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Abstract—Human videos offer a scalable way to train robot
manipulation policies, but lack the action labels needed by stan-
dard imitation learning algorithms. Existing cross-embodiment
approaches try to map human motion to robot actions, but often
fail when the embodiments differ significantly. We propose X-
SIM, a real-to-sim-to-real framework that uses object motion as
a dense and transferable signal for learning robot policies. X-
SIM starts by reconstructing a photorealistic simulation from an
RGBD human video and tracking object trajectories to define
object-centric rewards. These rewards are used to train a rein-
forcement learning (RL) policy in simulation. The learned policy
is then distilled into an image-conditioned diffusion policy using
synthetic rollouts rendered with varied viewpoints and lighting.
To transfer to the real world, X-SIM introduces an online domain
adaptation technique that aligns real and simulated observations
during deployment. Importantly, X-SIM does not require any
robot teleoperation data. We evaluate it across 5 manipulation
tasks in 2 environments and show that it: (1) improves task
progress by 30% on average over hand-tracking and sim-to-
real baselines, (2) matches behavior cloning with 10× less data
collection time, and (3) generalizes to new camera viewpoints and
test-time changes. Website: https://portal.cs.cornell.edu/X-Sim/

I. INTRODUCTION

Human videos offer a natural and scalable source of demon-
strations for robot policy learning. However, recent advances
in robot foundation models [25, 18] rely entirely on large-scale
datasets of robot embodiments [34, 24]. Collecting such data
requires labor-intensive and expensive teleoperation to pro-
vide high-quality expert demonstrations, making it intractable
to scale across diverse tasks and environments. In contrast,
human videos (e.g. from YouTube) are abundant and capture
a wide range of tasks in natural environments.

Despite their potential, human videos cannot be directly
used in widely-adopted imitation learning pipelines [10, 57],
as they lack explicit robot action labels. To bridge this gap,
prior work attempts to map human trajectories to robot actions,
typically assuming visual or kinematic compatibility. Some
methods retarget human hand motion to the robot’s end-
effector [6], but this assumes that human movements are
feasible for the robot to replicate [39], which is rarely the
case in practice. Other methods reduce the human-robot visual
gap by overlaying robot arms on human videos [27, 28], but
these rely on solving inverse kinematics, which may be ill-
posed due to embodiment mismatch. Another line of work
directly translates human videos into robot actions [21, 20, 47],
but requires paired human-robot demonstrations, which are
expensive and difficult to collect at scale.

We tackle the problem of generating robot training data
from action-less human videos. Our key insight is that, while
human actions are unavailable, the object motion they
produce provides a dense supervisory signal for training
robot policies in simulation. By reconstructing a photoreal-
istic simulation [17] of the human video and tracking object
trajectories [48], we define object-centric reward functions that
guide RL agents to reproduce the effects of human behavior —
even when the robot must take entirely different actions. This
enables distillation into real-world image-conditioned robot
policies without any robot teleoperation data.

We propose X-SIM, a real-to-sim-to-real framework that
bridges the human-robot embodiment gap by learning robot
policies in simulation on rewards generated from human
videos (Fig. 1). X-SIM first extracts object states from a
RGBD human video and transfers them into a photoreal-
istic simulation. It defines a dense object-centric reward to
efficiently train state-based RL policies in simulation. X-
SIM generates a large synthetic dataset of paired image-
action data by rolling out the trained RL policy and rendering
the resulting scenes under varied robot poses, object states,
viewpoints, and lighting. Using this dataset, it trains an image-
conditioned diffusion policy and transfers directly to the real-
world without needing any real robot action data. To narrow
the sim-to-real gap at deployment, X-SIM utilizes an online
domain adaptation technique to align the robot’s real world and
simulation observations. Our contributions are summarized as:

1) We propose X-SIM, a real-to-sim-to-real framework
that learns image-based robot policies from action-less
human videos by tracking object states and matching
their motion in simulation.

2) We introduce an online domain adaptation technique to
continually reduce the sim-to-real gap by aligning real-
world observations with simulation at test time, enabling
robust sim-to-real transfer.

3) We evaluate X-SIM across 5 manipulation tasks in 2
environments, showing that it (1) improves task progress
by 30% on average over hand-tracking and sim-to-real
baselines, (2) matches behavior cloning with 10x less
data collection time, and (3) enables generalization to
test-time changes, including novel camera viewpoints.

II. APPROACH

X-SIM learns real-world, image-conditioned robot policies
from action-free RGBD human videos by using object motion
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Fig. 1. Overview of X-SIM: We introduce X-SIM, a real-to-sim-to-real framework that bridges the human-robot embodiment gap by learning robot policies.
Real-to-Sim. We generate photorealistic simulation using object-centric rewards generated from human videos. Training X-Sim. We first train RL policies
with privileged state using GPU-parallelized environment. Then, we collect a diverse image-action dataset use it to distill behaviors into an image-conditioned
policy. Sim-to-Real. Image-based policy is deployed in the real-world. Its observation encoder automatically calibrates itself by aligning real and sim image
observations at test-time.

as supervision. The pipeline has three stages: (1) reconstruct-
ing a photo-realistic simulator from human videos and extract-
ing object trajectories, (2) training RL policies in simulation
to match object motion and generate synthetic image-action
data, and (3) distilling behaviors into an image-conditioned
diffusion policy with online domain adaptation.

A. Real-to-Sim Transfer from Human Videos

We treat object motion in human videos as task supervision.
First, we use 3D scanning and FoundationPose [48] to track
object poses across the video vH, yielding pose trajectories
sH = {stH}Tt=1 with stH ∈ SE(3)K . Next, we reconstruct
the scene with 2D Gaussian Splatting [17] and import it
into ManiSkill [32] to build a realistic simulation. We choose
default physics parameters for all objects.

B. Generating Robot Actions in Simulation

We define object-centric rewards using sH, encouraging the
robot to match human-demonstrated object poses:

rgoal ∝ −dpos(s
B
H , stR)− drot(s

B
H , stR) (1)

where sBH is the current goal pose. A privileged-state policy is
trained with PPO [40], and successful rollouts are rendered
under randomized conditions to build a synthetic dataset
Dsynthetic = {(otR, atR)}Nt=1.

C. Sim-to-Real Transfer of Image-Based Policies

We train a Diffusion Policy [10] πimg(a|o) on Dsynthetic

to operate on RGB inputs. To bridge the sim-to-real gap,

we replay real robot rollouts in simulation and create paired
observations Dpaired = {(osimR , orealR )}. These are used to align
visual features via a contrastive InfoNCE loss:
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∑
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exp(
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′real
R
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R ))

τ )
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where ϕ is the encoder, s is cosine similarity, and τ is a
temperature. This alignment improves robustness to real-world
visual variation without using teleoperation data.

III. EXPERIMENTS

Experimental Setup. We conduct all experiments us-
ing a 7-DOF Franka arm across two real environments:
Kitchen and Tabletop (Fig. 2). RGBD human videos are
recorded using a ZED 2 stereo camera, with no constraints
on motion or grasp style allowing for natural human ex-
ecution. Tasks include pick-and-place (Mustard Place,
Corn in Basket, Shoe on Rack), non-prehensile ma-
nipulation (Letter Arrange), and precise insertion (Mug
Insert). We transfer human videos into simulation using
our real-to-sim pipeline. For each task, we train privileged-
state policies using PPO [40] in ManiSkill [32] and randomize
object and robot poses around the initial demonstration state.
Then, the RL policy is distilled into an image-only Diffusion
Policy [10]. We assume approximate knowledge of the test-
time camera viewpoint and render randomized viewpoints
around it during training, adding robustness to small varia-
tions. At inference time, X-SIM operates solely on real RGB



Fig. 2. Performance on Real-World Tasks: We report Avg. Task Progress on 5 tasks across two environments, and find that X-SIM both with and without
calibration consistently outperforms hand-tracking baselines that attempt to retarget human hand motion. A rough sketch of each task is visualized on top.

image input. To align the observation encoder for X-SIM
(CALIBRATED), we rollout 10 trajectories of X-SIM in the
real-world to collect paired real and sim data. More details
about each task and hyperparameters are in the Appendix.

Evaluation Metrics. We report Average Task Progress
as our primary metric, which captures partial credit across
distinct stages of task completion rather than relying on binary
success. For grasp-based tasks (Mustard Place, Corn
in Basket, Shoe on Rack, Mug Insert), progress is
divided into three stages: approaching the correct object,
successfully grasping it, and completing the manipulation
to match the goal configuration from the human video.
For the non-prehensile task (Letter Arrange), the stages
correspond to approaching, rotating, and placing the object
correctly. We evaluate all methods over 10 trials, each with
slight variations in the object’s initial position relative to the
demonstrated human video.

A. Bridging the Embodiment Gap via Simulation

We evaluate whether X-SIM can overcome the limitations
of hand-retargeting approaches. We compare against two rep-
resentative baselines:

• Hand Mask: [27, 28] Applies a black mask over the
human hand in demonstration videos to train an image-
conditioned behavior cloning policy. At inference time,
the robot arm is similarly masked. This approach, used
in PHANTOM [28], assumes all human hand poses can
be replicated by the robot. Without this assumption, we
do not overlay a robot arm during training.

• Object-Aware Inverse Kinematics (IK): [46, 31, 45]
Extracts hand trajectories relative to nearby objects, and
replays them by applying IK to move the robot end-
effector along the same path.

Neither baseline uses simulation. Both extract action labels
from human hand pose estimates using HAMER [37], using
the same procedure as PHANTOM [28]. We evaluate X-

SIM and baselines across 10 real-world rollouts per task
(Fig. 2). Hand Mask fails due to a large visual gap between

Fig. 3. Hand Re-targeting Failure Modes: Hand Mask fails due to a
significant visual domain gap between human and robots, even when the
motions are physically feasible for the robot. Object-Aware IK fails under
execution mismatch, as certain human hand motions are kinematically or
dynamically infeasible.

human and robot observations, retaining only object location
information and rarely progressing beyond the approach phase
(Fig. 3). Object-Aware IK performs well in Kitchen tasks
where human and robot have similar execution styles, but
breaks down in Tabletop tasks due to kinematic infeasibility
and mismatched dynamics when directly mimicking human
motions. In contrast, X-SIM, even without sim-to-real cali-
bration, learns feasible strategies in simulation and transfers
them effectively—achieving consistently higher task progress
and over 30% gains in the most mismatched settings.



B. Sim-to-Real Policy Transfer
Comparison with State-Based Policy. We evaluate X-

SIM’s ability to transfer from simulation to the real world
using only RGB images, and compare it to policy learning
approaches based on privileged state, such as object poses.
A closely related method, Human2Sim2Robot [14], learns
in simulation using accurate 6D object poses and attempts to
replicate this setup in the real world through object tracking.
However, even small tracking errors at inference can push
pose-based policies out-of-distribution, leading to failure.

These methods often rely on precise observations that are
hard to obtain in practice due to occlusions, depth noise, and
imperfect vision models. In contrast, X-SIM uses raw images,
which provide a more robust and transferable representation.
Image-based inputs are less sensitive to real-world noise and
align well with modern visuomotor policy architectures. On
the Letter Arrange task, X-SIM significantly outper-
forms pose-based baselines in sim-to-real transfer (Table 4),
showing that images are a more practical and effective obser-
vation modality for real-world deployment.

Metric ↓ H2S2R X-SIM

Avg. Task Progress 43.3% 83.3%

Fig. 4. We evaluate Avg. Task Progress of X-SIM with image
observations against a sim-to-real baseline that uses object state
observations on the Letter Arrange task.

Fig. 5. Sim-to-Real Calibration: We compare X-SIM image embeddings
using t-SNE before and after calibration for one rollout, and find that our
calibration procedure helps remedy the sim-to-real visual gap between the
photorealistic simulation and the real-world.

Calibration after Deployment. Recent sim-to-real meth-
ods [2, 33] often rely on co-training with real-world demon-

strations to bridge the domain gap. In contrast, X-SIM uses
only simulation data collected in a photorealistic environment,
avoiding the need for teleoperation. While this reduces the
observation gap, some visual discrepancies remain due to
imperfections in 3D reconstruction and rendering. To address
this, X-SIM (CALIBRATED) aligns real and simulated ob-
servations online using closed-loop rollouts, as described in
Sec. ??. Notably, this procedure is agnostic to success/failure,
and can even benefit from unsuccessful rollouts. We find that
X-SIM (CALIBRATED) leads to additional benefits over our
base method, with an average increase of 8% in task progress
across all tasks and most notably a 13% increase for the most
challenging task Mug Insert, indicating the ability to learn
even from failures (Fig. 2). To further analyze the effects of our
calibration procedure, we probe policy observation encoders
on a paired simulation/real robot videos and plot the t-SNE
embeddings over time in Fig. 5. X-SIM (CALIBRATED) better
aligns image embeddings compared to X-SIM, ensuring that
the policy avoids overfitting to domain-specific attributes with
its calibration loss while still encoding task relevant features
with its action prediction loss.

C. Data Efficiency

We study how X-SIM’s performance scales with data by
modifying the Mustard Place task to significantly broaden
the initial state distribution of the mustard bottle (visual-
izations in the Appendix). In this setting, behavior cloning
requires extensive robot teleoperation data to cover the distri-
bution. In contrast, X-SIM scales by collecting more human
videos—which are faster to obtain (20s per video vs. 60s per
robot demo)—and perturbing object poses in simulation for
broader coverage. As shown in Fig. 6, X-SIM achieves 90%
success with just 1 minute of human video data, compared
to 70% success with 10 minutes of robot demonstrations.
This highlights X-SIM’s efficiency and scalability for training
robust robot policies.

Fig. 6. Data Efficiency: X-SIM scales more efficiently with data collection
time than behavior cloning from robot teleoperation, achieving comparable
success on Mustard Place with 10× less time.
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IV. APPENDIX

A. Robustness to Test-Time Changes

Image-conditioned policies are particularly sensitive to
viewpoint bias, demanding additional data for each perspec-
tive. X-SIM overcomes this by leveraging simulation to render
trajectories from any desired view, enabling efficient coverage.
We evaluate this by collecting simulated rollouts from Side and
Frontal camera views, and training policies with data from
each view individually and jointly. As shown in Fig. 7, com-
bining diverse viewpoints in simulation significantly improves
generalization, even to unseen camera angles at test time.

Train → Side Frontal Side & FrontalTest ↓

Side 83.3% 23.3% 96.7%
Frontal 23.3% 76.7% 80.0%
Novel 33.3% 30.0% 53.5%

Fig. 7. We show that we can flexibly collect image-action data in
simulation from multiple viewpoints (Side and Frontal) with X-SIM
and train robust policies that generalize to novel viewpoints.

B. Related Work

Imitation Learning. Imitation learning, particularly be-
havior cloning (BC), is the dominant paradigm for training
visuomotor robot policies. Recent algorithms like Diffusion
Policy [10] and ACT [57] achieve state-of-the-art results by
learning from expert demonstrations consisting of image-
action pairs. However, these methods typically require col-
lecting data via human teleoperation of the specific target
robot, using kinesthetic teaching [9], wearable devices [19],
or specialized control interfaces [29, 49, 58]. Recent efforts
have attempted to build large robotic dataset across different
robot embodiments [34, 24] leading to the development of
foundation models [25, 18] for robotic control. Still, scaling
up such datasets remains a significant challenge because of
the heavy reliance on robot teleoperation. While UMI [11]
proposes hand-held grippers to collect data without direct
robot involvement, these demonstrations can be dynamically
infeasible for robots and still require active collection in lab
settings. In contrast, our approach bypasses the need for robot
action data entirely by leveraging human videos to generate
synthetic robot data.

Learning from Human Videos. The ease of collecting
human videos has motivated interest in learning robot motion
directly from them. Common strategies include retargeting
hand motion [43, 42, 3, 54, 6], reducing the visual gap via
inpainting [4, 27, 28], or using pretrained open-world vision
models for constructing object-relative hand trajectories [59,
46, 31]. All of these methods rely on the robot’s capability
to match its end-effector with the human’s hand positions,
which often falls down in practice due to large embodiment
differences. Hierarchical frameworks [47, 8, 5] learn high-level
plans instead, while one-shot imitation methods [21, 20, 7]
learn from prompt videos. These methods typically require

human-robot paired data or self-supervised alignment from
unpaired data [22, 53]. In either case, a common limitation
among these methods is the need for robot teleoperation data
to guide low-level control [39]. RL provides an alternative,
using video [56] similarity, language matching [41] or object
tracking [35] for rewards, but suffers from the sim-to-real
gap. Cross-embodiment RL [26, 16] methods that have been
deployed on real robots require object tracking at test-time
which can be brittle to noisy observations. Instead, we leverage
a real-to-sim-to-real pipeline to directly transfer image-based
policies from simulation.

Real-to-Sim-to-Real. Advances in 3D computer vision have
enabled the development of photorealistic, physically accurate
simulations from real-world data. Recent works increasingly
use real-to-sim methods to learn robot behaviors in simulation.
For instance, RialTo [44] trains RL policies in simulation
to improve policy robustness, using point cloud inputs for
real-world deployment. ResiP [2] learns residual actions in
simulation starting from an image-based policy trained in the
real world. However, both these approaches still require real-
world robot data collection. To directly learn actions, motion
planners are used in simulation but deployed open-loop in
the real world [36, 23]. More recently, real-to-sim-to-real has
been applied to learn from human videos [55, 14]. However,
Video2Policy [55] only extracts the initial and final object
states from human videos, and relies on object segmentation
masks at test time for policy transfer. Human2Sim2Robot [14]
defines rewards for RL using object state tracking from videos,
but does not use a photo-realistic simulation. However, real-
world deployment additionally requires object tracking at
test time. RL training also requires tracking human hand
trajectories for guiding the policy, and is applied only to
dexterous hands with minimal embodiment gap. Our work
offers distinct advantages over these methods: (a) we bypass
the need for robot teleoperation data and human hand tracking
for RL training, and (b) we transfer image-based policies from
simulation to the real world using environment randomization
and domain adaptation methods.

C. Limitations

In this paper, we chose to maximize the ability of the
real-to-sim pipeline by making simplifying assumptions, while
still maintaining the input/output contract (images to actions)
that is most practical to deploy in unstructured environments.
This is because the focus of the paper is to show the ef-
fectiveness of image-based policy transfer given ideal real-
to-sim transfer. However, we acknowledge that while X-SIM
provides an effective approach for learning robot policies
from human videos, its application to unstructured, in-the-wild
internet videos remains an open challenge. Below, we outline
key assumptions that limit X-SIM’s current ability to move
towards this broader vision and suggest pathways towards their
solutions in the near future:

Requiring Object Meshes for Tracking. Our pipeline
currently uses FoundationPose, which requires a 3D object
mesh for tracking, limiting applicability to videos where we



either don’t know or don’t have the object mesh manipulated
by the human. One way to extend this to internet videos is by
estimating approximate meshes directly from using tools like
InstantMesh [52]. Alternatively, object meshes can be retrieved
from large 3D asset libraries [30], as shown in prior work on
digital cousin generation [12], which suffices since simulation
is only used for synthetic data generation.

Restricted to Rigid Object Manipulation. Our current
pipeline relies on tracking object states through 6D poses,
which limits it to rigid objects and excludes articulated or
deformable items commonly seen in real-world tasks. For
articulated objects like drawers or doors, recent vision re-
search [50] has shown that visual priors and foundation models
can be used to identify and track articulation parameters from
RGB input. For deformable objects, emerging representations
like particle-based models [1] offer promising avenues for
capturing non-rigid dynamics. While these approaches are
still maturing, our framework can continue to improve rigid
manipulation skills, and its image-conditioned policies may
complement existing models trained on separate data to handle
deformables and articulations more effectively.

Environment Scan for Generating Simulation. X-SIM
currently requires an explicit 3D scan of the environment to
reconstruct the simulation scene, which limits its applicability
to scenarios where such scans are unavailable. Recent works
like St4RTrack [13] have shown that it is possible to gener-
ate both geometric and visual reconstructions directly from
monocular human videos. While these methods typically rely
on dynamic camera motion, many human video datasets—such
as Ego4D [15]—naturally satisfy this condition, offering a
viable path toward removing the explicit environment scanning
requirement.

Estimating Physics Parameters from Vision Alone. In
this work, we use default physics parameters—such as mass,
friction, and stiffness—for simulation, rather than estimating
them from the human video. However, recent approaches sug-
gest viable paths forward: vision language models (e.g., GPT)
can provide plausible physics guesses given object categories
or visual context [51], and domain randomization can be
applied around these estimates to build robustness. Addition-
ally, while our proposed online sim-to-real calibration targets
visual alignment, the same framework could be extended
to iteratively adapt physical parameters by comparing real
and simulated rollouts—enabling self-supervised refinement of
both perception and dynamics.

D. Task Descriptions

We provide descriptions and visualizations (Fig. 8) of tasks
we report results for in Fig. 2.

• Mustard Place: Pick up the Mustard bottle from the
right side of the kitchen countertop and place it on the
left side.

• Corn in Basket: Pick up the corn from the left side
of the kitchen countertop and put it inside of the basket.

• Shoe on Rack: Pick up the left shoe and place it on
top of the shoe rack, next to the right shoe.

• Letter Arrange: Move the letter ’I’ next to the letter
’A’ so that they are aligned.

• Mug Insert: Insert the mug’s handle onto the holder.

E. Real-to-Sim Scans

In order to transfer our environments and objects into simu-
lation, we employ 2D Gaussian Splatting [17]. We take videos
(multi-view images) of the environment for < 2 minutes,
which are supplied as input to the module to get a photo-
realistic 3D reconstruction of the scene. Individual objects to
be tracked are scanned with Polycam [38], a phone app, with a
similar procedure in < 1 minute per object. The environment
and objects are scaled manually to the correct size before
being transferred into simulation, though alternate calibration
methods could be used to automate this process.

F. RL Training Details

1) PPO Hyperparameters: We provide details of hyperpa-
rameters (Table I) used for training privileged-state PPO [40]
policies in simulation.

TABLE I
PPO HYPERPARAMETERS

Hyperparameter Value

Learning rate 3× 10−4

Discount factor (γ) 0.8
GAE parameter (λ) 0.9
Clipping parameter (ϵ) 0.2
Value function coefficient 0.5
Entropy coefficient 0.0
Target KL divergence 0.1
Maximum gradient norm 0.5
Minibatch size 9,600
Number of parallel environments 1,024

Actor network MLP (state dim → 256 → 256 →
256 → action dim)

Critic network MLP (state dim → 256 → 256 →
256 → 1)

Activation function Tanh

Optimizer Adam
Adam epsilon 1× 10−5

2) Simulation State Space: The state-based observation
space in simulation consists of the following components:

TABLE II
OBSERVATION SPACE COMPONENTS

Component Description

ee_pose End-effector pose (position and orientation)
gripper_width Gripper opening width
achieved_goal Current object poses
desired_goal Target waypoint poses for objects
goal_position_diff Position difference between current and tar-

get poses
goal_rotation_diff Angular difference between current and tar-

get orientations
is_grasped Binary object grasp status (if applicable)



Fig. 8. Visualization of tasks that we report results for in Fig. 2

3) Reward Function Formulation: We provide the complete
object-centric reward function implementation proposed in
Sec. II:

a) Approach Reward.: The rapproach component encour-
ages the agent to approach the target object with:

rapproach = (1− tanh(kdobj)) (3)

where dobj is the distance between the end-effector and the
current target object and k is a constant scaling factor.

b) Goal Reward.: rgoal penalizes positional and rota-
tional deviations from the target state:

rgoal =
(
1− tanh(αd · dpos(sBH , stR))

)
+
(
1− tanh(αθ · drot(sBH , stR))

)
+2iwaypoint

(4)

where dpos(·) measures the Euclidean distance, and drot(·)
computes the quaternion angular difference, αd and αθ are
scaling factors for each waypoint automatically computed from
the demonstration, and iwaypoint is the current waypoint index
to serve as a bonus for progressing through the task. Note that
the desired_goal in the observation is updated when the
current goal is reached within an ϵ threshold, and in practice
we sample N object waypoints from the human video to
summarize the demonstration.

The goal reward also has additional terms: rstatic en-
courages stability of the robot when objects are correctly
positioned, rsuccess provides a +1 bonus upon task completion
(objects are placed in their goal configuration), and rgrasp is an
optional binary reward to encourage grasps for non-prehensile
tasks.

c) Complete Reward.: The final reward is robj =
rapproach + rgoal.

G. Image-Conditioned Policy Training Details

1) Synthetic Data Collection: We provide details on ran-
domization parameters (Table III) used when collecting syn-
thetic data for Dsynthetic (Sec. II).

For each task, we collect 500 visuomotor demonstrations in
simulation by applying these randomization parameters.

2) Image-Conditioned Diffusion Policy Training: We pro-
vide hyperparameters (Table IV) for training Diffusion Poli-
cies [10], where input is simply an image of the current state
and output is 7-dimensional delta actions in end-effector space
(3 position actions, 3 rotation actions, 1 gripper action).

H. Ablation Visualizations

1) Data Efficiency: We provide visualizations (Fig. 10) of
the initial state distribution of the Mustard bottle as training



TABLE III
ENVIRONMENT RANDOMIZATION PARAMETERS

Parameter Value

Object Randomization
Initial pose position noise (XY) ±0.025 m
Initial pose rotation noise ±π/8 rad

Robot Randomization
Initial robot joint angle noise ±0.02 rad

Camera and Lighting (Evaluation)
Camera position variation ±0.03 m
Camera target position variation ±0.03 m
Lighting configurations 4 presets

TABLE IV
DIFFUSION POLICY TRAINING HYPERPARAMETERS

Parameter Value

Diffusion timesteps (training) 100
Diffusion timesteps (inference) 10

Backbone CNN ResNet18
Image size 960 × 720 → 96 × 96
Image feature dimension 512
Diffusion step embedding dimension 128
Kernel size 5
Normalization layer GNN

Action horizon 2
Prediction horizon 8
Shift padding 6

Batch size 64
Learning rate 1× 10−4

Weight decay 1× 10−6

Gradient clipping 5.0
EMA decay rate 0.01

Action prediction loss weight 1
Auto-calibration loss weight 0.1 (if applicable)

input for the data efficiency ablation in Sec. III-C. The robot
teleoperation data takes 10 minutes to collect, while the human
videos take 1 minute to collect. In simulation, the starting
poses of the object are perturbed to enable robustness of the
RL policy and diversity in during synthetic data collection.
The evaluation distribution is across the cutting board.

2) Viewpoint Changes: We provide visualizations (Fig. 10)
of the three different viewpoints that we study at train/test time
in Sec. IV-A.



Fig. 9. Visualization of training states for results in Fig. 6

Fig. 10. Visualization of viewpoints for results in Fig. 7
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