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Abstract

Model customization necessitates high-quality and diverse datasets, but acquiring
such data remains time-consuming and labor-intensive. Despite the great potential
of large language models (LLMs) for data synthesis, current approaches are con-
strained by limited seed data, model biases, and low-variation prompts, resulting in
limited diversity and biased distributions with the increase of data scales. To tackle
this challenge, we introduce TREESYNTH, a tree-guided subspace-based data syn-
thesis approach inspired by decision trees. It constructs a spatial partitioning tree
to recursively divide a task-specific full data space (i.e., root node) into numer-
ous atomic subspaces (i.e., leaf nodes) with mutually exclusive and exhaustive
attributes to ensure both distinctiveness and comprehensiveness before synthesizing
samples within each atomic subspace. This globally dividing-and-synthesizing
method finally collects subspace samples into a comprehensive dataset, effectively
circumventing repetition and space collapse to ensure the diversity of large-scale
data synthesis. Furthermore, the spatial partitioning tree enables sample allocation
into atomic subspaces, allowing the rebalancing of existing datasets for more bal-
anced and comprehensive distributions. Empirically, extensive experiments across
diverse benchmarks consistently demonstrate the superior data diversity, model
performance, and robust scalability of TREESYNTH compared to both human-
crafted datasets and peer data synthesis methods, with an average performance gain
reaching 10%. Besides, the consistent improvements of TREESYNTH-balanced
datasets highlight its efficacious application to redistribute existing datasets for
more comprehensive coverage and the induced performance enhancement. The
code is available at https://github.com/cpa2001/TreeSynth.

1 Introduction

With the superior performance, large language models (LLMs), such as OpenAI o1 [1], LLaMA-
3 [2], and DeepSeek R1 [3], have been deployed for various downstream applications, including
code copilot [4], mathematical reasoning [5], psychology [6], etc. The success of these models
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(a) Temperature Sampling (b) Evol-Instruct (c) TREESYNTH

Figure 1: Intuitive comparison of Temperature Sampling, Evol-Instruct, and TREESYNTH. Tem-
perature Sampling typically generates a specific data distribution induced by model biases, while
Evol-Instruct evolves seed data along specified directions. In contrast, TREESYNTH starts from
a global perspective by dividing the entire data space into mutually exclusive and complementary
subspaces before sampling from each subspace, resulting in a more balanced and diverse dataset with
comprehensive coverage.

largely depends on the availability of large-scale diverse training datasets. However, open-access
data are typically drying up [7, 8], and manual data curation is both time-consuming and labor-
intensive [9, 10], hindering its availability. This necessitates a novel approach to continuously
generate data that supports the ongoing advancement of LLMs across different domains.

To customize LLMs and further enhance their specific capabilities, synthesizing domain-specific data
using their remarkable abilities emerges as a promising solution [11, 12]. Pioneering approaches
typically paraphrase current datasets [9, 13], or prompt existing LLMs to reproduce their training
data [14, 15]. However, due to the inherent model biases and minimal-variation prompts, the generated
data often suffers repetition and homogeneity. To remedy this, increasing sampling temperature [16]
increases data diversity yet reduces quality. In contrast, attribute-driven approaches (e.g., Persona
Hub [17]) utilize the in-context learning capabilities of LLMs to offer increased diversity and
improved quality simultanously. Alternatively, evolving new data from existing datasets, represented
by Evol-Instruct [18]), augment existing data along different directions to induce diverse generation.
More details about the related works are provided in Appendix. 5. However, as shown in Figure 1,
from the perspective of data space, these methods typically start from the local distribution (i.e., model
biases, seed data, or low-variation prompts) without the global view, hindering their comprehensive
coverage. This raises the following question:

“Is there an automatic solution that starts from a global perspective to fully cover the domain-specific
data space for higher diversity?”

To achieve this objective, we introduce TREESYNTH, a tree-guided subspace-based data synthesis
approach inspired by decision trees [19]. It consists of two key stages: data space partitioning
and subspace data synthesis. During the former phase, as illustrated in Figure 2, TREESYNTH
employs a spatial partitioning tree to recursively divide a task-specific whole data space (i.e., root
node defined by textual descriptions) into numerous atomic subspaces (i.e., leaf nodes). These
subspaces are characterized by mutually exclusive and exhaustive attribute values to ensure both
distinctiveness and diversity. In the subsequent subspace data synthesis phase, samples are generated
within each subspace separately, before collecting them as a diverse and comprehensive dataset.
By employing this globally divide-and-synthesize methodology, TREESYNTH effectively prevents
repetition and space collapse to ensure the diversity and completeness of large-scale data synthesis,
successfully avoiding the drawbacks of previous methods. Additionally, the spatial partitioning tree
enables the allocation of samples into atomic subspaces, thereby allowing the re-balancing of existing
datasets for more balanced and comprehensive distributions. Extensive experiments with both open-
source and closed-source models across diverse benchmarks, spanning mathematical reasoning, code
generation and psychology, demonstrate that TREESYNTH consistently achieves the best downstream
performance with superior data diversity compared to both human-crafted datasets and peer data
synthesis methods, with the average performance enhancement reaching 10%, underscoring its great
effectiveness and generalization. Besides, the linear (or even better) performance growth trajectories
with increased data volume highlight TREESYNTH’s remarkable robustness and scalability for large-
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scale data synthesis. Furthermore, the improved results achieved by applying TREESYNTH to the
synthetic datasets demonstrate its efficacious application to redistribute existing datasets for more
comprehensive coverage and the induced performance enhancement.

The main contributions are summarized as follows:

• We propose TREESYNTH, a tree-guided subspace-based data synthesis approach, which
features mutually exclusive and exhaustive subspace partitioning, effectively circumventing
repetition and space collapse to ensure the diversity of large-scale data synthesis.

• Extensive experiments consistently highlight TREESYNTH’s superior data diversity, model
performance and robust scalability over human-crafted datasets and peer synthesis methods.

• The sample allocation of TREESYNTH allows re-balancing existing datasets for more com-
prehensive coverage, leading to empirically verified downstream performance enhancement.

𝑙 SAMPLES

A fruit seller has 250 apples and sells them in bags of 5. If he sells 30 bags of apples, how many apples does he have left? 
Emily is reading a book that has 240 pages. She reads 20 pages every day. After reading for 8 days, how many pages does she still have left to read?

… 
In a school, there are 3 classes with 24 students each and 2 classes with 28 students each. How many students are there in total in the school?

Criterion 1
Type of Mathematical Operation

Attribute 1
subtraction

Attribute m
square root

Attribute n
modulus…… ……

𝑙 SAMPLES 𝑙 SAMPLES 𝑙 SAMPLES 𝑙 SAMPLES

A meteorology station measured 278 millimeters of rainfall in April and 349 millimeters in May. What was the total rainfall recorded over these two months?
Emily has 50 stickers. She buys a pack of 30 more stickers and gives 15 stickers to her friend. How many stickers does Emily have now?

… 
There are 60 seats in a theater. If 25 people are already seated and 18 more people enter, how many seats are occupied now?

Criterion 1
Type of Mathematical Operation

Attribute 2
addition

Criterion 2
Entity Type

Attribute 1
fruits

Attribute 2
animals

Attribute n
money…… ……

A cookie factory produced 425 cookies on Monday and 375 cookies on Tuesday. How many cookies were produced across the two days?
The cafeteria baked 96 cookies for Monday breakfast and another 84 cookies for Tuesday breakfast. How many cookies were baked across the two mornings?

…
Peter had 19 cookies and ate 5 of them. His dad then gave him 8 more cookies. How many cookies does Peter have in total?

Criterion 1
Type of Mathematical Operation

Attribute 2
addition

Criterion 2
Entity Type
Attribute m

cookies

Criterion 3
Final Action

𝑙 SAMPLES 𝑙 SAMPLES 𝑙 SAMPLES 𝑙 SAMPLES

Attribute 1
gave away

Attribute 2
ate

Attribute n
shared…… ……

Emily prepared some cookies for a school event. Customers bought 60 cookies in the morning and 80 cookies in the afternoon. How many cookies were bought in total?
    Sam baked some cookies for the community event. His neighbors bought 40 cookies, and his friends bought 50 cookies. How many cookies were bought altogether?

…
    At a weekend tech-conference café, attendees bought 12 cookies in the first session and 8 more cookies than the previous session in each of the next four 

sessions. How many cookies were bought overall?

𝑙 SAMPLES 𝑙 SAMPLES 𝑙 SAMPLES 𝑙 SAMPLES

Attribute m
cookies

Description of the GSM8K dataset

Attribute 2
addition

Attribute m
bought

Criterion Determination Subspace Coverage

Figure 2: A spatial partitioning tree visualization of TREESYNTH, exemplified through GSM8K-style
data synthesis.
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2 Preliminary Knowledge
As a canonical machine learning algorithm, decision trees [19] are widely recognized for their
simplicity, efficiency, and strong interpretability. For any given sample, the decision tree recursively
allocates it to deeper nodes within the hierarchical structure, until it reaches one and only one leaf
node. This functionality relies on two essential characteristics: (1) All leaf nodes of any sub-tree
starting from the root node are mutually complementary, ensuring every sample can be allocated to at
least one leaf node. (2) All leaf nodes of such a sub-tree maintain mutual exclusivity, guaranteeing
each sample can be assigned to at most one leaf node.

From a spatial perspective, the root node represents the entire sample space. As the tree delves deeper
with each layer of nodes, the space is exhaustively and exclusively divided into multiple subspaces
(i.e., child nodes). Hence, for any given task, we can conceptualize its training data as the entire space
(i.e., root node), allowing to establish a mapping between the nodes of decision tree and the training
data subspaces. In detail, the decision tree partitions the entire training data space into multiple leaf
nodes, with each leaf node corresponding to a data subspace with specific attributes.

This inspires us to leverage the subspace partitioning of decision trees for data synthesis, offering
two notable advantages: (1) Diversity: The exclusivity of leaf nodes ensures the variation across
different subspaces, thereby guaranteeing samples diversity. (2) Comprehensive Coverage: The
complementarity and exhaustiveness of leaf nodes ensures the sampling of comprehensive data,
preventing sample collapse.

3 Method
Inspired by the mapping between a decision tree and data space, we propose TREESYNTH, a tree-
guided subspace-based data synthesis approach. It consists of two primary stages: data space
partitioning and subspace data synthesis. The first stage generates a spatial partitioning tree T ,
analogous to the construction of a decision tree, while the second synthesizes data within each atomic
subspaces (i.e., leaf node). Beyond data synthesis, we also elaborate how TREESYNTH can re-balance
existing datasets, facilitating more comprehensive coverage and induced performance improvement.

3.1 Data Space Partitioning

Given any data space S (i.e., any node in the tree) with its context description CS , data space
partitioning aims to decompose it into multiple subspaces Ssub = {si∣i = 1,2, ..., n}. As shown in
Figure 3a, the partitioning process mirrors the construction of decision trees, and comprises two
critical steps: Criterion Determination and Subspace Coverage. These steps ensure the mutual
exclusivity (i.e., ∀p ≠ q, sp ∩ sq = ∅) and exhaustiveness (i.e., ⋃n

i=1 si = S) among subspaces,
respectively. This suggests that each subspace is disjoint, and collectively, they fully encompass the
original space.

Criterion Determination. The essence of this step lies in selecting a criterion δ that most effectively
differentiates data within the space S so that most data characteristics can be captured with minimal
criteria. Specifically, according to the space description CS (e.g., "GSM8K-style mathematical
questions" as shown in Figure 2), an LLM is firstly deployed to generate l maximally diverse
pivot samples X = {xt∣t = 1,2, ..., l} to approximate the whole space S. Subsequently, another
off-the-shelf LLM, instructed to proficiently identify inter-sample distinctions, determines exactly
one core criterion δ (e.g., Type of Mathematical Operation). This criterion δ optimally partitions X
into mutually exclusive attribute values V δ

X = {v
δ
j ∣j = 1,2, ...,m} (e.g., addition and subtraction),

categorizing each sample xt ∈ X into exactly one attribute value to ensure mutual exclusivity across
child nodes.

Subspace Coverage. Despite the existing attribute values V δ
X , the mutually exclusive subspace SδX ,

derived from partitioning X with these values, may not exhaustively cover the original space S due to
a limited number l of pivot samples. This imposes the risk of non-complementarity among the child
nodes. Hence, subspace coverage is designed to supplement potential attribute values of criterion δ
to comprehensively model the entire data space S. Specifically, we instruct an LLM to expand the
attribute values V δ

X to V δ
S = {v

δ
i ∣i = 1,2, ...,m,m + 1, ..., n} (e.g., additionally including square root

and modulus). The expanded attribute values V δ
S must be non-overlapping and fully cover the criterion

δ. Consequently, the exhaustive and exclusive subspaces Ssub = {si ∣ i = 1,2, . . . ,m,m + 1, . . . , n}
can be generated by si = CS ∩ vδi for each i, completely filling the data space S .
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Subspace Coverage

(a) Tree Perspective (b) Spatial Perspective

Figure 3: Illustration of TREESYNTH. (a) Data space partitioning iterates criterion determination
and subspace coverage. The former identifies the criteria (e.g., α, β, γ) and their associated attribute
values (e.g., vα1 , vα2 , vβ1 , vβ2 , vγ1 , vγ2 ) to divide current nodes (e.g., entire space O, A1, A2, A..., B1,
B2) until reaching the leaf nodes (e.g., atomic subspaces C1, C2, ...), while the latter complements
potential attribute values (e.g., vα...) to ensure exhaustive coverage of the entire data space. (b) The
spatial visualization depicts the mapping between tree nodes and data subspaces, highlighting the
mutually exclusiveness and exhaustiveness of the subspaces.
However, not all criteria can be exhaustively enumerated. For example, if a criterion standard is
numerical values of mathematical questions, it contains infinite attribute values (e.g., 0, 1, 2, 3 ...). In
such cases, we set a maximum number of attribute values N . Once the number of attribute values n
exceeds N , we refrain from setting individual sub-nodes for each attribute value, and instead establish
an infinite node encompassing potential attribute values. Whenever needed, one attribute value is
randomly sampled from all potential candidates. This effectively prevents the generation of numerous
trivial child nodes, thereby reducing the redundancy of the tree.

Spatial Partitioning Workflow. Recursively, we apply both criterion determination and subspace
coverage steps to construct a complete spatial partitioning tree. As illustrated in Figure 2 and 3,
starting from the entire data space O (i.e., root node NRoot) represented by training data description
CO, we first perform criterion determination on O to identify the optimal criterion α that most
effectively distinguishes data within the space O. Through subsequent subspace coverage, O is
partitioned into mutually exclusive and exhaustive subspaces Osub = {Ak ∣k = 1,2, ...} based on α.
Subsequently, the breadth-first search (BFS) algorithm is applied to each subspace Ak to recursively
execute both steps until reaching the maximal depth d. As shown in Figure 3a, A2 is further
divided into B1 and B2, with B1 subsequently partitioned into the leaf nodes C1 and C2. Finally, a
spatial partitioning tree T is constructed and decomposes O into numerous mutually exclusive and
complementary atomic subspaces O∗Leaf, each corresponding to a leaf nodeN ∗Leaf. We also present the
pseudo code to formularize the whole process in Algorithm 1. The mutual exclusivity of leaf nodes
intrinsically ensures diversity in the synthesized dataset, while their exhaustiveness guarantees
comprehensive coverage of the data space. The dual properties effectively prevents data collapse
observed in previous data synthesis methods.

3.2 Subspace Data Synthesis

The objective of subspace data synthesis stage is to create data within mutually exclusive and
complementary atomic subspaces O∗Leaf defined by spatial partitioning tree T , ultimately producing a
diverse and balanced dataset with comprehensive space coverage. Specifically, for each leaf node
N ∗Leaf, we first compile its description along the hierarchical path from the root node NRoot to
itself. This path can be formally expressed as NRoot → vαi → vβj → ⋅ ⋅ ⋅ → vγk → N

∗
Leaf, where

{vαi , v
β
j , ⋅ ⋅ ⋅, v

γ
k} denotes the individual attribute values of parent nodes along the path. Similar to the

generation of pivot samples, we combine both CO and the attribute value sequence {vαi , v
β
j , ⋅ ⋅ ⋅, v

γ
k}

as the description of O∗Leaf, and instruct an LLM to generate NLeaf samples distributed within its
subspace. As depicted in Figure 1c, by collecting data generated within all the leaf nodes, we obtain
a final dataset with high diversity, balanced distribution, and comprehensive coverage.

3.3 TREESYNTH-Guided Data Balance

Beyond data synthesis, TREESYNTH can also be leveraged to optimize existing datasets for improved
balance and comprehensiveness. Given that TREESYNTH synthesizes data from scratch, a spatial
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partitioning tree TD can be constructed solely based on the context description CD (i.e., full space
OD) of a given dataset D = {du∣u = 1,2, ...,w}. Thanks to the mutually exclusive and exhaustive
partitioning, every sample du can be systematically routed through successive levels of the hierarchy,
ultimately landing in a unique leaf node (i.e., atomic subspace). The distribution of all the samples
across leaf nodes reveals the dataset’s coverage pattern within the full space. To regulate the
distribution across subspaces, a threshold NSub is introduced. Subspaces containing more than NSub
samples are randomly downsampled to reduce overrepresentation, while those with fewer samples are
augmented with TREESYNTH to meet the threshold. The integration of all adjusted samples yields a
new dataset Dbalance with more comprehensive coverage and better balance than the vanilla one.

4 Experiments
4.1 General Setup

Benchmarks. To comprehensively evaluate the advantages of TREESYNTH, we compare it against
several baselines across diverse benchmarks. For data synthesis, we first apply standard mathemat-
ical reasoning and code generation tasks, including GSM8K [20], MATH [21], MBPP [22] and
HumanEval [23], to assess TREESYNTH’s data diversity, model performance improvement, and scala-
bility. Besides, we employ SimpleToM [24], a psychological task, to further examine TREESYNTH’s
effectiveness in promoting data balance. More details are elaborated in Section A.2.

Base Models. For generation models to synthesize data with different methods, we employ both open-
source (i.e., LLaMA3.3-70B-Instruct [2] and Qwen2.5-72B-Instruct [25]) and closed-source
(i.e., GPT-4o2) models. To compare the performance of TREESYNTH and baselines, we fine-tune
two popular open-source foundation LLMs (i.e., LLaMA3.1-8B [2] and Qwen2.5-7B [25]) on the
perspective generated data. These models are chosen for their leading performance and popularity.

Baselines. With standard Zero-Shot and Few-Shot performance as reference, we evaluate the
effectiveness of TREESYNTH by comparing it with two categories of baselines. The first category
comprises human-curated datasets (i.e., Vanilla Data): the training sets of GSM8K (7,473 samples)
and MATH (7,500 samples) for mathematical reasoning, and Code Alpaca [26] (2,689 samples3)
for code generation. The second category consists of LLM-synthesized training data, covering three
representative methods: Temperature Sampling [16], seed-driven method (i.e., Evol-Instruct [18]),
and attribute-driven method (i.e., Persona Hub [17]). Each method synthesizes 100k samples in the
styles of GSM8K, MATH, and Code Alpaca, and 40k samples in SimpleToM style. Further details
on the baselines and implementation are provided in Appendix A.3 and A.4, respectively.

4.2 Main Results

(a) GSM8K (b) MATH (c) Code Alpaca

Figure 4: t-SNE visualization of LLaMA3.3-70B-Instruct-synthesized datasets for various methods
across GSM8K, MATH, and Code Alpaca styles.
TREESYNTH exhibits substantially better data diversity and more comprehensive coverage
across various tasks and models than both human-curated datasets and peer synthetic methods.
As shown in Tables 1, 2, and 4, we compare the data diversity of TREESYNTH and peer methods driven
by Qwen2.5-72B-Instruct, LLaMA3.3-70B -Instruct, and GPT-4o, respectively. Temperature
Sampling consistently yields lower diversity than vanilla training datasets. Although Evol-Instruct
and Persona Hub show improvements over vanilla ones in some cases, they generally deteriorate on
MATH benchmark, suggesting their limited robustness. Compared to all the baselines, TREESYNTH

2https://openai.com/index/hello-gpt-4o/
3Only Python-related samples are retained, aligning with HumanEval and MBPP.
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Method GSM8K↑ Diversity↓ MATH↑ Diversity↓ MBPP↑ HumanEval↑ Diversity↓ Avg.↑

Foundation Model: LLAMA-3.1 8B

Zero-Shot 4.85 - 3.54 - 19.8 15.85 - 11.01
Few-Shot 40.26 - 20.46 - - - - -

Vanilla Data 58.15 0.40 19.48 0.16 46.8 43.29 0.29 41.93
Temp. Sampling 55.42 0.44 22.08 0.37 44.6 41.46 0.33 40.89
Evol-Instruct 63.46 0.37 27.26 0.15 40.6 41.46 0.22 43.20
Persona Hub 61.41 0.35 23.78 0.34 45.8 40.24 0.26 42.81
TREESYNTH 69.45 0.36 27.52 0.15 50.2 48.17 0.23 48.84

Foundation Model: QWEN-2.5 7B

Zero-Shot 54.97 - 54.38 - 11.2 54.88 - 43.86
Few-Shot 67.40 - 47.58 - - - - -

Vanilla Data 68.76 0.40 47.68 0.16 53.4 77.44 0.29 61.82
Temp. Sampling 69.67 0.41 61.70 0.37 54.8 76.83 0.33 65.75
Evol-Instruct 75.13 0.37 59.60 0.15 55.8 76.83 0.22 66.84
Persona Hub 82.79 0.35 61.98 0.34 58.8 75.00 0.26 69.64
TREESYNTH 85.44 0.36 63.28 0.15 59.4 78.05 0.23 71.54

Table 1: Model performance and data diversity comparison of various methods with LLaMA3.3-70B-
Instruct-powered data synthesis across two foundation models and multiple benchmarks. “Zero-
Shot” and “Few-Shot” exhibit the base performance of foundation models. “Temp. Sampling” is
abbreviated from “Temperature Sampling”. “Vanilla Data” denotes the original GSM8K and MATH
training sets, and the Code Alpaca Python subset for HumanEval and MBPP. “Diversity” is measured
by cosine similarity, where lower values indicate greater diversity. Bold and underlining indicate the
best and second-best indicators, respectively. “Avg.” means the average of the performance scores
across all the benchmarks.

consistently achieves the best diversity across almost all the benchmarks and generation models.
Notably, the GPT-4o-powered TREESYNTH exhibits diversity enhancements of 12.5%, 25.0%,
and 34.5% over the vanilla GSM8K, MATH, and Code Alpaca datasets, respectively. In addition,
we generate sentence embeddings4 of instructions synthesized by various methods powered by
LLaMA3.3-70B-Instruct, and visualize their distributions via t-SNE method [27] in Figure 4.
Apparently, Temperature Sampling and Persona Hub exhibit concentrated distributions in limited
subspaces, revealing severe diversity constraints stemming from inherent biases. Evol-Instruct’s
distributions mirror those of vanilla datasets, demonstrating strong dependence on source data.
In contrast, TREESYNTH, strategically partitioning the full space from a global perspective and
synthesizing data within subspaces, eliminates inherent model biases and transcends source data
limitations. Briefly, both the observation on diversity indicators and visualization confirm the efficacy
of TREESYNTH in producing diverse and comprehensive datasets across various domains and models,
effectively alleviating inherent model biases and constraints imposed by initial datasets.

Models trained on TREESYNTH data consistently outperform those trained on both human-
crafted datasets and synthetic baselines across all the tasks, foundation and generation models.
Specifically, for a fair comparison of different methods, we train models using randomly sampled
subsets from each synthetic dataset, matching the sizes of the corresponding vanilla training sets.
As shown in Tables 1, 2 and 4, all synthetic methods—Temperature Sampling, Evol-Instruct, and
Persona Hub—generally surpass human-curated datasets on average, highlighting the limitations of
manual data construction. Thanks to the seed-driven and attribute-driven design, Evol-Instruct and
Persona Hub further outperform Temperature Sampling, aligning with the claims in their original
works [18, 17]. More microscopically, these methods, however, do not yield stable improvements
across all benchmarks. For instance, in Table 1, their performance on the HumanEval benchmark
falls below that of the vanilla dataset, indicating limited robustness. In contrast, TREESYNTH delivers
the best performance across all tasks, foundation and generation models than all baselines without
exception. Notably, training Qwen2.5-7B on TREESYNTH data synthesized by GPT-4o yields an
average performance improvement of over 10% compared to the original training sets, underscoring
the effectiveness and robust generalization capabilities of TREESYNTH.

With the global data spatial perspective guided by tree structure, TREESYNTH effectively
scales datasets while preserving data quality, suggesting great scalability wherein downstream
performance consistently improves with increased data volume. As shown in Figure 6, 5 and 8,

4We utilize the popular all-mpnet-base-v2 model, available at https://huggingface.co/
sentence-transformers/all-mpnet-base-v2.

7

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2


Method GSM8K↑ Diversity↓ MATH↑ Diversity↓ MBPP↑ HumanEval↑ Diversity↓ Avg.↑

Foundation Model: LLAMA-3.1 8B

Zero-Shot 4.85 - 3.54 - 19.8 15.85 - 11.01
Few-Shot 40.26 - 20.46 - - - - -

Vanilla Data 58.15 0.40 19.48 0.16 46.8 43.29 0.29 41.93
Temp. Sampling 54.97 0.45 24.28 0.29 44.8 45.73 0.32 42.45
Evol-Instruct 61.03 0.39 24.58 0.19 45.2 49.39 0.25 45.05
Persona Hub 63.38 0.35 27.74 0.28 45.2 45.12 0.29 45.36
TREESYNTH 66.72 0.35 30.34 0.12 50.8 50.00 0.19 49.46

Foundation Model: QWEN-2.5 7B

Zero-Shot 54.97 - 54.38 - 11.2 54.88 - 43.86
Few-Shot 67.40 - 47.58 - - - - -

Vanilla Data 68.76 0.40 47.68 0.16 53.4 77.44 0.29 61.82
Temp. Sampling 80.67 0.45 62.76 0.29 59.6 80.49 0.32 70.88
Evol-Instruct 73.16 0.39 61.10 0.19 59.2 80.49 0.25 68.49
Persona Hub 83.24 0.35 66.22 0.28 61.6 77.44 0.29 72.12
TREESYNTH 86.13 0.35 66.84 0.12 62.8 80.49 0.19 74.06

Table 2: Model performance and data diversity comparison of various methods with GPT-4o-powered
data synthesis across two foundation models and multiple benchmarks. “Zero-Shot” and “Few-
Shot” exhibit the base performance of foundation models. “Temp. Sampling” is abbreviated from
“Temperature Sampling”. “Vanilla Data” denotes the original GSM8K and MATH training sets,
and the Code Alpaca Python subset for HumanEval and MBPP. “Diversity” is measured by cosine
similarity, where lower values indicate greater diversity. Bold and underlining indicate the best and
second-best indicators, respectively. “Avg.” means the average of the performance scores across all
the benchmarks.

Figure 5: Model performance trends across data scales for different methods powered by LLaMA3.3-
70B-Instruct. “Temp. Sampling” refers to Temperature Sampling. “Vanilla Data” denotes original
GSM8K and MATH training sets, and Code Alpaca Python subset for HumanEval and MBPP.

we evaluate model performance across synthetic datasets of 1k, 10k and 100k samples, as well as
at a scale equivalent to the corresponding vanilla training sets. Human-curated datasets inherently
suffer from limited scalability due to the prohibitive cost of manual annotation. Despite exhibiting
linear growth trends occasionally, all the baselines (i.e., Temperature Sampling, Persona Hub, and
Evol-Instruct) encounter performance saturation with diminishing improvements as dataset volume
increases in nearly half of the evaluated settings, and even suffer from degradation in some cases,
reflecting their instability. As mentioned above, this can be attributed to the intensification of
low-variation prompts, model and seed data biases. In contrast, TREESYNTH not only remarkably
surpasses all the baselines on all data scales, but also exhibits approximately linear (even better)
performance growth with increasing data volume, underscoring its superior scalability. Besides, with
the globally spatial perspective circumventing the local distribution biases, TREESYNTH still exhibits

8



Figure 6: Model performance trends across data scales for different methods powered by GPT-4o.
“Temp. Sampling” refers to Temperature Sampling, while “Vanilla Data” denotes original GSM8K
and MATH training sets, and Code Alpaca Python subset for HumanEval and MBPP.

Performance Temp. Sampling Persona Hub TREESYNTH
TREESYNTH-balanced

Temp. Sampling Persona Hub

Accuracy 78.9 85.7 88.0 86.8 88.6
Diversity 0.37 0.33 0.33 0.33 0.32

Table 3: The diversity of data generated by different methods powered by LLaMA3.3-70B-Instruct
and its TREESYNTH-Guided Data Balanced version, along with the performance of LLaMA3.1-8B
trained on these datasets on the SimpleToM benchmark. "Div." stands for Diversity, a metric assessed
by computing cosine similarity among data points within the dataset, where lower numerical values
directly indicate higher diversity levels.

steeper performance growth trajectories beyond the 10k sample scale, indicating its great potential
for large-scale data synthesis. Detailed numerical results are also provided in Table 5, 6, 7 and 8 in
Appendix A.5 for more precise reference.

4.3 TREESYNTH-Guided Data Balance

Beyond data synthesis, TREESYNTH significantly enhances the distributional balance of existing
datasets, effectively improving data diversity and downstream model performance. Specifically,
we repeat the LLaMA3.3-70B-Instruct-powered experiments on the LLaMA3.1-8B foundation
model in Section 4.2 on the SimpleToM benchmark, but additionally apply the TREESYNTH-guided
data balance technique to the synthetic datasets of Temperature Sampling and Persona Hub5. As
listed in Table 3, TREESYNTH continues to outperform other unbalanced approaches. Meanwhile,
the application of TREESYNTH-guided data balance leads to performance improvements of 7.9% and
2.9% for Temperature Sampling and Persona Hub, respectively. To demonstrate the underlying data
distribution more intuitively, Figure 7 presents the t-SNE visualization of data spatial distribution for
different approaches. Benefiting from the global perspective, TREESYNTH exhibits comprehensive
and well-balanced distribution across the data space. In contrast, samples from Temperature Sampling
and Persona Hub predominantly tend to cluster in limited subspaces, revealing insufficient diversity.
The application of TREESYNTH substantially enhances their distributional uniformity, enabling
comprehensive coverage of the data space. These results collectively demonstrate that TREESYNTH-
guided data balance effectively addresses deficiencies in existing datasets by optimizing their sample
distribution, leading to measurable improvements in downstream model performance.

5Evol-Instruct is excluded in this section, due to its strong dependence on seed dataset.

9



5 Related Work
Data Synthesis via LLMs. Owing to their remarkable ability to generate large-scale, high-quality
datasets, LLMs are increasingly being explored as an effective alternative to the time-consuming and
labor-intensive process of human annotation [28–30]. Pioneering studies [31, 18, 32] have showcased
the use of LLMs to paraphrase or augment existing instruction datasets into more comprehensive
ones. Furthermore, recent research has explored data synthesis from scratch in areas such as
mathematics [15], code [33], general alignment [34], etc. However, uncontrolled synthesis process
often exhibits significant biases, favoring easy queries while neglecting more challenging ones [35–
37]. To enhance controllability, Wong et al. [38] and Huang et al. [39] incorporate strata and topic
clustering as guidance, respectively. Our approach distinguishes itself by constructing a tree-like
hierarchical structure from scratch to model the data space for better controllability.

Diversity Enhancement in Data Synthesis. The diversity of training datasets is essential for
enhancing model generalization [40]. Numerous studies have sought to improve diversity during data
synthesis [41–43]. Specifically, increasing sampling temperature [16] can generate more diverse data;
however, it often provides limited domain coverage and decreased quality [44]. To promote diversity
while ensuring quality, recent methods take advantage of the in-context learning capabilities of LLMs
through manually designed rules for data evolution [18, 45–48]. However, from the perspective
of data space, they typically start from the local distribution (i.e., seed data) without the global
view, hindering their comprehensive coverage. Besides, synthesized data often becomes repetitive
and homogeneous with the increase of data scales due to the inherent model biases. To address
this challenge, various competing methods have emerged, particularly those based on attribute
combinations [49–52], such as persona-driven data synthesis [17]. However, these approaches
typically rely on fixed attribute dimensions curated by LLMs or human knowledge. In contrast, our
work emphasizes the dynamic construction of a tree structure to iteratively partition the entire domain
space, ensuring comprehensive coverage without human intervention.

Application of Tree Structure. As a canonical data structure, trees have been applied in various
machine learning algorithms. Specifically, decision trees conceptualize discriminative tasks as a
search problem through a tree-like combinatorial problem space [53–55]. Besides, Hao et al. [56], Yao
et al. [57] utilize tree-search algorithms, including breadth-first search, depth-first search, and Monte
Carlo Tree Search [58], to guide multi-step reasoning process for improved reasoning capabilities of
LLMs. Furthermore, AlphaZero-like tree search learning approach [59] leverages a learned value
function to guide the decoding process of LLMs, and particularly improves the performance on
long-horizon planning. In contrast, our method does not rely on tree structures for discrimination
tasks or to improve reasoning capabilities. Instead, it focuses on data synthesis through hierarchical
tree-like spatial partitioning. Besides, the decision rules are not learned but are directly derived from
the extensive knowledge inherent in LLMs.

6 Conclusion
Targeting synthesizing diverse datasets with LLMs from scratch, we propose a tree-guided subspace-
based data synthesis approach, TREESYNTH, which recursively partitions a task-specific full data
space into mutually exclusive and exhaustive atomic subspaces before synthesizing and collecting
subspace samples into a comprehensive dataset. This globally divide-and-synthesize strategy effec-
tively circumvents repetition and space collapse caused by model biases, seed data, and low-variation
prompts in prior methods, promoting the diversity of large-scale data synthesis. Besides, TREESYNTH
also facilitates sample allocation into atomic subspaces, enabling re-balancing of existing datasets for
more balanced distributions. Compared with both human-crafted datasets and peer data synthesis
methods, TREESYNTH consistently achieves superior data diversity, model performance, robust
scalability, and data balance efficacy, establishing itself as a promising solution for diverse data
synthesis without seed data.
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paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We detail the limitations of this paper in Section A.7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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Justification: The paper proposes a new data synthesis method based on LLMs , and does
not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed introduction to the novel data synthesis method we
propose in this paper, and we detail the implementation parameters and prompts in Section A,
which are sufficient for reproducing our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submitted our code to demonstrate the reproducibility of our method.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in Section 4.1 and Section A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We followed the conventions of the field and effectively evaluated the effec-
tiveness of our method through multiple benchmarks.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the Experiments compute resources of this paper in Section A.8.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper proposes a data synthesis method based on LLMs for training
downstream task models, which has high practical value(Section 1 and A.9).

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper presents a brand-new data synthesis method driven by currently
mature LLMs, and does not release any new models or data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models) used in the
paper have been properly credited, and the licenses and terms of use have been explicitly
mentioned and respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper thoroughly documents all new assets and the documentation is
provided together with the assets. It includes detailed information about training procedures,
licenses, limitations, and other relevant aspects.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper describe the usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Pseudo Code of TREESYNTH

The pseudo code of TREESYNTH is presented in Algorithm 1.

A.2 Benchmarks

To thoroughly evaluate the performance improvements enabled by TREESYNTH-generated data, we
test models across three domains: mathematical reasoning, code generation, and psychology tasks.
The mathematical reasoning tasks use the MATH dataset test set [21] and GSM8K benchmark [20].
Code generation capabilities are assessed through HumanEval [23] and MBPP [22]. For psychology
tasks, we employ the SimpleToM dataset [24]. These benchmarks collectively assess our method’s
effectiveness across multiple dimensions, with brief descriptions provided below:

• GSM8K evaluates mathematical reasoning capabilities through 8,500 high-quality grade
school math problems developed via human expert annotation. The dataset is partitioned into
7,500 training and 1,000 test problems, each requiring 2-8 computational steps combining
basic arithmetic operations.

• MATH dataset comprises 12,500 competition-level mathematics problems, with 7,500
designated for training and 5,000 for testing. It requires step-by-step solutions, emphasiz-
ing accurate problem decomposition and the generation of formal proofs for multi-step
mathematical challenges.

• HumanEval evaluates functional correctness through hand-written programming problems
requiring language comprehension, reasoning, algorithms, and mathematics. It comprises
164 problems with function signatures, docstrings, and unit tests (avg. 7.7 per problem).
Tasks are manually crafted to avoid data leakage from public code repositories.

• MBPP evaluates programming competence through entry-level Python functions requiring
implementation based on textual specifications and test case verification. It contains 974
crowd-sourced programming problems with functional correctness validation, including a
core subset of author-curated solutions with manual quality assurance.

• SimpleToM is designed to evaluate whether LLMs can implicitly apply Theory of Mind
(ToM) reasoning to predict behavior and judge the rationality of observed actions in social
scenarios. It consists of concise, diverse stories followed by three questions that assess
different levels of ToM reasoning: predicting a character’s mental state, forecasting their
behavior, and judging the rationality of their actions6.

A.3 Baselines

The concise descriptions of all the baselines are presented below.

• Vanilla Data. "Vanilla Data" refers to the original GSM8K and MATH training sets, as well
as the Code Alpaca Python subset used for HumanEval and MBPP, with details on GSM8K
and MATH datasets provided in Sec A.2. The Code Alpaca dataset is a collection of 20,000
instruction-following data points, each containing a unique task description, optional input
context, and a corresponding output, designed to train a language model for code generation
tasks by following specific instructions. Only Python-related samples are retained, aligning
with HumanEval and MBPP.

• Temperature Sampling. Temperature sampling adjusts the softmax function of LLMs
to control output randomness by scaling logits. Higher temperatures increase creativity
and randomness, while lower temperatures result in more deterministic outputs. Following
the prompts consistent with TREESYNTH, as illustrated in Figures 13, 14, and 15, we
set the temperature to 0.7 and generate 100k baseline data in GSM8K, MATH, and Code

6In the SimpleTom-style dataset, data where the protagonist is unaware of hidden information is labeled as negative samples, while data
where the protagonist is aware of hidden information is labeled as positive samples. In this paper, all SimpleToM-style data starts by generating
negative samples to account for half of the dataset. These are then converted into positive samples using the prompts shown in Figures 29. The
combination of positive and negative samples forms a complete dataset.
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Algorithm 1 Pseudo Code of TREESYNTH

Require: Context description CO of entire data space O, Pivot sample count l, Maximum attribute value count
N , Maximum tree depth d

1: function CRITERION_DETERMINATION(CS , l)
2: Generate diverse pivot samples X = {xt}lt=1 via LLMpivot(CS)
3: Determine exactly one core criterion δ ← LLMdetermine(X)
4: Obtain mutually exclusive attribute values V δ

X
← Partition(X , δ)

5: return δ, V δ
X

6: end function
7: function SUBSPACE_COVERAGE(CS , δ, V δ

X
, N )

8: Fully cover the criterion δ with all the attribute values VS ← LLMcomplement(VX , δ)
9: if ∣VS ∣ > N then

10: Create subspace S inf
sub(VS) ▷ Randomly sample an attribute value whenever needed.

11: else
12: Create subspace Si

sub for each vi ∈ VS
13: end if
14: return S∗sub
15: end function

▷ Stage 1: Data Space Partitioning
16: Initialize root nodeNRoot (i.e., O with CO) with the depth as 0, and BFS queue Q← {NRoot}
17: while Q ≠ ∅ do
18: Dequeue the first nodeN ′ from Q, and obtain its depth d′ and context description CN ′
19: if d′ < d then
20: δ, V δ

X
← CRITERION_DETERMINATION(CN ′ , l) ▷ Step 1: Criterion Determination

21: N
′
∗

sub ← SUBSPACE_COVERAGE(CN ′ , δ, V δ
X
,N) ▷ Step 2: Subspace Coverage

22: AddN
′
∗

sub as the child nodes ofN ′, and append to the queue Q← Q⋃N
′
∗

sub
23: else
24: MarkN ′ as a leaf nodeN

′

Leaf
25: end if
26: end while

return Spatial partitioning tree T with the root node O

▷ Stage 2: Subspace Data Synthesis
27: Collect all leaf nodesN ∗Leaf ← {N 1

Leaf,N 2
Leaf, ⋅ ⋅ ⋅}

28: for eachN i
Leaf inN ∗Leaf do

29: Trace hierarchical parent nodes from the root node P ← {NRoot, ⋅ ⋅ ⋅,N i
Leaf}

30: Obtain the attribute intersections as the leaf node description C
N

i
Leaf
← ⋂j∈P Vj

31: Generate diverse leaf samples Di
Leaf = {xk}Nk=1 via LLMsample(CN i

Leaf
)

32: end for
33: Collect all the leaf samples into the final dataset Dfinal ← ⋃D∗Leaf

return Dfinal ▷ with high diversity, good balance, and comprehensive coverage.

▷ TREESYNTH-Guided Data Balance
Require: Dataset D = {du∣u = 1,2, ...,w}, data description CD , threshold NSub
34: Build tree TD via Data Space Partitioning using CD
35: Initialize leaves L ← {N 1

Leaf, ...,Nm
Leaf}

36: for du ∈ D do
37: Route du to leafN k

Leaf via TD
38: end for
39: forN i

Leaf ∈ L do
40: Di ← samples inN i

Leaf
41: if ∣Di∣ > NSub then
42: Di

new ← Downsample to NSub
43: else if ∣Di∣ < NSub then
44: Di

new ← Synthesize (NSub − ∣Di∣) samples inN i
Leaf via LLMs and add into Di

45: end if
46: end for
47: Aggregate Dbalance ← ⋃Di

new return Dbalance
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Alpaca styles, respectively. During the construction of the SimpleToM-style training set, the
temperature parameter is set to 0.7 while generating 20k data samples through the combined
use of Figures 16 and 29.

• Evol-Instruct. Evol-Instruct is a method that uses LLMs to automatically generate diverse
and complex instruction datasets by evolving initial instructions through in-depth and in-
breadth processes, enhancing the complexity and diversity of instructions for training LLMs.
This paper utilizes Evol-Instruct to enhance the training datasets of GSM8K, MATH, and
Code Alpaca, constructing 100k samples for each respective style (GSM8K, MATH, Code
Alpaca) through multiple evolutionary iterations.

• Persona Hub. Persona Hub consists of 1 billion diverse personas curated from web data,
enhancing diversity in large-scale data synthesis when incorporated into synthetic prompts.
By randomly sampling personas from Persona Hub to replace the original "math expert"
and "coding expert" profiles in Figures 13, 14, and 15, and by prepending personas to the
prompts in Figure 16, we synthesize 100k samples each for GSM8K, MATH, and Code
Alpaca-style datasets, as well as 20k SimpleToM-style data through this persona substitution
approach.

A.4 Experiments Details

The training dataset is constructed through TREESYNTH-generated instructions, with LLMs subse-
quently producing answers corresponding to these instructions.

Spatial Partitioning Tree Construction. For each task, as illustrated in Figure 17, 18, 19 and 20,
we develop training data descriptions CGSM8K , CMATH , CCode and CToM following the standards
of GSM8K, MATH, Code Alpaca and SimpleToM respectively. The prompt words for Criterion
Determination and Subspace Coverage are presented in Figure 21, 22, 23, 24 and 25, 26, 27, 28
respectively. Afterwards, we construct the spatial partitioning trees TGSM8K , TMATH and TCode

using GPT-4o, LLaMA3.3-70B-Instruct and Qwen2.5-72B-Instruct with maximum tree depth
d set to 4, pivot count l to 10, and maximum attribute values N to 50. For SimpleToM-style data, we
employ the LLaMA3.3-70B-Instruct model with a maximum tree depth d = 3, while maintaining
consistency in all other parameters with the configurations of other tasks, to generate the spatial
partitioning tree TToM .

Training Data Generation. For each leaf node in TGSM8K , TMATH and TCode, we generate
NLeaf = 10 data instances using the prompts from Figures 17, 18, and 19 within their correspond-
ing subspaces to construct the raw instruction sets using GPT-4o, LLaMA3.3-70B-Instruct and
Qwen2.5-72B-Instruct. For coding-task instructions, following the practice of Code Alpaca [26],
we compute pairwise Rouge [60] similarity scores between all data entries and filter out data pairs
with similarity scores exceeding 0.7. Subsequently, we randomly select 100k instructions from
the raw instruction sets and use the same LLMs that generated the instructions to produce answers,
forming the training dataset. For the generation of SimpleToM-style data, we use the prompt from Fig-
ure 20 command LLaMA3.3-70B-Instruct to generate NLeaf = 10 instructions for each leaf node of
TToM , forming an instruction set containing 20k samples. We then use LLaMA3.3-70B-Instruct
to generate corresponding answers for these instructions.

TREESYNTH-Guided Data Balance. We perform a TREESYNTH-guided data balancing strategy
for SimpleToM-style datasets. Using the prompt templates from Figure 30, we systematically partition
both Temperature Sampling and Persona Hub-style SimpleToM data into distinct subspaces of TToM .
The sample threshold NSub for each subspace is set to 10 to achieve data balancing across these
subspaces.

Model Training. To fine-tune our selected base models (i.e., LLaMA3.1-8B and Qwen2.5-7B), we
employ the parameter-efficient fine-tuning method LoRA [61–63]. Specifically, we uniformly set the
lora_dropout = 0, weight_decay = 0.1, and trained each model for 5 epochs. For GSM8K-style
data, we set the learning rate to 1×10−4. For MATH, Code Alpaca, and SimpleToM-style data, we set
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the learning rate to 1 × 10−5 during training 7. Empirical observations show that these configurations
consistently achieves stable and competitive downstream performance across various tasks.

A.5 Complementary Analysis

t-SNE visualization of SimpleToM-style datasets. As shown in Figure 7, we illustrate t-SNE dis-
tributions of SimpleToM-style datasets synthesized by various methods alongside their TREESYNTH-
guided data-balanced counterparts, demonstrating significantly improved and more comprehensive
coverage.

Figure 7: t-SNE visualization of SimpleToM-style datasets synthesized by different methods and their
TREESYNTH-guided data balanced counterparts, exhibiting remarkably comprehensive coverage.

Model performance and data diversity comparison. The results presented in Tables 4 demon-
strates a comparison of data diversity and model performance for different methods powered by
Qwen2.5-72B-Instruct across multiple benchmarks, highlighting TREESYNTH’s superior data
diversity and robust performance improvement in downstream tasks.

Model performance across data scales. The detailed numerical values of scalability evaluations
across GSM8K, MATH, MBPP and HumanEval benchmarks are provided in Table 5, 6, 7 and 8,
respectively. In addition, Figure 8 displays the performance trends of various methods using the
Qwen2.5-72B-Instruct generation model across different data scales. TREESYNTH consistently
outperforms all baselines while exhibiting near-linear scaling with data growth, demonstrating its
superior scalability.

Broadening TREESYNTH Assessment Beyond LLaMA and Qwen. To further validate the
robustness and generalizability of TREESYNTH, we extend our assessment to Gemma-3-PT-4B and
Gemma-3-PT-12B, covering additional model families and sizes with all data synthesis methods

7These hyperparameters are selected based on a comprehensive grid search over candidate values: learning rate ∈ {1 × 10−6, 5 ×
10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4}, lora_dropout ∈ {0, 0.05}, weight_decay ∈ {0, 0.1}, and epoch count ∈
{3, 5, 7, 10}.

25



Method GSM8K↑ Diversity↓ MATH↑ Diversity↓ MBPP↑ HumanEval↑ Diversity↓ Avg.↑

Foundation Model: LLAMA-3.1 8B

Zero-Shot 4.85 - 3.54 - 19.8 15.85 - 11.01
Few-Shot 40.26 - 20.46 - - - - -

Vanilla Data 58.15 0.40 19.48 0.16 46.8 43.29 0.29 41.93
Temp. Sampling 64.75 0.41 28.14 0.21 43.2 42.68 0.31 44.69
Evol-Instruct 66.72 0.36 30.52 0.19 39.8 42.07 0.27 44.78
Persona Hub 61.71 0.38 28.12 0.20 42.8 42.07 0.28 43.67
TREESYNTH 68.31 0.36 31.14 0.15 47.4 48.17 0.22 48.76

Foundation Model: QWEN-2.5 7B

Zero-Shot 54.97 - 54.38 - 11.2 54.88 - 43.86
Few-Shot 67.40 - 47.58 - - - - -

Vanilla Data 68.76 0.40 47.68 0.16 53.4 77.44 0.29 61.82
Temp. Sampling 77.26 0.41 62.08 0.21 53.2 78.05 0.31 67.65
Evol-Instruct 78.70 0.36 67.56 0.19 57.8 76.22 0.27 70.07
Persona Hub 79.15 0.38 61.98 0.20 57.2 76.22 0.28 68.64
TREESYNTH 84.99 0.36 68.44 0.15 61.4 78.66 0.22 73.37

Table 4: Model performance and data diversity comparison of various methods with Qwen2.5-72B-
Instruct-powered data synthesis across two foundation models and multiple benchmarks. “Zero-
Shot” and “Few-Shot” exhibit the base performance of foundation models. “Temp. Sampling” is
abbreviated from “Temperature Sampling”. “Vanilla Data” denotes the original GSM8K and MATH
training sets, and the Code Alpaca Python subset for HumanEval and MBPP. “Diversity” is measured
by cosine similarity, where lower values indicate greater diversity. Bold and underlining indicate the
best and second-best indicators, respectively. “Avg.” means the average of the performance scores
across all the benchmarks.

Figure 8: Model performance trends across data scales for different methods powered by Qwen2.5-
72B-Instruct. “Temp. Sampling” refers to Temperature Sampling. “Vanilla Data” denotes original
GSM8K and MATH training sets, and Code Alpaca Python subset for HumanEval and MBPP.

powered by GPT-4o, as shown in Tables 9, 10 and Figure 9. The trends mirror those reported in
Sec. 4.2: TREESYNTH consistently surpasses human-annotated data and peer synthesis methods,
while its downstream performance consistently scales with data volumes. This strongly validates its
robustness and generalizability.

Computational Costs of TREESYNTH. TREESYNTH can be powered by open-source models,
which ensures that its operational cost and overhead are extremely low. As detailed in Table 11,
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Model Gen. Model Dataset Scaling @1k @7k @10k @100k

LLaMA3.1-8B

GSM8K training set Vanilla Data - 58.15 - -

GPT-4o

Evol-Instruct 56.86 61.03 63.38 66.64
Persona Hub 62.47 63.38 64.22 67.78
Temp. Sampling 54.89 54.97 56.94 56.79
TREESYNTH 64.29 66.72 69.75 74.07

LLaMA3.3-70B-Instruct

Evol-Instruct 59.74 63.46 66.41 68.31
Persona Hub 62.70 61.41 63.76 68.92
Temp. Sampling 53.15 55.42 57.39 56.79
TREESYNTH 68.84 69.45 71.95 77.79

Qwen2.5-72B-Instruct

Evol-Instruct 59.82 66.72 68.16 69.45
Persona Hub 61.26 61.71 62.47 66.41
Temp. Sampling 61.71 64.75 64.82 68.61
TREESYNTH 65.43 68.31 69.75 77.10

Qwen2.5-7B

GSM8K training set Vanilla Data - 68.76 - -

GPT-4o

Evol-Instruct 73.77 73.16 77.94 79.38
Persona Hub 81.88 83.24 83.78 83.09
Temp. Sampling 80.74 80.67 81.35 82.49
TREESYNTH 84.76 86.13 86.35 87.49

LLaMA3.3-70B-Instruct

Evol-Instruct 74.15 75.13 75.66 77.26
Persona Hub 81.73 82.79 83.70 84.15
Temp. Sampling 61.49 69.67 69.75 78.39
TREESYNTH 84.46 85.44 85.82 86.81

Qwen2.5-72B-Instruct

Evol-Instruct 76.57 78.70 79.15 80.06
Persona Hub 78.92 79.15 79.38 81.88
Temp. Sampling 76.50 77.26 78.92 79.15
TREESYNTH 83.85 84.99 85.82 88.78

Table 5: Comparison of instruction-tuned model performance on GSM8K using training data from
different sources and generation methods. For each data scale (1k, 7k, 10k, 100k), models are
fine-tuned on equally sized datasets constructed via various data synthesis methods, as well as the
original GSM8K training set. “Temp. Sampling” is abbreviated from “Temperature Sampling”.
“Vanilla Data” denotes the original GSM8K training sets.

we calculate token consumption when synthesizing 100k-scale datasets of various styles using
TREESYNTH driven by LLaMA3.1-70B-Instruct. Based on the API pricing8 (0.038/0.12 per
million input/output tokens), we estimate that the cost to synthesize each dataset is less than 10 USD.
Moreover, the efficiency of data synthesis should be considered in tandem with downstream training
costs. Specifically, synthetic data requires model training to be converted into performance gains.
High-quality data can lead to more significant savings in model training, whose cost is markedly
higher than the inference expense for data synthesis. Therefore, enhancing data quality is a more
strategic approach to significantly reduce the greater expense of downstream training. As shown in
Figures 5, 6, and 8, TREESYNTH requires only ∼1k samples to match or exceed the downstream
performance of 100k-sample baselines, precisely highlighting its value and efficiency.

Extensive Evaluation of Generation Quality. As described in Sec. A.4, we empirically set the tree
depth to 4. Table 12 provides statistics on the number of criteria and attribute values at each depth
within the spatial partitioning trees that TREESYNTH generates for various tasks. We also present the
subtree of MATH in Figure 10, with the further partitioning criteria denoted in brackets. The results
indicate that as depth increases, the quantities of both criteria and attribute values grow exponentially.
This demonstrates that by deepening its structure, TREESYNTH continuously partitions the data space
and describes the resulting subspaces with more fine-grained attribute values. This capability forms
the basis of TREESYNTH’s superior performance in data diversity, downstream task performance,
and scalability.

8https://deepinfra.com/meta-llama/Llama-3.3-70B-Instruct-Turbo
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Model Gen. Model Dataset Scaling @1k @7.5k @10k @100k

LLaMA3.1-8B

MATH training set Vanilla Data - 19.48 - -

GPT-4o

Evol-Instruct 23.74 24.58 25.16 29.86
Persona Hub 25.60 27.74 28.20 29.62
Temp. Sampling 24.34 24.28 25.04 26.86
TREESYNTH 28.02 30.34 31.34 40.10

LLaMA3.3-70B-Instruct

Evol-Instruct 26.78 27.26 28.26 31.24
Persona Hub 23.52 23.78 23.52 24.60
Temp. Sampling 21.84 22.08 23.18 22.70
TREESYNTH 26.68 27.52 28.94 32.42

Qwen2.5-72B-Instruct

Evol-Instruct 27.14 30.52 30.52 34.70
Persona Hub 25.20 28.12 28.52 31.24
Temp. Sampling 27.88 28.14 28.62 29.86
TREESYNTH 28.64 31.14 31.56 36.96

Qwen2.5-7B

MATH training set Vanilla Data - 47.68 - -

GPT-4o

Evol-Instruct 58.52 61.10 61.20 64.84
Persona Hub 63.62 66.22 67.42 67.72
Temp. Sampling 63.38 62.76 63.36 61.20
TREESYNTH 64.48 66.84 67.74 69.90

LLaMA3.3-70B-Instruct

Evol-Instruct 57.30 59.60 58.56 61.98
Persona Hub 60.92 61.98 62.06 63.12
Temp. Sampling 61.64 61.70 61.96 62.88
TREESYNTH 62.08 63.28 64.84 66.80

Qwen2.5-72B-Instruct

Evol-Instruct 66.22 67.56 67.74 67.72
Persona Hub 61.44 61.98 63.76 67.28
Temp. Sampling 61.92 62.08 63.38 64.84
TREESYNTH 67.42 68.44 69.14 71.78

Table 6: Comparison of instruction-tuned model performance on MATH using training data from
different sources and generation methods. For each data scale (1k, 7.5k, 10k, 100k), models are fine-
tuned on equally sized datasets constructed via various data synthesis methods, as well as the original
MATH training set. “Temp. Sampling” is abbreviated from “Temperature Sampling”. “Vanilla Data”
denotes the original MATH training sets.

Qualitative Analysis for TREESYNTH. Training Qwen-2.5-7B on MATH-style data from either
TREESYNTH or Persona Hub reveals that TREESYNTH yields consistent gains across all seven sub-
domains, with pronounced improvements in Number Theory, Geometry, and Counting & Probability,
as shown in Table 13. A specific case in Number Theory, detailed in Figure 11, further highlights
this superiority where the TREESYNTH-trained LLM correctly computes modular inverses while the
Persona Hub-trained model fails. This contrast suggests that specialized fields demanding precise
computations, such as modular arithmetic, may expose data biases in Persona Hub. Overall, the
comprehensive and substantial improvements provide empirical evidence that TREESYNTH’s data
generation strategy achieves superior diversity and more effective data space coverage, enabling the
model to attain markedly better performance in specialized mathematical reasoning.

Validation of the Criterion Selection Mechanism. Prompting the LLM to approximate this objec-
tive is feasible with verified effectiveness. As shown in Figures 21–24, we explicitly instruct the LLM
to “Identify exactly ONE core dimension that best distinguishes pivot samples”. Given the powerful
capabilities of modern LLMs, they generally provide a satisfactory criterion. As shown in Figure 12,
given five MATH-style geometry problems, the LLM can identify geometric_object_type as the
criterion to effectively partition the data.

A.6 Case Study

The data generation process of TREESYNTH demonstrates both high controllability and inter-
pretability. As illustrated in Figures 31, 32, and 33, the GSM8K, MATH, and Code Alpaca-style

28



Model Gen. Model Dataset Scaling @1k @2k @10k @100k

LLaMA3.1-8B

Code Alpaca Python subset Vanilla Data - 46.8 - -

GPT-4o

Evol-Instruct 40.8 45.2 45.8 47.2
Persona Hub 42.0 45.2 45.6 47.8
Temp. Sampling 43.4 44.8 47.8 46.8
TREESYNTH 49.4 50.8 52.6 54.4

LLaMA3.3-70B-Instruct

Evol-Instruct 39.0 40.6 43.4 46.6
Persona Hub 46.6 45.8 46.8 48.4
Temp. Sampling 44.4 44.6 45.8 46.2
TREESYNTH 47.8 50.2 50.8 52.0

Qwen2.5-72B-Instruct

Evol-Instruct 37.2 39.8 42.4 44.8
Persona Hub 41.6 42.8 43.6 45.2
Temp. Sampling 42.6 43.2 43.4 44.0
TREESYNTH 45.8 46.6 47.4 49.8

Qwen2.5-7B

Code Alpaca Python subset Vanilla Data - 53.4 - -

GPT-4o

Evol-Instruct 57.2 59.2 60.6 61.6
Persona Hub 58.8 61.6 61.0 62.2
Temp. Sampling 60.0 59.6 59.0 60.6
TREESYNTH 61.2 62.8 63.2 64.8

LLaMA3.3-70B-Instruct

Evol-Instruct 54.6 55.8 57.4 58.6
Persona Hub 56.0 58.8 59.4 61.8
Temp. Sampling 53.8 54.8 56.0 59.6
TREESYNTH 57.6 59.4 61.4 63.0

Qwen2.5-72B-Instruct

Evol-Instruct 56.8 57.8 60.4 61.4
Persona Hub 57.4 57.2 60.8 61.4
Temp. Sampling 52.4 53.2 55.8 60.6
TREESYNTH 59.2 61.4 62.4 63.2

Table 7: Comparison of instruction-tuned model performance on MBPP using training data from
different sources and generation methods. For each data scale (1k, 2k, 10k, 100k), models are
fine-tuned on equally sized datasets constructed via various data synthesis methods, as well as the
common training set for coding task. “Temp. Sampling” is abbreviated from “Temperature Sampling”.
“Vanilla Data” denotes the Code Alpaca training sets.

datasets generated by TREESYNTH are presented alongside their corresponding criteria and attribute
values. The generated data not only preserves the stylistic features of the original datasets but
also strictly adheres to specified attribute values. This highlights TREESYNTH’s key strength: by
leveraging attribute values associated with subspaces obtained through data space partitioning, the
approach achieves precise control over data generation within each subspace, thereby ensuring
effective regulation and interpretability of the synthesis process.

A.7 Limitations

This paper introduces TREESYNTH, a tree-guided subspace-based synthesis approach that system-
atically partitions the data space from a global perspective to produce diverse and comprehensive
instruction sets. After generating these instructions, LLMs are utilized to synthesize corresponding
answers. However, following the practice of Evol-Instruct [18], the accuracy validation of answers
remains unexplored. Despite this potential defect, TREESYNTH still demonstrates consistent improve-
ments on both data diversity and downstream task performance, highlighting its superior effectiveness
and robust scalability.

A.8 Experiments Compute Resources

All experiments are executed on high-performance computing node equipped with eight NVIDIA
H100 SXM GPUs (80 GB HBM3 each), dual-socket 128-core CPUs, and 2 TB of system RAM.
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Model Gen. Model Dataset Scaling @1k @2k @10k @100k

LLaMA3.1-8B

Code Alpaca Python subset Vanilla Data - 43.29 - -

GPT-4o

Evol-Instruct 44.51 49.39 51.22 51.22
Persona Hub 43.90 45.12 48.78 49.39
Temp. Sampling 41.46 45.73 46.95 47.56
TREESYNTH 48.78 50.00 51.83 53.05

LLaMA3.3-70B-Instruct

Evol-Instruct 40.85 41.46 42.68 45.12
Persona Hub 39.63 40.24 44.51 46.34
Temp. Sampling 40.24 41.46 42.68 45.12
TREESYNTH 47.56 48.17 50.00 54.27

Qwen2.5-72B-Instruct

Evol-Instruct 40.24 42.07 43.29 46.34
Persona Hub 41.46 42.07 45.12 46.95
Temp. Sampling 39.63 42.68 45.73 46.34
TREESYNTH 46.34 48.17 50.61 53.05

Qwen2.5-7B

Code Alpaca Python subset Vanilla Data - 77.44 - -

GPT-4o

Evol-Instruct 78.05 80.49 80.49 81.10
Persona Hub 76.22 77.44 78.66 79.88
Temp. Sampling 79.27 80.49 81.10 81.71
TREESYNTH 79.88 80.49 81.49 83.05

LLaMA3.3-70B-Instruct

Evol-Instruct 75.61 76.83 77.44 78.05
Persona Hub 75.61 75.00 76.22 78.05
Temp. Sampling 76.22 76.83 77.44 77.44
TREESYNTH 77.44 78.05 79.88 81.71

Qwen2.5-72B-Instruct

Evol-Instruct 76.22 76.22 78.66 81.71
Persona Hub 76.22 76.22 76.83 77.44
Temp. Sampling 75.00 78.05 78.66 80.49
TREESYNTH 77.44 78.66 79.88 82.32

Table 8: Comparison of instruction-tuned model performance on HumanEval using training data
from different sources and generation methods. For each data scale (1k, 2k, 10k, 100k), models
are fine-tuned on equally sized datasets constructed via various data synthesis methods, as well as
the common training set for coding task. “Temp. Sampling” is abbreviated from “Temperature
Sampling”. “Vanilla Data” denotes the Code Alpaca training sets.

Foundation Model Benchmark
Method

Zero-Shot Few-Shot Vanilla Data Temp. Sampling Evol-Instruct Persona Hub TREESYNTH

Gemma-3-PT-4B

MBPP 29.80 - 41.20 42.20 42.20 42.80 44.20
HumanEval 33.50 - 34.76 35.98 37.20 37.80 42.07
MATH 5.20 23.80 20.00 25.30 26.60 27.20 30.30
Avg. 22.83 - 31.99 34.49 35.33 35.93 38.86

Gemma-3-PT-12B

MBPP 54.40 - 56.60 57.00 56.60 56.20 57.40
HumanEval 59.10 - 56.10 54.27 57.32 56.71 62.80
MATH 23.90 31.30 34.90 47.30 49.20 50.10 54.20
Avg. 45.80 - 49.20 52.86 54.37 54.34 58.13

Table 9: Model performance comparison of various methods with GPT-4o-powered data synthesis
across Gemma-3-PT-4B/12B models and multiple benchmarks. “Zero-Shot” and “Few-Shot” exhibit
the base performance of foundation models. “Temp. Sampling” is abbreviated from “Temperature
Sampling”. “Vanilla Data” denotes the original MATH training set for MATH benchmark, and the
Code Alpaca Python subset for HumanEval and MBPP. Bold and underlining indicate the best and
second-best indicators, respectively. “Avg.” means the average of the performance scores across all
the benchmarks.
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Model Benchmark 1K 2K 7.5K 10K 100K

Gemma-3-PT-4B
MATH 28.5 – 30.3 30.7 35.2
MBPP 42.4 44.2 – 45.4 47.8
HumanEval 39.0 42.1 – 43.9 45.7

Gemma-3-PT-12B
MATH 53.2 – 54.2 55.6 57.3
MBPP 55.2 57.4 – 58.8 60.2
HumanEval 61.6 62.8 – 63.4 66.5

Table 10: Evaluation of TREESYNTH’s scalability performance across varying data volumes (1K,
2K, 7.5K, 10K, and 100K samples) on Gemma-3-PT-4B and Gemma-3-PT-12B foundation models
with data synthesis powered by GPT-4o. Results demonstrate that TREESYNTH maintains strong and
consistent scaling behavior across all benchmarks (MATH, MBPP, HumanEval), with downstream
task performance steadily improving as synthetic dataset size increases, validating the method’s
robust scalability properties.

Figure 9: Model performance trends across data scales for different methods powered by GPT-4o.
“Temp. Sampling” refers to Temperature Sampling. “Vanilla Data” denotes original GSM8K and
MATH training sets, and Code Alpaca Python subset for HumanEval and MBPP.

The total compute budget amounted to roughly 30,000 GPU-hours. The software stack comprised
PyTorch 2.6.0 linked against CUDA 12.1 (NCCL 2.17.1).

A.9 Broader Impacts

TREESYNTH promotes AI advancement by autonomously generating diverse and balanced datasets,
reducing dependence on costly human curation and mitigating biases imposed by models, seed data
and low-variation prompts. This is important for LLM customization and further enhancing their
specific capabilities, especially on domains without source data.
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Dataset Input Tokens Output Tokens Input Cost (USD) Output Cost (USD) Total (USD)

GSM8K Style 23.1M 65.4M 0.88 7.84 8.72
MATH Style 7.0M 25.6M 0.26 3.07 3.33
Code Alpaca Style 25.1M 56.1M 0.95 6.73 7.68

Table 11: Detailed breakdown of estimated token consumption (input and output) and associated
API costs for synthesizing 100K-scale GSM8K-style, MATH-style, and Code Alpaca-style datasets
using LLaMA3.1-70B-Instruct through the TREESYNTH framework, demonstrating the cost-
effectiveness of the approach.

Dataset Metric Root Level 1 Level 2 Level 3 Level 4 Total

Code Alpaca Number of Criteria 1 12 247 3853 – 4113
Number of Attribute Values 1 12 247 3853 57683 61796

GSM8K Number of Criteria 1 13 284 3914 – 4212
Number of Attribute Values 1 13 284 3914 52721 56933

MATH Number of Criteria 1 7 113 1246 – 1367
Number of Attribute Values 1 7 113 1246 15794 17161

Table 12: Comprehensive statistics showing the exponential growth of criteria and attribute values
across different tree depth levels (Root to Level 4) for Code Alpaca, GSM8K, and MATH datasets,
demonstrating how TREESYNTH’s spatial partitioning tree progressively refines the data space with
increasingly fine-grained descriptors at deeper levels (maximum tree depth set to 4).

Root(MATH) [Mathematical Domain]
|-- Algebra [problem_type]

|-- equation_solving [computation_complexity]
|-- low [equation_structure]

|-- simple_polynomial
|-- exponential
|-- ...

|-- medium [Equation Type]
|-- Quadratic
|-- Cubic
|-- ...

|-- ...
|-- ...

|-- Probability [Problem Complexity]
|-- ...

|-- ...

Figure 10: Illustrative example of a partial subtree extracted from the MATH spatial partitioning tree,
showing the hierarchical structure from the root node through multiple levels of refinement. Each
level is annotated with the partition criterion in brackets (e.g., Mathematical Domain, problem_type,
computation_complexity), demonstrating how TREESYNTH systematically organizes the mathemati-
cal problem space into increasingly specific subspaces.
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Example: Number Theory
Question: Compute (3−1 + 5−1)−1 mod 31. Express your answer as an integer from 0 to 30, inclusive.
Correct Answer: 29
TREESYNTH Solution: 29
TREESYNTH Reasoning:
1. Find modular inverses: 3−1 ≡ 21 mod 31 and 5−1 ≡ 25 mod 31

2. Add the inverses: 21 + 25 = 46 ≡ 15 mod 31

3. Find inverse of 15: 15−1 ≡ 29 mod 31 (since 15 × 29 = 435 ≡ 1 mod 31)
Therefore, (3−1 + 5−1)−1 ≡ 29 mod 31.
Persona Solution: 21
Persona Reasoning:
1. Find modular inverses: 3−1 ≡ 21 mod 31 and 5−1 ≡ 25 mod 31

2. Add the inverses: 21 + 25 = 46 ≡ 15 mod 31

3. ERROR: Claims 15−1 ≡ 21 mod 31, but 15 × 21 = 315 ≡ 5 mod 31 ≠ 1
The final answer is: 21

Figure 11: Qualitative case study from the Number Theory domain comparing the reasoning quality
of models trained on TREESYNTH versus Persona Hub synthetic data when solving a modular inverse
problem. The example demonstrates that the TREESYNTH-trained model correctly computes the
modular inverse at each step and arrives at the correct answer (29), while the Persona Hub-trained
model makes a critical error in the final inverse calculation, yielding an incorrect answer (21). This
highlights how TREESYNTH’s superior data diversity enables more robust reasoning in specialized
mathematical domains.

{
"criterion": "geometric_object_type",
"attributes": {

"triangle": [
"A triangle has sides of lengths 7, 24, and 25.
Determine the area of the triangle."

],
"regular_polygon": [

"In a regular hexagon with side length s = 6,
calculate the area of the hexagon.",

"A regular dodecagon (12-sided polygon) is inscribed
in a circle of radius R = 6. Compute the area of the dodecagon."

],
"cyclic_quadrilateral": [

"A cyclic quadrilateral has sides of lengths 7, 8, 9, and 10.
Calculate the area of the quadrilateral using Brahmagupta’s formula."

],
"composite_figure": [

"A circle is inscribed in a square, and the square has side length 10.
Compute the area of the region outside the circle but inside the square."

]
}

}

Figure 12: Example output demonstrating how the LLM automatically identifies an appropriate
partitioning criterion (geometric_object_type) and corresponding attribute values (triangle, regu-
lar_polygon, cyclic_quadrilateral, composite_figure) when given five diverse MATH-style geometry
problems as pivot samples. This illustrates TREESYNTH’s criterion determination mechanism, where
the LLM selects dimensions that effectively distinguish between different types of problems, enabling
systematic data space partitioning.
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Domain Persona Hub TREESYNTH Improvement over Persona Hub
Number Theory 58.7% 71.1% +12.4%
Geometry 48.9% 57.8% +9.0%
Counting&Probability 57.0% 65.2% +8.2%
Intermediate Algebra 36.4% 44.2% +7.8%
Prealgebra 79.1% 84.6% +5.5%
Algebra 83.7% 88.0% +4.3%
Precalculus 39.2% 42.7% +3.5%

Table 13: Detailed comparison of accuracy scores across all seven mathematical sub-domains in the
MATH benchmark after fine-tuning Qwen2.5-7B on synthetic data generated by TREESYNTH versus
Persona Hub, showing the absolute performance improvement achieved by TREESYNTH in each
domain. Notably, TREESYNTH achieves the most significant gains in specialized domains requiring
precise reasoning such as Number Theory (+12.4%), Geometry (+9.0%), and Counting&Probability
(+8.2%).
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Prompt Template of GSM8K-style Instruction Generation in Temperature Sampling.

As a math expert, you are tasked to generate 10 GSM8K-style math word problems suitable for a bright middle 

school student.

Each question should meet the following criteria:

1. Format: Write problems as real-world word problems that require mathematical reasoning to solve.

2. Step Count: Require between 2 and 8 steps to solve.

3. Operations: Utilize basic arithmetic operations: addition (+), subtraction (-), multiplication (*), and division (/).

4. Complexity: Vary in context and complexity, but REMAIN ACCESSIBLE TO MIDDLE SCHOOL 

STUDENTS!

5. Clarity: Provide clear, concise questions that encourage step-by-step calculations to reach the final answer.

6. Language: Use natural, conversational language to describe situations while keeping problems clear and 

unambiguous.

7. Diversity: Ensure that the questions are diverse and distinct from one another from all potential perspectives.

Organize your responses in the following format without any extra text or explanations:

Question 1: text

Question 2: text

...

Question 10: text

Figure 13: Prompt template of GSM8K-style instruction generation in Temperature Sampling.

Prompt Template of MATH-style Instruction Generation in Temperature Sampling.

As a math expert, generate 10 high school competition-level math questions in MATH dataset style.

Each question should strictly adhere to these criteria:

1. Question Type: Questions must exclusively involve advanced mathematical reasoning suitable for competitions 

such as AMC 8, AMC 10, AMC 12, AIME, or USAMO.

2. Difficulty Levels: Clearly assign each question a difficulty level from 1 (easy, typical of early AMC 8 questions) 

to 5 (very challenging, similar to later AIME/USAMO questions), consistent with recognized mathematical 

competition standards.

3. Verb and Phrasing Diversity: Employ varied verbs and diverse phrasing, blending both clear interrogative 

questions and direct imperative instructions to maintain instruction diversity.

4. Clarity and Uniqueness: Questions must provide all necessary details for a solver to determine exactly one 

unique solution without ambiguity.

5. Notation and Formatting: Use clear and precise mathematical notation written in LATEX. If diagrams or 

illustrations are necessary, describe them explicitly in descriptive text or represent them using valid Asymptote 

code.

6. Solvability: Questions should be solvable by advanced high school-level mathematical reasoning without 

calculators or external computational resources.

Organize your responses strictly in the following format without additional text or explanations:

<Question 1>

    [Question text with proper mathematical notation]

<Difficulty>

    [1-5]

<Question 2>

    [Question text with proper mathematical notation]

<Difficulty>

    [1-5]

...

<Question 10>

    [Question text with proper mathematical notation]

<Difficulty>

    [1-5]

Figure 14: Prompt Template of MATH-style Instruction Generation in Temperature Sampling.
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Prompt Template of Code Alpaca-style Instruction Generation in Temperature Sampling.

As a coding expert, you are asked to come up with 10 diverse Code Alpaca-style python code generation 

instruction-input pairs.

Each instruction should meet the following criteria:

1. Instruction type: generated instructions can only be code generation tasks.

2. Verb Variation: Avoid repeating the same verbs across instructions to maintain variety.

3. Phrasing Diversity: Incorporate diverse phrasing, blending questions and commands.

4. Task Variety: Provide different Python programming tasks, e.g. open-ended generation, classification, editing, 

optimization, etc.

5. Solvable Requests: Ensure the instruction-input pair is solvable by GPT alone, e.g. avoid tasks requiring 

multimedia or file inputs, etc.

6. Restriction: The code generated by the instructions does not require access to any external resources, including 

applications, files, systems, or networks. It should be executed solely in the Python console.

7. English Composition: Present instructions in English.

8. Length Restriction: Limit each instruction to one or two sentences, either imperative or interrogative.

9. Input Specificity: When needed, offer a realistic input under 100 words that is detailed enough to evaluate the 

instruction.

10. Realistic Data: The input should involve realistic data and should not contain simple placeholders.

11. Input constraints: The input must be a common data type in Python and cannot be a python function.

12. Programming Focus: All instructions must relate to coding or programming.

Organize your responses in the following format without any extra text or explanations:

<Instruction 1>

    text of Instruction 1

<Input>

    text Input 1

<Instruction 2>

    text of Instruction 2

<Input>

    text Input 2

...

<Instruction 10>

    text of Instruction 10

<Input>

    text Input 10

Figure 15: Prompt template of Code Alpaca-style instruction generation in Temperature Sampling.
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Prompt Template of SimpleToM-style Instruction Generation in Temperature Sampling.

Your task is to create <batch_size> short stories where information asymmetry naturally exists. The goal is to generate training 
data that helps an LLM anticipate behavior based on mental states rather than observable clues. Below are some instructions to 
follow for each instance.
1. Write a two-sentence story.
    - Decide how to instantiate the main entities in the story:
        - Person X (required): either a real, creative name followed by a simple descriptor indicating their role in the story or a 
group of people.
        - Object Z / Person Z / Action Z (required): This will be the subject of the KEY INFORMATION.
        - Person Y (optional): any additional character or group if needed for the story, but is not required.
    - For the FIRST SENTENCE of the story, write the KEY INFORMATION about Object Z / Person Z / Action Z (and Person 
Y) that is unknown to Person X (due to the general reason given in the scenario). Person X should not be able to observe this 
KEY INFORMATION through their actions in the story (either implicit or explicit actions). DO NOT use information which 
might be observed by Person X through normal, careful observation (such as "expiration date", "leaking container", "smell", 
etc).
    - The SECOND SENTENCE of the story is about what Person X will usually do regarding Object Z / Person Z / Action Z 
(and Person Y) in the scenario (ignoring the KEY INFORMATION). This sentence should describe what the character does 
using fine-grained actions. DO NOT include any descriptions which involve the emotions or thoughts of Person X, just 
describe actions.
2. Generate Question & Answer Choices:
   - Write a question predicting what Person X will likely do next.  
   - Provide two verbal action choices:  
     - (A): Correct action to the question (given the fact that person X is not aware of the KEY INFORMATION). Make sure the 
story does not have any mention of this action.
     - (B): Counterfactual (incorrect) action to the question. This answer should be a likely answer to the question under the 
assumption that person X somehow has full access to the KEY INFORMATION after all (maybe only possible using "magic" 
or some omnipotent skill).
    - Each action should be a complete but concise verbal phrase, without adjectives or adverbs. Avoid making it too short or 
too detailed. 
    - Ensure two choices are in the **same length**. 
3. Give the Final Answer: 
   - Provide a short chain-of-thought explaining why the correct answer is (A).  
Now, organize your response (<batch_size> instances) in the following format. Separate each instance using **only a blank 
line** (no extra dividers or explanations).
Instance <N>:
[INPUT]
Given the following story, answer the question by giving the correct answer choice, (A) or (B).
Story: <the two-sentence story>
Question: <the question>
(A) <action choice when X is unaware of the key information>  
(B) <choice when X has full knowledge of the key information> 
What is the correct answer?

[ANSWER]
<the chain-of-thought>. So the answer is (A).

Figure 16: Prompt template of SimpleToM-style instruction generation in Temperature Sampling.

Prompt Template of GSM8K-style Instruction Generation in TREESYNTH.

As a math expert, you are tasked to generate 10 GSM8K-style math word problems suitable for a bright middle 

school student.

Each question should meet the following criteria:

1. Format: Write problems as real-world word problems that require mathematical reasoning to solve.

2. Step Count: Require between 2 and 8 steps to solve.

3. Operations: Utilize basic arithmetic operations: addition (+), subtraction (-), multiplication (*), and division (/).

4. Complexity: Vary in context and complexity, but REMAIN ACCESSIBLE TO MIDDLE SCHOOL 

STUDENTS!

5. Clarity: Provide clear, concise questions that encourage step-by-step calculations to reach the final answer.

6. Language: Use natural, conversational language to describe situations while keeping problems clear and 

unambiguous.

7. Diversity: Ensure that the questions are diverse and distinct from one another from all potential perspectives.

8. Attributes: Each problem should be associated with all these attributes: <Attributes>

Organize your responses in the following format without any extra text or explanations:

Question 1: text

Question 2: text

...

Question 10: text

Figure 17: Prompt template of GSM8K-style instruction generation in TREESYNTH.
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Prompt Template of MATH-style Instruction Generation in TREESYNTH.

As a math expert, generate 10 high school competition-level math questions in MATH dataset style.

Each question should strictly adhere to these criteria:

1. Question Type: Questions must exclusively involve advanced mathematical reasoning suitable for competitions 

such as AMC 8, AMC 10, AMC 12, AIME, or USAMO.

2. Difficulty Levels: Clearly assign each question a difficulty level from 1 (easy, typical of early AMC 8 questions) 

to 5 (very challenging, similar to later AIME/USAMO questions), consistent with recognized mathematical 

competition standards.

3. Verb and Phrasing Diversity: Employ varied verbs and diverse phrasing, blending both clear interrogative 

questions and direct imperative instructions to maintain instruction diversity.

4. Clarity and Uniqueness: Questions must provide all necessary details for a solver to determine exactly one 

unique solution without ambiguity.

5. Notation and Formatting: Use clear and precise mathematical notation written in LATEX. If diagrams or 

illustrations are necessary, describe them explicitly in descriptive text or represent them using valid Asymptote 

code.

6. Solvability: Questions should be solvable by advanced high school-level mathematical reasoning without 

calculators or external computational resources.

7.Attributes: Each question should be associated with all these attributes: <Attributes>

Organize your responses strictly in the following format without additional text or explanations:

<Question 1>

    [Question text with proper mathematical notation]

<Difficulty>

    [1-5]

<Question 2>

    [Question text with proper mathematical notation]

<Difficulty>

    [1-5]

...

<Question 10>

    [Question text with proper mathematical notation]

<Difficulty>

    [1-5]

Figure 18: Prompt template of MATH-style instruction generation in TREESYNTH.
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Prompt Template of Code Alpaca-style Instruction Generation in TREESYNTH.

As a coding expert, you are asked to come up with 10 diverse Code Alpaca-style python code generation 

instruction-input pairs.

Each instruction should meet the following criteria:

1. Instruction type: generated instructions can only be code generation tasks.

2. Verb Variation: Avoid repeating the same verbs across instructions to maintain variety.

3. Phrasing Diversity: Incorporate diverse phrasing, blending questions and commands.

4. Task Variety: Provide different Python programming tasks, e.g. open-ended generation, classification, editing, 

optimization, etc.

5. Solvable Requests: Ensure the instruction-input pair is solvable by GPT alone, e.g. avoid tasks requiring 

multimedia or file inputs, etc.

6. Restriction: The code generated by the instructions does not require access to any external resources, including 

applications, files, systems, or networks. It should be executed solely in the Python console.

7. English Composition: Present instructions in English.

8. Length Restriction: Limit each instruction to one or two sentences, either imperative or interrogative.

9. Input Specificity: When needed, offer a realistic input under 100 words that is detailed enough to evaluate the 

instruction.

10. Realistic Data: The input should involve realistic data and should not contain simple placeholders.

11. Input constraints: The input must be a common data type in Python and cannot be a python function.

12. Programming Focus: All instructions must relate to coding or programming.

13.Attributes: Each problem should be associated with all these attributes: <Attributes>

Organize your responses in the following format without any extra text or explanations:

<Instruction 1>

    text of Instruction 1

<Input>

    text Input 1

<Instruction 2>

    text of Instruction 2

<Input>

    text Input 2

...

<Instruction 10>

    text of Instruction 10

<Input>

    text Input 10

Figure 19: Prompt template of Code Alpaca-style instruction generation in TREESYNTH.
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Prompt Template of SimpleToM-style Instruction Generation in TREESYNTH.

Your task is to create <n_samples> short stories where information asymmetry naturally exists. The goal is to generate training 
data that helps an LLM anticipate behavior based on mental states rather than observable clues. Below are some instructions to 
follow for each instance.
1. Write a two-sentence story.
    - Decide how to instantiate the main entities in the story:
        - Person X (required): either a real, creative name followed by a simple descriptor indicating their role in the story or a 
group of people.
        - Object Z / Person Z / Action Z (required): This will be the subject of the KEY INFORMATION.
        - Person Y (optional): any additional character or group if needed for the story, but is not required.
    - For the FIRST SENTENCE of the story, write the KEY INFORMATION about Object Z / Person Z / Action Z (and Person 
Y) that is unknown to Person X (due to the general reason given in the scenario). Person X should not be able to observe this 
KEY INFORMATION through their actions in the story (either implicit or explicit actions). DO NOT use information which 
might be observed by Person X through normal, careful observation (such as "expiration date", "leaking container", "smell", 
etc).
    - The SECOND SENTENCE of the story is about what Person X will usually do regarding Object Z / Person Z / Action Z 
(and Person Y) in the scenario (ignoring the KEY INFORMATION). This sentence should describe what the character does 
using fine-grained actions. DO NOT include any descriptions which involve the emotions or thoughts of Person X, just 
describe actions.
2. Generate Question & Answer Choices:
   - Write a question predicting what Person X will likely do next.  
   - Provide two verbal action choices:  
     - (A): Correct action to the question (given the fact that person X is not aware of the KEY INFORMATION). Make sure the 
story does not have any mention of this action.
     - (B): Counterfactual (incorrect) action to the question. This answer should be a likely answer to the question under the 
assumption that person X somehow has full access to the KEY INFORMATION after all (maybe only possible using "magic" 
or some omnipotent skill).
    - Each action should be a complete but concise verbal phrase, without adjectives or adverbs. Avoid making it too short or 
too detailed.
    - Ensure two choices are in the **same length**. 
3. Give the Final Answer: 
   - Provide a short chain-of-thought explaining why the correct answer is (A).  

### All stories MUST be **accociated with the ATTRIBUTES below**:
<attributes_json>
Now, organize your response (<n_samples> instances) in the following format. Separate each instance using **only a blank 
line** (no extra dividers or explanations).
Instance <N>:
[INPUT]
Given the following story, answer the question by giving the correct answer choice, (A) or (B).
Story: <the two-sentence story>
Question: <the question>
(A) <action choice when X is unaware of the key information>  
(B) <choice when X has full knowledge of the key information> 
What is the correct answer?

[ANSWER]
<the chain-of-thought>. So the answer is (A).

Figure 20: Prompt template of SimpleToM-style instruction generation in TREESYNTH.
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Prompt Template of GSM8K-style Instruction Criterion Determination in TREESYNTH.

As an analysis expert, your task is to examine the following questions to identify the SINGLE most significant 

dimension that characterizes the question space and differentiates these questions.

Questions:

<Samples>

Dimension Requirements:

1. Core Dimension Identification: Identify exactly ONE core dimension that best distinguishes these questions.

2. Excluded Dimensions: <Dimensions>

3. Unique Categorization: Each question MUST be categorized into exactly ONE attribute value.

4. Mutually Exclusive Values: Attribute values must be mutually exclusive.

5. Clarity in Values: Avoid ambiguous attribute values, such as "others".

6. Independent Values: Each attribute must be a single distinct value - NO combined values like 

"attribute1_and_attribute2" or "attribute1/attribute2"! Each attribute must be a single distinct value - NO 

combined values like "attribute1_and_attribute2" or "attribute1/attribute2"! Each attribute must be a single distinct 

value - NO combined values like "attribute1_and_attribute2" or "attribute1/attribute2"!

Organize your responses in the following format without any extra text or explanations:

{{

"dimension": "dimension_name",

"attributes": {{

    "attribute1": [list of sample indices],

    "attribute2": [list of sample indices],

    ...

}}

}}

Figure 21: Prompt template of GSM8K-style instruction criterion determination in TREESYNTH.

Prompt Template of MATH-style Instruction Criterion Determination in TREESYNTH.

As a math expert, your task is to examine the following MATH questions identify the SINGLE most significant 

dimension that characterizes the question space and differentiates these questions.

Questions:

<Samples>

Dimension Requirements:

1. Core Dimension Identification: Identify exactly ONE core dimension that best distinguishes these questions.

2. Excluded Dimensions: <Dimensions>

3. Unique Categorization: Each question MUST be categorized into exactly ONE attribute value.

4. Mutually Exclusive Values: Attribute values must be mutually exclusive.

5. Clarity in Values: Avoid ambiguous attribute values, such as "others".

6. Independent Values: Each attribute must be a single distinct value - NO combined values like 

"attribute1_and_attribute2" or "attribute1/attribute2".

Organize your responses in the following format without any extra text or explanations:

{{

"dimension": "dimension_name",

"attributes": {{

    "attribute1": [list of sample indices],

    "attribute2": [list of sample indices],

    ...

}}

}}

Figure 22: Prompt template of MATH-style instruction criterion determination in TREESYNTH.
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Prompt Template of Code Alpaca-style Instruction Criterion Determination in TREESYNTH.

As a coding expert, your task is to examine the following python code generation instruction-input pairs to 

identify the SINGLE most significant dimension that characterizes the instruction-input space and differentiates 

these instruction-input pairs.

Instruction-input pairs:

<Samples>

Dimension Requirements:

1. Core Dimension Identification: Identify exactly ONE core dimension that best distinguishes these instruction-

input pairs.

2. Excluded Dimensions: <Dimensions>

3. Unique Categorization: Each instruction-input pair MUST be categorized into exactly ONE attribute value.

4. Mutually Exclusive Values: Attribute values must be mutually exclusive.

5. Clarity in Values: Avoid ambiguous attribute values, such as "others".

6. Independent Values: Each attribute must be a single distinct value - NO combined values like 

"attribute1_and_attribute2" or "attribute1/attribute2".

Organize your responses in the following format without any extra text or explanations:

{{

"dimension": "dimension_name",

"attributes": {{

    "attribute1": [list of sample indices],

    "attribute2": [list of sample indices],

    ...

}}

}}

Figure 23: Prompt template of Code Alpaca-style instruction criterion determination in TREESYNTH.

Prompt Template of SimpleToM-style Instruction Criterion Determination in TREESYNTH.

Below are some stories that take place in real-world scenarios where unawareness and information asymmetry 

with various underlying reasons naturally exists. As an expert equipped with rich commonsense and extensive 

knowledge, your task is to examine the following stories to identify the SINGLE most significant dimension that 

characterizes the story space and differentiates these stories.

Stories:

<Samples>

Dimension Requirements:

1. Core Dimension Identification: Identify exactly ONE core dimension that best distinguishes these stories.

2. Excluded Dimensions: <Dimensions>

3. Unique Categorization: Each question MUST be categorized into exactly ONE attribute value.

4. Mutually Exclusive Values: Attribute values must be mutually exclusive.

5. Clarity in Values: Avoid ambiguous attribute values, such as "others".

6. Independent Values: Each attribute must be a single distinct value - NO combined values like 

"attribute1_and_attribute2" or "attribute1/attribute2"! 

Organize your responses in the following format without any extra text or explanations:

{{

"dimension": "dimension_name",

"attributes": {{

    "attribute1": [list of sample indices],

    "attribute2": [list of sample indices],

    ...

}}

}}

Figure 24: Prompt template of SimpleToM-style instruction criterion determination in TREESYNTH.
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Prompt Template of GSM8K-style Instruction Subspace Coverage in TREESYNTH.

As an analysis expert, your task is to supplement the potential attribute values for a specified dimension in order 

to comprehensively model the entire space of questions.

Dimension: <Dimension>

Exiting attributes values: <Attribute values>

Requirements for New Attribute Values:

1. Clarity: Avoid ambiguous values, such as "others".

2. Mutual Exclusivity: Ensure that attribute values do not overlap.

3. Completeness: Ensure that all possible attribute values fully cover the dimension.

4. GRADE LEVEL: Keep all values within elementary and middle school students' understanding! Keep all 

values within elementary and middle school students' understanding! Keep all values within elementary and 

middle school students' understanding! 

5. SIMPLICITY: Use basic, straightforward terms that young students can understand! Use basic, straightforward 

terms that young students can understand! Use basic, straightforward terms that young students can understand! 

Organize your responses in the following format without any extra text or explanations:

- If the existing attribute values completely cover the entire dimension, only output "null". For example,

null

- If the number of potential attribute values is more than 10, first output 10 potential new attribute values, and end 

your output with "infinite" in a new line. For example,

attribute value 1

attribute value 2

...

attribute value 10

infinite

- Otherwise, output all the potential new attribute values, and end your output with "complete" in a new line. For 

example,

attribute value 1

attribute value 2

...

attribute value n

complete

Figure 25: Prompt template of GSM8K-style instruction subspace coverage in TREESYNTH.
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Prompt Template of MATH-style Instruction Subspace Coverage in TREESYNTH.

As a math expert, your task is to supplement the potential attribute values for a specified dimension in order to 
comprehensively model the entire space of questions.
The whole space of questions is described as follows:
1. Question Type: Questions must exclusively involve advanced mathematical reasoning suitable for competitions 
such as AMC 8, AMC 10, AMC 12, AIME, or USAMO.
2. Difficulty Levels: Clearly assign each question a difficulty level from 1 (easy, typical of early AMC 8 questions) 
to 5 (very challenging, similar to later AIME/USAMO questions), consistent with recognized mathematical 
competition standards.
3. Verb and Phrasing Diversity: Employ varied verbs and diverse phrasing, blending both clear interrogative 
questions and direct imperative instructions to maintain instruction diversity.
4. Clarity and Uniqueness: Questions must provide all necessary details for a solver to determine exactly one 
unique solution without ambiguity.
5. Notation and Formatting: Use clear and precise mathematical notation written in LATEX. If diagrams or 
illustrations are necessary, describe them explicitly in descriptive text or represent them using valid Asymptote 
code.
6. Solvability: Questions should be solvable by advanced high school-level mathematical reasoning without 
calculators or external computational resources.
Dimension: <Dimension>
Exiting attributes values: <Attribute values>
Requirements for New Attribute Values:
1. Clarity: Avoid ambiguous values, such as "others".
2. Mutual Exclusivity: Ensure that attribute values do not overlap.
3. Completeness: Ensure that all possible attribute values fully cover the dimension.
4. Mathematical Complexity: Generate attribute values that reflect high school competition-level mathematical 
techniques and concepts.
Organize your responses in the following format without any extra text or explanations:
- If the existing attribute values completely cover the entire dimension, only output "null". For example,
null
- If the number of potential attribute values is more than 10, first output 10 potential new attribute values, and end 
your output with "infinite" in a new line. For example,
attribute value 1
attribute value 2
...
attribute value 10
infinite
- Otherwise, output all the potential new attribute values, and end your output with "complete" in a new line. For 
example,
attribute value 1
attribute value 2
...
attribute value n
complete

Figure 26: Prompt template of MATH-style instruction subspace coverage in TREESYNTH.
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Prompt Template of Code Alpaca-style Instruction Subspace Coverage in TREESYNTH.

As a coding expert, your task is to supplement the potential attribute values for a specified dimension in order to 

comprehensively model the entire space of instruction-input pairs.

The whole space of instruction-input pairs is described as follows:

1. Instruction type: generated instructions can only be code generation tasks.

2. Various Python programming tasks are included, e.g. open-ended generation, classification, editing, 

optimization, etc.

3. Each instruction-input pair is solvable by GPT alone, e.g. avoid tasks requiring multimedia or file inputs, etc.

4. All the instruction-input pairs are in English.

5. When unnecessary, the input may be omitted in the instruction-input pairs.

6. Restriction: The code generated by the instructions does not require access to any external resources, including 

applications, files, systems, or networks. It should be executed solely in the Python console.

Dimension: <Dimension>

Exiting attributes values: <Attribute values>

Requirements for New Attribute Values:

1. Clarity: Avoid ambiguous values, such as "others".

2. Mutual Exclusivity: Ensure that attribute values do not overlap.

3. Completeness: Ensure that all possible attribute values fully cover the dimension.

4. Attribute Scope: All attributes should be python coding or programming related. 

Organize your responses in the following format without any extra text or explanations:

- If the existing attribute values completely cover the entire dimension, only output "null". For example,

null

- If the number of potential attribute values is more than 10, first output 10 potential new attribute values, and end 

your output with "infinite" in a new line. For example,

attribute value 1

attribute value 2

...

attribute value 10

infinite

- Otherwise, output all the potential new attribute values, and end your output with "complete" in a new line. For 

example,

attribute value 1

attribute value 2

...

attribute value n

complete

Figure 27: Prompt template of Code Alpaca-style instruction subspace coverage in TREESYNTH.
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Prompt Template of SimpleToM-style Instruction Subspace Coverage in TREESYNTH.

As an analysis expert, your task is to supplement the potential attribute values for a specified dimension in order 

to comprehensively model the entire space of stories. Note that these stories take place in real-world scenarios 

where information asymmetry naturally exists, with various underlying causes.

Dimension: <Dimension>

Existing attributes values: <Attribute values>

Requirements for New Attribute Values:

1. Clarity: Avoid ambiguous values, such as "others".

2. Mutual Exclusivity: Ensure that attribute values do not overlap with each other or with the existing values.

3. Completeness: Ensure that all possible attribute values fully cover the dimension.

4. Harmfulness and Unethicality: Avoid 

Organize your responses in the following format without any extra text or explanations:

- If the existing attribute values completely cover the entire dimension, only output "null". For example,

null

- If the number of potential attribute values is more than 10, first output 10 potential new attribute values, and end 

your output with "infinite" in a new line. For example,

attribute value 1

attribute value 2

...

attribute value 10

infinite

- Otherwise, output all the potential new attribute values, and end your output with "complete" in a new line. For 

example,

attribute value 1

attribute value 2

...

attribute value n

complete

Figure 28: Prompt template of SimpleToM-style instruction subspace coverage in TREESYNTH.
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Prompt Template of Converting Negative Samples of SimpleToM-style Data into Positive Samples.
You are given a short, two-sentence story illustrating information asymmetry, where Person X is unaware of a crucial fact 
about Y. Your task is to convert the story into an "information symmetry" version by adding a **subtle environmental or 
background clue** **only in the first sentence**. Importantly, do **not** describe Person X actively noticing or becoming 
aware of the clue; just insert a slight detail implying something might be wrong or unusual.
**Detailed Instructions**
1. **Original Story** (two sentences):
   - Sentence 1 reveals the hidden fact (which X originally does not know).
   - Sentence 2 describes Person X’s action, still unaware.
2. **Modified Story** (two sentences):
   - **Sentence 1**: Insert a minor clue that could lead X (or a reader) to infer the hidden fact **without** explicitly saying 
"X notices" or "X realizes." The clue should be subtle and not directly point to the hidden fact.
   - **Sentence 2**: Keep it almost the same as in the original story, unless trivial edits are needed for coherence. Avoid stating 
that X has already changed behavior. The point is that X **could** have inferred the fact from the background detail, but the 
text does not explicitly say so.
3. **Question & Choices**:
   - Use the same question from the original story or rephrase it slightly as "What does X do next?"
   - (A) The original uninformed action.
   - (B) The new informed action.
   - Each action should be a complete but concise verbal phrase, without adjectives or adverbs. Avoid making it too short or too 
detailed.
4. **Final Answer**:
   - Provide a short (1–2 sentences) reasoning that references the subtle background clue in the first sentence, leading X to 
choose (B).
   - End with: "So the answer is (B)."
Here is the original story, question and uninformed action:
Original Story: <story>
Original Question: <ques>
Original Action: <act>
Now, organize your response in the following format. Separate each instance using **only a blank line** (no extra dividers or 
explanations).
[INPUT]
Given the following story, answer the question by giving the correct answer choice, (A) or (B).
Original Story: <the original two-sentence story given to you which shows the old info asymmetry>
Modified Story: <the new two-sentence story where X has discovered the missing info>
Question: <the question>
(A) <old uninformed action>
(B) <new informed action>
What is the correct answer?
[ANSWER]
<brief chain-of-thought>. So the answer is (B).
### Key Reminders
- Do not say "X notices / sees / realizes / suspects." Instead, simply mention an observable detail in the environment or object. 
Let the user infer that X **could** realize it.
- Keep the second sentence almost the same.
- The inserted clue must be enough that (B) is justified.
- This ensures the final scenario still requires a bit of inference, rather than the story outright stating X’s awareness.

Figure 29: Prompt template of converting negative samples of SimpleToM-style data into positive
samples.

Prompt Template of Sample Classification.

You are tasked with classifying the following story based on the criterion of **<dimension>**.

STORY:

<sample>

You must **select exactly one** category from the option list below that best fits the main characteristics of the 

story. If none is a perfect fit, select the closest one.

OPTION LIST:

<attributes>

Please strictly follow the output format below and do not output anything else.

Output in JSON format:

{{

    "category": "<selected category, using **exact text** from the list>",

    "explanation": "<one-sentence justification>"

}}

Figure 30: Prompt template of sample classification.
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MATH style data generated by TREESYNTH 

Attribute value and Dimension:

1.Attribute value: Algebraic Equations,

   Dimension: Problem Type,

2.Attribute value: Geometry and Measurement,

   Dimension: Mathematical Focus,

3.Attribute value: perimeter/fencing,

   Dimension: object of calculation,

4.Attribute value: Rectangular,

   Dimension: Shape of the Area,

Generated Samples:

1."Emma is planning to build a rectangular garden in her backyard, where the length is 3 feet more than twice 

the width. If she wants the perimeter of the garden to be 30 feet, what are the dimensions of the garden?",

2."A farmer is enclosing a rectangular pasture with a fence. The length is 4 times the width, and the total 

fencing needed is 60 meters. What are the dimensions of the pasture?",

3."Liam wants to create a rectangular dog park where the length is 5 meters more than the width. If he has 50 

meters of fencing to use around the park, what should be the dimensions of the dog park?",

4."Sarah is designing a rectangular flower bed where the length is 7 feet longer than the width. If she has 48 

feet of fencing available, what are the dimensions of the flower bed?",

5."A rectangular playground is being designed such that its length is double its width. If the perimeter of the 

playground is meant to be 72 meters, what are the dimensions of the playground?",

6."A rectangular swimming pool is planned where the length is 10 feet more than the width. If the perimeter 

needs to be 84 feet, what should be the dimensions of the pool?",

7."David is building a rectangular deck where the length is 6 feet more than the width. If the total perimeter of 

the deck is to be 40 feet, what are the dimensions of the deck?",

8."A rectangular parking lot is to be constructed with the length being 8 meters more than the width. If the 

perimeter is supposed to be 100 meters, what will be the dimensions of the parking lot?",

9."A rectangular storage area is being planned with a length that is 3 meters longer than the width. If the 

entire perimeter is to be 90 meters, what are the dimensions of the storage area?",

10."A rectangular sports field is to be designed where the length is 12 meters more than twice the width. If the 

perimeter of the field is 96 meters, what are the dimensions of the field?"

Figure 31: GSM8K style data generated by TREESYNTH.

MATH style data generated by TREESYNTH 

Attribute value and Dimension:

1.Attribute value: Algebra,

   Dimension: Mathematical Domain,

2.Attribute value: equation solving,

   Dimension: problem type,

3.Attribute value: low,

   Dimension: computation complexity,

4.Attribute value: simple polynomial,

   Dimension: equation structure,

Generated Samples:

1."Solve for (x): (2x^2 - 5x + 3 = 0).   <Difficulty>   1",

2."Determine the real solution to the equation (x^2 + 4x + 4 = 16).   <Difficulty>   1",

3."If (x^2 + 3x - 10 = 0), compute the sum of all real solutions for (x).   <Difficulty>   2",

4."Let (2x^2 - 3x - 5 = 0). Find the product of the roots of the equation.   <Difficulty>   2",

5."Solve for (x): ((x - 2)(x + 3) = 0).   <Difficulty>   1",

6."Find the smallest positive solution to the equation (x^2 - 6x + 8 = 0).   <Difficulty>   2",

7."For (x^2 - 7x + 12 = 0), determine the larger root.   <Difficulty>   2",

8."Let (x^2 + px + 16 = 0) have roots 4 and (-4). Find the value of (p).   <Difficulty>   3",

9."Solve for (x): (3x^2 - 2x - 8 = 0). Express your answer in simplest radical form.   <Difficulty>   4",

10."Find all real solutions to the quartic equation (x^4 - 5x^2 + 4 = 0).   <Difficulty>   4"

Figure 32: MATH style data generated by TREESYNTH.
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Code Alpaca style data generated by TREESYNTH 

Attribute value and Dimension:

1.Attribute value: numeric computation,

   Dimension: operation type,

2.Attribute value: list of integers,

   Dimension: input data type,

3.Attribute value: central tendency,

   Dimension: required list property or computation,

4.Attribute value: mean,

   Dimension: statistical measure,

Generated Samples:

1."Create a Python function to calculate the mean of a list of integers. <Input>     [10, 20, 30, 40, 50]",

2."How can you determine the average value of numbers in a list using Python? <Input>     [3, 6, 9, 12, 15]",

3."Write a script to find the mean of a given list of integers. <Input>     [5, 15, 25, 35, 45]",

4."What Python code would you use to compute the mean of a list of integers? <Input>     [8, 16, 24, 32, 40]",

5."Could you draft a Python function that returns the average of numbers in a list? <Input>     [7, 14, 21, 28, 35]",

6."Generate a Python function that calculates the mean of integers in a list. <Input>     [2, 4, 6, 8, 10]",

7."Can you write a Python code snippet to find the mean of a list of integers? <Input>     [11, 22, 33, 44, 55]",

8."Devise a Python script to calculate the average of a list of integers. <Input>     [9, 18, 27, 36, 45]",

9."What is the Python function to compute the mean of a list of integers? <Input>     [12, 24, 36, 48, 60]",

10."Formulate a Python solution to find the mean of a list of numbers. <Input>     [1, 3, 5, 7, 9]"

Figure 33: Code Alpaca style data generated by TREESYNTH.
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