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ABSTRACT

A natural solution for rehearsal-based continual learning is to select a coreset as
memory. A coreset serves as an informative summary of a large dataset, enabling
a model trained solely on the coreset to achieve performance comparable to train-
ing on the full dataset. Previous bi-level coreset selection methods adjust sample
weights or probabilities to minimize the outer loss, which is computed over the
entire dataset. For non-representative samples like ambiguous or noisy samples,
since these samples are not well learned even training model on the full dataset,
loss of these samples in the outer loss are not worthy to be reduced. However,
their high loss values may cause them to be selected in an attempt to minimize
the outer loss, which may lead to suboptimal performance for models trained on
the coreset. To address this issue, we first investigate how the performance of a
trained model changes when a sample is added to the training dataset and approx-
imate this performance gain using reducible loss. We then select samples with the
highest performance gain in the coreset so that performance of model trained on
coreset could be maximized. We show that samples with high performance gain
are informative and representative. Furthermore, reducible loss requires only for-
ward computation, making it significantly more efficient than previous methods.
To better apply coreset selection in continual learning, we extend our method to
address key challenges such as task interference, streaming data, and knowledge
distillation. Experiments on data summarization and continual learning demon-
strate the effectiveness and efficiency of our approach.

1 INTRODUCTION

Continual learning (CL) aims to learn novel knowledge from a non-stationary stream of data con-
taining different tasks, while maintaining the learned knowledge (Ring, 1997; Rebuffi et al., 2017).
Unlike human, machines start to forget old tasks when they learn new things, well known as catas-
trophic forgetting (McCloskey & Cohen, 1989). A straightforward but highly effective way for
countering forgetting is experience replay (ER) (Buzzega et al., 2020; Lopez-Paz & Ranzato, 2017;
Chaudhry et al., 2019), which maintain a small memory to store previous data and replay it dur-
ing training on new tasks to mitigate forgetting. It is also convenient to incorporate ER with other
types of CL methods, e.g. parameter isolation based methods (Yan et al., 2022; Wang et al., 2022a)
and regularization-based methods (Nguyen et al., 2017). Early methods for experience replay of-
ten selected old data randomly (Vitter, 1985; Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018b;
Buzzega et al., 2020; Riemer et al., 2018). However, this indiscriminate approach may not yield
optimal results, as selecting an informative subset of data for memory storage is crucial for the
effectiveness of experience replay.

A common approach is to select a coreset for memory, which is a small subset of the dataset de-
signed to allow a model trained on it to achieve performance comparable to one trained on the full
dataset. Greedy Coreset (Borsos et al., 2020) formulates the coreset selection problem as a bi-level
optimization task, using the implicit gradient as an indicator to construct the coreset in a greedy,
incremental manner. Building on the bi-level optimization framework, PBCS (Zhou et al., 2022b)
applies probabilistic masks to each sample and selects the coreset from a global perspective, address-
ing the suboptimal solutions of the Greedy Coreset method (Borsos et al., 2020). BCSR (Hao et al.,
2024) further refines this approach by learning probabilities while preserving the nested structure of
bi-level optimization, building on the PBCS method.
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Previous bi-level coreset selection methods treat all samples equally in the outer loss. However,
non-representative samples, such as ambiguous or noisy ones—common in real-world data often
not well learned, even when training on the full dataset. This suggests that these samples are not
valuable to be represented by coreset. In the bi-level selection framework, these samples heavily
impact the outer loss due to their high loss values. To reduce the outer loss, these samples may be
selected into the coreset. Selecting ambiguous or noisy samples hinders the improvement of model
performance after training on coreset. Additionally, previous bi-level coreset selection methods
are computationally expensive. The Policy Gradient in PBCS (Zhou et al., 2022b) requires a large
number of sampling iterations. Both Greedy Coreset (Borsos et al., 2020) and BCSR (Hao et al.,
2024) require computing the inverse Hessian matrix, which is computationally intensive.

To enhance the performance of models trained on a coreset, we study how the model’s performance
changes when a sample is added to the training dataset, approximating this performance gain using
reducible loss (Mindermann et al., 2022). The reducible loss effectively selects informative sam-
ples while excluding ambiguous or noisy ones. Consequently, we assert that samples with high
performance gains are representative and contribute relatively new knowledge compared to the al-
ready selected subset. In a greedy incremental framework, using a holdout model trained on the full
dataset and a current model trained on the selected subset, reducible loss is the difference between
the losses computed on the remaining samples by the current model and the holdout model. Samples
with the highest reducible loss are selected for the coreset to obtain the maximum performance gain.
Compared to other methods, reducible loss only requires forward computation, without any need for
backward computation, making it significantly more efficient. To better adapt coreset selection to
rehearsal-based CL, we extend our method to address the unique challenges of CL, including task
interference, streaming data, and knowledge distillation. Our main contributions are as follows:

• We address the issue of selecting ambiguous or noisy samples in previous bi-level coreset
selection methods by proposing a coreset selection approach based on performance gain,
which is approximated by reducible loss. We show that samples with high performance
gain are both representative and informative, and our selection criterion effectively prevents
the inclusion of ambiguous or noisy samples.

• We propose an efficient coreset selection approach based on reducible loss, which is well-
suited to be extended for addressing the unique challenges of CL: 1) Reducing task inter-
ference, 2) Selecting coresets from streaming data, and 3) Selecting coresets for knowledge
distillation.

• We empirically demonstrate the superiority of our method through extensive experiments
across various tasks and scenarios, including data summarization and CL tasks. Our ap-
proach is particularly robust in noisy data condition. Additionally, we show the effec-
tiveness and compatibility of our method by enhancing the performance of existing CL
methods when combined with our method.

2 RELATED WORK

Coreset selection. Coreset selection aims to select the most informative subset from full dataset.
Previous coreset selection methods are designed for K-means (Feldman & Langberg, 2011), Gaus-
sian mixture model (Lucic et al., 2018), logistic regression (Huggins et al., 2016) and Bayesian
inference (Campbell & Broderick, 2019). These methods are only suitable for traditional methods,
while cannot be applied in deep neural networks. Greedy coreset (Borsos et al., 2020) extended
coreset selection to deep neural networks by formulating coreset selection problem as a bi-level
optimization problem. PBCS (Zhou et al., 2022b) selects globally with probablistic masks. BCSR
(Hao et al., 2024) considers nested nature based on PBCS (Zhou et al., 2022b). Previous bi-level
selection methods may select ambiguous or noisy samples in an effort to reduce the outer loss. Ad-
ditionally, these methods are computationally expensive. Our coreset selection approach effectively
prevents the selection of ambiguous and noisy samples while being more efficient.

Continual learning. Continual learning aims to adapt learning agent to sequence of tasks, and pre-
vious tasks is not available once learnt, including regularization-based methods (Kirkpatrick et al.,
2017; Zenke et al., 2017; Chaudhry et al., 2018a; Ritter et al., 2018; Li & Hoiem, 2017; Nguyen
et al., 2017; Ebrahimi et al., 2019), parameter isolation based methods (Yan et al., 2021; Wang et al.,
2022a; Yan et al., 2022; Zhou et al., 2022a; Jin et al., 2023; Ostapenko et al., 2021) and rehearsal-
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based methods (Lopez-Paz & Ranzato, 2017; Rebuffi et al., 2017; Chaudhry et al., 2018b; Riemer
et al., 2018; Aljundi et al., 2019c; Chaudhry et al., 2019; Borsos et al., 2020; Zhou et al., 2022b;
Yoon et al., 2021; Aljundi et al., 2019a; Isele & Cosgun, 2018; Buzzega et al., 2021; Caccia et al.,
2021). In this work, we focus on rehearsal-based methods which keep a memory for previous data
and replay memory during learning new tasks to alleviate forgetting, and select coreset as memory
for rehearsal-based CL aiming to summarize an informative subset from previous data.

Coreset for continual learning. Selecting samples for memory plays a crucial role in the perfor-
mance of rehearsal-based CL. Previous works, such as Aljundi et al. (2019c); Sun et al. (2022b);
Bang et al. (2021); Wiewel & Yang (2021); Hurtado et al. (2023), are primarily based on heuristic
insights. Wang et al. (2022b) proposes compressing memory data to store more samples, while OCS
(Yoon et al., 2021) and GCR (Tiwari et al., 2022) select coresets through gradient matching. Greedy
Coreset (Borsos et al., 2020), BCSR (Hao et al., 2024), and PBCS (Zhou et al., 2022b) apply coreset
selection directly to single-task datasets for memory. We further adapt our coreset selection method
for CL by addressing task interference, streaming scenarios, and knowledge distillation.

3 CORESET SELECTION WITH REDUCIBLE LOSS

3.1 BACKGROUND AND PROBLEM OF PREVIOUS WORK

Coreset selection aims to select a weighted subset from given dataset D so that model trained on
coreset could achieve comparable performance as model trained on D. Given loss function on the
i-th sample as ℓ(xi, yi;θ) with θ being model parameters. Borsos et al. (2020) formuates coreset
selection problem as

min
w

L(θ∗(w)) =

|D|∑
i=1

ℓ(xi, yi;θ
∗(w))

s.t. θ∗(w) ∈ argmin
θ

L̂(θ) =
|D|∑
i=1

wiℓ(xi, yi;θ)),

(1)

where wi is sample weight for (xi, yi) and w is sample weight vector. Coreset size is constrained to
m by constraint ||w||0 = m.

Problem in equation 1 is known to be NP-hard. However, for differentiable L(θ) and twice differ-
entiable L̂(θ). Implicit gradient of wi with respect to L(θ∗(w)) could be solved as

∇wi
L(θ∗(w)) = −∇θL(θ∗(w))TH−1∇θℓ(xi, yi;θ

∗(w)), (2)

where H denotes Hessian matrix of L̂(θ∗(w)). To satisfy the constraint of coreset size, Greedy
Coreset (Borsos et al., 2020) solve this coreset selection problem by applying matching pursuit to
select coreset incrementally with multiple steps. Given selected subset as S , in each step, sample
with minimum sample weight implicit gradient is selected. Since θ∗(w) is trained on S in greedy
incremental selection, we replace θ∗(w) with θS as a concise notation.

Implicit gradient equation 2 could be explained by influence function in (Koh & Liang, 2017),
namely

∇wi
L(θS) = −∇θL(θS)TH−1ℓ(xi, yi;θS) = ∇θL(θS)T∇wi

θS , (3)
where ∇wi

θS is optimal parameter change if add (xi, yi) into S and retrain model. equation 3 in-
dicates that implicit gradient is the inner product between outer loss gradient and optimal parameter
change.

However, non-representative samples, such as ambiguous or noisy samples, may have large loss
values that make up a significant portion of L(θS). Adding these samples to the coreset may reduce
L(θS), indicating a positive inner product in equation 3. Additionally, these samples can cause
significant parameter changes if included in S. According to equation 3, a large parameter shift
and high loss portion can result in a large implicit gradient, making these samples more likely to
be selected for S. This phenomenon is observed in the coreset selection process of Greedy Coreset
(Borsos et al., 2020), with detailed experiments and results provided in Appendix G.

3.2 MAXIMIZE PERFORMANCE GAIN IN CORESET SELECTION

3
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Algorithm 1: Coreset selection of our method
Input: Dataset D, coreset size m, selection steps tout
Result: Coreset C
Train holdout model θD = argminθ L(θ);
Initialize S0 = ∅; select size of one step n = m/tout;
for k in range(tout) do

Train model on current subset
θS = argminθ L̂(θ);

Compute CSRL Gi = ℓ(xi, yi;θS)− ℓ(xi, yi;θD),
(xi, yi) ∈ D\Sk;

Select top-n samples Tk by CSRL and update
current coreset Sk+1 = Sk ∪ Tk;

C = Sk

Selecting ambiguous or noisy sam-
ples into coreset cannot effectively
improve the performance of model
trained on coreset since these sam-
ples do not contain useful knowledge.
To solve this problem under greedy
incremental selection scheme, we di-
rectly set reduction of outer objective
in equation 1 as selection objective
aiming to select samples which could
result in maximum outer objective re-
duction after added to S. For classifi-
cation task and cross-entropy loss, we
use log-probability to denote loss, the
performance gain on outer objective
after adding (xi, yi) into S is

Gi = log p (y|x;S ∪ (xi, yi))− log p (y|x;S) , (4)

where (x,y) denotes all samples in D and (xi, yi) ∈ D\S . equation 4 is not tractable to (xi, yi) and
selecting samples with maximum performance gain requires training models on every S ∪ (xi, yi),
which is impractical. Following Mindermann et al. (2022), we apply Bayes rule and conditional
independence to make computation of Gi tractable to (xi, yi) as

log p (y|x;S ∪ (xi, yi)) = log
p (yi|xi;D ∪ S) p (y|x, xi;S)

p (yi|xi,x;S)

= log
p (yi|xi;D ∪ S) p (y|x;S)

p (yi|xi;S)
log p (y|x;S ∪ (xi, yi))− log p (y|x;S) = log p (yi|xi;D ∪ S)− log p (yi|xi;S) .

(5)

The fist line in equation 5 is obtained by Bayes rule and the second line is obtained by conditional
independence. The third line indicates Gi = log p (yi|xi;D ∪ S)− log p (yi|xi;S).
From the conclusion in Liu et al. (2019), a vanilla neural network is a special case of a Bayesian
neural network with a uniform prior distribution and a Dirac-Delta posterior distribution. Predictive
distribution in equation 5 could be approximated by vanilla neural network, and the performance
gain of vanilla neural network is

Gi = log p (yi|xi;θD∪S)− log p (yi|xi;θS) = ℓ(xi, yi;θS)− ℓ(xi, yi;θD∪S), (6)

where θD∪S and θS denote parameters of model trained on D ∪ S and S respectively. Based
on the fact that loss in classification task is negative log-probability, we use the loss difference as
performance gain and refer this loss difference as coreset selection reducible loss (CSRL) in the rest
of paper. Detailed derivation is shown in Appendix A. Since S ⊂ D and |S| ≪ D, we approximate
θD∪S by θD and refer the model trained on D as holdout model.

Using CSRL as the selection criterion, we construct the coreset in a greedy, incremental manner.
Initially, we train a holdout model on D and start with an empty set S. In each step, we initialize
and train the model on the current S to obtain θS . We then select samples with the maximum
performance gains and add them to S until the subset reaches the predefined size. Detail coreset
selection procedure is shown in Alg 1.

3.3 EXPLANATION OF CSRL

We demonstrate in Appendix B that CSRL is an approximation of the negative implicit gradient,
with mild assumptions. Both CSRL and implicit gradients have large values on representative and
informative samples. For CSRL, a sample (xi, yi) is representative if ℓ(xi, yi;θD∪S) is low and
informative if ℓ(xi, yi;θS) is high, indicating new information to S. From the implicit gradient
perspective, adding such samples to S reduces loss on multiple samples after training model on
S ∪ (xi, yi), resulting in a high absolute implicit gradient value for this sample.

One advantage of our CSRL method is its robustness against non-representative samples, such as
ambiguous or noisy ones. In CSRL, these samples tend to have high loss values on both θD and
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θS , leading to lower CSRL values. Compared to implicit gradient, CSRL excludes ambiguous or
noisy samples from the indication of holdout model, even if these samples have large loss values on
θS . Since CSRL approximates performance gain, we can conclude that samples with high perfor-
mance gain are representative and contribute relatively new knowledge, rather than being ambigu-
ous or noisy. Another advantage of CSRL is that CSRL only requires one forward pass without any
backward computation, making it more efficient. In comparison, the implicit gradient necessitates
computing the inverse Hessian matrix, which is computationally expensive.

Reducible loss was first introduced in Mindermann et al. (2022) for training data scheduling. In our
work, we show that reducible loss is well-suited for the coreset selection task and can effectively
address the issue of selecting ambiguous or noisy samples in previous coreset selection methods.
A detailed discussion comparing CSRL with other works that apply reducible loss for training data
scheduling is provided in Appendix C.

4 CORESET SELECTION FOR CONTINUAL LEARNING

4.1 APPLYING CORESET SELECTION TO CONTINUAL LEARNING

Continual learning seeks to adapt a CL model to a sequence of tasks with no shared classes between
tasks, where data from previous tasks is unavailable during the training of the current task. In this
work, we denote the dataset of the t-th task as Dt. We focus on the challenging class-incremental
setting, where the model has a single classification head, and task identity is not provided during
inference. Rehearsal-based methods apply a memory buffer M to store part of the previous data
and replay the stored data during training the CL model to prevent forgetting previous tasks.

We aim to summarize an informative subset as memory for rehearsal-based CL and a natural ap-
proach is to select coresets from each task as memory, as proposed in Greedy Coreset (Borsos et al.,
2020) and PBCS (Zhou et al., 2022b). We introduce our CSRL continual learning method (CSRL-
CL), which selects a coreset from each task using Alg 1 and equally assign memory size to previous
tasks. Detailed algorithm is shown in Appendix D. We illustrate the overview of our CSRL-CL
approach in Appendix P to facilitate a clear understanding of our method.

4.2 CONSIDERING PREVIOUS TASKS WHILE UPDATING MEMORY

Only to summarize single task data Dt for memory may result in interference between tasks, since
there may be samples that represent Dt but interfere other previous tasks. We aim to select samples
from Dt to represent both the current task data and the previous data, so that the optimal subset
can represent Dt while minimizing interference with the previous data. This approach helps to
avoid selecting these harmful samples. Since previous data is not available, we use memory data to
represent the previous data. We modify performance gain for selecting i-th sample as

GPrv
i = log p (y1:t|x1:t;St ∪ (xi, yi))− log p (y1:t|x1:t;St) , (7)

where (x1:t,y1:t) denotes all samples in D ∪ M and (xi, yi) denotes the i-th sample in Dt. St is
current selected subset from Dt. Following derivation in Section 3, we compute CSRL by

GPrv
i = ℓ(xi, yi;θSt

)− ℓ(xi, yi;θDt∪M). (8)

Compared to CSRL-CL, holdout model is trained on both current task data and memory. In practice,
since |M| ≪ |Dt|, we do resampling on memory data for training holdout model. We use the abbre-
viation CSRL-CL-Prv to denote our CL method that considers previous tasks, detailed algorithms
are shown in Appendix E.

4.3 SELECTING CORESET FROM STREAMING DATA

Previous summarization methods require the availability of all current data, which may not be prac-
tical for large datasets or privacy-related datasets. Reservoir sampling (Vitter, 1985) is an effective
method for updating samples from a stream of data without needing the full dataset. Our key idea
is to scale up selection probability in reservoir sample so that sample with higher CSRL could have
higher probability to be selected, while keeping the streaming nature of reservoir sampling.

Since Dt is not available and the CL model is trained on Dt ∪M, we approximate θDt∪M by the
CL model in equation 8

GRS
i = ℓ(xi, yi;θSt)− ℓ(xi, yi;θcnt), (9)
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(b) ResNet-18 on CIFAR-10
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(c) ResNet-18 on CIFAR-100

Figure 1: Performance comparisons in data summarization task show that our method performs
on par with Greedy Coreset on the MNIST dataset, while outperforming all other baselines on the
CIFAR-10 and CIFAR-100 datasets.

where θcnt is parameters of the CL model, St is selected subset of current task and (xi, yi) de-
notes i-th sample in current batch. Therefore, CSRL in equation 9 acts as a scaling factor on the
update probability. Once a sample is selected, it randomly replaces an existing sample in the current
memory. We refer to our modified reservoir sampling method as CSRL-RS. Detailed method and
algorithm are shown in Appendix F.

4.4 CORESET SELECTION FOR KNOWLEDGE DISTILLATION

Knowledge distillation (KD) (Hinton et al., 2015) is an effective and widely used method for
rehearsal-based CL. In this approach, memory samples contain logits from the previous model, and
a knowledge distillation loss term is added to the training loss. Aiming to force the model correctly
predicts labels while keeping its output logits similar to those of the previous model.

We claim that coreset selection should take into account both label prediction and knowledge distil-
lation. When selecting samples in task t, we use (xi, yi, oi) to denote the i-th sample in Dt, where
oi is the logit of this sample provided by the current continual learning model. Based on Section 3,
we define performance gain of knowledge distillation as

GKD
i = log p (o1:t|x1:t;S ∪ (xi, oi))− log p (o1:t|x1:t;S) , (10)

where (x1:t,o1:t) denote all sample-logit pairs in D ∪ M. To make the probability of the logit
tractable, we make the following approximation: the probability of the predicted logit follows a
Multivariate Gaussian Distribution with an identity covariance matrix. Following Section 3, we
could compute CSRL for knowledge distillation as

GKD
i = ℓMSE(xi, oi;θS)− ℓMSE(xi, oi;θDt∪M), (11)

where ℓMSE is mean square error (MSE). To apply objective in equation 11 to reservoir sampling,
we assume the CL model is trained on Dt ∪M, as the logits are provided by the CL model and the
MSE of this model is 0. Combined CSRL (CSRL-cmb) is

Gcmb
i = αsG

RS
i + βsG

KD
i . (12)

5 EXPERIMENTS

5.1 DATA SUMMARIZATION

We evaluate our CSRL selection method on MNIST (Deng, 2012), CIFAR-10 (Krizhevsky et al.,
2009) and more challenging CIFAR-100 (Krizhevsky et al., 2009). For MNIST and CIFAR-10, to
make a fair comparison, we follow the settings of Borsos et al. (2020). For CIFAR-100, we use
ResNet-18 (He et al., 2016) as backbone.

We compare our method with competitive baselines: Greedy Coreset (Borsos et al., 2020), PBCS
(Zhou et al., 2022b), we also use uniform sampling as the worst-case. The evaluation metric is the
test accuracy of the model trained from scratch on the selected data. Detailed model and training
setting are shown in Appendix V.

We plot test accuracy against selected subset size in Figure 1, the results demonstrate that our method
performs on par with Greedy Coreset (Borsos et al., 2020) on MNIST dataset and outperforms all
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Table 1: Final average accuracy, with red and blue indicating the top and second-best values. Our
memory construction method performs on par with Greedy Coreset on the MNIST dataset and con-
sistently outperforms other baselines on more complex datasets.

Methods Split MNIST Split CIFAR-10 Split CIFAR-100 Perm MNIST

Uniform sampling 93.60±0.66 37.05±3.06 13.82±1.31 78.38±0.82
k-means of features 93.56±1.24 35.78±0.56 14.31±0.54 78.08±0.53
k-center of embeddings 94.03±1.22 36.78±4.05 14.59±0.32 77.93±0.32
Hardest samples 87.26±2.50 27.80±1.20 12.19±0.05 77.04±0.60
iCaRL’s selection 94.32±0.20 35.38±3.12 14.43±0.51 78.87±0.23
OCS 84.86±2.69 37.12±1.94 13.27±0.45 75.07±0.91
Greedy Coreset 95.73±0.19 37.68±2.63 15.04±0.48 79.23±0.37
GCR 93.22±1.04 37.59±1.29 13.54±1.06 78.73±0.13
PBCS 94.22±0.61 38.37±1.01 16.20±0.27 76.30±0.81
BCSR 93.81±0.91 38.14±3.64 15.11±1.24 78.30±0.81
CSRL-CL 95.68±0.35 38.97±2.61 17.48±0.21 79.59±0.38
CSRL-CL-Prv 95.55±0.13 39.82±0.83 18.47±0.17 80.02±0.12

baseline methods on CIFAR-10 and CIFAR-100 datasets. Notably, our method performs better
with larger coreset sizes. Further comparisons are shown in Appendix U. We analyze difficulty of
selected samples for our method and Greedy Coreset during selection in Appendix H, our method
could identify discriminative samples while avoiding selecting ambiguous or noisy samples.

5.2 CONTINUAL LEARNING

We conduct experiments on different CL settings to evaluate our methods, and use the final average
accuracy as evaluation metric, which reflects average accuracy across all tasks after training model
on the last task. All of our experimental results are obtained from multiple runs with different
random seeds. We selecte hyperparameters with a focus on both performance and robustness.

5.2.1 CORESET SELECTION FOR CONTINUAL LEARNING

We evaluate CSRL-CL and CSRL-CL-Prv on Split MNIST (Zenke et al., 2017), Perm MNIST
(Goodfellow et al., 2013), Split CIFAR-10 and CIFAR-100. To make a fair comparison, we follow
the setting of Borsos et al. (2020) and Zhou et al. (2022b). We set 100 memory size for Split MNIST
and Perm MNIST and 200 memory size for Split CIFAR-10 and Split CIFAR-100. For Split-CIFAR-
100 dataset, we split totally 100 classes into 10 disjoint tasks, and use ResNet-18 (He et al., 2016)
as backbone. Detailed experiment settings and hyperparameters are shown in Appendix W.1.

Baselines include: uniform sampling, k-center clustering in last layer embedding (Sener & Savarese,
2017) and feature space (Nguyen et al., 2017), iCaRL’s selection (Rebuffi et al., 2017), hardest-to-
classify samples (Aljundi et al., 2019b), Greedy Coreset (Borsos et al., 2020), GCR (Tiwari et al.,
2022), OCS (Yoon et al., 2021), PBCS (Zhou et al., 2022b) and BCSR (Hao et al., 2024).

The average accuracies in Table 1 show that our method performs comparably to Greedy Coreset
(Borsos et al., 2020) on the Split MNIST dataset and outperforms all other baselines on the remain-
ing datasets, highlighting the superiority of our approach. Additionally, the experimental results
indicate that considering previous tasks can further enhance CL performance. We further demon-
strate the effectiveness of our method compared to most recent baselines by conducting additional
experiments under the same settings as BCSR (Hao et al., 2024), as detailed in Appendix L. The
scalability and effectiveness of our method with complex backbone models are further demonstrated
in Appendix S.

5.2.2 CORESET SELECTION FOR EXISTING CONTINUAL LEARNING METHODS

To further demonstrate the effectiveness and compatibility of our method with other CL approaches,
we replace reservoir sampling in ER (Chaudhry et al., 2018b), DER++ (Buzzega et al., 2020), and
LODE-DER++ (Liang & Li, 2024) with our CSRL-RS, resulting in CSRL-ER, CSRL-DER++, and
CSRL-LODE-DER++. Since DER++ applies knowledge distillation, we apply CSRL-cmb for sam-
ple selection for all methods involving DER++. Following settings of the Mammoth framework

7
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Table 2: Final average accuracy with red and blue indicating the top and second-best values. Summa-
rizing data with our CSRL-RS consistently improves the performance of existing continual learning
methods, particularly in knowledge distillation scenarios.

Methods Split CIFAR-100 Split Tiny ImageNet
200 500 200 500

A-GEM 9.40±0.05 9.42±0.08 8.07±0.08 8.06±0.04
ER 14.18±0.45 21.08±0.16 8.49±0.16 9.99±0.29
FDR 15.32±0.73 22.83±0.73 8.70±0.19 10.54±0.21
CSRL-ER 15.35±0.73 22.65±0.81 8.66±0.06 10.44±0.17
DER 21.58±1.72 35.20±0.84 11.87±0.78 17.75±1.14
DER++ 26.27±2.32 36.00±1.92 10.96±0.17 19.38±1.41
LODE-DER++ 27.96±0.91 39.14±0.74 14.46±0.90 21.15±0.68
CSRL-DER++ 27.79±0.60 39.80±1.45 16.78±0.78 21.22±0.92
CSRL-LODE-DER++ 28.51±0.33 41.96±0.78 17.01±0.43 22.83±0.23

(Buzzega et al., 2020), we evaluate our methods on Split CIFAR-100 and Split Tiny ImageNet (Wu
et al., 2017) with memory sizes of 200 and 500. Both datasets are equally split into 10 tasks with
ResNet-18 serving as backbone model. Detailed settings are shown in Appendix W.2.

We compare our methods with other commonly compared rehearsal-based methods including ER
(Riemer et al., 2018), A-GEM (Chaudhry et al., 2018b), FDR (Benjamin et al., 2018), DER, DER++
(Buzzega et al., 2020) and LODE-DER++ (Liang & Li, 2024). The results are presented in Table 2,
with baseline method results on Split Tiny ImageNet taken from Buzzega et al. (2020) and Liang &
Li (2024).
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Figure 2: Average loss on the full
dataset and test accuracy of models
trained on subsets show that coreset se-
lected by our method could better repre-
sent full dataset and achieve higher ac-
curacy.

The results in Table 2 show that summarizing the coreset
using our CSRL-RS effectively enhances existing contin-
ual learning methods, particularly when applying knowl-
edge distillation. Combining CSRL-RS with LODE-
DER++ (Liang & Li, 2024) consistently outperforms
other methods across all datasets. These findings high-
light both the effectiveness and compatibility of our ap-
proach. Additionally, we evaluate the scalability of our
method on a 500-class subset of ImageNet-1K in Ap-
pendix M.

5.3 ABLATION STUDY

Analysis on representing full dataset. Both Greedy
Coreset (Borsos et al., 2020) and our method minimize
loss on the full dataset of model trained on coreset. A
lower loss indicates that coreset better represents the full
dataset. To evaluate this, we train models on the selected
subsets and compute the average loss on the full dataset
as a metric to assess how well the selected data represents the full dataset. We conduct experiments
on CIFAR-10 by selecting 2,000 samples from a pool of 10,000 with our method and Greedy Core-
set. Models are trained on subsets with different sizes during the selection process, and we evaluate
the trained models based on both the average loss on the full dataset and test set accuracy.

We plot test accuracy and average loss on full dataset against subset size in Figure 2, The results
indicate that models trained on subsets selected by our method achieve a greater reduction in average
full dataset loss, especially when the subset size is small. This suggests that our method selects
samples with higher performance gains and thus better represent the full dataset. The corresponding
test accuracy is consistent with the loss curve, demonstrating the effectiveness of our method.

Data summarization under label noise. We test data summarization performance under label noise
case on MNIST, CIFAR-10 and CIFAR-100 dataset, with the same experiment setting and evaluation
method as experiments in Section 5.1. Specifically, we randomly corrupt samples at different ratios
and then use this corrupted dataset as the selection pool to select the coreset of 200 samples. We
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(b) ResNet-18 on CIFAR-10
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Figure 4: Test accuracy under different noise ratios shows that the performance of our method drops
only slightly as the dataset noise ratio increases.

compare our method with Greedy Coreset (Borsos et al., 2020) and PBCS (Zhou et al., 2022b). No
clean holdout set is provided, namely, holdout model in our method is trained on noisy dataset, outer
loss of Greedy Coreset and PBCS is computed on noisy dataset.
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Figure 3: Performance and time cost with respect to step
size: Selecting more samples within one step will degrade
performance while reducing time cost, indicating that a
trade-off should be made between performance and effi-
ciency.

As shown in Figure 4, in experi-
ments across all datasets, the perfor-
mance of our method drops slightly
as the noise ratio increases, while the
performance of other methods drops
significantly. We also count num-
ber of selected noisy samples in Ap-
pendix J showing that our method se-
lects significantly fewer noisy sam-
ples. These results demonstrate the
robustness of our method to data
noise. Given that low noise ratios are
common in practical scenarios, such
as web data, our approach effectively
avoids selecting noisy data for the
coreset.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

s

20

22

24

26

28

Av
er

ag
e 

ac
cu

ra
cy

40

50

60

70

Fo
rg

et
tin

g

Average accuracy Forgetting

Figure 5: Average accuracy and forget-
ting under different βs. Increasing βs

decreases forgetting and the best aver-
age accuracy is achieved when βs is set
to 0.2.

Selection steps in data summarization. In our multi-
step selection algorithm, selecting more samples in one
step and using fewer steps can reduce computation costs.
However, selecting more samples in one step may result
in redundant samples, as samples with similar CSRL may
contain similar knowledge. Therefore, a trade-off should
be made between efficiency and performance. We se-
lect coresets of 200 samples with different step size on
CIFAR-10 and CIFAR-100 dataset and train models on
these coresets. Test accuracy of models and time cost cor-
responding to step size are shown in Figure 3.

We observe that performance decreases as the step size
increases, while the time cost decreases. These results
verify our claim of a trade-off between time cost and
performance. For CIFAR-10 dataset, performance drops
slightly when the step size is smaller than 10. However,
in the more complex CIFAR-100 dataset, performance
drops significantly as the step size increases.

Effectiveness of considering knowledge distillation. To verify the effectiveness of considering
knowledge distillation proposed in Section 4.4, we set different MSE factor βs while fixing all other
hyper parameters, αs is set to 1.0 in all the experiments. We conduct experiments on Split CIFAR-
100 with CSRL-RS, and use CSRL-cmb in equation 12 for selection. We plot the average accuracy
and forgetting with respect to different βs values in Figure 5.
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As βs increases, forgetting continually decreases, indicating that more emphasis is placed on select-
ing samples that encourage the current model to mimic the output of the previous model, thereby
increasing regularization strength. The best performance is achieved when βs = 0.2, suggesting
that excessive regularization can hinder the learning of new tasks, highlighting the need for balance.
Therefore, using CSRL-cmb proves effective for coreset selection.

Table 3: Performance with respect to
different holdout training epochs in the
data summarization task: Performance
increases as training epochs increase
and then remains stable.

Train epochs Test accuracy

20 32.98±0.75
40 35.13±0.75
60 35.12±0.63
80 37.57±0.78

100 38.74±1.08
120 37.89±0.27

Table 4: Time cost of selecting coreset
with CSRL coreset selection method.
The time cost scales mildly on different
datasets.

Dataset Holdout train Selection

MNIST 159.84s 102.70s
CFIAR-10 349.74s 737.68s
CIFAR-100 350.87s 735.85s

Holdout model training epochs. In our work, holdout
model serves as an indicator for which sample is worthy
to learn and which sample is not learned yet, we test the
influence of holdout model training epochs with respect
to quality of selected samples on CIFAR-10. Specifically,
we train holdout models with different epochs, then select
coresets with our method and train models on selected
coresets. We evaluate models with test accuracy. Coreset
size is set to 200, backbone and other hyperparameters
are the same to Section 5.1.

From result in Table 3, as holdout model training epochs
increases, quality of selected coreset increases and re-
mains stable after holdout training epochs reaches 80. In-
dicating that quality holdout model affect quality of se-
lected data, and holdout model should be well trained for
coreset selection. We also evaluate the impact of hold-
out model training epochs on the continual learning task
using the Split CIFAR-100 dataset, as detailed in Ap-
pendix N. Our results show that continual learning per-
formance remains stable across a wide range of holdout
model training epochs.

Time cost of coreset selection. To demonstrate the effi-
ciency of our CSRL coreset selection method, we provide
the time costs for coreset selection on different datasets in
Section 5.1, as shown in Table 4. The time cost of our
method scales moderately across different datasets and
backbones, and training the holdout model remains manageable even with larger datasets and back-
bones. This demonstrates that our method is well-suited for larger datasets and more complex back-
bones.

Both our method and Greedy Coreset (Borsos et al., 2020) use matching pursuit for coreset selection.
However, Greedy Coreset computes the Neural Tangent Kernel (NTK) (Jacot et al., 2018), which
takes over 4000 seconds. In comparison, our CSRL coreset selection method is significantly faster,
demonstrating its efficiency. All our experiments are conducted on NVIDIA RTX3090. Details of
backbone parameters and time cost is shown in Appendix O.

Further ablation studies. We have demonstrated the robustness of our method with respect to
selection order in Appendix Q. Additionally, we show that our method can effectively distinguish
between noisy and difficult samples in Appendix R. Furthermore, we present a feature map of the
selected samples in Appendix T, highlighting that our method selects more representative samples.

6 CONCLUSION

In this work, we address the problem of selecting ambiguous or noisy samples in previous bi-level
coreset selection methods by using reducible loss as an approximation for performance gain. This
approach enables the identification of representative and informative samples while excluding noisy
or ambiguous ones, leading to improved performance. Additionally, we propose an efficient core-
set selection method designed to address the unique challenges of continual learning, such as task
interference, streaming scenarios, and knowledge distillation. Extensive experiments validate the
effectiveness of our approach in both data summarization and continual learning tasks. In future
work, we plan to explore coreset selection for fine-tuning large pretrained models, allowing them to
acquire new knowledge while maintaining generalizability.
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A APPROXIMATING PREDICTIVE DISTRIBUTION WITH REDUCIBLE LOSS

Predictive distribution in equation 5 requires parameter distribution of model trained on D ∪ S and
S

p (yi|xi;D ∪ S) =
∫

p (yi|xi;θ) p (θ|D ∪ S) dθ,

p (yi|xi;S) =
∫

p (yi|xi;θ) p (θ|S) dθ.

From the conclusion in (Liu et al., 2019), a vanilla neural network is a special case of a Bayesian
neural network with a uniform prior distribution and a Dirac-Delta posterior distribution. Therefore,
performance gain of vanilla neural network is

Gi = log p (yi|xi;θD∪S)− log p (yi|xi;θS) , (13)

where θD∪S and θS denote parameters of model trained on D ∪ S and S respectively. For classifi-
cation task and cross-entropy loss, we use loss to replace the log-probability, the performance gain
is

Gi = ℓ(xi, yi;θS)− ℓ(xi, yi;θD∪S). (14)

B RELATION BETWEEN CSRL AND IMPLICIT GRADIENT

We show that CSRL in equation 14 is an approximation to implicit gradient in (Borsos et al., 2020)
under greedy selection framework with binary sample weight. Given model trained on S, parameter
θD∪S is approximated by updating θS with one Newton step, namely

θD∪S ≈ θS −H−1∇L(θS), (15)

where H denotes Hessian matrix of loss
∑

(xi,yi)∈S ℓ(xi, yi;θS) with respect to θS . Approximat-
ing Gi in equation 14 with first-order Taylor expansion and substituting parameter difference in
equation 15 results in

Gi ≈ ∇ℓ(xi, yi;θS)
T (θS − θD∪S) ≈ ∇ℓ(xi, yi;θS)

TH−1∇L(θS). (16)

equation 16 indicates CSRL is an approximation to negative implicit gradient in Greedy Coreset
(Borsos et al., 2020).

For samples which are representative and not well represented by S, both implicit gradient and
CSRL have high scores. Suppose (xi, yi) is such kind of sample, for CSRL, representativeness
indicates ℓ(xi, yi;θD∪S) is low, and not represented by S means ℓ(xi, yi;θS) is high, thus CSRL is
high. From the aspect of implicit gradient, adding these samples into S will reduce loss on multiple
samples after training model on S ∪ (xi, yi) since this sample contains knowledge similar to other
samples that is not yet present in S. According to the definition of implicit gradient dL(θS)/dwi, a
reduction in loss across multiple samples indicates a high absolute value of the implicit gradient for
that sample.

C DISCUSSION WITH OTHER REDUCIBLE LOSS RELATED WORKS

Reducible loss was first introduced in Mindermann et al. (2022) for selecting samples that are both
learnable and worth learning from each batch of data. Sujit et al. (2023) further applied reducible
loss for selecting samples to replay in reinforcement learning, where unselected samples may be
chosen in later epochs or episodes. However, in the coreset selection task, unselected samples are
discarded and not reused after the selection process. As a result, the methods proposed in previous
works cannot be directly applied to coreset selection task.

Online training data scheduling can also select a subset from each incoming batch for training (Evans
et al., 2023), with the goal of maximizing the performance of the model trained on the selected data.
The target model is trained with only a single step on this subset, which may prevent it from fully
learning the knowledge contained in these samples. When the training dataset is large enough and
the pruning rate is not too high, the model can gradually acquire sufficient knowledge, allowing this
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method to perform well. However, in the coreset selection task, we aim to select a small subset from
the entire dataset, meaning the pruning rate is much higher, and the full dataset may not be as large.
This can result in lower performance in the coreset selection task.

Our work adopts the same matching pursuit selection framework as Greedy Coreset (Borsos et al.,
2020). To address the issue of unselected data being excluded after selection, we train the model
on the selected subset until convergence, ensuring that the model fully captures the knowledge con-
tained in the selected data. The incremental selection method ensures that each newly selected
sample adds new knowledge to the existing subset.

Our work proves that reducible loss could act as an indicator for sample selecting in model con-
vergence condition. equation 16 shows that reducible loss is also an approximation of the implicit
gradient, while equation 3 illustrates that the implicit gradient computes how changes in sample
weights affect the outer loss via the chain rule. The optimal parameter change dθS/dwi estimates
how the model parameters will change when sample weights are modified, assuming the model is
trained to convergence. Thus, in the case of a converged model, reducible loss can serve as a reliable
indicator.

Building on the coreset selection method from Greedy Coreset (Borsos et al., 2020), we address the
issue of selecting ambiguous or noisy samples using the implicit gradient and directly set the per-
formance gain in equation 4 as our selection objective. Reducible loss serves as an approximation
of this performance gain. Both reducible loss and the implicit gradient can identify representative
and informative samples. However, compared to the implicit gradient, reducible loss is more effec-
tive at avoiding the selection of ambiguous and noisy samples, resulting in improved performance
over Greedy Coreset (Borsos et al., 2020). Therefore, our method could effectively select coreset of
representative and informative samples. A related research area involves data compression (Wang
et al., 2022b), which seeks to store more information with limited storage capacity by compressing
data.

D ALGORITHMS FOR CSRL CONTINUAL LEARNING

In this work, we apply our coreset selection method to rehearsal-based CL. Training objective at
task t is

Lcnt(Dt ∪M;θcnt) =
1

|B|
∑

ℓ(xi, yi;θcnt) + α
1

|Bm|
∑

ℓ(xm, ym;θcnt), (17)

where (xi, yi) ∈ Dt and (xm, ym) ∈ M, α is hyper-parameter for balancing regularization force
from memory, B and Bm are batches from current task and memory respectively.

After training task t, we select summary from Dt with Alg.1. To shrink memory of previous data,
we re-select memory data to shrink memory of previous tasks, using memory data of previous tasks
as selection pool. We refer our CL method as CSRL Continual Learning (CSRL-CL) and detailed
algorithm is shown in Alg.2.

Algorithm 2: CSRL Continual Learning
Input: Dataset sequence D1:T , memory size K
Initialize memory M0 = ∅;
for i in range(1,T + 1) do

Train continual model with replay θ∗
cnt = argminθ Lcnt(Dt ∪M;θ);

// Update memory
Compute size for each task ki = K/i, j ∈ [1 : i];
for j in range(i) do

Reselect samples for previous tasks from Cj by Alg.1, |Cj | = ki;
Select samples for current task from Di by Alg.1, |Ct| = ki;
Form new memory M = ∪i

j=1Cj ;
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E ALGORITHMS FOR CONSIDERING PREVIOUS TASKS

Algorithm 3: Coreset selection considering previous tasks
Input: Dataset D, select size m, selection steps tout, memory M
Result: Coreset C
Define holdout loss function: Lhld(θ) = 1/(|D|+M)

∑
i∈D∪M ℓ(xi, yi;θ); Initialize S0 = ∅;

Train holdout model θD = argminθ Lhld(θ);
Select size of one step n = m/tout;
// Outer loop
for k in range(tout) do

θS = argminθ L̂(θ);
Compute CSRL GPrv

i = ℓ(xi, yi;θS)− ℓ(xi, yi;θD), (xi, yi) ∈ D\Sk;
Select top-n samples Tk by CSRL;
Update current coreset Sk+1 = Sk ∪ Tk;

C = Sk

Algorithm 4: CSRL-CL-Prv
Input: Dataset sequence D1:T , memory size K
Initialize memory M0 = ∅;
for i in range(1,T + 1) do

// Train continual model with replay
θ∗
cnt = argminθ Lcnt(Dt ∪M; θ);
// Update memory
Compute size for each task ki = K/i, j ∈ [1 : i];
for j in range(i) do

Reselect samples for previous tasks with St+1 from Cj by Alg.3, |Cj | = ki;
Select samples for current task from Di with M by Alg.3, |Ct| = ki;
Form new memory M = ∪i

j=1Cj ;

F ALGORITHMS FOR MODIFIED RESERVOIR SAMPLING

CSRL for selecting sample in data stream is

GRS
i = ℓ(xi, yi;θSt

)− ℓ(xi, yi;θcnt), (18)
where θcnt is parameters of continual learning model, St is selected subset of current task and
(xi, yi) denotes i-th sample in Bt.

To apply our selection method to reservoir sampling, we maintain an memory model which is trained
on St, with parameters θSt . CSRL computed in equation 18 is applied to modify update probability
so that samples with higher CSRL will have higher probability to be selected to memory. Specifi-
cally, for each batch, we firstly compute CSRL for each sample with equation 18, then we normalize
CSRL by Softmax function as probability scaling factor. The final update probability is original
update probability multiplied by scaling factor. Once one sample is selected, this sample randomly
replace one existing sample in current memory. When number of newly updated samples reaches
threshold Nupd, we retrain additional model on selected data of current task, to update information
contained in θSt

and we reinitialize θSt
when a new task comes.

CSRL-RS update process is shown in Alg. 5, where B is current training batch, n is number of seen
samples in this stream, and K is memory size. CL process applying our modified reservoir sampling
is shown in Alg.6.

G LOSS OF HIGH IMPLICIT GRADIENT CANDIDATES

To verify the claim that samples with high implicit gradients may be noisy or ambiguous, we plot
the implicit gradient and holdout model loss of the top 10 implicit gradient candidates during the
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Algorithm 5: CSRL-RS
Input: Current batch B = {(xi, yi)}, continual model θcnt, memory model θSt

, number of
seen samples n, memory size K, retrain threshold Nupd, number of updated samples
nupd

Compute CSRL: Gi = ℓ(xi, yi;θSt)− ℓ(xi, yi;θcnt);

Compute probability scaling factor: si =
exp(GRS

i )∑
exp(GRS

i )
· |B|;

for i in range |B| do
if n < |K| then

// Add sample to memory
M = M∪ (xi, yi);
nupd+ = 1;

else
r = randint(0, n+ 1);
// Scale probability of update by si
if r < (K · si) then

// Replace existing sample
pos = randint(0, |M|);
M[pos] = (xi, yi);
nupd+ = 1;

n+ = 1;
if nupd ≥ Nupd then

Initialize θSt ;
Train θSt on memory data of current task;
nupd = 0;

Algorithm 6: Continual learning with CSRL-RS
Input: Dataset sequence D1:T , Memory size K, loss function L
Initialize memory M0 = ∅;
Initialize continual model θcnt;
for t in range(1,T + 1) do

for B in Di do
Sample memory batch BM;
Update continual model θcnt = θcnt − η∇Lcnt(Bt ∪ BM;θcnt);
// Here we reuse loss on B before update θcnt
Update memory M by Alg.5;
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Figure 6: Implicit Gradient, holdout model loss and CSRL of top-10 candidates in Greedy Coreset
selection on CIFAR-10 dataset.
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Figure 7: Implicit Gradient, holdout model loss and CSRL of top-10 candidates in Greedy Coreset
selection on CIFAR-100 dataset.

selection process of Greedy Coreset. We use the original implementation of Greedy Coreset for
selection, with the holdout model trained on the full selection pool. Our experiments are conducted
on the CIFAR-10 and CIFAR-100 datasets, and we plot the candidates after every 25 coreset samples
are selected. The results for CIFAR-10 and CIFAR-100 are shown in Figures 6 and 7 respectively.

The x-axis represents the rank of candidate samples, the left y-axis denotes the implicit gradient
value, and the right y-axis shows the loss value. From Figure 6, we observe that some samples
have high holdout model loss values. After selecting 125 and 200 samples, the top-ranked candidate
samples exhibit holdout model losses greater than 2.0, indicating that these samples are almost
misclassified by the holdout model. A similar pattern is observed in the CIFAR-100 experiment
after selecting 150 and 200 samples as shown in Figure 7.

Since samples with high holdout model loss are often ambiguous or noisy, these results suggest that
such samples may exhibit high implicit gradient values and could be selected for the coreset.
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(a) Number of selected sample by our method from each difficulty level during selection on MNIST
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(b) Number of selected sample by greedy coreset from each difficulty level during selection on MNIST

Figure 8: Difficulty analysis on MNIST during selection.

H DIFFICULTY OF SELECTED SAMPLES

We analyze difficulty of selected samples. To define sample difficulty, we firstly train a model on
full dataset to converge, then we compute loss on each sample in full dataset, we use this loss as
metric of difficulty. This difficulty means how hard-to-learn of one sample. Based on difficulty,
we equally split all samples into 8 groups with the incremental of difficulty, indicating 8 levels of
difficulty. For each difficulty level, we count how many samples in this level are selected, aiming to
analyze preference of one selection method. We analyze preference along the selection procedure
for our method and Greedy Coreset (Borsos et al., 2020), and selection experiment is the same in
Section 5.1. For both methods, we analyze preference with subset size 25, 50, 75, 100, 125, 150,
175, 200. Results on MNIST, CIFAR-10 and CIFAR-100 are shown in Figure 8, Figure 9 and Figure
10 respectively.

For MNIST dataset, from Figure 8, both our method and greedy coreset tend to select harder sam-
ples. When subset size smaller than 100, our method selects more hard samples, this explains why
our method under-perform greedy coreset when subset size is smaller in Figure 1 (a), and as subset
size increases, the preference of both method tend to be the same, this is also consistent to test ac-
curacy in Figure 1 (a). Note that, compared to CIFAR-10 and CIFAR-100, since MNIST is much
simpler, both methods tend to select hard-to-samples, indicating these samples are discriminative.

For CIFAR-10 dataset, from Figure 9, our method tend to select more easy-to-learn samples com-
pared to greedy coreset. Note that our method selects no samples from the last two difficulty levels
which indicate ambiguous or noisy samples, while greedy coreset selects much more samples in
last three difficulty levels. We have visualized the samples selected by Greedy Coreset from the
last two difficulty groups in Figure 11, and observed that, while these samples are correctly la-
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(a) Number of selected sample by our method from each difficulty level during selection on CIFAR-10
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(b) Number of selected sample by greedy coreset from each difficulty level during selection on CIFAR-10

Figure 9: Difficulty analysis on CIFAR-10 during selection.
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(a) Number of selected sample by our method from each difficulty level during selection on CIFAR-100
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(b) Number of selected sample by greedy coreset from each difficulty level during selection on CIFAR-100

Figure 10: Difficulty analysis on CIFAR-100 during selection.

(a) CIFAR-10 (b) CIFAR-100

Figure 11: Visualization of selected samples by Greedy Coreset in the last two difficulty groups in
CIFAR-10 and CIFAR-100.
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(a) CNN on MNIST
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(b) ResNet-18 on CIFAR-10
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(c) ResNet-18 on CIFAR-100

Figure 13: Number of selected noisy samples under different noise ratio. Our method selects much
less noisy samples compared to other two methods, demonstrating that our method are more robust
under data noisy case.

beled, some samples are non-typical and may contain misleading features that negatively impact the
model’s learning process. These results demonstrate that CSRL could effective avoid selecting noisy
or ambiguous samples. Experiments in Figure 1 (b) indicate that harder samples may harm model
performance.

For CIFAR-100 dataset, from Figure 10, the results are similar to results on CIFAR-10. Our method
selects much less samples in high difficulty levels. According to test performance in Figure 1 (c), our
methods selects less ambiguous samples or noisy samples, and perform better than greedy coreset.

In conclusion, our method could identify discriminative samples and could effectively avoid select-
ing ambiguous samples and noisy samples.

I ANALYSIS ON REPRESENTING FULL DATASET
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Figure 12: Average loss on the full dataset
and test accuracy of models trained on sub-
sets with different size of our method and
Greedy Coreset on CIFAR-100 dataset.

Same as experiment in Section 5.3, we also conduct
experiments on CIFAR-100 dataset. We train mod-
els on selected subset along the selection procedure,
and evaluate these models by test accuracy and av-
erage loss on full dataset. loss and accuracy with
respect to subset size is shown in Figure 12.

From results in Figure 12 model trained on subset se-
lected by our method could achieve higher test accu-
racy and lower average loss on full dataset. These re-
sults demonstrate that, compared to Greedy coreset
(Borsos et al., 2020), our method could select more
representative subset.

J DATA
SUMMARIZATION UNDER DATA NOISE

We count the number of noisy samples selected by
different methods in the experiment of Section 5.3,
with results shown in Figure 13. Our method se-
lects significantly fewer noisy samples, particularly
on the more challenging CIFAR-10 and CIFAR-100

datasets compared to MNIST. These findings align with the performance drop observed in Section
5.3, demonstrating that our method is more robust in handling noisy data.
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Table 5: Forgetting of continual learning experiments

Methods Split MNIST Split CIFAR-10 Split CIFAR-100 Perm-MNIST

Uniform sampling 6.26±1.20 26.93±4.54 79.55±2.19 10.29±0.94
k-means of features 6.29±1.42 60.98±1.53 79.00±1.61 10.55±0.63
k-center of embeddings 5.05±1.69 56.71±4.22 78.82±1.12 10.28±0.01
Hardest samples 15.35±3.16 72.55±1.94 73.97±1.15 11.74±0.71
iCaRL’s selection 5.45±0.32 58.64±4.11 79.65±1.02 9.77±0.26
Greedy Coreset 3.20±0.49 58.41±3.68 79.01±0.86 9.45±0.23
PBCS 5.65±0.80 53.25±1.61 77.00±1.76 12.10±1.04
CSRL-CL 3.03±0.50 43.43±5.44 75.09±1.24 8.81±0.50
CSRL-CL-Prv 3.92±0.04 37.94±8.21 72.36±0.15 8.44±0.19

Table 6: Average accuracy on Split CIFAR-100 under BCSR setting, our CSRL selection could
consistently outperform other methods.

Method Average accuracy Forgetting

k-means features (Nguyen et al., 2017) 57.82±0.69 0.070±0.003
k-means embedding (Sener & Savarese, 2017) 59.77±0.24 0.061±0.001
Uniform 58.99±0.54 0.074±0.004
iCaRL (Rebuffi et al., 2017) 60.74±0.09 0.044±0.026
Grad Matching (Campbell & Broderick, 2019) 59.17±0.38 0.067±0.003
SPR (Kim et al., 2021) 59.56±0.73 0.143±0.064
MetaSP (Sun et al., 2022a) 60.14±0.25 0.056±0.230
Greedy Coreset (Borsos et al., 2020) 59.39±0.16 0.066±0.017
GCR (Tiwari et al., 2022) 58.73±0.43 0.073±0.013
PBCS (Zhou et al., 2022b) 55.64±2.26 0.062±0.001
OCS (Yoon et al., 2021) 52.57±0.37 0.088±0.001
BCSR (Hao et al., 2024) 61.60±0.14 0.051±0.015
CSRL 62.10±0.45 0.094±0.006

K FORGETTING IN CONTINUAL LEARNING EXPERIMENTS

In this section, we present forgetting metric (Chaudhry et al., 2018a) which measures performance
degradation in subsequent tasks for experiments in Section 5.2. Computation of forgetting is

fk
j = max

l∈{1,...,k−1}
al,j − ak, j, ∀j < k,

where ak,j denotes accuracy of task j after training k-th task. We evaluate forgetting of CL experi-
ments in Table 5.

Among coreset selection methods, our method has the minimal forgetting on all datasets. Our
method could also outperform other sample selection methods in most datasets. This demonstrates
the effectiveness of our method for selecting a informative subset to prevent forgetting.

L CONTINUAL LEARNING ON BCSR SETTING

To further demonstrate the effectiveness of our method, we evaluate CSRL-CL under the same
setting as BCSR (Hao et al., 2024) on the Split CIFAR-100 dataset, which is equally divided into
20 tasks. The memory size is set to 100, and task IDs are provided during inference. We replace
the selection method in BCSR with our CSRL selection. The results are presented in Table 6, with
BCSR and other baseline results referenced from the BCSR paper (Hao et al., 2024).

The results in Table 6 show that our method could outperform other coreset selection baselines,
demonstrating the effectiveness of our selection method.
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Table 7: Average accuracy on ImageNet 500 class dataset, our method could consistently outperform
the random counterpart.

Method Average accuracy

ER 9.85±0.01
CSRL-ER 10.30±0.26
DER++ 15.94±0.94
CSRL-DER++ 19.03±0.21

Table 8: Effect of holdout model training epoch in continual learning

Holdout training epochs Average accuracy

10 17.48±0.21
15 17.21±0.07
20 17.43±0.55

M CONTINUAL LEARNING EXPERIMENT ON IMAGENET 500 CLASS

To evaluate the scalability of our CSRL-RS on a large dataset, we select 500 classes from ImageNet-
1K and split them into 10 tasks, with the memory size set to 1000. The baselines are ER (Riemer
et al., 2018) and DER++ (Buzzega et al., 2020), we replace reservoir sampling in the baseline meth-
ods with CSRL-RS as CSRL-ER and CSRL-DER++. For DER++, we use CSRL-cmb for selection.
The final average accuracy is presented in Table 7.

Results in Table 7 show that replacing reservoir sampling in ER (Riemer et al., 2018) with CSRL-
RS leads to a slight performance improvement, while combining our method with DER++ (Buzzega
et al., 2020) results in a significant performance boost. These findings demonstrate that our method
remains effective on larger datasets, showcasing its scalability for larger datasets.

N EFFECT OF HOLDOUT MODEL TRAINING EPOCH IN CONTINUAL
LEARNING

We also test the effect of holdout model training epoch in CL task. Specifically, we test different
holdout model training epochs on Split CIFAR-100 dataset with the same setting as Section 5.2.1.
The results are shown in Table 8.

In practice, we find training holdout model for 10 epochs is enough for good performance, compared
to 100 training epochs, the computation overhead is small. We show that final results is relatively
stable with respect to different holdout model training epochs.

O TIME COST AND MODEL SIZE IN DATA SUMMARIZATION EXPERIMENT

For data summarization experiment in Section 5.1, we list time cost and model parameters on
MNIST, CIFAR-10 and CIFAR-100 in Table 9. All experiments are conducted on NVIDIA RTX
3090. Specifically, We use 5-layer CNN on MNIST and use ResNet-18 for CIFAR-10 and CIFAR-
100, and 200 coreset samples are selected from 10000 candidate samples for each dataset.

Table 9: Time cost and model parameters in data summarization experiment

Dataset Model parameters Holdout training time Selection time

MNIST 184.59K 159.84s 102.70s
CIFAR-10 11.16M 349.74s 737.68s
CIFAR-100 11.21M 350.87s 735.85s
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Figure 14: Overview of coreset continual learning process. Coreset is selected from current task
dataset after training on current tasks. The selected coreset are added into memory for replay. In
coreset selection, holdout model is trained on current task dataset initially, then coreset is selected
in multiple steps. In each selection step, 1 train coreset model on currently selected coreset, 2
select candidate samples, 3 compute CSRL for each candidate sample, 4 rank candidate samples
by CSRL, 5 select samples with top-n CSRL into coreset.

Compared to MNIST, selecting corest in CIFAR-10 and CIFAR-100 takes 7x time. However, com-
pared to scaling of model size and data size, the time cost of training holdout model scales mildly.
Besides, time cost of selection also scales mildly as model size increases and data size. Our base-
line Greedy Coreset (Borsos et al., 2020) takes 4000 seconds for computing Neural Tangent Kernel,
compared to Greedy Coreset (Borsos et al., 2020), our method is much more efficient.

P OVERVIEW OF CORESET SELECTION FOR CONTINUAL LEARNING

To provide a clearer understanding of our method, we further illustrate our CSRL-CL approach,
proposed in Section 4.1 in Figure 14. For the continual learning task, we treat the training dataset
of the current task as the entire dataset and select the coreset from it. After training the continual
learning (CL) model on each task, the holdout model is then trained on the dataset of the current
task.

In CSRL-CL-prv proposed in Section 4.2, holdout model is trained on current task dataset and
memory. The holdout model is updated after training on each task, rather than being trained only at
the initial step. In the CSRL-RS method, introduced in Section 4.3, we use the CL model itself as
the holdout model. Consequently, the holdout model incorporates updated information, enabling it
to provide valuable insights for the selection process.

Q IMPACT OF SELECTION ORDER

Since our method selects samples for the coreset using a greedy incremental framework, meaning
that once a sample is selected, it is no longer considered in subsequent selections. The problem
of selection order is a common challenge in greedy methods. There are possibility that the perfor-
mance gain of selected samples might decrease or that some selected samples could be detrimental.
To address this, we conducted experiments on MNIST, CIFAR-10 and CIFAR-100 by iteratively
removing n samples from the 200-size selected coreset of with the lowest performance gain, then
reselecting new samples from the remaining candidates. The results, presented in Table 10, show
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Figure 15: Number of selected samples from each difficulty group in noisy MNIST experiment,
noise-ratio=0.1.

that performance remains stable after removal and reselection. Additionally, the reselection process
produces coresets different from the original ones.

Table 10: Test accuracy after removing and rese-
lecting samples for coreset.

n MNIST CIFAR-10 CIFAR-100

0 96.67 39.46 9.26
10 96.53 39.58 10.01
20 96.51 39.60 8.93
50 96.42 39.16 10.08
100 96.09 39.31 10.19

One possible explanation is the existence of
multiple subsets containing a similar amount of
knowledge. Our method selects samples that
are both representative and complementary to
the current coreset. This implies that select-
ing different initial samples results in similar fi-
nal performance because the method inherently
identifies subsets that complement the initial se-
lection. Further evidence for this comes from
our evaluation of the coreset selection method
under different random seeds in Section 5.1.
Despite the variation in selected subsets, the
performance remains consistent. Therefore, the
order of selection is not a significant concern in real-world data scenarios.

R DISTINGUISHING DIFFICULT SAMPLES FROM NOISY SAMPLES

We note that difficult samples and noisy samples cannot be distinguished solely based on Equations
(4) and (6), as both types of samples may exhibit high loss values on the holdout model. However,
our method selects coresets iteratively. If noisy or ambiguous samples are included in the coreset,
they may hinder the coreset model θS from effectively learning other clean samples, leading to in-
creased loss for the clean candidates on the coreset model. As a result, the CSRL of clean candidates
may increase, making them more likely to be selected in subsequent iterations.

While difficult samples could be informative and not harm the learning of other samples, selecting
difficult samples does not preclude the selection of other difficult samples, as demonstrated in Fig-
ure 8(a) in Appendix H. For the relatively simple MNIST dataset, difficult samples tend to be more
informative and are therefore selected. Additionally, we analyzed the difficulty levels of selected
samples in the noisy MNIST experiment discussed in the Ablation Study (Section 5.3) in Figure
15. The results show that more easy samples are selected from the noisy MNIST dataset, due to the
learning of these samples is disrupted by the presence of selected noisy samples. Consequently, dif-
ficult samples and noisy samples yield different outcomes. Additionally, we note that the noise rates
in the last two difficulty groups shown in Figure 15 are 0.24% and 79.76% respectively. Our method
tends to select more samples from the second-to-last group while selecting fewer samples from the
last group. This is because the holdout model can effectively learn difficult samples, whereas noisy
samples cannot be well learned by either the holdout model or the coreset model.
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Table 11: Average accuracy and time cost of Greedy Coreset, BCSR and CSRL-CL on CIFAR-100
and Tiny-ImageNet dataset.

CIFAR-100 Tiny-ImageNet

Average accuracy Time cost Average accuracy Time cost
Greedy Coreset 28.17±0.57 21h 58m 12.17±0.07 24h 55m
BCSR 27.32±0.10 11h 26m 12.33±0.08 28h 13m
Our method 32.51±0.58 10h 04m 17.51±0.11 15h 13m

In summary, our method is capable of selecting more difficult samples when they are informative and
consistent with other samples. For noisy and ambiguous samples, however, our approach prioritizes
cleaner samples to mitigate the disruption caused by noisy data. In low noise-ratio scenarios, which
are common in real-world applications, noisy samples can be identified in as the holdout model can
effectively learn difficult samples but fails to learn noisy ones. As a result, our method effectively
treat difficult and non-representative samples, ensuring appropriate selection.

S CORESET SELECTION FOR CONTINUAL LEARNING WITH LARGE
BACKBONE MODELS

To further demonstrate the effectiveness and efficiency of our method over other bi-level coreset
selection methods in continual learning. We conducted additional experiments applying complex
backbones ResNet-50 and VIT-Tiny (Wu et al., 2022) on CIFAR-100 and Tiny-ImageNet respec-
tively. Both datasets were evenly split into 10 tasks, with memory sizes set to 1000 and 2000 for
CIFAR-100 and Tiny-ImageNet, respectively.

We compared our method with related bi-level coreset selection methods for continual learning,
including Greedy Coreset (Borsos et al., 2020) and BCSR (Hao et al., 2024). The average accuracy
and time cost are summarized in Table 11. Our method outperforms other bi-level coreset selection
approaches by a large margin on both datasets while also being more efficient, particularly when
using the more complex VIT-Tiny backbone.

T FEATURE MAP OF SELECTED SAMPLES

We have visualized the features of coreset samples selected by different methods from CIFAR-10
using t-SNE. The features were extracted using a ResNet-18 model trained on CIFAR-10, as shown
in Figure 16. Representative samples share common features with other samples and are effectively
learned by the model, thus could be well classified. The features of the coreset selected by our
method are concentrated near the high density part and better separated compared to those selected
by the two baseline methods, demonstrating the ability of our approach to select representative
samples.

Our work defines informative sample as samples contains new knowledge compared to currently se-
lected coreset. To demonstrate that our method selects both representative and informative samples,
we trained a model on the first 150 selected samples and visualized their features as dots. We then
visualized the next 50 selected samples as triangles. Figure 17 shows the features of coreset samples
selected by our method and by Greedy Coreset. The later-selected samples by our method tend to
lie near the margins of feature clusters, indicating they are less well-learned by the model. Fur-
thermore, samples selected by our method are more closely aligned with the feature clusters of each
class, while those selected by Greedy Coreset are more scattered. This demonstrates that our method
effectively selects samples that are both representative and informative. However, it is important to
note that the informativeness of a sample cannot be determined solely based on its features, as not
well learned samples, such as ambiguous or noisy ones, may negatively impact the model’s learning
process.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

30 20 10 0 10 20 30
t-SNE 1

20

10

0

10

20

t-S
NE

 2

(a) Greedy Coreset

30 20 10 0 10 20 30 40
t-SNE 1

20

10

0

10

20

t-S
NE

 2

(b) PBCS

40 30 20 10 0 10 20 30 40
t-SNE 1

20

10

0

10

20

t-S
NE

 2
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Figure 16: Features of selected samples by Greedy Coreset (Borsos et al., 2020), PBCS (Zhou et al.,
2022b) and CSRL. The shadow part is features of randomly selected samples from the full dataset.
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Figure 17: Features of currently selected samples and later selected samples, illustrating that our
method selects both representative and informative samples.
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(b) k-means features selection

Figure 18: Features of samples selected by iCaRL’s selection and k-means features selection.
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Table 12: Test accuracy of model trained on coreset selected by different methods, our method
outperforms all other baseline methods.

Method CIFAR-10 CIFAR-100

RCS 27.17±1.11 4.87±0.60
GC+CDS 33.03±1.74 8.06±0.23
Greedy Coreset 36.53±1.40 6.94±0.23
PBCS 37.41±0.26 6.77±0.18
CSRL (ours) 39.58±0.14 8.91±0.42

We have also plotted the features of samples selected by iCaRL’s selection (Rebuffi et al., 2017) and
k-means features selection (Nguyen et al., 2017) in Figure 18. Compared to Greedy Coreset Borsos
et al. (2020) and PBCS (Zhou et al., 2022b), features are less scattered.

U ADDITIONAL DATA SUMMARIZATION RESULTS

We further conduct coreset selection experiments with RCS (Xu et al., 2023) and CDS (Wan et al.,
2024) on the CIFAR-10 and CIFAR-100 datasets under the same settings as Section 5.1, with the
coreset size set to 200. The results are presented in Table 12.

Bi-level coreset selection methods outperform RCS (Xu et al., 2023) and GC+CDS (Wan et al.,
2024) on the CIFAR-10 dataset and perform slightly below GC+CDS (Wan et al., 2024) on the
CIFAR-100 dataset. These results indicate that bi-level coreset selection methods remain effective
and robust. Furthermore, our CSRL selection method surpasses all baseline methods, showcasing
its superior effectiveness and timeliness.

V DATA SUMMARIZATION EXPERIMENT DETAILS

We conduct experiments on MNIST, CIFAR-10 and CIFAR-100, coreset size of all datasets is set
to 200. For experiments on MNIST and CIFAR-10, we follow experiment settings of Borsos et al.
(2020) and Zhou et al. (2022b). Different from Greedy coreset which uses Neural Tangent Kernel
(Jacot et al., 2018) as inner model, we use same model structure for holdout model and current
model.

We use CNN as backbone for MNIST, which contains two blocks of convolution, dropout, max-
pooling and ReLU activation, two convolution layers have 32 and 64 filters with 5 × 5 kernel size.
Two fully connected layers of size 128 and 10 with dropout follows convolution blocks. The dropout
probability is 0.5. We train CNN on selected coreset using SGD optimizer with learning rate 2e−2,
training batch size is set to 32 and training epochs is set to 3000. This training protocol is applied in
all compared methods. The reason why we don’t use Adam optimizer is that we found performance
is not stable among different random seeds, therefore, we use SGD optimizer instead.

We use same ResNet-18 as in Borsos et al. (2020) and Zhou et al. (2022b) as backbone for CIFAR-
10 and CIFAR-100 dataset. Note that there is no Batch-Normalization layer in this backbone. For
experiments on CIFAR-10 and CIFAR-100, we train ResNet on selected coreset using Adam opti-
mizer with learning rate 5e−4, training batch size is set to 64 and training epochs is set to 1800. This
training protocol is applied in all compared methods.

In experiment on MNIST, holdout model is trained by SGD optimizer with learning rate 1.5e−3,
training batch size is 32 and training epoch is 125. In each selection step, current model is trained
by SGD optimizer with learning rate 2e−2, batch size is set to 32. Since selected coreset is very
small, to avoid overfitting ,we train current model on selected subset with 16 epochs. Initial coreset
size is set to 0 and selection step is 200.

In experiment on CIFAR-10 and CIFAR-100, holdout model is trained by SGD optimizer with
learning rate 3e−3, batch size is set to 32 and training epoch is 100. In each selection step, current
model is trained by SGD optimizer with learning rate 2e−2, batch size is set to 32, current model
training epoch is set to 16. Initial coreset size is set to 0 and selection step is 200.
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Table 13: Optimization hyperparameters in continual learning experiments in Table 1.

Dataset Batch size Epochs Optimizer Learning rate Loss factor

Split MNIST 256 400 Adam 5e-4 100.0
Split CIFAR-10 256 400 Adam 5e-4 20.0
Split CIFAR-100 32 100 SGD 2e-2 2.0
Permuted MNIST 256 400 Adam 5e-4 0.1

Table 14: Optimization hyperparameters in continual learning experiments in Table 2.

Dataset Batch size Optimizer Learning rate CE Loss factor KD loss factor

Split CIFAR-100 32 SGD 2e-2 1.0 0.2
Split Tiny-ImageNet 32 SGD 3e-2 1.0 0.1

W CONTINUAL LEARNING EXPERIMENT DETAILS

W.1 DATA SUMMARIZATION FOR CONTINUAL LEARNING

Datasets: We conduct experiments on Split MNIST, Split CIFAR-10, Split CIFAR-100 and Perm
MNIST. Split MNIST, CIFAR-10 and MNIST consist of 10 classes. Following Borsos et al. (2020)
we split CIFAR-10 and MNIST into 5 tasks with 2 classes for each task. We split CIFAR-100 into 10
tasks with 10 classes for each class. For Perm MNIST contains 10 tasks and each task is randomly
permuted version of MNIST. Also following Borsos et al. (2020), in experiments in Split MNIST,
Split CIFAR-10 and Perm MNIST, we randomly select 1000 samples from each task for training,
for Split CIFAR-100, we use all data of each task.

Augmentations: Following Borsos et al. (2020), we apply normalization to Split MNIST and Perm
MNIST. For more complicated CIFAR-10 and CIFAR-100 dataset, we apply random crop, random
horizontal flip and normalization.

Backbones: We use same CNN structure in Section V for Split MNIST, and use the same ResNet-18
in Section V for Split CIFAR-10. For Split CIFAR-100, we add BatchNormalization layer in each
convolution block of ResNet-18. For Perm MNIST, we use a fully connected net with two hidden
layers with 100 units, ReLU activations, and dropout with probability 0.2 on the hidden layers.

Optimization: Optimization related hyperparameters are shown in Table 13, the loss factor is α
in equation 17. Following Borsos et al. (2020) and Zhou et al. (2022b), we use Adam optimizer
(Kingma, 2014) for experiments on Split MNIST, Split CIFAR-10 and Permuted MNIST. For Split
CIFAR-100 dataset, we use SGD optimizer for all compared methods.

W.2 CONTINUAL LEARNING WITH MODIFIED RESERVOIR SAMPLING AND KNOWLEDGE
DISTILLATION

Datasets: We conduct experiments on Split CIFAR-100 and Split Tiny-ImageNet dataset. We split
CIFAR-100 into 10 tasks with 10 classes for each class. For Split Tiny-ImageNet, we split totally
200 classes into 10 disjoint tasks. All samples of each task are used during training.

Augmentations: We keep the same augmentation used in mammoth (Buzzega et al., 2020). Both
Split CIFAR-100 and Split Tiny-ImageNet dataset applies random crop, random horizontal flip and
normalization.

Backbones: Both dataset use the same ResNet-18 in mammoth implementation (Buzzega et al.,
2020).

Optimization: We list all the hyperparameters related to optimization in Table 14. Training epoch
is consistent with corresponding baselines.
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Figure 19: Visualization of selected sample in each class from CIFAR-10.

Table 15: Time cost for offline continual learning tasks

Split MNIST Split CIFAR-10 Perm MNIST Split CIFAR-100

Time cost 4.8m 27.6m 17.5m 69.4m

X VISUALIZATION OF SELECTED DATA

To make the effectiveness of our method straight forward, we visualize first 10 selected samples of
each samples in CIFAR-10, pictures are shown in Figure 19, each row collects images from same
class.

From visualization, we can see that sample selected by our method is clear, unambiguous and di-
verse.

Y COMPUTATION RESOURCES AND EXPERIMENT TIME COST

We conduct all experiments on 2 NVIDIA GeForce RTX 3090 graphical cards with 24 GB memory
for each graphical card. Our CPU type is Intel(R) Core(TM) i9-12900K, memory of our server is
32 GB. We list time cost for all main offline continual learning experiments in Table 15 and list time
cost for CSRL-RS in Table 16.

Table 16: Time cost for continual learning tasks using CSRL-RS

Split CIFAR-100 Split Tiny ImageNet

CSRL-ER 56m 7h 47m
CSRL-DER++ 1h 20m 8h 56m
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Z URL OF CITED ASSETS

We download MNIST dataset from http://yann.lecun.com/exdb/mnist/.

We download CIFAR-100 dataset from https://www.cs.toronto.edu/ kriz/cifar-10-python.tar.gz.

We download CIFAR-100 dataset from https://www.cs.toronto.edu/ kriz/cifar-100-python.tar.gz.

Tiny ImageNet dataset is downloaded by mammoth implementation, the URL is
https://github.com/aimagelab/mammoth.

Greedy Coreset implementation is downloaded from https://github.com/zalanborsos/bilevel coresets.

AA BROADER IMPACT

Coreset selection aims to summarize an informative subset from full dataset, which could signif-
icantly reduce training cost and energy consumption. Storage required may also be reduced with
coreset selection method. Our coreset selection method could be applied not ony on continual learn-
ing, but also Neural Architecture Search and Reinforcement learning. Continual learning in our
work could also improve intelligent agent for continually learning new knowledge, enabling more
general applied models and personalized models.
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