lines: SDE solvers. (b) MSE
of the status separately updated using “springboard” x̃ti+h

and future score ϵθ(x̃ti+h
, ti+h), relative

to the sampling process with 1000 NFE, is given by: ∥x̃ti+(k+1)
− x̃gt

ti+(k+1)
∥2. (c) Comparison

of partial sampling trajectories between PFDiff-1 and a first-order ODE solver, where the update
directions are guided by the tangent direction of the sampling trajectories.

semi-linear structure of the ODE solvers for DPMs, have sought to analytically derive optimally
the solutions for DPMs’ ODE solvers. These training-free sampling strategies can often be used
in a plug-and-play fashion, compatible with existing pre-trained DPMs. However, when the NFE
is below 10, the discretization error of these training-free methods will be significantly amplified,
leading to convergence issues (Lu et al., 2022a;b), which can still be time-consuming.

To further enhance the sampling speed of DPMs, we have analyzed the potential for improvement
in existing training-free accelerated methods. Initially, we observed a high similarity in the model’s
outputs for the existing ODE solvers when time step size ∆t is not extremely large, as illustrated
in Fig. 1a. This observation led us to utilize the scores that have been computed from past time
steps to approximate current scores, thereby predicting a “springboard”. Furthermore, due to the
similarities between the sampling process of DPMs and Stochastic Gradient Descent (SGD) (Rob-
bins & Monro, 1951) as noted in Remark 1, we incorporated a foresight update mechanism using
Nesterov momentum (Nesterov, 1983), known for accelerating SGD training. Specifically, we first
predict future scores using the “springboard” to reduce errors, as shown in Fig. 1b. Then, we further
replace the current scores with the future scores to facilitate a larger update step size ∆t, as shown
in Fig. 1c.

Motivated by these insights, we propose PFDiff, a timestep-skipping sampling algorithm that rapidly
updates the current intermediate state combining past and future scores. Notably, PFDiff is training-
free and orthogonal to existing DPMs sampling algorithms, providing a new orthogonal axis for
DPMs sampling. Furthermore, we prove that PFDiff, despite utilizing fewer NFE, corrects for er-
rors in the sampling trajectories of first-order ODE solvers, as visualized in Fig. 1c. This ensures
that improving sampling speed does not compromise sampling quality; it only reduces unnecessary
NFE in existing ODE solvers. To validate the orthogonality and effectiveness of PFDiff, extensive
experiments were conducted on both unconditional (Ho et al., 2020; Song et al., 2020b;a) and con-
ditional (Dhariwal & Nichol, 2021; Rombach et al., 2022) pre-trained DPMs, with the visualization
experiment of conditional DPMs depicted in Fig. 7. The results indicate that PFDiff significantly
enhances the sampling performance of existing ODE solvers. Particularly in conditional DPMs,
PFDiff, using only DDIM as the baseline, surpasses the previous state-of-the-art training-free sam-
pling algorithms.

2 BACKGROUND

2.1 DIFFUSION SDES

Diffusion Probabilistic Models (DPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020b) aim to generate D-dimensional random variables x0 ∈ RD that follow a data distribution

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

q(x0). Taking Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) as an example,
these models introduce noise to the data distribution through a forward process defined over discrete
time steps, gradually transforming it into a standard Gaussian distribution xT ∼ N (0, I). The
forward process’s latent variables {xt}t∈[0,T ] are defined as follows:

q(xt | x0) = N (xt | αtx0, σ
2
t I), (1)

where αt is a scalar function related to the time step t, with α2
t +σ2

t = 1. In the model’s reverse pro-
cess, DDPM utilizes a neural network model pθ(xt−1 | xt) to approximate the transition probability
q(xt−1 | xt, x0),

pθ(xt−1 | xt) = N (xt−1 | µθ(xt, t), σ
2
θ(t)I), (2)

where σ2
θ(t) is defined as a scalar function related to the time step t. By sampling from a standard

Gaussian distribution and utilizing the trained neural network, samples following the data distribu-
tion pθ(x0) =

∏T
t=1pθ(xt−1 | xt) can be generated.

Furthermore, Song et al. (2020b) introduced SDE to model DPMs over continuous time steps, where
the forward process is defined as:

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ q(x0), (3)
where wt represents a standard Wiener process, and f and g are scalar functions of the time step
t. It’s noteworthy that the forward process in Eq. (1) is a discrete form of Eq. (3), where f(t) =
d logαt

dt and g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t . Song et al. (2020b) further demonstrated that there exists an

equivalent reverse process from time step T to 0 for the forward process in Eq. (3):
dxt =

[
f(t)xt − g2(t)∇x log qt(xt)

]
dt+ g(t)dw̄t, xT ∼ q(xT ), (4)

where w̄ denotes a standard Wiener process. In this reverse process, the only unknown is the score
function ∇x log qt(xt), which can be approximated through neural networks.

2.2 DIFFUSION ODES

In DPMs based on SDE, the discretization of the sampling process often requires a significant num-
ber of time steps to converge, such as the T = 1000 time steps used in DDPM (Ho et al., 2020).
This requirement primarily stems from the randomness introduced at each time step by the SDE.
To achieve a more efficient sampling process, Song et al. (2020b) utilized the Fokker-Planck equa-
tion (Øksendal & Øksendal, 2003) to derive a probability flow ODE related to the SDE, which
possesses the same marginal distribution at any given time t as the SDE. Specifically, the reverse
process ODE derived from Eq. (3) can be expressed as:

dxt =

[
f(t)xt −

1

2
g2(t)∇x log qt(xt)

]
dt, xT ∼ q(xT ). (5)

Unlike SDE, ODE avoids the introduction of randomness, thereby allowing convergence to the data
distribution in fewer time steps. Song et al. (2020b) employed a high-order RK45 ODE solver (Dor-
mand & Prince, 1980), achieving sample quality comparable to SDE at 1000 NFE with only 60
NFE. Furthermore, research such as DDIM (Song et al., 2020a) and DPM-Solver (Lu et al., 2022a)
explored discrete ODE forms capable of converging in fewer NFE. For DDIM, it breaks the Markov
chain constraint on the basis of DDPM, deriving a new sampling formula expressed as follows:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, t)√

αt

)
+
√

1− αt−1 − σ̄2
t ϵθ(xt, t) + σ̄tϵt, (6)

where σ̄t = η
√
(1− αt−1) / (1− αt)

√
1− αt/αt−1, and αt corresponds to α2

t in Eq. (1). When
η = 1, Eq. (6) becomes a form of DDPM; when η = 0, it degenerates into an ODE, the form
adopted by DDIM, which can obtain high-quality samples in fewer time steps.

Remark 1. In this paper, we regard the score dx̄t, the noise network output ϵθ(xt, t), and the
score function ∇x log qt(xt) as expressing equivalent concepts. This is because Song et al. (2020b)
demonstrated that ϵθ(xt, t) = −σt∇x log qt(xt). Moreover, we have discovered that any first-order
solver of DPMs can be parameterized as xt−1 = x̄t−γtdx̄t+ξϵt. Taking DDIM (Song et al., 2020a)

as an example, where x̄t =
√

αt−1

αt
xt, γt =

√
αt−1

αt
− αt−1 −

√
1− αt−1, dx̄t = ϵθ(xt, t), and

ξ = 0. This indicates the similarity between SGD and the sampling process of DPMs, a discovery
also implicitly suggested in the research of Xue et al. (2023) and Wang et al. (2024).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHOD

3.1 SOLVING FOR REVERSE PROCESS DIFFUSION ODES

By substituting ϵθ(xt, t) = −σt∇x log qt(xt) (Song et al., 2020b), Eq. (5) can be rewritten as:

dxt

dt
= s(ϵθ(xt, t), xt, t) := f(t)xt +

g2(t)

2σt
ϵθ(xt, t), xT ∼ q(xT ). (7)

Given an initial value xT , we define the time steps {ti}Ti=0 to progressively decrease from t0 = T
to tT = 0. Let x̃t0 = xT be the initial value. Using T steps of iteration, we compute the sequence
{x̃ti}Ti=0 to obtain the solution of this ODE. By integrating both sides of Eq. (7), we can obtain the
exact solution of this sampling ODE:

x̃ti = x̃ti−1
+

∫ ti

ti−1

s(ϵθ(xt, t), xt, t)dt. (8)

For any p-order ODE solver, Eq. (8) can be discretely represented as:

x̃ti−1→ti ≈ ϕ(Q, x̃ti−1
, ti−1, ti) := x̃ti−1

+

p−1∑

n=0

h(ϵθ(x̃t̂n
, t̂n), x̃t̂n

, t̂n) ·∆t̂, i ∈ [1, . . . , T ]. (9)

Here, Q =
({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti−1, ti

)
stores the set of p scores computed over the intervals ti−1

and ti, where t̂0 = ti−1, t̂p = ti, and ∆t̂ = t̂n+1 − t̂n denote the time step size. Particularly, when
p = 1, Q = ϵθ(x̃ti−1

, ti−1). The function ϕ is any p-order ODE solver that updates the current state
x̃ti−1

from time point ti−1 to ti, using the scores stored in Q. The function h represents the way
in which different p-order ODE solvers handle the function s, and its specific form depends on the
solver’s design. For example, in the DPM-Solver (Lu et al., 2022a), an exponential integrator is used
to transform s into h in order to eliminate linear terms. In the case of a first-order Euler-Maruyama
solver (Kloeden et al., 1992), it serves as an identity mapping of s.

When using the ODE solver defined in Eq. (9) for sampling, the choice of T = 1000 leads to
significant inefficiencies in DPMs. The study on DDIM (Song et al., 2020a) first revealed that
by constructing a new forward sub-state sequence of length M + 1 (M ≤ T ), {x̃ti}Mi=0, from a
subsequence of time steps [0, . . . , T ] and reversing this sub-state sequence, it is possible to converge
to the data distribution in fewer time steps. However, as illustrated in Fig. 1a, for ODE solvers,
as the time step size ∆t = ti − ti−1 increases, the score direction changes slowly initially, but
undergoes abrupt changes as ∆t → T . This phenomenon indicates that under minimal NFE (i.e.,
maximal time step size ∆t) conditions, the discretization error in Eq. (9) is significantly amplified.
Consequently, existing ODE solvers, when sampling under minimal NFE, must sacrifice sampling
quality to gain speed, making it an extremely challenging task to reduce NFE to below 10 (Lu et al.,
2022a;b). Given this, we aim to develop an efficient timestep-skipping sampling algorithm, which
reduces NFE while correcting discretization errors, thereby ensuring that sampling quality is not
compromised, and may even be improved.

3.2 SAMPLING GUIDED BY PAST SCORES

As illustrated in Fig. 1a, when the time step size ∆t (i.e., ti−ti−1) is not excessively large, the MSE
of the noise network, defined as 1

T−∆t

∑T−∆t−1
t=0 ∥ϵθ(xt, t) − ϵθ(xt+∆t, t + ∆t)∥2, is remarkably

similar. This phenomenon is especially pronounced in ODE-based sampling algorithms, such as
DDIM (Song et al., 2020a) and DPM-Solver (Lu et al., 2022a). This observation suggests that there
are many unnecessary time steps in ODE-based sampling methods during the complete sampling
process (e.g., when T = 1000), which is one of the reasons these methods can generate samples in
fewer steps. Based on this, we propose replacing the noise network of the current timestep with the
output from a previous timestep to reduce unnecessary NFE without compromising the quality of
the final generated samples. Specifically, for any p-order ODE solver ϕ, the sampling process from
x̃ti−1 to x̃ti can be reformulated according to Eq. (9) as follows:

x̃ti ≈ ϕ(
{
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, x̃ti−1 , ti−1, ti). (10)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Then, we store the noise network output in a buffer for use in the next timestep, as follows:

Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti−1, ti

)
, (11)

where ti−1 and ti represent the intervals over which the set of p scores are computed. For the
sampling process from x̃ti to x̃ti+1

, we directly use the noise network output saved in the buffer
from the previous timestep to replace the current timestep’s noise network, thereby updating the
intermediate states to the next timestep (i.e., the “springboard” x̃ti+1

), as detailed below:

x̃ti+1
≈ ϕ(Q, x̃ti , ti, ti+1), where Q =

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti−1, ti

)
. (12)

By using this approach, we can reduce unnecessary NFE, thereby accelerating the sampling process.

Remark 2. Notably, when the time step size ∆t is very large (NFE<10), the similarity between
past and current scores decreases sharply, making “springboard” x̃ti+1

unreliable in Eq. (12).
Therefore, in Sec. 3.3, we use x̃ti+1

solely to predict a foresight update direction (i.e., future score)
to reduce errors caused by the replacement, as shown in Fig. 1b and Fig. 1c. Both past and future
scores are complementary and indispensable, as demonstrated by the ablation study in Sec. 4.3.

3.3 SAMPLING GUIDED BY FUTURE SCORES

As stated in Remark 1, considering the similarities between the sampling process of DPMs and
SGD, and inspired by Nesterov momentum (Nesterov, 1983), we introduce a foresight update direc-
tion (i.e., future score) to assist the current intermediate state in achieving more efficient leapfrog
updates. Notably, employing future scores is more reliable than directly using the “springboard”,
as discussed in Remark 2. Specifically, during the sampling process from x̃ti to x̃ti+2 , we consider
using future scores (corresponding to time point ti+1) to replace the current scores (corresponding
to ti). Continuing from Eq. (12), we estimate the future score using the “springboard” x̃ti+1 and
update the buffer as follows:

Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+1, ti+2

)
. (13)

Subsequently, leveraging the concept of foresight updates, we predict a further future intermediate
state x̃ti+2 using the current intermediate state x̃ti along with the future score corresponding to time
point ti+1, as shown below:

x̃ti+2
≈ ϕ(Q, x̃ti , ti, ti+2), where Q =

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+1, ti+2

)
. (14)

Furthermore, we analyze how to correct the errors of the first-order ODE solvers in the discretized
Eq. (8) using future scores. Let sθ(xt, t) := s(ϵθ(xt, t), xt, t), we further analyze the term from Eq.
(8) that may cause errors,

∫ ti
ti−1

sθ(xt, t)dt. Assuming that s(n)θ (xr, r), r ∈ [ti−1, ti] exists and is
continuous, applying Taylor’s expansion at t = r, we derive:
∫ ti

ti−1

sθ (xt, t) dt =

∫ ti

ti−1

[ ∞∑

n=0

s
(n)
θ (xr, r)

n!
(t− r)n +Rn(t)

]
dt

≈
∫ ti

ti−1

[ ∞∑

n=0

s
(n)
θ (xr, r)

n!
(t− r)n

]
dt

=

∞∑

n=0

(ti − r)
n+1 − (ti−1 − r)

n+1

(n+ 1)!
s
(n)
θ (xr, r)

= sθ (xr, r) (ti − ti−1) +

∞∑

n=1

(ti − r)
n+1 − (ti−1 − r)

n+1

(n+ 1)!
s
(n)
θ (xr, r)

︸ ︷︷ ︸
”higher-order derivative terms”

.

(15)

Proposition 3.1. For any given DPM first-order ODE solver, the absolute values of the coefficients
for higher-order derivative terms in Eq. (15) are smaller when using the future time point r = ε
score compared to the current time point r = ti−1 score, as follows (Proof in Appendix B.2):∣∣∣∣

(ti − ε)n − (ti−1 − ε)n

n!

∣∣∣∣ <
∣∣∣∣
(ti − ti−1)

n

n!

∣∣∣∣ , where ε ∈ (ti−1, ti), n ≥ 2. (16)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Select a “Springboard”

Buffer

Past Score

Future Score

Scores propagationStatus update Temporary status update

"Past" relative to next round
1 2

3
4

Buffer access order1, 2, ...

... ...... ...

Figure 2: Illustration of a single iteration update of PFDiff-k h combined with any first-order ODE
solver ϕ. Given specific values of k and h (k ≤ 3 (h ≤ k)), PFDiff first uses the past score Q stored
in the Buffer from the previous iteration to replace the current score, updating to the “springboard”
xti+h

; then the future score is calculated using the “springboard”; finally, the future score is used to
replace the current score, completing a full update iteration. The future score will also be passed to
the next iteration as the “past” score for the next round of updates.

Proposition 3.1 indicates that neglecting higher-order derivative terms has less impact when sam-
pling with future scores, correcting for the discretization errors inherent in first-order ODE solvers.
However, higher-order ODE solvers approximate higher-order derivative terms by estimating the
noise network’s output multiple times (Lu et al., 2022a;b; Zheng et al., 2023). Future scores
and higher-order ODE solvers reduce the discretization errors caused by neglecting higher-order
derivative terms in two parallel manners, complicating the error analysis when both methods are
used simultaneously. Therefore, when using higher-order ODE solvers as a baseline, the sam-
pling process is accelerated by only using past scores. It is only necessary to modify Eq. (14)
to x̃ti+2

≈ ϕ(Q, x̃ti+1
, ti+1, ti+2) while keeping Q constant.

3.4 PFDIFF: SAMPLING GUIDED BY PAST AND FUTURE SCORES

Combining Sec. 3.2 and Sec. 3.3, the “springboard” x̃ti+1
obtained through Eq. (12) is used to

update the buffer Q in Eq. (13). In this way, we achieve our proposed efficient timestep-skipping
algorithm, which we name PFDiff. Notably, during the iteration from intermediate state x̃ti to x̃ti+2

,
we only perform a single batch computation (NFE = p) of the noise network in Eq. (13). Further-

Algorithm 1 PFDiff-1

Require: initial value xT , NFE N , model ϵθ, any p-order solver ϕ
1: Define time steps {ti}Mi=0 with M = 2N − 1p
2: x̃t0 ← xT

3: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, t0, t1

)
▷ Initialize buffer

4: x̃t1 = ϕ(Q, x̃t0 , t0, t1)
5: for i← 1 to M

p − 2 do
6: if (i− 1) mod 2 = 0 then
7: x̃ti+1

= ϕ(Q, x̃ti , ti, ti+1) ▷ Updating guided by past scores

8: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+1, ti+2

)
▷ Update buffer (overwrite)

9: if p = 1 then
10: x̃ti+2 = ϕ(Q, x̃ti , ti, ti+2) ▷ Anticipatory updating guided by future scores
11: else if p > 1 then
12: x̃ti+2

= ϕ(Q, x̃ti+1
, ti+1, ti+2) ▷ The higher-order solver uses only past scores

13: end if
14: end if
15: end for
16: return x̃tM

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

more, we propose that in a single iteration process, x̃ti+2
in Eq. (14) can be modified to x̃ti+(k+1)

,
achieving a k-step skip to sample more distant future intermediate states. Also, when k ̸= 1, the
buffer Q from Eq. (13) has various computational origins. This can be accomplished by modify-
ing “springboard” x̃ti+1 in Eq. (12) to x̃ti+h

, which represents h (h ≤ k) different springboard
selections. We collectively refer to this multi-step skipping and different “springboard” selection
strategy as PFDiff-k h (h ≤ k). The algorithmic process is illustrated in Fig. 2 and Algorithm
1, with further details provided in Appendix C. Additionally, through the comparison of sampling
trajectories between PFDiff-1 and a first-order ODE sampler, as shown in Fig. 1c, PFDiff-1 show-
cases its capability to correct the sampling trajectory of the first-order ODE sampler while reducing
the NFE. Meanwhile, we observed that PFDiff completes two updates with just one score compu-
tation (1 NFE), which is equivalent to achieving an update process of a second-order ODE solver
with 2 NFE. This effectiveness is derived from PFDiff’s information-efficient update process, which
utilizes both past and future scores that are complementary and indispensable. The convergence
of PFDiff’s sampling outcomes to the data distribution consistent with solver ϕ relies on the Mean
Value Theorem, as detailed in Appendix B.3. Finally, it is important to emphasize that although
PFDiff is orthogonal to an arbitrary ODE solver, PFDiff can also be viewed as an independent ODE
solver, depending on the perspective.

3.5 ANALYSIS OF EFFECTIVENESS BASED ON THE SHAPE OF THE TRAJECTORY

In Proposition 3.1, we theoretically analyze how PFDiff corrects the error of the first-order ODE
solver to achieve efficient sampling. In this section, we explain the effectiveness of PFDiff from the
perspective of the trajectory’s geometric shape. Previous studies have explored the sampling trajec-
tories of diffusion models (Sabour et al., 2024; Zhou et al., 2024; Chen et al., 2024). Zhou et al.
(2024) pointed out that the sampling trajectories of DPMs lie in a low-dimensional subspace em-
bedded in a high-dimensional space, and the trajectory shapes closely resemble a straight line. This
finding supports the strategy of using past scores to replace the current score in PFDiff as reliable.
Moreover, Chen et al. (2024) further noted that the sampling trajectories exhibit a “boomerang”
shape, meaning the curvature of the sampling trajectory starts small, then increases, and finally de-
creases. Based on this observation, we can analyze that the first-order ODE solver, which samples
along the tangent direction, leads to larger discretization errors in regions of the trajectory with
large curvature. On the other hand, PFDiff uses future scores to predict the future update direc-
tion, thereby correcting the discretization errors introduced by sampling along the tangent direction.
In Fig. 1c, we vividly demonstrate the sampling correction process of PFDiff for first-order ODE
solvers, thereby validating the effectiveness of PFDiff.

4 EXPERIMENTS

In this section, we validate the effectiveness of PFDiff as an orthogonal and training-free sam-
pler through a series of extensive experiments. This sampler can be integrated with any order
of ODE solvers, thereby significantly enhancing the sampling efficiency of various types of pre-
trained DPMs. To systematically showcase the performance of PFDiff, we categorize the pre-trained
DPMs into two main types: conditional and unconditional. Unconditional DPMs are further subdi-
vided into discrete and continuous, while conditional DPMs are subdivided into classifier guidance
and classifier-free guidance. In choosing ODE solvers, we utilized the widely recognized first-
order DDIM (Song et al., 2020a), Analytic-DDIM (Bao et al., 2022b), and the higher-order DPM-
Solver (Lu et al., 2022a) as baselines. For each experiment, we use the Fréchet Inception Distance
(FID↓) (Heusel et al., 2017) as the primary evaluation metric, and provide the experimental results
of the Inception Score (IS↑) (Salimans et al., 2016) in the Appendix D.7 for reference. Lastly, apart
from the ablation studies on parameters k and h discussed in Sec. 4.3, we showcase the optimal
results of PFDiff-k h (where k = 1, 2, 3 and h ≤ k) across six configurations as a performance
demonstration of PFDiff. As described in Appendix C, this does not increase the computational
burden in practical applications. All experiments were conducted on an NVIDIA RTX 3090 GPU.

4.1 UNCONDITIONAL SAMPLING

For unconditional DPMs, we selected discrete DDPM (Ho et al., 2020) and DDIM (Song et al.,
2020a), as well as pre-trained models from continuous ScoreSDE (Song et al., 2020b), to assess

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6 8 10 12 15 20
NFE

10

20

30

40

50

60

70

FI
D

DDPM(η=1.0)
Analytic-DDPM(η=1.0)
DDIM
Analytic-DDIM
DDIM+Ours
Analytic-DDIM+Ours

(a) CIFAR10 (Discrete)

6 8 10 12 15 20
NFE

5

10

15

20

25

30

35

40

45

FI
D

DDPM(η=1.0)
Analytic-DDPM(η=1.0)
DDIM
Analytic-DDIM
DDIM+Ours
Analytic-DDIM+Ours

(b) CelebA 64x64 (Discrete)

6 8 9 10 12 15 16 20 21
NFE

5
10
20

50

300

FI
D

DPM-Solver-1
DPM-Solver-2
DPM-Solver-3
DPM-Solver-1+Ours
DPM-Solver-2+Ours
DPM-Solver-3+Ours

(c) CIFAR10 (Continuous)

Figure 3: Unconditional sampling results. We report the FID↓ for different methods by varying the
number of function evaluations (NFE), evaluated on 50k samples.

4 6 8 10 15 20
NFE

0

10

20

30

40

50

60

FI
D

DDIM
DPM-Solver-2
DPM-Solver-3
DPM-Solver++(2M)
∗AutoDiffusion
DDIM+Ours

(a) ImageNet 64x64
(Guided-Diffusion)

(Classifier Guidance, s=1.0)

5 6 8 10 15 20
NFE

20

30

40

50

60

70
FI
D

DDIM
DPM-Solver-2
DPM-Solver-3
DPM-Solver++(2M)
DDIM+Ours

(b) MS-COCO2014
(Stable-Diffusion)

(Classifier-Free Guidance, s=1.5)

5 6 8 10 15 20
NFE

14

16

18

20

22

24

FI
D

DDIM
DPM-Solver-2
†DPM-Solver++(2M)
†DPM-Solver-v3(2M)
†UniPC
DDIM+Ours

(c) MS-COCO2014
(Stable-Diffusion)

(Classifier-Free Guidance, s=7.5)

Figure 4: Conditional sampling results. We report the FID↓ for different methods by varying the
NFE. Evaluated: ImageNet 64x64 with 50k, others with 10k samples. ∗AutoDiffusion (Li et al.,
2023) requires additional search costs. †We borrow the results reported in DPM-Solver-v3 (Zheng
et al., 2023) directly.

the effectiveness of PFDiff. For these pre-trained models, all experiments sampled 50k samples to
compute evaluation metrics.

For unconditional discrete DPMs, we first select first-order ODE solvers DDIM (Song et al., 2020a)
and Analytic-DDIM (Bao et al., 2022b) as baselines, while implementing SDE-based DDPM (Ho
et al., 2020) and Analytic-DDPM (Bao et al., 2022b) methods for comparison, where η = 1.0 is
from σ̄t in Eq. (6). We conduct experiments on the CIFAR10 (Krizhevsky et al., 2009) and CelebA
64x64 (Liu et al., 2015) datasets using the quadratic time steps employed by DDIM. By varying the
NFE from 6 to 20, the evaluation metric FID↓ is shown in Figs. 3a and 3b. Additionally, experiments
with uniform time steps are conducted on the CelebA 64x64, LSUN-bedroom 256x256 (Yu et al.,
2015), and LSUN-church 256x256 (Yu et al., 2015) datasets, with more results available in Appendix
D.2. Our experimental results demonstrate that PFDiff, based on pre-trained models of discrete
unconditional DPMs, significantly improves the sampling efficiency of DDIM and Analytic-DDIM
samplers across multiple datasets. For instance, on the CIFAR10 dataset, PFDiff combined with
DDIM achieves a FID of 4.10 with only 15 NFE, comparable to DDIM’s performance of 4.04 FID
with 1000 NFE. This is something other time-step skipping algorithms (Bao et al., 2022b; Ma et al.,
2024) that sacrifice sampling quality for speed cannot achieve. Furthermore, in Appendix D.2, by
varying η from 1.0 to 0.0 in Eq. (6) to control the scale of noise introduced by SDE, we observe
that as η decreases (reducing noise introduction), the performance of PFDiff gradually improves.
This is consistent with the trend shown in Fig. 1a, where reducing noise introduction leads to an
improvement in the similarity of the model’s outputs.

For unconditional continuous DPMs, we choose the DPM-Solver-1, -2 and -3 (Lu et al., 2022a) as
the baseline to verify the effectiveness of PFDiff as an orthogonal timestep-skipping algorithm on
the first and higher-order ODE solvers. We conducted experiments on the CIFAR10 (Krizhevsky
et al., 2009) using quadratic time steps, varying the NFE. The experimental results using FID↓ as

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Sample quality measured by FID↓ on the MSCOCO2014 dataset (Lin et al., 2014), using
Stable-Diffusion (Rombach et al., 2022) pre-trained model with a guidance scale of 7.5, varying the
number of function evaluations (NFE). Evaluated with 10k samples.

Method NFE

4 6 8 10 15 20

DPM-Solver-1 (Lu et al., 2022a) 35.48 20.33 17.46 16.78 16.08 15.95
+ PFDiff 29.02 15.47 13.26 13.06 13.57 13.97

DPM-Solver-2 (Lu et al., 2022a) 184.21 157.95 148.67 135.81 92.62 40.47
+ PFDiff 147.20 106.24 57.07 31.66 17.87 14.13

the evaluation metric are shown in Fig. 3c. More experimental details can be found in Appendix
D.3. We observe that PFDiff consistently improves the sampling performance over the baseline
with fewer NFE settings, particularly in cases where higher-order ODE solvers fail to converge with
a small NFE (below 10) (Lu et al., 2022a).

4.2 CONDITIONAL SAMPLING

For conditional DPMs, we selected the pre-trained models of the widely recognized classifier guid-
ance paradigm, ADM-G (Dhariwal & Nichol, 2021), and the classifier-free guidance paradigm,
Stable-Diffusion (Rombach et al., 2022), to validate the effectiveness of PFDiff. We employed
uniform time steps setting and the DDIM (Song et al., 2020a) ODE solver as a baseline across all
datasets. Evaluation metrics were computed by sampling 50k samples on the ImageNet 64x64 (Deng
et al., 2009) dataset for ADM-G and 10k samples on other datasets, including ImageNet 256x256 in
ADM-G and MS-COCO2014 (Lin et al., 2014) in Stable-Diffusion.

For conditional DPMs employing the classifier guidance paradigm, we conducted experiments on
the ImageNet 64x64 dataset with a guidance scale (s) set to 1.0. For comparison, we implemented
DPM-Solver-2 and -3 (Lu et al., 2022a), and DPM-Solver++(2M) (Lu et al., 2022b), which ex-
hibit the best performance on conditional DPMs. Additionally, we introduced the AutoDiffusion
method (Li et al., 2023) using DDIM as a baseline for comparison, noting that this method incurs
additional search costs. We compared FID↓ scores by varying the NFE as depicted in Fig. 4a, with
corresponding visual comparisons shown in Fig. 7b. We observed that PFDiff reduced the FID
from 138.81 with 4 NFE in DDIM to 16.46, achieving an 88.14% improvement in quality. The
visual results in Fig. 7b further demonstrate that, at the same NFE setting, PFDiff achieves higher-
quality sampling. Furthermore, we evaluated PFDiff’s sampling performance based on DDIM on
the large-scale ImageNet 256x256 dataset. Detailed results are provided in Appendix D.4.

For conditional, classifier-free guidance paradigms of DPMs, we employed the sd-v1-4 check-
point and computed the FID↓ scores on the validation set of MS-COCO2014 (Lin et al., 2014). We
conducted experiments with a guidance scale (s) set to 7.5 and 1.5. For comparison, we implemented
DPM-Solver-2 and -3 (Lu et al., 2022a), and DPM-Solver++(2M) (Lu et al., 2022b) methods. At
s = 7.5, we introduced the state-of-the-art method reported in DPM-Solver-v3 (Zheng et al., 2023)
for comparison, along with DPM-Solver++(2M) (Lu et al., 2022b), UniPC (Zhao et al., 2023), and
DPM-Solver-v3(2M). The FID↓ metrics by varying the NFE are presented in Figs. 4b and 4c, with
additional visual results illustrated in Fig. 7a. We observed that PFDiff, solely based on DDIM,
achieved state-of-the-art results during the sampling process of Stable-Diffusion, thus demonstrat-
ing the efficacy of PFDiff. Further experimental details can be found in Appendix D.5. Additionally,
to further validate the orthogonality of PFDiff, we conducted experiments on the original (single-
step) DPM-Solver-1 and -2, comparing the performance with and without the PFDiff, using the
Stable-Diffusion pre-trained model, as shown in Tab. 1. The experimental results demonstrate that
PFDiff effectively enhances the performance of DPM-Solver across different orders.

4.3 ABLATION STUDY

We conducted ablation experiments on the six different algorithm configurations of PFDiff men-
tioned in Appendix C, with k = 1, 2, 3 (h ≤ k). Specifically, we evaluated the FID↓ scores on

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the unconditional and conditional pre-trained DPMs (Ho et al., 2020; Dhariwal & Nichol, 2021).
Detailed experimental setups and results can be found in Appendix D.6.1. The experimental re-
sults indicate that for various pre-trained DPMs, the choice of parameters k and h is not critical,
as most combinations of k and h within PFDiff can enhance the sampling efficiency over the base-
line. Moreover, with k = 2 and h = 1 fixed, PFDiff-2 1 can always improve the baseline’s sampling
quality within the range of 4∼20 NFE. For even better sampling quality, one can sample a small sub-
set of examples (e.g., 5k) to compute evaluation metrics or directly conduct visual analysis, easily
identifying the most effective k and h combinations. Furthermore, in Appendix D.6.1, we propose
an automatic search strategy with almost no additional cost, which can more rapidly obtain more
competitive combinations of k and h based on truncation error.

To validate the effectiveness of PFDiff, a key factor is its information-efficient update process, which
utilizes past and future scores that are complementary and indispensable to jointly guide first-order
ODE solvers. We employ DDIM (Song et al., 2020a) as the baseline, removing past and future
scores separately. Moreover, we introduce methods (Ma et al., 2024) that cache part of past scores
for comparison. As shown in Appendix D.6.2, experimental results indicate that only past (including
cache) or only future scores can slightly improve sampling performance, but their combination (i.e.,
the complete PFDiff) significantly enhances the performance of first-order ODE solvers, especially
with very few NFE (<10). Additionally, we provide experimental results on inference time in Ap-
pendix D.6.2, revealing that methods (Ma et al., 2024) that cache part of past scores not only incur
additional inference costs but also exhibit relatively weak acceleration effects with few NFE (<10).
However, PFDiff and the used baseline have consistent inference times and exhibit significantly
accelerated effects, further validating its effectiveness.

5 CONCLUSION

In this paper, based on the recognition that the ODE solvers of DPMs exhibit significant similarity in
model outputs when the time step size is not excessively large, and with the aid of a foresight update
mechanism, we propose PFDiff, a novel method that leverages past and future scores to rapidly
update the current intermediate state. This approach effectively reduces the unnecessary number
of function evaluations (NFE) in the ODE solvers and significantly corrects the errors of first-order
ODE solvers during the sampling process. Extensive experiments demonstrate the orthogonality
and effectiveness of PFDiff on both unconditional and conditional pre-trained DPMs, especially
in conditional pre-trained DPMs where PFDiff outperforms previous state-of-the-art training-free
sampling methods.

ETHICS STATEMENT

DPMs, like GANs and VAEs, may be utilized as deep generative models for generating fake and ma-
licious content. The proposed PFDiff can accelerate the generation of DPMs, which may facilitate
the rapid creation of such content, thereby posing a potential negative impact on society.

REPRODUCIBILITY STATEMENT

Our code is based on the official implementations of DDIM (Song et al., 2020a), DPM-Solver (Lu
et al., 2022a), and Analytic-DPM (Bao et al., 2022b). We utilized unconditional checkpoints from
DDPM (Ho et al., 2020), DDIM (Song et al., 2020a), and ScoreSDE (Song et al., 2020b), as well
as conditional checkpoints from AMD-G (Dhariwal & Nichol, 2021) and Stable-Diffusion (Rom-
bach et al., 2022). Detailed experimental settings and algorithm implementations are described in
Appendices C and D. The code used in this study is submitted as supplementary material.

REFERENCES

Fan Bao, Chongxuan Li, Jiacheng Sun, Jun Zhu, and Bo Zhang. Estimating the optimal covariance
with imperfect mean in diffusion probabilistic models. arXiv preprint arXiv:2206.07309, 2022a.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the optimal
reverse variance in diffusion probabilistic models. arXiv preprint arXiv:2201.06503, 2022b.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Defang Chen, Zhenyu Zhou, Can Wang, Chunhua Shen, and Siwei Lyu. On the trajectory regularity
of ode-based diffusion sampling. In Forty-first International Conference on Machine Learning,
2024.

Elliott Ward Cheney, EW Cheney, and W Cheney. Analysis for applied mathematics, volume 1.
Springer, 2001.

Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde
Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Patch
n’pack: Navit, a vision transformer for any aspect ratio and resolution. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, pp. 2252–2274, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
ing and improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24174–24184, 2024.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Peter E Kloeden, Eckhard Platen, Peter E Kloeden, and Eckhard Platen. Stochastic differential
equations. Springer, 1992.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Lijiang Li, Huixia Li, Xiawu Zheng, Jie Wu, Xuefeng Xiao, Rui Wang, Min Zheng, Xin Pan, Fei
Chao, and Rongrong Ji. Autodiffusion: Training-free optimization of time steps and architec-
tures for automated diffusion model acceleration. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 7105–7114, 2023.

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten
Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d con-
tent creation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 300–309, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. arXiv preprint arXiv:2202.09778, 2022a.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022b.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: a fast ode
solver for diffusion probabilistic model sampling in around 10 steps. In Proceedings of the 36th
International Conference on Neural Information Processing Systems, pp. 5775–5787, 2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15762–15772, 2024.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o (1/k**
2). Doklady Akademii Nauk SSSR, 269(3):543, 1983.

Bernt Øksendal and Bernt Øksendal. Stochastic differential equations. Springer, 2003.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your steps: Optimizing sampling
schedules in diffusion models. arXiv preprint arXiv:2404.14507, 2024.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Kaitao Song, Yichong Leng, Xu Tan, Yicheng Zou, Tao Qin, and Dongsheng Li. Transcormer:
Transformer for sentence scoring with sliding language modeling. Advances in Neural Informa-
tion Processing Systems, 35:11160–11174, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You.
Neural network diffusion. arXiv preprint arXiv:2402.13144, 2024.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom
Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerat-
ing diffusion models through block caching. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6211–6220, 2024.

Shuchen Xue, Mingyang Yi, Weijian Luo, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhi-Ming
Ma. Sa-solver: stochastic adams solver for fast sampling of diffusion models. In Proceedings of
the 37th International Conference on Neural Information Processing Systems, pp. 77632–77674,
2023.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6613–6623, 2024.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: a unified predictor-
corrector framework for fast sampling of diffusion models. In Proceedings of the 37th Interna-
tional Conference on Neural Information Processing Systems, pp. 49842–49869, 2023.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: improved diffusion ode
solver with empirical model statistics. In Proceedings of the 37th International Conference on
Neural Information Processing Systems, pp. 55502–55542, 2023.

Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion
models in around 5 steps. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7777–7786, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RELATED WORK

While the solvers for Diffusion Probabilistic Models (DPMs) are categorized into two types, SDE
and ODE, most current accelerated sampling techniques are based on ODE solvers due to the obser-
vation that the stochastic noise introduced by SDE solvers hampers rapid convergence. ODE-based
solvers are further divided into training-based methods (Salimans & Ho, 2022; Liu et al., 2022b;
Song et al., 2023; Yin et al., 2024) and training-free samplers (Song et al., 2020a; Lu et al., 2022a;b;
Bao et al., 2022b;a; Liu et al., 2022a; Li et al., 2023; Zheng et al., 2023; Ma et al., 2024; Wim-
bauer et al., 2024; Zhao et al., 2023; Xue et al., 2023). Training-based methods can notably reduce
the number of sampling steps required for DPMs. An example of such a method is the knowledge
distillation algorithm proposed by Song et al. (2023), which achieves one-step sampling for DPMs.
This sampling speed is comparable to that of GANs (Goodfellow et al., 2014) and VAEs (Kingma
& Welling, 2013). However, these methods often entail significant additional costs for distillation
training. This requirement poses a challenge when applying them to large pre-trained DPM models.
Therefore, our work primarily focuses on training-free, ODE-based accelerated sampling strategies.

Training-free accelerated sampling techniques based on ODE can generally be applied in a plug-and-
play manner, adapting to existing pre-trained DPMs. These methods can be categorized based on the
order of the ODE solver—that is, the NFE required per sampling iteration—into first-order (Song
et al., 2020a; Bao et al., 2022b;a; Liu et al., 2022a) and higher-order (Lu et al., 2022a;b; Zheng
et al., 2023; Zhao et al., 2023; Dormand & Prince, 1980). Typically, higher-order ODE solvers
tend to sample at a faster rate but may fail to converge when the NFE is low (below 10), sometimes
performing even worse than first-order ODE solvers. In addition, there are orthogonal techniques for
accelerated sampling. For instance, Li et al. (2023) build upon existing ODE solvers and use search
algorithms to find optimal sampling sub-sequences and model structures to further speed up the
sampling process; Ma et al. (2024) and Wimbauer et al. (2024) observe that the low-level features
of noise networks at adjacent time steps exhibit similarities, and they use caching techniques to
substitute some of the network’s low-level features, thereby further reducing the number of required
time steps.

The algorithm we propose belongs to the class of training-free and orthogonal accelerated sampling
techniques, capable of further accelerating the sampling process on the basis of existing first-order
and higher-order ODE solvers. Compared to the aforementioned orthogonal sampling techniques,
even though the skipping strategy proposed by Ma et al. (2024) and Wimbauer et al. (2024) effec-
tively accelerates the sampling process, it may do so at the cost of reduced sampling quality, making
it challenging to reduce the NFE below 50. Although Li et al. (2023) can identify more optimal
subsampling sequences and model structures, this implies higher search costs. In contrast, our pro-
posed orthogonal sampling algorithm is more efficient in skipping time steps. First, our skipping
strategy does not require extensive search costs. Second, we can correct the sampling trajectory
of first-order ODE solvers while reducing the number of sampling steps required by existing ODE
solvers, achieving more efficient accelerated sampling.

B PROOF OF CONVERGENCE AND ERROR CORRECTION FOR PFDIFF

In this section, we first prove that neglecting higher-order derivative terms has a smaller impact on
the first-ODE solvers when using future scores (i.e., Proposition 3.1). Subsequently, we prove the
convergence of PFDiff based on the Mean Value Theorem for Integrals.

B.1 ASSUMPTIONS

For PFDiff-k h we make the following assumptions:

Assumption B.1. The higher-order derivatives s
(n)
θ (xr, r) (as a function of r), as defined in Eq.

(15), where r ∈ [ti−1, ti] and n ≥ 1, exist and are continuous.

Assumption B.2. When the time step size ∆t = ti− ti−(k−h+1) is not excessively large, the output
estimates of the noise network based on the p-order ODE solver at different time steps are approxi-
mately the same, that is,

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti, ti+h

)
≈

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti−(k−h+1), ti

)
.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Assumption B.3. For the integral from time step ti to ti+(k+1),
∫ ti+(k+1)

ti
s(ϵθ(xt, t), xt, t)dt,

there exist intermediate time steps ts̃, ts ∈ [ti, ti+(k+1)] such that
∫ ti+(k+1)

ti
s(ϵθ(xt, t), xt, t)dt =

s(ϵθ(xts̃ , ts̃), xts̃ , ts̃) · (ti+(k+1) − ti) = h(ϵθ(xts , ts), xts , ts) · (ti+(k+1) − ti) holds, where the
definition of the function h remains consistent with Sec. 3.1.

The first assumption ensures the application of Taylor expansion in Eq. (15). The second assumption
is based on the observation in Fig. 1a that when ∆t is not excessively large, the MSE of the noise
network remains almost unchanged across different time steps. The last one is based on the Mean
Value Theorem for Integrals, which states that if f(x) is a continuous real-valued function on a closed
interval [a, b], then there exists at least one point c ∈ [a, b] such that

∫ b

a
f(x)dx = f(c)(b−a) holds.

Remark 3. It is important to note that the Mean Value Theorem for Integrals originally applies to
real-valued functions and does not directly apply to vector-valued functions (Cheney et al., 2001).
However, the study by Zhou et al. (2024), which uses Principal Component Analysis (PCA) on the
trajectories of the ODE solvers for DPMs, demonstrates that these trajectories almost lie in a two-
dimensional plane. The finding ensures the applicability of the Mean Value Theorem for Integrals in
Assumption B.3.

B.2 PROOF OF PROPOSITION 3.1

In this section, we prove that Eq. (16) holds, where ε ∈ (ti−1, ti) and n ≥ 2. First, given ε ∈
(ti−1, ti), we have:

|ti − ε|+ |ti−1 − ε| = |ti − ti−1| . (B.1)
Next, we analyze the Eq. (16) based on the parity of n.

When n is even (n ≥ 2): We derive:∣∣∣∣
(ti − ε)n − (ti−1 − ε)n

n!

∣∣∣∣ =
∣∣∣∣
|ti − ε|n − |ti−1 − ε|n

n!

∣∣∣∣

< max

( |ti − ε|n
n!

,
|ti−1 − ε|n

n!

)

<
|ti − ti−1|n

n!
=

∣∣∣∣
(ti − ti−1)

n

n!

∣∣∣∣ .

(B.2)

Here, the second “<” holds because: due to ε ∈ (ti−1, ti) and Eq. (B.1), we have |ti − ε| <
|ti − ti−1| and |ti−1 − ε| < |ti − ti−1|, thus validating the second “<”.

When n is odd (n ≥ 3): Since ε ∈ (ti−1, ti), if ti − ε > 0, then ti−1 − ε < 0; if ti − ε < 0, then
ti−1 − ε > 0. Therefore, we obtain:∣∣∣∣

(ti − ε)n − (ti−1 − ε)n

n!

∣∣∣∣ =
|ti − ε|n + |ti−1 − ε|n

n!
. (B.3)

Let a = |ti − ε|, b = |ti−1 − ε|, and c = |ti − ti−1|; we have a, b, c > 0 and c > a, b. Next, using
mathematical induction, we prove an + bn < cn, where n ≥ 3 and a+ b = c (Eq. (B.1)).

• When n = 3, we have:
c3 = (a+ b)3 = a3 + 3a2b+ 3ab2 + b3 > a3 + b3, (B.4)

which holds.
• When n = k (k ≥ 3, k ∈ N), suppose a ≤ b, then ak + bk < ck holds.
• When n = k + 1, we have:

ak+1 + bk+1 = a · ak + b · bk ≤ b · ak + b · bk = b · (ak + bk) < b · ck < ck+1, (B.5)
which holds.

Thus, an + bn < cn holds, where n ≥ 3 and a+ b = c. Furthermore, we obtain:
|ti − ε|n + |ti−1 − ε|n

n!
<
|ti − ti−1|n

n!
=

∣∣∣∣
(ti − ti−1)

n

n!

∣∣∣∣ . (B.6)

In conclusion, by combining Eq. (B.2), Eq. (B.3), and Eq. (B.6), we have proven Eq. (16).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.3 PROOF OF CONVERGENCE FOR PFDIFF

Assumption B.2 ensures the convergence of PFDiff-k h using past scores. Starting from Eq.
(8), we consider an iteration process of a p-order ODE solver from x̃ti to x̃ti+h

, where h is the
“springboard” choice determined by PFDiff-k h. This iterative process can be expressed as:

x̃ti+h
= x̃ti +

∫ ti+h

ti

s(ϵθ(xt, t), xt, t)dt. (B.7)

Discretizing Eq. (B.7) yields:

x̃ti→ti+h
≈ x̃ti +

p−1∑

n=0

h(ϵθ(x̃t̂n
, t̂n), x̃t̂n

, t̂n) · (t̂n+1 − t̂n)

= x̃ti +

i+h−1∑

n=i

h(ϵθ(x̃tn , tn), x̃tn , tn) · (tn+1 − tn),

(B.8)

where the function h represents the different solution methodologies applied by various p-order
ODE solvers to the function s, consistent with Sec. 3.1. To accelerate sampler convergence
and reduce unnecessary NFE, we adopt Assumption B.2, namely guiding the sampling of the
current intermediate state by utilizing past score information. Specifically, we approximate that({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti, ti+h

)
≈

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti−(k−h+1), ti

)
, where k represents the num-

ber of steps skipped in one iteration by PFDiff-k h. Eq. (B.8) can be further rewritten as:

x̃ti→ti+h
≈ x̃ti +

i−1∑

n=i−(k−h+1)

h(ϵθ(x̃tn , tn), x̃tn , tn) · (tn+1 − tn)

= ϕ(
({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti−(k−h+1), ti

)
, x̃ti , ti, ti+h),

(B.9)

where ϕ is any p-order ODE solver. Eq. (B.9) demonstrates that under Assumption B.2, PFDiff-
k h utilizes past scores to replace current scores, converging to the same data distribution as that
of any p-order ODE solver ϕ. However, as noted in Remark 2, the time step size ∆t is very large
(NFE<10), making “springboard” x̃ti+h

unreliable in Eq. (B.9). Therefore, we only use x̃ti+h

to predict a foresight update direction (i.e., the future score). The introduction of the future score
can reduce the impact of neglecting higher-order derivative terms, thus correcting the discretization
errors of the first-order ODE solvers.

Convergence of PFDiff-k h using future scores. As described in Sec. 3.3, higher-order ODE
solvers and future scores reduce the discretization error caused by neglecting higher-order derivative
terms in two parallel manners. Therefore, PFDiff combines a higher-order ODE solver using only
past scores, with convergence guarantees based on Assumption B.2. Next, we consider an iteration
process of a first-order ODE solver from x̃ti to x̃ti+(k+1)

, which can be expressed as:

x̃ti+(k+1)
= x̃ti +

∫ ti+(k+1)

ti

s(ϵθ(xt, t), xt, t)dt

≈ x̃ti + h(ϵθ(x̃ti , ti), x̃ti , ti) · (ti+(k+1) − ti)

= ϕ(ϵθ(x̃ti , ti), x̃ti , ti, ti+(k+1)),

(B.10)

where the second line is obtained by discretizing the first line with an existing first-order ODE
solver, and the definitions of ϕ and h are consistent with Sec. 3.1. It is well known that the “≈” in
Eq. (B.10) introduces discretization errors. We have revised Eq. (B.10) based on Assumption B.3,
as follows:

x̃ti+(k+1)
= x̃ti +

∫ ti+(k+1)

ti

s(ϵθ(xt, t), xt, t)dt

= x̃ti + s(ϵθ(x̃ts̃ , ts̃), x̃ts̃ , ts̃) · (ti+(k+1) − ti)

= x̃ti + h(ϵθ(x̃ts , ts), x̃ts , ts) · (ti+(k+1) − ti)

= ϕ(ϵθ(x̃ts , ts), x̃ti , ti, ti+(k+1)).

(B.11)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Eq. (B.11) indicates that there is an optimal time point ts ∈ [ti, ti+(k+1)] corresponding to the
optimal score ϵθ(x̃ts , ts) that can correct the discretization error of Eq. (B.10). Furthermore, when
the time step size ∆t = ti+(k+1) − ti is very large (for example, NFE<10), using the score at
the current time point ti leads to non-convergence of the sampling process. This implies that the
sampling trajectory of DPMs is not a straight line (if it were a straight line, a larger sampling step
size could be used). Therefore, the optimal time point is not achieved at the endpoints, i.e., ts ̸=
ti and ts ̸= ti+(k+1), and we adjust that ts falls within the interval (ti, ti+(k+1)). Additionally,
to approximate the optimal score, we introduce the foresight update mechanism of the Nesterov
momentum (Nesterov, 1983), and guide the current intermediate state sampling with future score
information. In other words, we replace ϵθ(x̃ts , ts) with ϵθ(x̃ti+h

, ti+h), as follows:

x̃ti+(k+1)
= ϕ(ϵθ(x̃ts , ts), x̃ti , ti, ti+(k+1))

≈ ϕ(ϵθ(x̃ti+h
, ti+h), x̃ti , ti, ti+(k+1)),

(B.12)

where k and h are determined by the selected PFDiff-k h. According to the definition of PFDiff-
k h, ti+h also lies within the interval (ti, ti+(k+1)). For six different versions of PFDiff-k h defined
in Appendix C, we believe the optimal ts within the interval (ti, ti+(k+1)) has been approximated,
thereby completing the convergence proof of using future scores. Finally, we note that PFDiff using
future scores to replace current scores is an approximation of the optimal score. Together with this
section and Proposition 3.1 (future scores have less impact at neglecting higher-order derivative
terms), we jointly verify that future scores can more effectively guide a first-order ODE solver in
sampling.

C ALGORITHMS OF PFDIFFS

As described in Sec. 3.4, during a single iteration, we can leverage the foresight update mech-
anism to skip to a more distant future. Specifically, we modify Eq. (14) to x̃ti+(k+1)

≈
ϕ(Q, x̃ti , ti, ti+(k+1)) to achieve a k-step skip. We refer to this method as PFDiff-k. Additionally,
when k ̸= 1, the computation of the buffer Q, originating from Eq. (13), presents different selection
choices. We modify Eq. (12) to x̃ti+h

≈ ϕ(Q, x̃ti , ti, ti+h), h ≤ k to denote different “springboard”

Algorithm 2 PFDiff-2

Require: initial value xT , NFE N , model ϵθ, any p-order solver ϕ, skip type h
1: Define time steps {ti}Mi=0 with M = 3N − 2p
2: x̃t0 ← xT

3: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, t0, t1

)
▷ Initialize buffer

4: x̃t1 = ϕ(Q, x̃t0 , t0, t1)
5: for i← 1 to M

p − 3 do
6: if (i− 1) mod 3 = 0 then
7: if h = 1 then ▷ PFDiff-2 1
8: x̃ti+1 = ϕ(Q, x̃ti , ti, ti+1) ▷ Updating guided by past scores

9: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+1, ti+3

)
▷ Update buffer (overwrite)

10: else if h = 2 then ▷ PFDiff-2 2
11: x̃ti+2

= ϕ(Q, x̃ti , ti, ti+2) ▷ Updating guided by past scores

12: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+2, ti+3

)
▷ Update buffer (overwrite)

13: end if
14: if p = 1 then
15: x̃ti+3 = ϕ(Q, x̃ti , ti, ti+3) ▷ Anticipatory updating guided by future scores
16: else if p > 1 then
17: x̃ti+3 = ϕ(Q, x̃ti+h

, ti+h, ti+3) ▷ The higher-order solver uses only past scores
18: end if
19: end if
20: end for
21: return x̃tM

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 3 PFDiff-3

Require: initial value xT , NFE N , model ϵθ, any p-order solver ϕ, skip type h
1: Define time steps {ti}Mi=0 with M = 4N − 3p
2: x̃t0 ← xT

3: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, t0, t1

)
▷ Initialize buffer

4: x̃t1 = ϕ(Q, x̃t0 , t0, t1)
5: for i← 1 to M

p − 4 do
6: if (i− 1) mod 4 = 0 then
7: x̃ti+4

= ϕ(Q, x̃ti , ti, ti+h) ▷ Updating guided by past scores

8: Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti+h, ti+4

)
▷ Update buffer (overwrite)

9: if p = 1 then
10: x̃ti+4

= ϕ(Q, x̃ti , ti, ti+4) ▷ Anticipatory updating guided by future scores
11: else if p > 1 then
12: x̃ti+4

= ϕ(Q, x̃ti+h
, ti+h, ti+4) ▷ The higher-order solver uses only past scores

13: end if
14: end if
15: end for
16: return x̃tM

choices with the parameter h. This strategy of multi-step skips and varying “springboard” choices is
collectively termed as PFDiff-k h (h ≤ k). Consequently, based on modifications to parameters k
and h in Eq. (12) and Eq. (14), Eq. (13) is updated to Q

buffer←−−−
({

ϵθ(x̃t̂n
, t̂n)

}p−1

n=0
, ti+h, ti+(k+1)

)
,

and Eq. (11) is updated to Q
buffer←−−−

({
ϵθ(x̃t̂n

, t̂n)
}p−1

n=0
, ti−(k−h+1), ti

)
.

When k = 1, since h ≤ k, then h = 1, and PFDiff-k h is the same as PFDiff-1, as shown in
Algorithm 1 in Sec. 3.4. When k = 2, h can be either 1 or 2, forming Algorithms PFDiff-2 1
and PFDiff-2 2, as shown in Algorithm 2. Furthermore, when k = 3, this forms three different
versions of PFDiff-3, as shown in Algorithm 3. In this study, we utilize the optimal results from the
six configurations of PFDiff-k h (k = 1, 2, 3 (h ≤ k)) to demonstrate the performance of PFDiff.
As described in Appendix B.3, this is essentially an approximation of the optimal time point ts.
Through these six different algorithm configurations, we approximately search for the optimal ts. It
is important to note that despite using six different algorithm configurations, this does not increase
the computational burden in practical applications. This is because, by visual analysis of a small
number of generated images or computing specific evaluation metrics, one can effectively select
the algorithm configuration with the best performance. Moreover, even without any selection, with
k = 2 and h = 1 fixed, PFDiff-2 1 can always improve the baseline’s sampling quality within the
range of 4∼20 NFEs, as shown in the ablation study results in Sec. 4.3.

D ADDITIONAL EXPERIMENT RESULTS

In this section, we provide further supplements to the experiments on both unconditional and con-
ditional pre-trained Diffusion Probabilistic Models (DPMs) as mentioned in Sec. 4. Through these
additional supplementary experiments, we more fully validate the effectiveness of PFDiff as an or-
thogonal and training-free sampler. Unless otherwise stated, the selection of pre-trained DPMs,
choice of baselines, algorithm configurations, GPU utilization, and other related aspects in this sec-
tion are consistent with those described in Sec. 4.

D.1 LICENSE

In this section, we list the used datasets, codes, and their licenses in Table 2.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 2: The used datasets, codes, and their licenses.

Name URL License

CIFAR10 (Krizhevsky et al., 2009) cs.toronto.edu \
CelebA 64x64 (Liu et al., 2015) mmlab.ie.cuhk.edu.hk \
LSUN-Bedroom (Yu et al., 2015) yf.io \
LSUN-Church (Yu et al., 2015) yf.io \
ImageNet (Deng et al., 2009) image-net.org \
MS-COCO2014 (Lin et al., 2014) cocodataset.org CC BY 4.0
ScoreSDE (Song et al., 2020b) github.com/yang-song Apache-2.0
DDIM (Song et al., 2020a) github.com/ermongroup MIT
Analytic-DPM (Bao et al., 2022b) github.com/baofff \
DPM-Solver (Lu et al., 2022a) github.com/LuChengTHU MIT
DPM-Solver++ (Lu et al., 2022b) github.com/LuChengTHU MIT
Guided-Diffusion (Dhariwal & Nichol, 2021) github.com/openai MIT
Stable-Diffusion (Rombach et al., 2022) github.com/CompVis CreativeML Open RAIL-M

Table 3: Sample quality measured by FID↓ on the CIFAR10 (Krizhevsky et al., 2009), CelebA
64x64 (Liu et al., 2015), LSUN-bedroom 256x256 (Yu et al., 2015), and LSUN-church 256x256 (Yu
et al., 2015) datasets using unconditional discrete-time DPMs, varying the number of function eval-
uations (NFE). Evaluated on 50k samples. PFDiff uses DDIM (Song et al., 2020a) and Analytic-
DDIM (Bao et al., 2022b) as baselines and introduces DDPM (Ho et al., 2020) and Analytic-
DDPM (Bao et al., 2022b) with η = 1.0 from Eq. (6) for comparison.

+PFDiff Method NFE

4 6 8 10 12 15 20

CIFAR10 (discrete-time model (Ho et al., 2020), quadratic time steps)

× DDPM(η = 1.0) (Ho et al., 2020) 108.05 71.47 52.87 41.18 32.98 25.59 18.34
× Analytic-DDPM (Bao et al., 2022b) 65.81 56.37 44.09 34.95 29.96 23.26 17.32
× Analytic-DDIM (Bao et al., 2022b) 106.86 24.02 14.21 10.09 8.80 7.25 6.17
× DDIM (Song et al., 2020a) 65.70 29.68 18.45 13.66 11.01 8.80 7.04

✓ Analytic-DDIM 289.84 23.24 7.03 4.51 3.91 3.75 3.65
✓ DDIM 22.38 9.84 5.64 4.57 4.39 4.10 3.68

CelebA 64x64 (discrete-time model (Song et al., 2020a), quadratic time steps)

× DDPM(η = 1.0) (Ho et al., 2020) 59.38 43.63 34.12 28.21 24.40 20.19 15.85
× Analytic-DDPM (Bao et al., 2022b) 32.10 39.78 32.29 26.96 23.03 19.36 15.67
× Analytic-DDIM (Bao et al., 2022b) 69.75 16.60 11.84 9.37 7.95 6.92 5.84
× DDIM (Song et al., 2020a) 37.76 20.99 14.10 10.86 9.01 7.67 6.50

✓ Analytic-DDIM 360.21 28.24 5.66 4.90 4.62 4.55 4.55
✓ DDIM 13.29 7.53 5.06 4.71 4.60 4.70 4.68

CelebA 64x64 (discrete-time model (Song et al., 2020a), uniform time steps)

× DDPM(η = 1.0) (Ho et al., 2020) 65.39 49.52 41.65 36.68 33.45 30.27 26.76
× Analytic-DDPM (Bao et al., 2022b) 102.45 42.43 34.36 33.85 30.38 28.90 25.89
× Analytic-DDIM (Bao et al., 2022b) 90.44 24.85 16.45 16.67 15.11 15.00 13.40
× DDIM (Song et al., 2020a) 44.36 29.12 23.19 20.50 18.43 16.71 14.76

✓ Analytic-DDIM 308.58 56.04 14.07 10.98 8.97 6.39 5.19
✓ DDIM 51.87 12.79 8.82 8.93 7.70 6.44 5.66

LSUN-bedroom 256x256 (discrete-time model (Ho et al., 2020), uniform time steps)

× DDIM (Song et al., 2020a) 115.63 47.40 26.73 19.26 15.23 11.68 9.26
✓ DDIM 140.40 18.72 11.50 9.28 8.36 7.76 7.14

LSUN-church 256x256 (discrete-time model (Ho et al., 2020), uniform time steps)

× DDIM (Song et al., 2020a) 121.95 50.02 30.04 22.04 17.66 14.58 12.49
✓ DDIM 72.86 18.30 14.34 13.27 12.05 11.77 11.12

19

https://www.cs.toronto.edu/$\sim $kriz/cifar.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://www.yf.io/p/lsun
https://www.yf.io/p/lsun
https://image-net.org/
https://cocodataset.org/
https://github.com/yang-song/score_sde_pytorch
https://github.com/ermongroup/ddim/tree/main
https://github.com/baofff/Analytic-DPM
https://github.com/LuChengTHU/dpm-solver
https://github.com/LuChengTHU/dpm-solver
https://github.com/openai/guided-diffusion
https://github.com/CompVis/stable-diffusion


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D.2 ADDITIONAL RESULTS FOR UNCONDITIONAL DISCRETE-TIME SAMPLING

In this section, we report on experiments with unconditional, discrete DPMs on the CI-
FAR10 (Krizhevsky et al., 2009) and CelebA 64x64 (Liu et al., 2015) datasets using quadratic time
steps. The FID↓ scores for the PFDiff algorithm are reported for changes in the number of func-
tion evaluations (NFE) from 4 to 20. Additionally, we present FID scores on the CelebA 64x64 (Liu
et al., 2015), LSUN-bedroom 256x256 (Yu et al., 2015), and LSUN-church 256x256 (Yu et al., 2015)
datasets, utilizing uniform time steps. The experimental results are summarized in Table 3. Results
indicate that using DDIM (Song et al., 2020a) as the baseline, our method (PFDiff) nearly achieved
significant performance improvements across all datasets and NFE settings. Notably, PFDiff facil-
itates rapid convergence of pre-trained DPMs to the data distribution with NFE settings below 10,
validating its effectiveness on discrete pre-trained DPMs and the first-order ODE solver DDIM. It is
important to note that on the CIFAR10 and CelebA 64x64 datasets, we have included the FID scores
of Analytic-DDIM (Bao et al., 2022b), which serves as another baseline. Analytic-DDIM modifies
the variance in DDIM and introduces some random noise. With NFE lower than 10, the presence
of minimal random noise amplifies the error introduced by the score information approximation in
PFDiff, reducing its error correction capability compared to the Analytic-DDIM sampler. Thus, in
fewer-step sampling (NFE<10), using DDIM as the baseline is more effective than using Analytic-
DDIM, which requires recalculating the optimal variance for different pre-trained DPMs, thereby
introducing additional computational overhead. In other experiments with pre-trained DPMs, we
validate the efficacy of the PFDiff algorithm by combining it with the overall superior performance
of the DDIM solver.

Furthermore, to validate the motivation proposed in Sec. 3.2 based on Fig. 1a—that at not exces-
sively large time step size ∆t, an ODE-based solver shows considerable similarity in the noise net-
work outputs—we compare it with the SDE-based solver DDPM (Ho et al., 2020). Even at smaller
∆t, the mean squared error (MSE) of the noise outputs from DDPM remains high, suggesting that
the effectiveness of PFDiff may be limited when based on SDE solvers. Further, we adjusted the η
parameter in Eq. (6) (which controls the amount of noise introduced in DDPM) from 1.0 to 0.0 (at

Table 4: Sample quality measured by FID↓ on the CIFAR10 (Krizhevsky et al., 2009) and CelebA
64x64 (Liu et al., 2015) using unconditional discrete-time DPMs with and without our method
(PFDiff), varying the number of function evaluations (NFE) and η from Eq. (6). Evaluated on 50k
samples.

Method NFE

4 6 8 10 12 15 20

CIFAR10 (discrete-time model (Ho et al., 2020), quadratic time steps)

DDPM(η = 1.0) (Ho et al., 2020) 108.05 71.47 52.87 41.18 32.98 25.59 18.34
+PFDiff (Ours) 475.47 432.24 344.96 332.41 285.88 158.90 28.05

DDPM(η = 0.5) (Song et al., 2020a) 71.08 34.32 22.37 16.63 13.37 10.75 8.38
+PFDiff (Ours) 432.50 349.09 311.62 167.65 59.93 23.17 10.61

DDPM(η = 0.2) (Song et al., 2020a) 66.33 30.26 18.94 14.01 11.25 9.00 7.18
+PFDiff (Ours) 316.15 189.02 18.55 7.73 5.70 4.53 4.00

DDIM(η = 0.0) (Song et al., 2020a) 65.70 29.68 18.45 13.66 11.01 8.80 7.04
+PFDiff (Ours) 22.38 9.48 5.64 4.57 4.39 4.10 3.68

CelebA 64x64 (discrete-time model (Song et al., 2020a), quadratic time steps)

DDPM(η = 1.0) (Ho et al., 2020) 59.38 43.63 34.12 28.21 24.40 20.19 15.85
+PFDiff (Ours) 433.25 439.19 415.41 317.43 324.58 326.50 171.41

DDPM(η = 0.5) (Song et al., 2020a) 40.58 23.72 16.74 13.15 11.27 9.36 7.73
+PFDiff (Ours) 435.27 417.58 314.63 310.10 252.19 69.31 19.23

DDPM(η = 0.2) (Song et al., 2020a) 38.20 21.35 14.55 11.22 9.47 7.99 6.71
+PFDiff (Ours) 394.03 319.02 45.15 12.71 7.85 5.10 4.96

DDIM(η = 0.0) (Song et al., 2020a) 37.76 20.99 14.10 10.86 9.01 7.67 6.50
+PFDiff (Ours) 13.29 7.53 5.06 4.71 4.60 4.70 4.68

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

η = 0.0, the SDE-based DDPM degenerates into the ODE-based DDIM (Song et al., 2020a)). As
shown in Fig. 1a, as η decreases, the MSE of the noise network outputs gradually decreases at the
same time step size ∆t, indicating that reducing noise introduction can enhance the effectiveness of
PFDiff. To verify this motivation, we utilized quadratic time steps on CIFAR10 and CelebA 64x64
datasets and controlled the amount of noise introduced by adjusting η, to demonstrate that PFDiff
can leverage the temporal redundancy present in ODE solvers to boost its performance. The exper-
imental results, as shown in Table 4, illustrate that with the reduction of η from 1.0 (SDE) to 0.0
(ODE), PFDiff’s sampling performance significantly improves at fewer time steps (NFE≤20). The
experiment results regarding FID variations with NFE as presented in Table 4, align with the trends
of MSE of noise network outputs with changes in time step size ∆t as depicted in Fig. 1a. This
reaffirms the motivation we proposed in Sec. 3.2.

D.3 ADDITIONAL RESULTS FOR UNCONDITIONAL CONTINUOUS-TIME SAMPLING

In this section, we supplement the specific FID↓ scores for the unconditional, continuous pre-trained
DPMs models with first-order and higher-order ODE solvers, DPM-Solver-1, -2 and -3, (Lu et al.,
2022a) as baselines, as shown in Table 5. For all experiments in this section, we conducted tests on
the CIFAR10 dataset (Krizhevsky et al., 2009), using the checkpoint checkpoint_8.pth under
the vp/cifar10_ddpmpp_deep_continuous configuration provided by ScoreSDE (Song
et al., 2020b). For the hyperparameter method of DPM-Solver (Lu et al., 2022a), we adopted
singlestep_fixed; to maintain consistency with the discrete-time model in Appendix D.2,
the parameter skip was set to time_quadratic (i.e., quadratic time steps). Unless otherwise
specified, we used the parameter settings recommended by DPM-Solver. The results in Table 5
show that by using the PFDiff method described in Sec. 3.4 and taking DPM-Solver as the baseline,
we were able to further enhance sampling performance on the basis of first-order and higher-order
ODE solvers. Particularly, in the 6∼12 NFE range, PFDiff significantly improved the convergence
issues of higher-order ODE solvers under fewer NFEs. For instance, at 9 NFE, PFDiff reduced
the FID of DPM-Solver-3 from 233.56 to 5.67, improving the sampling quality by 97.57%. These
results validate the effectiveness of using PFDiff with first-order or higher-order ODE solvers as the
baseline.

Table 5: Sample quality measured by FID↓ of different orders of DPM-Solver (Lu et al., 2022a) on
the CIFAR10 (Krizhevsky et al., 2009) using unconditional continuous-time DPMs with and without
our method (PFDiff), varying the number of function evaluations (NFE). Evaluated on 50k samples.

Method order NFE

4 6 8 10 12 16 20

CIFAR10 (continuous-time model (Song et al., 2020b), quadratic time steps)

DPM-Solver-1 (Lu et al., 2022a) 1 40.55 23.86 15.57 11.64 9.64 7.23 6.06

+PFDiff (Ours) 1 113.74 11.41 5.90 4.23 3.92 3.73 3.75

DPM-Solver-2 (Lu et al., 2022a) 2 298.79 106.05 41.79 14.43 6.75 4.24 3.91

+PFDiff (Ours) 2 85.22 16.30 9.67 6.64 5.74 5.12 4.78

6 9 12 15 21

DPM-Solver-3 (Lu et al., 2022a) 3 382.51 233.56 44.82 7.98 3.63

+PFDiff (Ours) 3 103.22 5.67 5.72 5.62 5.24

D.4 ADDITIONAL RESULTS FOR CLASSIFIER GUIDANCE

In this section, we provide the specific FID scores for pre-trained DPMs in the conditional, clas-
sifier guidance paradigm on the ImageNet 64x64 (Deng et al., 2009) and ImageNet 256x256
datasets (Deng et al., 2009), as shown in Table 6. We now describe the experimental setup
in detail. For the pre-trained models, we used the ADM-G (Dhariwal & Nichol, 2021) pro-
vided 64x64_diffusion.pt and 64x64_classifier.pt for the ImageNet 64x64 dataset,
and 256x256_diffusion.pt and 256x256_classifier.pt for the ImageNet 256x256

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 6: Sample quality measured by FID↓ on the ImageNet 64x64 (Deng et al., 2009) and ImageNet
256x256 (Deng et al., 2009), using ADM-G (Dhariwal & Nichol, 2021) model with guidance scales
(s) of 1.0 and 2.0, varying the number of function evaluations (NFE). Evaluated: ImageNet 64x64
with 50k, ImageNet 256x256 with 10k samples. ∗We directly borrowed the results reported by
AutoDiffusion (Li et al., 2023), and AutoDiffusion requires additional search costs. “\” represents
missing data in the original paper.

Method Step NFE

4 6 8 10 15 20

ImageNet 64x64 (pixel DPMs model (Dhariwal & Nichol, 2021), uniform time steps, s = 1.0)

DDIM (Song et al., 2020a) S 138.81 23.58 12.54 8.93 5.52 4.45
DPM-Solver-2 (Lu et al., 2022a) S 327.09 292.66 264.97 236.80 166.52 120.29
DPM-Solver-2 (Lu et al., 2022a) M 48.64 21.08 12.45 8.86 5.57 4.46
DPM-Solver-3 (Lu et al., 2022a) S 383.71 376.86 380.51 378.32 339.34 280.12
DPM-Solver-3 (Lu et al., 2022a) M 54.01 24.76 13.17 8.85 5.48 4.41
DPM-Solver++(2M) (Lu et al., 2022b) M 44.15 20.44 12.53 8.95 5.53 4.33
∗AutoDiffusion (Li et al., 2023) S 17.86 11.17 \ 6.24 4.92 3.93

DDIM+PFDiff (Ours) S 16.46 8.20 6.22 5.19 4.20 3.83

ImageNet 256x256 (pixel DPMs model (Dhariwal & Nichol, 2021), uniform time steps, s = 2.0)

DDIM (Song et al., 2020a) S 51.79 23.48 16.33 12.93 9.89 9.05
DDIM+PFDiff (Ours) S 37.81 18.15 12.22 10.33 8.59 8.08

dataset. All experiments were conducted with uniform time steps and used DDIM as the base-
line (Song et al., 2020a). We implemented the second-order and third-order methods from DPM-
Solver (Lu et al., 2022a) for comparison and explored the method hyperparameter provided by
DPM-Solver for both singlestep (corresponding to “S” in Table 6) and multistep (cor-
responding to “M” in Table 6). Additionally, we implemented the best-performing method from
DPM-Solver++ (Lu et al., 2022b), multi-step DPM-Solver++(2M), as a comparative measure. Fur-
thermore, we also introduced the superior-performing AutoDiffusion (Li et al., 2023) method as
a comparison. ∗We directly borrowed the results reported in the original paper, emphasizing that
although AutoDiffusion does not require additional training, it incurs additional search costs. “\”
represents missing data in the original paper. The specific experimental results of the configurations
mentioned are shown in Table 6. The results demonstrate that PFDiff, using DDIM as the base-
line on the ImageNet 64x64 dataset, significantly enhances the sampling efficiency of DDIM and
surpasses previous optimal training-free sampling methods. Particularly, in cases where NFE≤10,
PFDiff improved the sampling quality of DDIM by 41.88%∼88.14%. Moreover, on the large Ima-
geNet 256x256 dataset, PFDiff demonstrates a consistent performance improvement over the DDIM
baseline, similar to the improvements observed on the ImageNet 64x64 dataset.

D.5 ADDITIONAL RESULTS FOR CLASSIFIER-FREE GUIDANCE

In this section, we supplemented the specific FID↓ scores for the Stable-Diffusion (Rombach et al.,
2022) (conditional, classifier-free guidance paradigm) setting with a guidance scale (s) of 7.5 and
1.5. Specifically, for the pre-trained model, we conducted experiments using the sd-v1-4.ckpt
checkpoint provided by Stable-Diffusion. All experiments used the MS-COCO2014 (Lin et al.,
2014) validation set to calculate FID↓ scores, with uniform time steps. PFDiff employs the
DDIM (Song et al., 2020a) method as the baseline. Initially, under the recommended s = 7.5
configuration by Stable-Diffusion, we implemented DPM-Solver-2 and -3 as comparative methods,
and set the method hyperparameters provided by DPM-Solver to multistep (corresponding
to “M” in Table 7). Additionally, we introduced previous state-of-the-art training-free methods,
including DPM-Solver++(2M) (Lu et al., 2022b), UniPC (Zhao et al., 2023), and DPM-Solver-
v3(2M) (Zheng et al., 2023) for comparison. The experimental results are shown in Table 7. †We
borrow the results reported in DPM-Solver-v3 (Zheng et al., 2023) directly. The results indicate that
on Stable-Diffusion, PFDiff, using only DDIM as a baseline, surpasses the previous state-of-the-art
training-free sampling methods in terms of sampling quality in fewer steps (NFE<20). Particularly,
at NFE=10, PFDiff achieved a 13.06 FID, nearly converging to the data distribution, which is a

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 7: Sample quality measured by FID↓ on the validation set of MS-COCO2014 (Lin et al.,
2014) using Stable-Diffusion model (Rombach et al., 2022) with guidance scales (s) of 7.5 and
1.5, varying the number of function evaluations (NFE). Evaluated on 10k samples. †We borrow the
results reported in DPM-Solver-v3 (Zheng et al., 2023) directly.

Method Step NFE

5 6 8 10 15 20

MS-COCO2014 (latent DPMs model (Rombach et al., 2022), uniform time steps, s = 7.5)

DDIM (Song et al., 2020a) S 23.92 20.33 17.46 16.78 16.08 15.95
DPM-Solver-2 (Lu et al., 2022a) M 18.97 17.37 16.29 15.99 14.32 14.38
DPM-Solver-3 (Lu et al., 2022a) M 18.89 17.34 16.25 16.11 14.10 13.44
†DPM-Solver++(2M) (Lu et al., 2022b) M 18.87 17.44 16.40 15.93 15.84 15.72
†UniPC (Zhao et al., 2023) M 18.77 17.32 16.20 16.15 16.06 15.94
†DPM-Solver-v3(2M) (Zheng et al., 2023) M 18.83 16.41 15.41 15.32 15.30 15.23

DDIM+PFDiff (Ours) S 18.31 15.47 13.26 13.06 13.57 13.97

MS-COCO2014 (latent DPMs model (Rombach et al., 2022), uniform time steps, s = 1.5)

DDIM (Song et al., 2020a) S 70.36 54.32 37.54 29.41 20.54 18.17
DPM-Solver-2 (Lu et al., 2022a) M 37.47 27.79 19.65 18.39 17.27 16.85
DPM-Solver-3 (Lu et al., 2022a) M 35.90 25.88 18.26 19.10 17.21 16.67
DPM-Solver++(2M) (Lu et al., 2022b) M 36.58 26.78 18.92 20.26 18.61 17.78

DDIM+PFDiff (Ours) S 24.31 20.99 18.09 17.00 16.03 15.57

14.25% improvement over the previous state-of-the-art method DPM-Solver-v3 at 20 NFE, which
had a 15.23 FID. Furthermore, to further validate the effectiveness of PFDiff on Stable-Diffusion,
we conducted experiments using the s = 1.5 setting with the same experimental configuration as
s = 7.5. For the comparative methods, we only experimented with the multi-step versions of DPM-
Solver-2 and -3 and DPM-Solver++(2M), which had faster convergence at fewer NFE under the
s = 7.5 setting. As for UniPC and DPM-Solver-v3(2M), since DPM-Solver-v3 did not provide
corresponding experimental results at s = 1.5, we did not list their comparative results. The experi-
mental results show that PFDiff, using DDIM as the baseline under the s = 1.5 setting, demonstrated
consistent performance improvements as seen in the s = 7.5 setting, as shown in Table 7.

D.6 ADDITIONAL ABLATION STUDY RESULTS

D.6.1 ADDITIONAL RESULTS FOR PFDIFF HYPERPARAMETERS STUDY

In this section, we extensively investigate the impact of the hyperparameters k and h on the perfor-
mance of the PFDiff algorithm, supplementing with the results of ablation experiments and experi-
mental setups. Specifically, for the unconditional DPMs, we conducted experiments on the CIFAR10
dataset (Krizhevsky et al., 2009) using quadratic time steps, based on pre-trained unconditional dis-
crete DDPM (Ho et al., 2020). For the conditional DPMs, we used uniform time steps in classifier
guidance ADM-G (Dhariwal & Nichol, 2021) pre-trained DPMs, setting the guidance scale (s) to
1.0 for experiments on the ImageNet 64x64 dataset (Deng et al., 2009). All experiments were con-
ducted using the DDIM (Song et al., 2020a) algorithm as a baseline, and PFDiff-k h configurations
(k = 1, 2, 3 (h ≤ k)) were tested in six different algorithm configurations. The FID↓ scores are
presented in Table 8, by varying the number of function evaluations (NFE) and the sample number
used to compute the evaluation metrics.

We first analyze the impact of the hyperparameters k and h using 50k samples to compute the FID
scores, which is a common method for evaluating the performance of sampling algorithms. The
experimental results demonstrate that, under various combinations of k and h, PFDiff is able to
enhance the sampling performance of the DDIM baseline in most cases across different types of
pre-trained DPMs. Particularly when setting k = 2 and h = 1, PFDiff-2 1 can always improve the
sampling performance of the DDIM baseline within the range of 4∼20 NFE. Furthermore, we have
an exciting discovery regarding the further optimization of algorithm performance: Searching with
just 1/10 of the data provides consistent results compared to searches using the full 50k samples,

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 8: Ablation study of the impact of k and h on PFDiff in CIFAR10 (Krizhevsky et al., 2009) and
ImageNet 64x64 (Deng et al., 2009) datasets using DDPM (Ho et al., 2020) and ADM-G (Dhariwal
& Nichol, 2021) models. We report the FID↓ and MSE↓, varying the number of function evaluations
(NFE) and the number of samples for evaluating algorithm performance.

Samples Method NFE

4 6 8 10 12 15 20

CIFAR10 (unconditional DPMs model (Ho et al., 2020), quadratic time steps)

50k
(FID)

DDIM (Song et al., 2020a) 65.70 29.68 18.45 13.66 11.01 8.80 7.04
+PFDiff-1 124.73 19.45 5.78 4.95 4.63 4.25 4.14
+PFDiff-2 1 59.61 9.84 7.01 6.31 5.58 5.18 4.78
+PFDiff-2 2 167.12 53.22 8.43 4.95 4.41 4.10 3.78
+PFDiff-3 1 22.38 13.40 9.40 7.70 6.73 6.03 5.05
+PFDiff-3 2 129.18 19.35 5.64 4.57 4.39 4.19 4.08
+PFDiff-3 3 205.87 76.62 20.84 5.71 4.73 4.41 3.68

5k
(FID)

DDIM (Song et al., 2020a) 69.79 34.20 22.84 17.39 15.56 12.87 11.62
+PFDiff-1 127.82 23.96 10.35 9.73 9.29 9.09 8.74
+PFDiff-2 1 63.59 14.34 11.40 11.08 9.23 10.03 9.38
+PFDiff-2 2 170.58 57.74 12.94 9.86 10.08 9.02 8.44
+PFDiff-3 1 26.85 17.93 13.95 12.37 9.59 10.89 9.65
+PFDiff-3 2 132.45 23.80 10.11 9.58 9.16 9.09 8.69
+PFDiff-3 3 208.80 80.13 24.84 10.73 11.16 9.14 8.34

256
(MSE)

DDIM (Song et al., 2020a) 0.1009 0.0608 0.0414 0.0314 0.0255 0.0199 0.0152
+PFDiff-1 0.0542 0.0217 0.0131 0.0100 0.0089 0.0082 0.0081
+PFDiff-2 1 0.0277 0.0137 0.0110 0.0104 0.0098 0.0093 0.0088
+PFDiff-2 2 0.1001 0.0468 0.0277 0.0184 0.0145 0.0122 0.0105
+PFDiff-3 1 0.0218 0.0167 0.0146 0.0130 0.0120 0.0107 0.0098
+PFDiff-3 2 0.0614 0.0228 0.0133 0.0101 0.0089 0.0083 0.0082
+PFDiff-3 3 0.1790 0.0820 0.0444 0.0299 0.0224 0.0165 0.0126

ImageNet 64x64 (conditional DPMs model (Dhariwal & Nichol, 2021), uniform time steps, s = 1.0)

50k
(FID)

DDIM (Song et al., 2020a) 138.81 23.58 12.54 8.93 6.74 5.52 4.45
+PFDiff-1 26.86 11.39 7.47 5.83 5.16 4.76 4.39
+PFDiff-2 1 17.14 8.94 6.38 5.46 5.46 4.30 3.83
+PFDiff-2 2 23.66 9.93 6.86 5.72 5.17 4.49 3.94
+PFDiff-3 1 16.74 9.43 7.19 5.86 5.07 4.69 4.44
+PFDiff-3 2 16.46 8.20 6.22 5.19 4.62 4.20 4.28
+PFDiff-3 3 23.06 9.73 6.92 5.55 5.21 4.47 4.49

5k
(FID)

DDIM (Song et al., 2020a) 146.03 29.61 19.11 15.13 13.15 11.65 10.81
+PFDiff-1 32.82 17.80 13.61 12.16 11.20 10.99 10.82
+PFDiff-2 1 23.70 14.81 12.38 11.82 11.53 10.77 10.24
+PFDiff-2 2 30.10 16.35 13.09 11.80 11.68 10.67 10.56
+PFDiff-3 1 23.09 15.78 13.21 12.09 11.71 11.00 10.77
+PFDiff-3 2 22.54 14.23 12.24 11.27 11.16 10.47 10.48
+PFDiff-3 3 29.45 16.12 13.25 11.90 11.29 10.68 10.66

significantly reducing the cost of hyperparameter searching for k and h. Specifically, for the same
NFE, the optimal combinations of k and h based on FID scores are consistent for both 5k and 50k
samples. For instance, when NFE=6, the best FID values for both 5k and 50k samples are achieved
with k = 2 and h = 1. For the six combinations used in this study with k ≤ 3(h ≤ k), only a total
of 30k samples are required to search the optimal k and h combination for each NFE—this is even
less than the cost of evaluating algorithm performance normally with 50k samples. Additionally,
in practical applications where only a small number of samples are needed for visual analysis, we
can minimize training resources and rapidly identify the optimal k and h combination. In summary,
the hyperparameters k and h do not impede the practical application of PFDiff in accelerating the
sampling of DPMs.

Furthermore, we propose an automatic search strategy with almost no additional cost based on
truncation errors for selecting k and h. Specifically, in Sec. 3.5, we discuss how PFDiff can correct

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

999 900 800 700 600 500 400 300 200 100 0
t

0.00

0.02

0.04

0.06

0.08

0.10

T
ru

nc
at

io
n

er
ro

r

NFE=6

NFE=10

NFE=20

(a) DDIM

999 900 800 700 600 500 400 300 200 100 0
t

0.00

0.02

0.04

0.06

0.08

0.10

T
ru

nc
at

io
n

er
ro

r

NFE=6

NFE=10

NFE=20

(b) DDIM + PFDiff-1

999 900 800 700 600 500 400 300 200 100 0
t

0.00

0.02

0.04

0.06

0.08

0.10

T
ru

nc
at

io
n

er
ro

r

NFE=6

NFE=10

NFE=20

(c) DDIM + PFDiff (k ≤ 3)

Figure 5: The trend (mean and standard deviation (std)) of accumulated truncation error over time
step t on the CIFAR10 (Krizhevsky et al., 2009) dataset, relative to DDIM (Song et al., 2020a) with
1000 NFE, varying the number of function evaluations (NFE) ∈ {6, 10, 20}.

the discretization error of the baseline solver in regions with large curvature along the sampling
trajectory, which means that PFDiff accumulates less truncation error. To validate this conclusion,
we conducted experiments on the CIFAR10 dataset, where we sampled 256 samples using DDIM,
PFDiff-1, and PFDiff (k ≤ 3) with varying NFE values. The truncation errors were calculated using
MSE relative to DDIM with 1000 NFE, and the results are shown in Fig. 5. The results demonstrate
that PFDiff significantly corrects DDIM’s truncation errors in regions with large curvature of the
sampling trajectory (i.e., regions where truncation errors increase rapidly). Based on these findings,
we propose an automatic search strategy: by varying the hyperparameters k and h, we “warm up”
with only 256 samples respectively, calculate the average truncation error using MSE, and use this
value to guide the selection of k and h. On the CIFAR10 dataset, by varying NFE, k, and h, we
sampled 256 samples and computed the average truncation errors relative to DDIM with 1000 NFE.
The results are presented in Tab. 8. Based on Tab. 8, we select the values of k and h corresponding
to the minimum truncation error, and further refer to the corresponding FID values found in Tab. 8,
which are {22.38, 9.84, 7.01, 4.95, 4.63/4.39, 4.25, 4.14} for NFE ∈ {4, 6, 8, 10, 12, 15, 20}. This
set of FID values is comparable to the optimal FID, indicating that determining k and h based on
truncation error is reasonable. Notably, in Tab. 8, we “warmed up” only 256 samples to compute
the truncation error, so the additional cost introduced by the automatic search strategy is negligible.
The 256 samples are sufficient to capture the dataset’s statistical properties because the shapes of
sampling trajectories are highly similar (Chen et al., 2024).

D.6.2 ABLATION STUDY OF PAST AND FUTURE SCORES

To further investigate the impact of scores from the past or future on first-order ODE solvers on the
rapid updating of current intermediate states, this section supplements related ablation study results
and their settings. Specifically, we first use PFDiff with the first-order ODE solver DDIM as a base-
line, removing past and future scores separately based on the discrete-time pre-trained models (Ho
et al., 2020; Song et al., 2020a). On the CIFAR10 (Krizhevsky et al., 2009) and CelebA 64x64 (Liu
et al., 2015) datasets, we alter the number of function evaluations (NFE) to compute the FID↓ met-
ric. Additionally, we introduce a method from previous literature (Ma et al., 2024) that accelerates
sampling by caching part of past scores for comparison. Specifically, we configure the hyperpa-
rameters based on the DeepCache (Ma et al., 2024) codebase, setting cache_interval to 2 and
branch to 0, with all other settings remaining unchanged. As shown in Table 9, the experimental
results indicate that using only past scores or only future scores can slightly improve the first-order
ODE solvers sampling performance. However, their combined use (i.e., the complete PFDiff) sig-
nificantly enhances first-order ODE solvers sampling performance, especially with very few steps
(NFE<10), a phenomenon particularly evident. These results further validate the efficiency of the
PFDiff algorithm when NFE<10, benefiting from its information-efficient update process, which
utilizes past and future (complementing each other) scores to jointly guide the current intermediate
state.

Furthermore, to verify whether the update process of the PFDiff algorithm increases additional in-
ference time, we employed the same experimental settings as in Table 9 and provided a specific

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 9: Ablation study of the impact of the past and future scores on PFDiff, using DDIM (Song
et al., 2020a) as the baseline, in CIFAR10 (Krizhevsky et al., 2009) and CelebA 64x64 (Liu et al.,
2015) datasets using discrete-time models (Ho et al., 2020; Song et al., 2020a). We report the FID↓,
varying the number of function evaluations (NFE). Evaluated on 50k samples.

+PFDiff Method NFE

4 6 8 10 12 16 20

CIFAR10 (discrete-time model (Ho et al., 2020), quadratic time steps)

× DDIM (Song et al., 2020a) 65.70 29.68 18.45 13.66 11.01 8.80 7.04

× +Cache (Ma et al., 2024) 49.02 24.04 15.23 11.31 9.40 7.25 6.25
× +Past 52.81 27.47 17.87 13.64 10.79 8.20 7.02
× +Future 66.06 25.39 11.93 8.06 6.04 4.17 4.07
✓ +Past & Future 22.38 9.84 5.64 4.57 4.39 4.10 3.68

CelebA 64x64 (discrete-time model (Song et al., 2020a), uniform time steps)

× DDIM (Song et al., 2020a) 44.36 29.12 23.19 20.50 18.43 16.13 14.76

× +Cache (Ma et al., 2024) 33.86 25.95 22.29 19.83 18.28 16.05 14.45
× +Past 28.45 21.56 18.65 17.03 15.89 14.05 12.73
× +Future 39.85 16.30 14.40 12.79 12.13 9.73 8.13
✓ +Past & Future 51.87 12.79 8.82 8.93 7.70 6.44 5.66

inference time comparison under different NFE. The inference time↓ (second, mean±std) required
per 1k samples on a single NVIDIA 3090 GPU is shown in Table 10. The experimental results
reveal that PFDiff+DDIM has consistent inference times with DDIM alone under the same NFE,
indicating that the PFDiff algorithm does not add extra inference time. Additionally, methods (Ma
et al., 2024) that cache part of past scores not only incur additional inference costs but also exhibit
relatively weak acceleration effects with a small number of steps (NFE<10). These results collec-
tively demonstrate that the PFDiff algorithm can significantly enhance sampling quality without any
increase in inference time, further proving its effectiveness.

Table 10: Inference time↓ (second, mean±std) required per 1k samples on a single NVIDIA 3090
GPU, varying the number of function evaluations (NFE). We additionally present the inference time
with only past or only future scores, at the same NFE. Moreover, we introduce methods (Ma et al.,
2024; Wimbauer et al., 2024) that cache part of past scores for comparison.

+PFDiff Method NFE

4 10 16 20

CIFAR10 (discrete-time model (Ho et al., 2020), quadratic time steps)

× DDIM (Song et al., 2020a) 6.14±0.010 9.81±0.022 13.58±0.090 15.90±0.081

× +Cache (Ma et al., 2024) 6.31±0.150 13.55±0.019 19.42±0.091 24.07±0.185
× +Past 6.17±0.029 9.88±0.040 13.66±0.257 15.81±0.062
× +Future 6.16±0.036 9.77±0.153 13.73±0.345 15.67±0.096
✓ +Past & Future 6.10±0.006 9.74±0.036 13.48±0.220 15.79±0.036

CelebA 64x64 (discrete-time model (Song et al., 2020a), uniform time steps)

× DDIM (Song et al., 2020a) 13.65±0.116 27.29±0.543 40.55±0.618 49.43±0.497

× +Cache (Ma et al., 2024) 19.82±0.130 45.60±0.131 71.70±0.266 89.45±0.085
× +Past 13.67±0.057 26.88±0.144 40.24±0.151 49.82±0.081
× +Future 13.61±0.304 26.38±0.067 39.95±0.440 49.05±0.543
✓ +Past & Future 13.21±0.060 26.41±0.042 40.26±0.186 49.38±0.257

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

D.7 INCEPTION SCORE EXPERIMENTAL RESULTS

To evaluate the effectiveness of the PFDiff algorithm and the widely used Fréchet Inception Dis-
tance (FID↓) metric (Heusel et al., 2017) in the sampling process of Diffusion Probabilistic Models
(DPMs), we have also incorporated the Inception Score (IS↑) metric (Salimans et al., 2016) for both
unconditional and conditional pre-trained DPMs. Specifically, for the unconditional discrete-time
pre-trained DPMs DDPM (Ho et al., 2020), we maintained the experimental configurations de-
scribed in Table 3 of Appendix D.2, and added IS scores for the CIFAR10 dataset (Krizhevsky et al.,
2009). For the unconditional continuous-time pre-trained DPMs ScoreSDE (Song et al., 2020b),
the experimental configurations are consistent with Table 5 in Appendix D.3, and IS scores for the
CIFAR10 dataset were also added. For the conditional classifier guidance paradigm of pre-trained
DPMs ADM-G (Dhariwal & Nichol, 2021), the experimental setup aligned with Table 6 in Appendix
D.4, including IS scores for the ImageNet 64x64 and ImageNet 256x256 datasets (Deng et al., 2009).
Considering that the computation of IS scores relies on features extracted using InceptionV3
pre-trained on the ImageNet dataset, calculating IS scores for non-ImageNet datasets was not
feasible, hence no IS scores were provided for the classifier-free guidance paradigm of Stable-
Diffusion (Rombach et al., 2022). The experimental results are presented in Table 11. A comparison
between the FID↓ metrics in Tables 3, 5, and 6 and the IS↑ metrics in Table 11 shows that both IS
and FID metrics exhibit similar trends under the same experimental settings, i.e., as the number of
function evaluations (NFE) changes, lower FID scores correspond to higher IS scores. Further, Figs.
7a and 7b, along with the visualization experiments in Appendix D.9, demonstrate that lower FID

Table 11: Sample quality measured by IS↑ on the CIFAR10 (Krizhevsky et al., 2009), ImageNet
64x64 (Deng et al., 2009) and ImageNet 256x256 (Deng et al., 2009) using DDPM (Ho et al.,
2020), ScoreSDE (Song et al., 2020b) and ADM-G (Dhariwal & Nichol, 2021) models, varying
the number of function evaluations (NFE). Evaluated: ImageNet 256x256 with 10k, others with
50k samples. ∗We directly borrowed the results reported by AutoDiffusion (Li et al., 2023), and
AutoDiffusion requires additional search costs. “\” represents missing data in the original paper
and DPM-Solver-2 (Lu et al., 2022a) implementation.

+PFDiff Method NFE

4 6 8 10 15 20

CIFAR10 (discrete-time model (Ho et al., 2020), quadratic time steps)

× DDPM(η = 1.0) (Ho et al., 2020) 4.32 5.66 6.55 7.08 7.91 8.25
× Analytic-DDPM (Bao et al., 2022b) 5.76 6.29 6.93 7.42 8.07 8.33
× Analytic-DDIM (Bao et al., 2022b) 4.46 7.47 8.11 8.43 8.72 8.89
× DDIM (Song et al., 2020a) 5.68 7.21 7.92 8.26 8.62 8.81

✓ Analytic-DDIM 1.62 8.78 9.43 9.61 9.35 9.29
✓ DDIM 7.79 9.29 9.62 9.43 9.29 9.29

CIFAR10 (continuous-time model (Song et al., 2020b), quadratic time steps)

× DPM-Solver-1 (Lu et al., 2022a) 7.20 8.30 8.85 8.98 9.43 9.51
× DPM-Solver-2 (Lu et al., 2022a) 1.70 5.29 7.94 9.09 \ 9.74

✓ DPM-Solver-1 4.29 9.25 9.76 9.86 9.85 9.97
✓ DPM-Solver-2 6.96 8.58 8.75 9.26 \ 9.69

ImageNet 64x64 (pixel DPMs model (Dhariwal & Nichol, 2021), uniform time steps, s = 1.0)

× DDIM (Song et al., 2020a) 7.02 31.13 40.51 46.06 54.37 59.09
× DPM-Solver-2(Multi) (Lu et al., 2022a) 19.03 33.75 44.65 51.79 62.18 67.69
× DPM-Solver-3(Multi) (Lu et al., 2022a) 17.46 29.80 41.86 50.90 62.68 68.44
× DPM-Solver++(2M) (Lu et al., 2022b) 20.72 34.22 43.62 50.02 60.00 65.66
× ∗AutoDiffusion (Li et al., 2023) 34.88 43.37 \ 57.85 64.03 68.05

✓ DDIM 35.67 50.14 58.42 59.78 64.54 69.09

ImageNet 256x256 (pixel DPMs model (Dhariwal & Nichol, 2021), uniform time steps, s = 2.0)

× DDIM (Song et al., 2020a) 37.72 95.90 122.13 144.13 165.91 179.27

✓ DDIM 55.90 122.56 158.57 169.72 183.07 192.70

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 200 400 600 800 999
∆t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1
T
−∆

t

∑
T
−∆

t−
1

t=
0

‖ǫ
θ
(x

t,
t)
−

ǫ θ
(x

t+
∆

t,
t
+

∆
t)
‖2

DDIM

Heun’s 2nd

DPM-Solver-1

DPM-Solver-2

DPM-Solver-3

(a) Score Changes in ODE Solvers Based on
EDM

0 200 400 600 800 1000
Denoising timestep ti+h

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
S
E

(R
el

at
iv

e
to

10
00

N
F
E
)

NFE=6, x̃ti+h

NFE=6, ǫθ(x̃ti+h
, ti+h)

NFE=8, x̃ti+h

NFE=8, ǫθ(x̃ti+h
, ti+h)

NFE=10, x̃ti+h

NFE=10, ǫθ(x̃ti+h
, ti+h)

NFE=20, x̃ti+h

NFE=20, ǫθ(x̃ti+h
, ti+h)

NFE=50, x̃ti+h

NFE=50, ǫθ(x̃ti+h
, ti+h)

(b) Future Score More Reliable than
“Springboard”

Figure 6: (a) The trend of the MSE of the noise network output ϵθ(xt, t) over time step size ∆t in
the EDM framework (Karras et al., 2022). (b) MSE relative to the sampling process with 1000 NFE:
“Springboard”, ∥x̃ti+h

− x̃gt
ti+h
∥2; Future Score, ∥ϵθ(x̃ti+h

, ti+h)− ϵθ(x̃
gt
ti+h

, ti+h)∥2.

scores and higher IS scores correlate with higher image quality and richer details generated by the
PFDiff sampling algorithm. These results further confirm the effectiveness of the PFDiff algorithm
and the FID metric in evaluating the performance of sampling algorithms.

D.8 EXPERIMENTAL SETUP AND ADDITIONAL RESULTS CLARIFYING THE MOTIVATION

In this section, we provide a detailed explanation of the experimental in Fig. 1a and Fig. 1b.
Additionally, we further extend the experiments from Fig. 1a and Fig. 1b, as shown in Fig. 6.

For Fig. 1a, we first store the noise network output at all time steps, with 1000 NFE:
{ϵθ(xti , ti)}999i=0. We then compute the mean of the MSE of the noise network output over the
time interval ∆t. For instance, when ∆t = 2, we compute the following mean: ∥ϵθ(xt0 , t0) −
ϵθ(xt2 , t2)∥2, · · · , ∥ϵθ(xt997 , t997) − ϵθ(xt999 , t999)∥2. By varying the value of ∆t from 0 to 999,
we are able to compute the mean of the MSE of the noise network output, respectively, and ulti-
mately obtain Fig. 1a. Notably, in Fig. 1a, the curves for DDPM (Ho et al., 2020) and DDIM (Song
et al., 2020a) are derived from the pre-trained model of DDPM (Ho et al., 2020); the curves for
DPM-Solver (Lu et al., 2022a) and DPM-Solver++ (Lu et al., 2022b) are obtained from the pre-
trained model of ScoreSDE (Song et al., 2020b). Additionally, in Fig. 6a, we present experimental
results from a more advanced diffusion model framework — the EDM (Karras et al., 2022) pre-
trained model, including DDIM, DPM-Solver, and Heun’s 2nd (Karras et al., 2022) solvers. For the
three different architecture pre-trained models, when the time step size ∆t is not excessively large,
the noise network outputs exhibit remarkable similarity. This validates that the method we propose
in Sec. 3.3, using past scores to guide sampling, is reliable.

For Fig. 1b, during the sampling process from x̃ti to x̃ti+(k+1)
, based on the PFDiff, we first compute

the “springboard” x̃ti+h
, and then further obtain the future score ϵθ(x̃ti+h

, ti+h). Next, we compute
the MSE of the status x̃ti+(k+1)

, which is updated using the “springboard” and future score, respec-
tively. The MSE is calculated relative to the sampling process with 1000 NFE, resulting in Fig. 1b.
Moreover, We also directly evaluate the MSE of the “springboard” and the future score at different
ti+h moments, relative to the sampling with 1000 NFE, as shown in Fig. 6b. Notably, both Fig. 1b
and Fig. 6b exhibit the same trend, demonstrating that the future gradient is more reliable than the
“Springboard”.

D.9 VISUALIZE STUDY RESULTS

To demonstrate the effectiveness of PFDiff, we present the visual sampling results on the CI-
FAR10 (Krizhevsky et al., 2009), CelebA 64x64 (Liu et al., 2015), LSUN-bedroom 256x256 (Yu
et al., 2015), LSUN-church 256x256 (Yu et al., 2015), ImageNet 64x64 (Deng et al., 2009), Ima-

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

geNet 256x256 (Deng et al., 2009), and MS-COCO2014 (Lin et al., 2014) datasets in Figs. 7-13.
These results illustrate that PFDiff, using different orders of ODE solvers as a baseline, is capa-
ble of generating samples of higher quality and richer detail on both unconditional and conditional
pre-trained Diffusion Probabilistic Models (DPMs).

S
ta
b
le
-D
if
fu
si
o
n

O
u
r
s
+

S
ta
b
le
-D
if
fu
si
o
n

NFE = 6, FID = 20.33 NFE = 10, FID = 16.78

NFE = 6, FID = 15.47 NFE = 10, FID = 13.06

NFE = 250, FID = 15.86

NFE = 1000, FID = 15.82

Text Prompts: Winter night with snow -covered rooftops and soft yellow lights. (Left)
A Corgi running towards me in Times Square. (Right)

(a) Results from Stable-Diffusion on MS-COCO2014 (Classifier-Free Guidance, s = 7.5)

G
u
id
e
d
-D
if
fu
s
io
n

O
u
r
s
+

G
u
id
e
d
-D
if
fu
s
io
n

NFE=4 NFE=8 NFE=10 NFE=20 NFE=100

NFE=4 NFE=8 NFE=10 NFE=20 NFE=250

(b) Results from Guided-Diffusion on ImageNet 64x64 (Classifier Guidance, s = 1.0)

Figure 7: Sampling by conditional pre-trained DPMs (Rombach et al., 2022; Dhariwal & Nichol,
2021) using DDIM (Song et al., 2020a) and our method PFDiff (dashed box) with DDIM as a
baseline, varying the number of function evaluations (NFE).

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

NFE = 4 NFE = 10

FID = 65.70 FID = 13.66

NFE = 4 NFE = 10

FID = 37.76 FID = 10.86

NFE = 8

FID = 18.45

NFE = 8

FID = 14.10

(a) DDIM (Song et al., 2020a)

FID = 106.86 FID = 10.09 FID = 69.75 FID = 9.37FID = 14.21 FID = 11.84

(b) Analytic-DDIM (Bao et al., 2022b)

FID = 22.38 FID = 4.57 FID = 13.29 FID = 4.71FID = 5.64 FID = 5.06

(c) DDIM+PFDiff (Ours)

Figure 8: Random samples by DDIM (Song et al., 2020a), Analytic-DDIM (Bao et al., 2022b), and
PFDiff (baseline: DDIM) with 4, 8, and 10 number of function evaluations (NFE), using the same
random seed, quadratic time steps, and pre-trained discrete-time DPMs (Ho et al., 2020; Song et al.,
2020a) on CIFAR10 (Krizhevsky et al., 2009) (left) and CelebA 64x64 (Liu et al., 2015) (right).

NFE = 5

FID = 71.02

NFE = 10NFE = 10 NFE = 5

FID = 19.26 FID = 73.43 FID = 22.04

(a) DDIM (Song et al., 2020a)

FID = 25.32 FID = 9.28 FID = 26.69 FID = 13.27

(b) DDIM+PFDiff (Ours)

Figure 9: Random samples by DDIM (Song et al., 2020a) and PFDiff (baseline: DDIM) with 5
and 10 number of function evaluations (NFE), using the same random seed, uniform time steps, and
pre-trained discrete-time DPMs (Ho et al., 2020) on LSUN-bedroom 256x256 (Yu et al., 2015) (left)
and LSUN-church 256x256 (Yu et al., 2015) (right).

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

NFE = 6 NFE = 12

FID = 23.86 FID = 9.64

(a) DPM-Solver-1 (Lu et al., 2022a)

FID = 11.41 FID = 3.92

(b) DPM-Solver-1+PFDiff (Ours)

FID = 106.05 FID = 6.75

(c) DPM-Solver-2 (Lu et al., 2022a)

FID = 16.30 FID = 5.74

(d) DPM-Solver-2+PFDiff (Ours)

FID = 382.51 FID = 44.82

(e) DPM-Solver-3 (Lu et al., 2022a)

FID = 103.22 FID = 5.72

(f) DPM-Solver-3+PFDiff (Ours)

Figure 10: Random samples by DPM-Solver-1, -2, and -3 (Lu et al., 2022a) with and without
our method (PFDiff) with 6 and 12 number of function evaluations (NFE), using the same ran-
dom seed, quadratic time steps, and pre-trained continuous-time DPMs (Song et al., 2020b) on
CIFAR10 (Krizhevsky et al., 2009).

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

NFE = 4 NFE = 8

FID = 138.81 FID = 12.54

(a) DDIM (Song et al., 2020a)

FID = 48.64 FID = 12.45

(b) DPM-Solver-2 (Lu et al., 2022a)

FID = 44.15 FID = 12.53

(c) DPM-Solver++(2M) (Lu et al., 2022b)

FID = 16.46 FID = 6.22

(d) DDIM+PFDiff (Ours)

Figure 11: Random samples by DDIM (Song et al., 2020a), DPM-Solver-2 (Lu et al., 2022a), DPM-
Solver++(2M) (Lu et al., 2022b), and PFDiff (baseline: DDIM) with 4 and 8 number of func-
tion evaluations (NFE), using the same random seed, uniform time steps, and pre-trained Guided-
Diffusion (Dhariwal & Nichol, 2021) on ImageNet 64x64 (Deng et al., 2009) with a guidance scale
of 1.0.

NFE = 4 NFE = 8

FID = 51.79 FID = 16.33

(a) DDIM (Song et al., 2020a)

FID = 37.81 FID = 12.22

(b) DDIM+PFDiff (Ours)

Figure 12: Random samples by DDIM (Song et al., 2020a) and PFDiff (baseline: DDIM) with 4
and 8 number of function evaluations (NFE), using the same random seed, uniform time steps, and
pre-trained Guided-Diffusion (Dhariwal & Nichol, 2021) on ImageNet 256x256 (Deng et al., 2009)
with a guidance scale of 2.0.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

D
D
IM

(F
ID
=
2
3
.9
2
)

D
P
M
-S
o
lv
e
r
+
+

(F
ID
=
1
8
.8
7
)

D
D
IM
+
P
F
D
if
f

(F
ID
=
1
8
.3
1
)

Text Prompts (listed from left to right):
A large bird is standing in the water by some rocks.
A candy covered cup cake sitting on top of a white plate.
People at a wine tasting with a table of wine bottles and glasses of red wine.
A bathtub sits on a tiled floor near a sink that has ornate mirrors over it while greenery grows on the
other side of the tub.
A kitchen and dining area in a house with an open floor plan that looks out over the landscape from a
large set of windows.

NFE = 5

D
D
IM

(F
ID
=
1
6
.7
8
)

D
P
M
-S
o
lv
e
r
+
+

(F
ID
=
1
5
.9
3
)

D
D
IM
+
P
F
D
if
f

(F
ID
=
1
3
.0
6
)

NFE = 10

Figure 13: Random samples by DDIM (Song et al., 2020a), DPM-Solver++(2M) (Lu et al., 2022b),
and PFDiff (baseline: DDIM) with 5 and 10 number of function evaluations (NFE), using the same
random seed, uniform time steps, and pre-trained Stable-Diffusion (Rombach et al., 2022) with a
guidance scale of 7.5. Text prompts are a random sample from the MS-COCO2014 (Lin et al.,
2014) validation set.

33


	Introduction
	Background
	Diffusion SDEs
	Diffusion ODEs

	Method
	Solving for reverse process diffusion ODEs
	Sampling guided by past scores
	Sampling guided by future scores
	PFDiff: sampling guided by past and future scores
	Analysis of effectiveness based on the shape of the trajectory

	Experiments
	Unconditional sampling
	Conditional sampling
	Ablation study

	Conclusion
	Related work
	Proof of convergence and error correction for PFDiff
	Assumptions
	Proof of Proposition 3.1
	Proof of convergence for PFDiff

	Algorithms of PFDiffs
	Additional experiment results
	License
	Additional results for unconditional discrete-time sampling
	Additional results for unconditional continuous-time sampling
	Additional results for classifier guidance
	Additional results for classifier-free guidance
	Additional ablation study results
	Additional results for PFDiff hyperparameters study
	Ablation study of past and future scores

	Inception score experimental results
	Experimental setup and additional results clarifying the motivation
	Visualize study results


