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ABSTRACT

Equivariant deep models have recently been employed to predict atomic poten-
tials and force fields in molecular dynamics. A key advantage of these models
is their ability to learn from data without requiring explicit physical modeling.
Nevertheless, use of models obeying underlying physics can not only lead to bet-
ter performance, but also yield physically interpretable results. In this work, we
propose a new equivariant network, known as PACE, to incorporate many-body
interactions by making use of the Atomic Cluster Expansion (ACE) mechanism.
To provide a solid foundation for our work, we perform theoretical analysis show-
ing that our proposed message passing scheme can approximate any equivariant
polynomial functions with constrained degree. By relying physical insights and the-
oretical foundations, we show that our model achieves state-of-the-art performance
on atomic potential and force field prediction tasks on commonly used benchmarks.

1 INTRODUCTION

Deep learning has led to notable progress in computational quantum chemistry tasks, such as
predicting atomic potentials and force fields in molecular systems (Zhang et al.| [2023). Fast and
accurate prediction of energy and force is desired, as it plays crucial roles in advanced applications
such as material design and drug discovery. However, it is insufficient to rely solely on learning from
data, as there are physics challenges that must be taken into consideration. For example, to better
consider symmetries inherent in 3D molecular structures, equivariant graph neural networks (GNNs)
have been developed in recent years. By using equivariant features and equivariant operations,
SE(3)-equivariant GNNs ensure equivariance of permutation, translation and rotation. Thus, their
internal features and predictions transform accordingly as the molecule is rotated or translated.
Existing equivariant GNNs can specialize in handling features with either rotation order £ = 1 (Schiitt
et al., 2021 Jing et al.l 2021} [Satorras et al., [2021; [Du et al., 2022} [2023}; [Tholke and Fabritiis,
2022) or higher rotation order ¢ > 1 (Thomas et al.l 2018}; [Fuchs et al., [2020; |Liao and Smidt,
2023} [Batzner et al.l 2022} [Batatia et al., [2022a;b;; [Yu et al.| 2023b; [Unke et al. 2021} [Yu et al.|
2023al), while invariant methods only consider rotation order £ = 0 (Schiitt et al.,|2017; |Smith et al.,
2017;|Chmiela et al., [2017; Zhang et al.,2018albj [Schiitt et al., [2018; | Ying et al.,[2021; [Luo et al.,
2023 |Gasteiger et al., [2020; [Liu et al., 2022} |Gasteiger et al.,|2021; Wang et al.| 2022; [Lin et al.|
2023 |Yan et al., [2022; [Liu et al., [2021). Generally, methods with higher rotation order exhibit
improved performance but at the cost of higher computational complexity. In addition to rotation
order, some equivariant methods (Musaelian et al., 2023} Batatia et al., |2022aljb) also consider
many-body interactions in their model design. These approaches follow traditional principles (Brown
et al.,[2004; | Braams and Bowman, [2009)) of decomposing the potential energy surface (PES) as a
linear combination of body-ordered functions. In contrast to standard message passing (Gilmer et al.|
2017) that considers interactions between two atoms in each message, many-body methods aim to
incorporate the interactions of multiple atoms surrounding the central node.

In this work, we present a novel equivariant network that incorporates many-body interactions based
on the Atomic Cluster Expansion (ACE) mechanism (Drautz, [2019; [Dusson et al.|, 2022} Kovacs
et al., 2021). We conduct a theoretical analysis, demonstrating the capability of our proposed
message passing scheme to effectively approximate equivariant polynomial functions within a
constrained degree, thereby establishing a solid foundation for our model. Our method is termed
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PACE as it is based on polynomial function approximation and ACE. To evaluate the performance
and generalization capabilities of our approach, we assess our model on two molecular dynamics
simulation datasets, namely rMD17 and 3BPA, and obtain consistent performance enhancements.
Notably, we achieve state-of-the-art performance in energy prediction across all molecules and
achieve superior force prediction accuracy in 50% of the molecules, affirming the significance and
potential of our proposed approach.

2 BACKGROUND AND RELATED WORK

2.1 SYMMETRIES AND EQUIVARIANCE

Considering physical symmetries in machine learning models is crucial for solving quantum chemistry
problems, as various quantum properties of molecules exhibit inherent equivariance or invariance
to symmetry transformations. For example, if we rotate a molecule in 3D space, forces acting on
atoms rotate accordingly while the total energy of the molecule remains invariant. According to
group theory (Bronstein et al.,|2021)) which analyzes symmetries of geometry and physics, given
a group G and group action x, we say f : Q — Y is G-equivariant if f(g * q) = ¢ * f(q) for any
a€Q,g€ G If f(g*xq) = f(q) holds, we say f is G-invariant.

To encode geometric information of molecules into SE(3)-equivariant features, spherical harmonics
are used for its equivariance property. Specifically, we use real spherical harmonic basis functions Y
to encode an orientation 7;; between a node pair. If the molecule is rotated by a rotation matrix R in
3D coordinate system, then we have:

q'Y!(Rfi;) = (D(R)q")Y" (7;), (1)

where ¢ € [0, L] is the degree, q° with size 2¢ + 1 denotes coefficients of spherical harmonics, and the
Wigner D-matrix D*(R) with size (2¢ + 1) x (2¢ + 1) specifies the corresponding rotation acting on
coefficients q. In practice, equivariant features are often represented by irreducible representations
(irreps), which correspond to the coefficients of real spherical harmonics.

2.2 EQUIVARIANT GRAPH NEURAL NETWORKS

In recent years, equivariant graph neural networks have been developed for 3D molecular repre-
sentation learning, as they are capable of effectively incorporating the symmetries required by the
specific task. Existing equivariant 3D GNNs can be broadly classified into two categories, depending
on whether they utilize order ¢ = 1 equivariant features or higher order ¢ > 1 equivariant features.
Methods belonging to the first category (Satorras et al.,|2021}; |Schiitt et al.| 2021} Deng et al., 2021}
Jing et al.,[2021; Tholke and Fabritiis| 2022) achieve equivariance by applying constrained operations
on order 1 vectors, such as vector scaling, summation, linear transformation, vector product, and
scalar product.

The second category of methods (Thomas et al.| [2018}; [Fuchs et al., 2020; |Liao and Smidt, 2023}
Batzner et al., 2022} |Batatia et al., 2022aib) predominantly employs tensor products (TP) to preserve
higher-order equivariant features. Tensor product operates on irreducible representations u of rotation
order ¢, and v of rotation order /5, yielding a new irreducible representation of order {3 as

0 2
(uel ®V[2)£23 = Z Z C((ff:zf))v(fmmz)uf’l“vf’zu’ (2)
mi=—4€1 mo=—4Ls
where C' denotes the Clebsch-Gordan (CG) coefficients (Griffiths and Schroeter, 2018)) and m € N
denotes the m-th element in the irreducible representation. Here, /5 satisfies |[¢1 — {o| < €3 < {1 + o,
and /1, {5, ¢35 € N. High-order equivariant 3D GNNs commonly use tensor products on the irreducible
representations of neighbor nodes and edges to construct messages as

m§ = ) RO ()Y (7iy) © x5, 3)
Zi,Zf

where |(; —{¢| < £, < {;+ (¢, x; denotes features of node j, and R is a learnable non-linear function
that takes the embedding of pairwise distance 7;; as input.
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2.3 AToMIC CLUSTER EXPANSION

Molecular potential and force field are crucial physical properties in molecular analysis. To approxi-
mate these properties, the atomic cluster expansion (ACE) (Drautz, [2019; |[Kovacs et al.,2021) is used
to approximate the atomic potential denoted as

el) = Z Z Cg)l)(bv (rZJ Z Z 05)21)1;2(251)1 rl]l) ¢v2 (rzj2>

J1J2 V102
3
3| Z Z 65;1)1;2v3¢v1 rljl) ¢v2 (rw2) ¢U3 (r1J3) T “
]1]2,]3 V1V2V3
where 0; = (r;;,,- -+ ,r;j, ) denotes the NV bonds in the atomic environment, ¢ is the single bond

basis function and c is the coefficients. The computational complexity of modeling many-body
potential increases exponentially with number of neighbors. To reduce the complexity, ACE further
makes use of density trick to calculate the atomic energy via atomic base A;, = > j ¢u(r;j), which
has a linear complexity with the number of neighbors, denoted as

v >v2 v >v2 >v3
Z () A + Z U1U2A1v1A1v2 + Z 53;)1)21;3141’111141'1)2141‘113 + - (5)
v1V2 V1V2V3

In this case, the computational complexity of modeling many-body interactions decreases to linear
growth with the number of neighbors. With the reduced linearly complexity, many equivariant
networks are designed to learn the many-body interactions. In these networks, spherical harmonic
functions Y'(f;;) combined with radial functions R(7;;) are usually taken as the single bond basis
function ¢, (r;;). Then the aggregated atomic bases A, typically represented as equivariant irre-
ducible representations in these networks, are combined through tensor product operations to encode
the many-body interactions while maintaining equivariance. Note that v = 0, 1, 2, . .. distinguishes
among different basis. Specifically, BOTNet (Batatia et al.| |2022a)) takes multiple message passing
layers to encode the many-body interaction and analyzes the body order for various message passing
schemes. MACE (Batatia et al.,[2022b) takes generalized Clebsch-Golden coefficients to couple the
aggregated message to incorporate higher-order interactions. Allegro (Musaelian et al., 2023) uses
a series of tensor product layers to calculate the equivariant representations without using message
passing, learning many-body interactions.

2.4 UNIVERSALITY ANALYSIS

Universality is a powerful property for neural networks that can approximate arbitrary functions.
While Zaheer et al.| (2017); Maron et al.|(2019); |[Keriven and Peyré (2019) study the universality
of permutation invariant networks, several works have recently studied the rotational equivariant
networks. Dym and Maron|(2020) takes use of the proposed tensor representation to build D-spanning
family and shows that Tensor Field Networks (TFN) (Thomas et al.,|2018)) is proved to be a universal
equivariant network capable of approximating arbitrary equivariant functions defined on the point
coordinates of point cloud data. Furthermore, GemNet (Gasteiger et al., [2021)) uses the conclusion in
Dym and Maron|(2020), and is proved to be a universal GNN with directed edge embeddings and
two-hop message passing.

3 THE PROPOSED PACE AND THEORETICAL ANALYSIS

3.1 EQUIVARIANT POLYNOMIAL FUNCTION APPROXIMATION

In this section, we first introduce the definitions of equivariant polynomial functions and their
relationship to equivariant functions. Then we provide an analysis of the existing equivariant layer
within the local atomic potential. Finally, we demonstrate our motivation to propose an equivariant
message passing scheme to approximate higher-degree equivariant polynomial functions.

Relationship between equivariant functions and equivariant polynomial functions. Given a
set of input 3D coordinates C = (¢, ¢co,- -+ ,cn) for N nodes, a continuous equivariant function
Co (R¥>*N WA) maps these coordinates to equivariant features W, such as the irreducible node
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Figure 1: An architecture overview of PACE. A: The whole model. Inputs of PACE include atom
types Z and positions C based on which edge direction ;;and distance 7;; are calculated. The initial
node features x? is embedded using atom type. The spherical harmonics of edge direction Sph;j,
radius basis function transformed edge distance rbf;;, and the invariant scaling features o;; are
fed to each message passing layer. The readout block linearly transforms outputs of both message
passing layers to predict local energies and then sum with isolated energies to obtain the total energy
prediction. B: Message passing layer. Each message passing layer comprises a two-body edge
update block, an atomic base update block, a polynomial many-body interaction block, and a skip
connection with self-interaction. C: Two-body edge update block. Sph;; and MLP-transformed rb f;;
are multiplied to produce the filter. Then, a tensor product is applied to the filter and node features,
followed by a self-interaction to generate 2-body message. D: Atomic base update block. A linear
transformation is applied to the invariant scaling edge features o;;. Then, 2-body messages scaled by
o;; are summed over neighboring nodes to form the atomic base for the central node. Same operation
is proposed in|[Darby et al (2023 named tensor sketch. E: Polynomial many-body interaction block.
The atomic base A; is fed to multiple self-interaction layers separately to produce different A;,. Then,
tensor contraction is performed to produce a;. F: An example of 4-body interaction in ACE. We aim
to fit D o, (Tijy ) @ Y Doy (Tijy) @ D bug (Tijy) using Ay, ® Ajy, @ Ajyy, where {¢} denotes the
atomic base in ACE.

representations. This function maintains the desired property of equivariance with respect to the rota-
tion, translation, and permutation operations defined by the group G. Furthermore, a G-equivariant
polynomial P (R3*Y  W2) maps to equivariant features W~ which are polynomial functions of the
input coordinates. Lemma 1 from|Dym and Maron|(2020) demonstrates that any Ce; (R**, W) can
be uniformly approximated on compact sets by equivariant polynomials in Pg(R3*V, W:,JY ). This
implies that if equivariant networks can approximate all G-equivariant polynomial functions, they
can further approximate any (G-equivariant continuous functions. Inspired by this theorem, various
geometric graph networks (Segol and Lipman| 2019} Gasteiger et al., 2021; [Dym and Maron|, [2020)
provide analysis to demonstrate the capacity and expressive power of their networks in approximating
equivariant polynomials, aiming to cover a broad range of equivariant polynomial functions.

Motivation of Network Design. Theorem 2 in Dym and Maron| (2020) states that, if the input
equivariant features can approximate PZ (C), which denotes any G-equivariant polynomial function
with 3D coordinates C and the highest degree D, then by employing two tensor field network

(TFN) layers with fully connected graphs, the output features can approximate ’Pg + (C). While
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TEN has the ability to approximate all equivariant polynomial functions with an infinite number
of layers, the approximation capacity of a single TFN layer is limited, raising the need to develop
modules improving the approximation capacity. To overcome this limitation, we propose a new
equivariant graph network, known as PACE, to enhance the capacity of equivariant message passing
to approximate higher-degree equivariant polynomials. In this work, instead of analyzing with
polynomial functions based on atomic coordinates C, the approximated polynomial functions focus
on characterizing the atomic energy within the atomic environment, considering the N-bonds 6; in
Equation 4] Through the theoretical analysis in section a single message passing scheme in
PACE can approximate any polynomial function Pg =v(6;), where v is the number of bases in the
polynomial many-body interaction module.

Analysis of existing equivariant networks. For existing equivariant networks in molecular property
prediction (Batzner et al. 2022; Musaelian et al.| 2023} Batatia et al.l [2022b)), we also provide
theoretical justification about their ability to approximate polynomial functions focusing on atomic
environment, considering the N-bonds ;. As shown in Table[l] a single NequIP layer can approximate

polynomial function PP=1(6;) as shown in|A.2.5| Allegro can approximate polynomial function
D=N),
Pe  “(8;) as discussed in , and our proposed PACE can approximate P”=(6;) with a

single layer with Theorem 2] For the MACE model, we discuss it in the appendix [A.2.3]

Table 1: A comparison of the ability to approximate polynomial function for various equivariant
architecture within local atomic bonds in the atomic environment.

Network Architecture ‘ Highest Degree in Polynomial P% (6;)

NequlP layer D=1
Allegro D = Niayer
PACE layer D=v

3.2 MODEL ARCHITECTURE

In this subsection, we introduce the architectural details of the proposed PACE model, including the
embedding layer, message passing layer, and output layer.

3.2.1 INPUT EMBEDDING

The input to PACE consists of atom types Z € NV*! and corresponding positions C € RY*3,
where NV represents the number of atoms in a molecule. Edges are constructed based on a cutoff
distance 7.,;. The node features x! are initialized through a linear transformation applied to its
atomic type. Edge orientations are denoted by spherical harmonics Y* (¥;5), and pairwise distances
7;; are embedded using Bessel functions with a smoothed polynomial cutoff (Gasteiger et al., 2020).

Besides, we introduce invariant scaling features o;; for each edge by
o;; = MLP(one-hot(Z;) || one-hot(Z,)), (6)

where MLP is a multiple layer perceptron and one-hot(-) is one-hot encoding of atom type. The
scaling edge features o;; are used for message aggregation in each layer.

3.2.2 MESSAGE PASSING LAYER

Each layer of the proposed PACE is comprised of four blocks that sequentially perform 2-body edge
update, 3-body update, atomic base update, and polynomial many-body interaction. Finally, the
updated node features are skip-connected with the self-interaction transformed input node features
and used as output. We describe the layer architecture below and provide an illustration in Figure|[T]

Two-Body Edge Update. The messages from neighboring nodes to the central node are typically
determined by node features, edge orientation, and distance between two nodes. As illustrated in
Figure[I|C, we first construct a filter based on edge orientation and distance as

FULD (7, 855) = RS (7)Y (8y). @)
Then, a tensor product is applied to the filter and irreducible representations of node j to produce the
message m;; p—o from node j to node ¢ as
Mgy = > (7, 1) @ x5 ®)
0,0y
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Finally, m;; 3o is used as output after a self-interaction. Similar to messages in a standard message
passing framework, the message obtained here has a body order of 2 because it involves the interaction
of only two atoms.

Atomic Base Update. In the original ACE
method, the atomic base of the central node is ﬂ:::: > . smrmwe‘gm )
constructed by summing over one-particle base "
functions that are analogous to messages from
neighboring nodes. In our method, we scale
equivariant messages using linearly transformed Contract Y o E ) o
invariant scaling features o, and use these to | ™ "~
generate the atomic base A; as
+
A= ; Z Woijmijp—3, (9)
|N(Z)| . . Contract Z ( EEmmm x ] )
JEN(7) weights il e

Generalized CG Scalar weight

Generalized CG

~LoMa
iy Ly M,y

Features A;o

where |V ()| is the number of neighbor nodes
and W is the weight matrix. Operations in this
block are shown in Figure[T|D.

Contract > (EEEEE  x (0070 ) g

features him

Polynomial Many-Body Interaction. To incor- " Features A WG,
porate many-body interactions, the polynomial
many-body interaction module is proposed to
mix the atomic base A;. As shown in Figure[T|E,
self-interaction layers are used to map the input
atomic base A; to different bases, distinguish-
ing the atomic bases for different body orders.
Then tensor contraction (Batatia et al.| [2022b)

Figure 2: Illustration of tensor contraction in the
polynomial many-body interaction module. This
figure demonstrates an example of 3-body inter-
actions with v = 2 and final L, = 0, My = 0.
Note that the contract weights operation learns

uses generalized Clebsch-Golden to fuse mul- “¢ighted summation over all paths 7 [v], where
tiple atomic bases. For example, when fusing nfv] = (6, €2, Loy -+ by, Ly).
two irreps, Clebsch-Gordan coefficients Cff’:nn Y 1m, are used to maintain equivariance when fusing
two irreps with rotation orders ¢; and /5 to the output /3, as shown in Equation |Z|, and the triplet
(€1, 42, 03) is defined as a path. In general, when fusing NV irreps, the generalized Clebsch-Gordan
coefficients are used to maintain the equivariance, defined as

Cé[?{nvk\/l[,ﬁ}m" = Céilﬂf?fzmchjﬁj,fgm3 T 511\\77%11\\]/[1\771,51\77%1\/’ (10)
where L[N| = (¢4, Lo, --- Ly) with |L; 1 — 4;| < L; < |L;—1 + 4;|,L; € N,Vi > 2,i € N4, and
the path is shown as n[N]| = (¢1,4a, L2, ¢3, L3, -+ ,¢n_1,Ln_1,{n, Lx). Then the output irreps
is contracted one by one to consider the coupled many-body interactions shown as

2

~LyMxy _ , Lv]M][v] ~LyMy

R ITINED D D YR 3 (va *Comyoobym, T Givp,ar, ) (1D
P4 2

(o My =— n[v]

where W is the path weight, a is the intermediate irreps, and v € N starts from [V to 1 to incorporate
N-body interactions. Note that C = 1 and Ly = 0 when v = 1, and @ = 0 when v = N. Compared
to the higher order features in MACE, the implementation of contraction is the same, but we take
multiple self-interaction layers to distinguish the atomic base from the same A; to different A;,.
Thus, our proposed message passing can achieve complete equivariant polynomial approximation.
We illustrate tensor contraction in Figure[2]and Figure 4]

3.2.3 OuTPUT

We follow (Batatia et al.|[2022b]) to extract and transform the invariant part of node features produced
by each layer to compute the local energy of node ¢ as

E; = Eigoi + Wi g0 + MLP(x7 o), (12)
where Fj, ; denotes the isolated energy corresponding to the atom type of node 4, which is a known
value. W denotes a linear function and MLP is a multiple layer perceptron. The total energy of the
molecule is the sum of local energies. Once the total energy is predicted, we then use f; = _% to
calculate the force acting on each atom, as it ensures energy conservation.
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3.3 THEORETICAL STUDIES

In this section, we provide a theoretical analysis elucidating how our model enhances the highest
degree of the approximated polynomial functions. To facilitate the analysis, we employ a powerful
tool known as tensor representation, which leverages a series of matrix kronecker product on the input
directions. Specifically, the tensor representation of two directions 7;;,,7;;, € R? can be denoted
as rij, ®ry;, € R¥3. Moreover, the tensor representation resulting from applying the kronecker
product to r;; for k times is denoted as r?k € R3". Note that tensor representation exhibits SO(3)

equivariance owning to the SO(3) equivariant nature of tensor product operation (Thomas et all
2018). Examples of tensor representation are illustrated in Figure

Following Theorem 1 in [Dym and Maron| (2020), there P
are two necessary conditions when an equivariant network T T T

can approximate any polynomial equivariant function with [ m@ Ty Tty X
the highest degree D. Firstly, the network’s features "1 U "1z m'?y' -

Tiz T1y Tz Tz T1y T1z

Frear must be D-spanning. Secondly, the linear pooling

layer Fpool in this network must be linear universal. As " =i’ r? P org!
demonstrated in Lemma 5 of (Dym and Maron, 2020),

the self-interaction layer is linear universal since it covers ~Figure 3: Examples of tensor representa-
all linear mappings between irreducible representations. tion. The tensor representation, denoted
Hence, it can be concluded that an equivariant graph net- as r?tl Q- - .®r§tn, has a shape of R3™ ,
work can approximate all the equivariant polynomials with  where T, = >, ;.

the highest degree D, as long as its irreducible representation is D-spanning. Here, we precisely
recall the definition of D-spanning as follows:

Definition 1. (D-spanning). For D € N, let Ffeqr be a subset of Cq(R3*N W;\éat). We say that

Fteat is D-spanning, if there exist f1,- -+ , fx € Ffeat, such that every polynomial R3*N — RN
of degree D which is invariant to translations and equivariant to permutations, can be written as

p(X) = Zle Ay (fu(X)), where Ay, : Weqr — Rare all linear functionals, and A : Wieat = R
are the functions defined by element-wise applications of Ay.

Based on atomic cluster expansion (ACE), the atomic energy function is defined as
Ei(0;) = E; (vi1,1i2, ..., Tin) (13)

We extend the D-spanning function introduced inDym and Maron|(2020) considering the N-bonds
0; in atomic environment, defined as

N

QPO)= Y rrerirerite. o, (14)
Ji,Jj2,--jr=1
where t = (t1,--- ,tx). Then, the polynomial function set Q%
QR = {ro@ ) | lth < D}, (1s)

which is a D-spanning family when K > D, and ¢ denotes a function mapping from the tensor
representation to equivariant features 12, We further build a connection between Q*)(6,) and the
irreducible representations (irreps) used by networks shown in Theorem|[I} A detailed proof of this
relationship is provided in Appendix

Theorem 1. For any D-spanning function Q(I?(Gi) appeared in Q. and for any position P =
(p1,p2,-** ,pk) in tensor representation, where p;, € R3 denotes the element position, if there
exists wy and irreps, such that Qg? (8:)(P) =3, wi™irrepsi™, then we say that the irreducible

representation irreps, represents Qg? (0;), and the set of irreps, forms a D-spanning family.

In Appendix[A.2.2] we provide a detailed proof to show that the irreps outputted by our two-body edge
update block can represent Q(tl) (6;) = ZN r®% where t; < D. Moreover, based on Theorem

Jji=1"ij1 °
and the detailed proof in Appendix we show that the irreps outputted by our polynomial many-
i ; t1ta, o t0)(9.) — SV ®t ®t ®t,
body interaction block can represent Q(t1:t2 )(6;) = D ivier o=t Ty O @ @1,

Therefore, as the output irreps of PACE belong to the D-spanning family with D = v, a single PACE
layer can effectively approximate any polynomial function with the highest degree of D = v.
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Theorem 2. If the input irreps can represent Q) (0;) with ||t||; < v, the proposed polynomial
many-body interaction module can approximate Q142 4)(0,) for any ||t||; < v, where v is the
number of bases in the polynomial MB interaction modules.

4 EXPERIMENTS

We conduct experiments on two molecular dynamics simulation datasets, the revised MD17 (rMD17)
and 3BPA datasets. The proposed PACE is trained using these datasets to predict both the invariant
energy of the entire molecule and the equivariant forces acting on individual atoms. Among our
baselines (Kovacs et al., 20215 (Christensen et al., 2020; Bartok et al., 2010; [Smith et al., [2017;
Gasteiger et al.,[2021; Batzner et al., 2022} |Batatia et al., |2022a; Musaelian et al., 2023} Batatia et al.,
2022b)), NequlP, BOTNet, Allegro and MACE are all equivariant graph neural networks (GNNs) with
rotation order £ > 1. In particular, BOTNet, Allegro, and MACE incorporate many-body interactions,
while ACE is a parameterized physical model that does not belong to the class of neural networks.
Our experiments are implemented with PyTorch 1.11.0 (Paszke et al., [2019), PyTorch Geometric
2.1.0 (Fey and Lenssen, |2019)), and e3nn (Geiger and Smidt, 2022). In experiments, we train models
on a single 11GB Nvidia GeForce RTX 2080Ti GPU and Intel Xeon Gold 6248 CPU.

4.1 THE RMD17 DATASET

Dataset. The rtMD17 (Christensen and Von Lilienfeld, [2020)) is a benchmark dataset that comprises
ten small organic molecular systems. Each molecule in the dataset is accompanied by 1000 3D struc-
tures, which were generated through meticulously accurate ab initio molecular dynamic simulations
employing density functional theory (DFT). These structures capture the diverse conformational
space of the molecules and are valuable for studying their quantum properties.

Setup. In our experiments, we use officially provided random splits. Next, we use the same splitting
seed as MACE to further divide the training set into a training set comprising 950 structures and a
validation set comprising 50 structures. Then, we perform our evaluations on the test set with 1000
structures. Training details are provided in Appendix [C]

Results. Table [2[ summarizes the performance of our proposed method in comparison to baselines on
all ten molecules in the rMD17 dataset. Mean absolute errors (MAE) are employed as the evaluation
metric for both energy and force predictions. It is worth noting that our PACE demonstrates state-
of-art performance in energy prediction across all molecules. Specifically, we achieved significant
improvements of 33.3%, 33.3% and 25.0% on Benzene, Toluene, and Ethanol, respectively. In terms
of force prediction, PACE achieves state-of-the-art performance on eight out of the ten molecules,
exhibiting substantial improvements of 20.0% on Toluene and 11.5% on Azobenzene, respectively.
Besides, we attain the second-best on the other two molecules.

4.2 THE 3BPA DATASET

Dataset. The 3BPA dataset (Kovacs et al., 2021) is also generated through molecular dynamic
simulations employing Density Functional Theory (DFT). Unlike rtMD17, this dataset is specifically
focused on a single flexible molecule, namely the 3BPA molecule. 3BPA is characterized by three
freely rotating angles, which primarily induce structural changes at varying temperatures. As a result,
3BPA is frequently employed to assess the generalization capability of methods when confronted
with out-of-distribution test sets.

Setup. Our model is trained using a training set consisting of 450 structures and a validation set
comprising 50 structures. Both the training and validation sets were sampled at 300K. Then, the
performance of the model was assessed on three distinct test sets that are sampled at three different
temperatures: 300K, 600K, and 1200K. We provide training details in Appendix

Results. Table[3|summarizes the performance of our proposed method in the 3BPA dataset. Here, root-
mean-square error (RMSE) is used as the evaluation metric. The proposed PACE shows comparable
performance to MACE, while outperforming other baseline methods significantly.
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Table 2: Performance on the rMD17 dataset. Mean absolute errors (MAE) are reported for both
energy (E) and force (F) predictions, with meV and meV/A as units, respectively. Bold numbers
highlight the best performance.

ACE FCHL GAP ANI GemNet(T/Q) NequlP BOTNet Allegro MACE Ours

s E 61 62 177 166 - 23 23 23 22 18
spirn F 179 209 449 406 95 8.2 8.3 73 66 6.0
Azobenzene E 36 28 85 159 - 0.7 0.7 12 12 06
F 109 108 245 354 - 29 33 26 30 23

Benzene E 004 035 075 33 - 0.04 0.03 0.4 04 0.02
F 05 26 60 100 0.5 0.3 0.3 0.2 03 02

Ethanol E 12 09 35 25 - 0.4 04 0.4 04 03
F 73 62 181 134 36 2.8 32 2.1 21 20

E 17 15 48 46 - 0.8 0.8 0.6 08 0.6

Malonaldehyde 1" 193 264 245 6.6 5.1 58 36 41 39
Neohthalene B 09 12 38 113 - 0.9 0.2 0.2 05 02
P F 51 65 165 292 1.9 13 1.8 0.9 1.6 09
Paracetamol E 40 29 85 115 - 1.4 1.3 15 13 10
aracetamo F 127 123 289 304 - 5.9 5.8 4.9 48 44
Salivicacia E 18 18 56 92 - 0.7 0.8 0.9 09 05
yle act F 93 95 247 297 53 4.0 3.1 43 29 29
Toluene E 11 17 40 77 - 03 0.3 0.4 05 02
F 65 88 178 243 22 1.6 1.9 1.8 15 12

Uracil E L1 06 30 51 - 0.4 04 0.6 05 03
! F 66 42 176 214 38 3.1 32 1.8 21 20

Table 3: Performance on the 3BPA dataset. Root-mean-square errors (RMSE) are reported for both
energy (E) and force (F) predictions, with meV and meV/A as units, respectively. Standard deviations
are calculated over three runs with different seeds. Bold numbers highlight the best performance.

ACE NequlP BOTNet Allegro MACE Ours

sok E L1 328(012)  31(0.43) 384(010) 30(02) 25(0.2)
F 271 10.77(028) 11.0(0.14) 12.98(0.20) 8.8(0.3) 9.1(0.1)
cok E 240 1L16(017) 11.5(06) 1207(055) 97(05) 96 (0.D)
F 643 2637(0.11) 267(0.29) 29.11(0.27) 21.8(0.6) 22.1(0.1)
ook E 833 3852(200) 39.1(L1) 4257(1.79) 298(10) 29.0(0.7)
F 1870 76.18(1.36) 81.1(1.5) 82.96(2.17) 62.0(0.7) 61.6(0.3)

4.3 MORE EMPIRICAL ANALYSES

In addition to rMD17 and 3BPA datasets, we also perform experiments on another molecular dataset,
AcAc, and show results in Appendix [D-1} To further evaluate the ability of PACE to simulate realistic
molecular dynamics (MD), we conduct MD simulations and analyze MD trajectories generated
by the trained PACE model. Details and results are presented in Appendix [D.2] Moreover, we
perform an ablation study to analyze the effectiveness of the polynomial many-body interaction
module, which is the key component of PACE. Settings and results are described in Appendix [D.3]
Furthermore, we provide a comparison of algorithm efficiency between our PACE and baseline

methods in Appendix

5 CONCLUSION

In this work, we introduced PACE, a new equivariant network for atomic potential and force field
predictions. PACE has been meticulously designed to consider many-body interactions based on
the principles of the Atomic Cluster Expansion (ACE) mechanism. The message passing scheme
employed in PACE is unique in its sound physical foundations and its capability to approximate any
equivariant polynomial functions with constrained degree. The comprehensive experimental results
and detailed analyses, encompassing energy and force predictions as well as Molecular Dynamics
simulations, provide compelling evidence for the efficacy of the proposed PACE model, which is
further supported by our comprehensive theoretical analysis.
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A THEORETICAL PROOF

A.1 PROOF OF THEOREMIII

Proof. Since QX is a D-spanning family, then there exists f,- -+ , fx € Qg? with ||t]|; < D, that
each polynomial function p with the highest degree no more than D can be represented as the linear
combination with linear pooling function Ay on them

Zwk x Ay (fr) = Z’wkl\k Q(tk)( 0:)) (16)
_ZwkZWPQ(tk) ( ) (17)

where P = (p1,p2,- -+ ,pK) is the position of the entry, and W} is the corresponding weight.
Since Q%) (0,)(P) = 3, wi™irrepsi™, the p can be represented as
Z W Z Wp Z w1 b, Plrreps1 St P = Z W Z wfet"k’ Plrreps1 P (18)
ImP

where the irreps; t,p Can be obtained by various channels and w{fgj p= w{’}}k pW5. Therefore,

the set of irreps; 18 D- spanning. O

A.2 PROOF OF D-SPANNING IRREPS IN PACE
A.2.1 LEMMAS

Lemma 1. Ifirreps, can represent Q% (6;), irrepsy can represent Q*2(0;) and their tensor product
output irrepss can represent Q(t1:42)(8,).

Proof. After two-body edge update module and the atomic base update modules, Q% = Zjl r?}tl
for tensor representation format, and the value at position P; = (p11,- - , ;1) can be represented by
linear combination of the elements in irreps,, shown as
Q" () Z wir ™ irreps{ ™ (19)
llml

When the tensor product of irreps; and irreps, is irrepss, the representation of irreps is denoted as

INCY:
irrepsy? (1 f2)ms — E Cf™s,  irrepst ™ irreps ™ (20)

Limy,Lama
mimsz

When the Q%2 (P,) can be linear combination of elements in irreps,, then

QU Py, Py) = (3wl inrepstt™ (Y e inrepst ™)

Limq Lama

= Z wit™ w2 2irreps, irreps, (21

Zl ma fg mao
Then when the linear combination of the irreps; is shown as

Ql(tl’tz)(Pl,Pg) _ Z [3([1,fz)malrrepszd(él,fzﬁns
£3(€1 ,Zz)’rng

2 : l3(£1, z :
— w33( 1 2)7713 Oégmg, lrrepsélmllrrepsegmz

Zlml ezmz
£3(£1,€2)m3 Limilama

= Z irrepst! ™ irrepsy? ™2 Z Cloma om0

Limy,Lama
Limilama l3(01,02)ms
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l3(£1,0
3(€1,€2)m3 l3ms élmlwégmz’ we have

When wy = Zzlml,ezm Czlml,ezmzwl

§ l3msg £3(£1,£2)m3
Cfl'n’h ,ZQ mo w?)

Limy,lama

. l3ms l3ms Limy ) Loma
- Z C£1m17Z2m2 Z Cflml,fgmgwl Wy
£imy,Lamao £3(£1,02)m3
_ Limy, Lamo £3ms £3ms
- Z Wy Wa Z (C€1m17€2m2 Cfﬂm,fzmz)
Lymy,Lamo £3(£1,82)m3
= > wpMw™ (23)

Limy,lama

Therefore,

!
(t1,t2) — : Limy s lamo limy  Lomo
Q (P, P) = irreps;' " irreps, wit M w,
l1mq,lamo limq,lamo
= E irreps it ™ irreps 2 M2 w2
Limq,lamso

= Q") (P, Py) (24)

Above all, the irreps, can represent Q(t1:2)( Py, P). O

A.2.2 PROOF OF D-SPANNING IRREPS FOR TWO-BODY EDGE UPDATE MODULE

Proof. With edge features in r?fl with ||t1]|1 < v, then the features after summation over the

neighbors is denoted as Q% 0;) => j r‘?}tl. With spherical harmonics with suitable Ly, it can
achieve ||t1]| = v. O

A.2.3 PROOF OF THEOREM[Z]

Consider the two body edge update module, the path can be represented as (2] = (¢1, {2, Ls), we
have irreps; and irreps, to represent Q** (P;) and Q*2(P,) with ||t1]]1 < v, [[t2]|1 < v, respectively.
Then with Lemma |1} the output irreps can represent Qt1t2) (P, Py). Note that there might be multi-
ple channels for the same rotation order Lo, and we use Lo ({1, ¢3) to distinguish them. Meanwhile,
the weighted sum over these equivariant irreducible representations can also achieve representativity.

For the path n[v] = ({1, 2, Lo, -+ , £y, Ly), the irreps, , ;) can represent Qt1-t2tu-1) and the
irreps, can represent Q.
. L' M, ; . L _ My_1. \
irreps; " = Z C’fff;\/h_hlvmvlrtepsl L rrepshe ™, (25)
My 1My

where L), = L, (n[v —1],¢,) and L|,_; = L,_1(n[v — 2], ¢,_1). Then, in this case, we extend the
proof of Lemma|T|and prove the

, L' M, . L' M
Q(thtz,tu)(Pl’P%...Pv) = E wy ¥ Virrepsy "

L;mg
L/ Mv [37)73 : Li;—lM’U' E,m
= wy™” E C "Ny 0y, ITTEPS] irreps,” """
Ly M, Ll My, bymy,
. Ly 1My, Lym L,y M, L) M,
= E irreps; irrepss” " E My, W3 (26)
L) _  Mylym, L' M,
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L;Mv Ly M, L;;—1Mv—1 Loy
Then we take w; = D by lams CL;,IMU_l,EUmle Wy

dure to Equation 24] we can derive that

, and with similar proce-

Ql(tl,tg,‘..,tv)(php% Py

L My_ 1. L' _ .M, .
_ Z w, v—1 11rrepslv 1 wg“m“wrepsg”m”
L MyLymy
t1,t2, by ty,
_ Q( b2, 1)(P1,P27 Py 1)@ (Py) 27)

Above all, the output of equivariant base can represent Q(t1:t2 %) (8,) with ||t; ||, < v,Vj € [v].
Since it can select any (tq,ta,- - ,t,) within ||(t1,t2,- - ,t,)||1 < v, the constructed D-spanning
family QP with K = v and D = v. Then, the set of the output equivariant features is also a
D-spanning family with D = v.

A.2.4 PROOF OF D-SPANNING IRREPS FOR POLYNOMIAL MB INTERACTION MODULE

Proof. From proof each input A; can represent Q®(6;)(P). Then when first channel irreps
represent Q*(6;)(P;), and second channel irreps represent Q*(8;)(P,), with self-interaction layer
before each atomic basis, A;, can select different channels of the input A ;. From Theorem the
output of polynomial MB module can represent Q(t1:t2tv) (6;) which then construct D-spanning
family Q£ with D = K = v. Therefore, the output irreps from the proposed polynomial MB
interaction module can build the D-spanning family. O

A.2.5 MACE

For the MACE layer, it is built related to the channel coupling relationship discussed in the section
of BOTNet (Batatia et al| [20224), and tensor decomposition module discussed in (Darby et all,
[2023). Next, we try to analyze the MACE layer considering the capacity of the output irreducible
representation to span D-spanning family.

Consider the case of using tensor representations and input basis A; satisfies the condition in
Theorem denoted as Qg) (0,)(P1) = 3, wi™irrepsi™. Note that the irreps, contains single
channel for various rotation orders. We first apply similar analysis to the many-body interaction
module in MACE named tensor decomposition schema (Darby et al.} [2023)). In this module, the same
irreducible representations is applied when conducting tensor product over the path. In this module,
the same irreps are used in many-body interactions. With similar proof shown in Lemmal[T] the output
feature in this case can represent Q(*1:41)(8,)(Py, P;) instead of Q(t1:¢2)(8,)(Py, P,). That’s to say,
MACE layer does not satisfy the necessary condition that the output irreps can represent D-spanning
family Q(t1:%2)(8,)(Py, P,). As a result, we can not conclude that MACE layer can approximate the
equivariant functions with proposed analysis tools.

Furthermore, we consider the ability of MACE layer for approximating the equivariant polynomial
functions by approximate the output irreducible representations with an architecture that has already
been proved to ensure the capability of approximating equivariant polynomial functions. As proved
in [Darby et al] (2023)), the approximation error incurred in compressed least-square regression
are expected to decay with \/%, where K is the number of channels. That’s to say, the tensor
decomposed product basis in MACE layer can always recover tensor sketched basis with infinite
number of channels. Meanwhile, tensor sketched basis is the same operation used in the many-body
module in PACE layer. In conclusion, with infinity number of channels, MACE layer can recover
same ability compared to PACE layer to approximate the equivariant polynomial function PZ (C).

A.2.6 NEQUIP

For the NequlP, the output irreducible representation from a single layer can represent Q% (6;) =
; r?}tl. Since Q*1(0;) = ; rf’;tl can build the D-spanning family D with K = 1. Therefore,
with D < K, it can achieve D = 1 for a single layer.
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A.2.7 ALLEGRO

Similar to the NequlP, the edge equivariant representation irreps; can represent Q! (6;) = j r?}tl.

. . ®t ®ts | :

Then in the next layer, it can represent Q(t1:2)(9,) = 21 Tiji © ¥y5,” with the Lemma
For the m-th layer, the input irreps can represent Q(t1:t2:tm-1)(9;), with Lemma 1} the output
representation can represent Q(t1:42::tm)(@,). Therefore, K = N layer fOor D-spanning family Q.

B TENSOR CONTRACTION IN POLYNOMIAL MANY-BODY INTERACTION
MODULE

In Figure [ we illustrate tensor contraction which is originally proposed in (Batatia et al| [2022b)
using an example, in which the max correlation order vy, .y is 3, the output LM is L3 M3, and the
number of hidden channels is only 1 for easier illustration. Each generalized CG matrix corresponds
to one path n = (¢1,¢3, Lo, - ,¢,, L,) with L1 = {1, and each path is associated with a scalar
weight. Note that more hidden channels introduce a higher dimensional weight vector. A weight
contraction followed by a feature contraction leads to efficient computation.

C EXPERIMENT DETAILS

Data and splits of rMD17 dataset are downloaded from https://figshare.com/articles/
dataset/Revised MD17_dataset_rMD17_/12672038. The unit of energy is converted
from kcal/mol to meV. 3BPA dataset is downloaded from https://github.com/davkovacs
/BOTNet-datasets/tree/main/dataset_3BPA.

For all molecules in rMD17 and 3BPA, we use 2 GNN layers with 256 hidden channels. The rotation
order of node features is 2. Edges are built for pairwise distances within a radius cutoff. Edge features
are initiated with either Bessel basis functions or Exponential Bernstein radial basis functions. SiLU
is used as nonlinearity. We use a batch size of 5, an initial learning rate of 0.01, and Adam-AMSGrad
optimizer with default paramters of 81 = 0.9, 32 = 0.999, ¢ = 10~8, and without weight decay. The
learning rate is reduced on-plateau scheduler based on the validation loss with a patience of 100 and
a decay factor of 0.8. We also use an exponential moving average with weight 0.99. The weight of
force in loss is 1000 for all molecules, while the weight of energy varies depending on molecules.
Table ] shows our options for molecules in rMD17 dataset. For 3BPA dataset, edges are built using a
radius cutoff of 5 A, and edge features are initiated with 8 Bessel basis functions. The ratio of energy
and force in loss is 15:1000.

Table 4: Model architectural hyperparameters for rMD17.

Aspirin  Azobenzene Benzene  Ethanol  Malonaldehyde Naphthalene Paracetamol —Salicyclic acid Toluene  Uracil

Edge embedding  Bessel Bessel Bessel  EBRadial EBRadial Bessel Bessel Bessel Bessel  Bessel
# of basis 8 8 8 16 20 8 8 4 8 8
Radius (A) 5 5 5 5 6 5 5 5 5 6
Energy weight 21 9 9 9 9 5 9 9 9 9

D RESULTS OF MORE EMPIRICAL ANALYSES

D.1 THE ACAC DATASET

The AcAc dataset (Batatia et al},[20224d) is also generated through molecular dynamic simulation
using Density Functional Theory (DFT). Similar to 3BPA, this dataset specifically focuses on a single
molecule, Acetylacetone. We follow MACE to train our model using a training set comprising of
450 structures and a validation set comprising of 50 structures. Both the training and validation sets
were sampled at 300K, while two test datasets were sampled at two different temperatures: 300K and
600K. The experimental results in Table[5]show that our proposed PACE achieves state-of-the-art
results on this AcAc dataset.
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Figure 4: Illustration of tensor contraction in the polynomial many-body interaction module. In this
figure, it demonstrates an example of 4-body interactions with v = 3 and final Ly = 0, M35 = 0.
Note that the contract weights operation learns weighted summation over all paths n[v], where
n[v] = (€17€27 L27 T 7£’U7 L’U)

D.2 MOLECULAR DYNAMIC SIMULATION

To further assess the ability of PACE to simulate realistic structures and dynamics, we conduct
Molecular Dynamics (MD) simulations using PACE. These simulations are implemented with the
Langevin dynamics provided by the ASE library and are applied to three molecules: Aspirin, Ethanol,
and 3BPA. We randomly select an initial structure from the testing set to generate MD trajectories
with PACE. Correspondingly, we extract the ground truth MD trajectory, starting from the same
initial structure, from the testing set. The radial distribution functions (RDFs) of the ground truth MD
trajectories and PACE-generated MD trajectories are visualized in Figure 5} Additionally, to compare
the MD trajectories generated by PACE with those from our baseline MACE, we compute Wright’s
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Table 5: Performance on the AcAc dataset. Root-mean-square errors (RMSE) are reported for both

energy (E) and force (F) predictions, with meV and meV/A as units, respectively. Standard deviations
are calculated over three runs with different seeds. Bold numbers highlight the best performance.

BOTNet NequlP MACE Ours

300K E 0.89(0.0) 0.81(0.04) 0.9(0.03) 0.81(0.05)
F 63(0.0) 590(0.38) 5.1(0.1) 4.8 (0.3)
g0k E 62(LD)  604(126) 46(03)  4.3(0.3)
F 29.8(1.0) 27.8(3.29) 22.4(0.9) 21.2(0.7)
Radial Distribution Function Radial Distribution Function
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Figure 5: Illustration of radial distribution functions of MD trajectories. Values are averaged over
five MD simulations for 1000 timesteps with five initial molecular structures.

Factor (WF) (Grimley et al} [T990), which is defined as

Z? (Tg (ri) — Trey (7'1'))2
2 (Trep(ri))® 7

where T' denotes the radial distribution function and n denotes the total number of bins. Results
presented in Table || are calculated using distance 7 ranging from O to 10 A and bin size of 0.05
A. Here, WF quantitatively measures the difference between the RDFs of the ground truth and the
generated MD trajectories. The results of the MD simulations further affirm that our PACE model not

only achieves state-of-the-art (SOTA) performance in force field prediction but also holds practical
value in realistic simulations.

Ry = (28)

D.3 ABLATION STUDY

The first ablation study is for demonstrating the effectiveness of additional self-interaction operations
introduced in our polynomial many-body interaction module. In this experiment, we removed addi-
tional self-interaction operations to map different atomic bases and used the same hyperparameters
for model and training. The comparison shown in Table [7]justifies the effectiveness of the polynomial
many-body interaction module in PACE.
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Table 6: Performance of MD simulation. Wright’s Factor (WF) is reported in %. Values are averaged
over five MD simulations for 1000 timesteps with five initial molecular structures. Bold numbers
highlight the best performance.

MACE  Ours
Aspirin 7.15 6.88
Ethanol 19.16  18.86

3BPA 300K 2.14 1.98
3BPA 600K 3.01 3.00
3BPA 1200K  2.68 2.40

Table 7: The ablation experiments for self-interaction introduced in the polynomial many-body
interaction module. Compared to PACE, PACE (-SI) uses no additional self-interaction. Note that
both experiments share the same hyperparameters. Mean absolute errors (MAE) are reported for both
energy (E) and force (F) predictions, with meV and meV/ A as units, respectively. Bold numbers
highlight the best performance.

PACE (-SI) PACE

E 0.4 0.3

Ethanol . 23 2.0
E 0.2 0.2

Toluene 1.4 1.2
- E 0.3 0.3
Uracil - p 23 2.0

The second ablation study is for examing how degree v in our polynomial many-body interaction
module affects the prediction error and cost. In this experiment, we use the Ethanol dataset, and we
use the same hyperparameters except the degree v for fair comparison. Table [§]shows that higher
degree archives lower prediction errors while consuming longer training time and more memory. Due
to the tradeoff between error and cost, v = 3 is used in our PACE across all datasets.

D.4 ALGORITHM EFFICIENCY

Table 9] presents a comparative analysis of training time and memory consumption between our
proposed PACE method and the baseline methods. Results are reported in seconds per epoch and MB
as units. A consistent batch size of 5 is used for each method, with average times calculated over 10
epochs, where validation occurs once every 2 epochs. In these experiments, Allegro is configured
with 5 layers and a rotation order of 3, and NequlP with 3 layers and a rotation order of 3. Both
MACE and PACE are configured with 2 layers and a rotation order of 2. The results indicate that the
proposed PACE achieves universality and superior performance with advantageous computational
cost.
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Table 8: The ablation experiments for degree v in the polynomial many-body interaction module.
Mean absolute errors (MAE) are reported for both energy (E) and force (F) predictions, with meV and
meV/ A as units, respectively. The units for training time and memory consumption are sec/epoch
and MD, respectively. Bold numbers highlight the best performance.

v=1 v=2 wv=3 v=4

E 1.1 0.3 0.3 -
F 6.5 23 2.0 -
Training time 21 25 27 -
Memory 1583 1653 2283 OOM

Table 9: Training time and memory consumption, with sec/epoch and MB as units, respectively.
NequlP Allegro MACE Ours

Paracetamol Training time 130 50.3 28 34.5
Memory 3511 10211 4334 5080

Toluene Training time 110 358 22 25
Memory 3507 3595 3386 3838
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