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Abstract

The state-of-the-art memory model is the General
Associative Memory Model, a generalization of
the classical Hopfield network. Like its ances-
tor, the general associative memory has a well-
defined state-dependant energy surface, and its
memories correlate with its fixed points. This is
unlike human memories, which are commonly se-
quential rather than separated fixed points. In this
paper, we introduce a class of General Sequen-
tial Episodic Memory Models (GSEMM) that, in
the adiabatic limit, exhibit a dynamic energy sur-
face, leading to a series of meta-stable states capa-
ble of encoding memory sequences. A multiple-
timescale architecture enables the dynamic na-
ture of the energy surface with newly introduced
asymmetric synapses and signal propagation de-
lays. We demonstrate its dense capacity under
polynomial activation functions. GSEMM com-
bines separate memories, short and long sequen-
tial episodic memories, under a unified theoreti-
cal framework, demonstrating how energy-based
memory modeling can provide robust and scalable
memory systems in static and dynamic memory
cases.

Introduction

Episodic memory refers to the conscious recollection of
facts or subjective past experiences and forms an essential
component of long-term memory (Tulving, 2002; Duff et al.,
2019; Renoult et al., 2019). The recollection process may
have both singleton and sequence characteristics. Singleton
retrieval is the associative recall of a single memory from
a retrieval cue. This memory could be the description of
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a particular object of interest or important dates of events.
Sequence retrieval leads to a recollection process that is
not just a single memory but a trajectory of sequentially
connected memories. Memories organized into these trajec-
tories are called episodes. Memories may come together in
episodes allowing us to link and retrieve sometimes distinct
and representationally unrelated memories. The Sequence
Episodic Memory (SEM) problem in Recurrent Neural Net-
works (RNNs) pertains to creating and manipulating these
memories and their sequential relationships by encoding
relevant information in some form in the synapses.

The energy paradigm plays a major role in singleton
episodic memory modeling. The energy paradigm for mem-
ory was introduced by Hopfield (Hopfield, 1982; Amari,
2004), who defined energy as a quadratic function of the
neural activity in symmetrically connected networks with
binary neurons. A single memory is stored as a local mini-
mum of the energy surface. The network states update such
that it converges to one of the local minima and retrieves
a stable activity state representing a single memory. The
Hopfield network model has subsequently been generalized
along two directions.

The first direction focuses on memory capacity. Capacity
relates to the number of neurons required in the ensemble
to store and retrieve a certain number of memories without
corruption. The capacity of the original Hopfield model was
14% of the number of neurons, a small fraction of the num-
ber of neurons in the population(McEliece et al., 1987; Folli
et al., 2016; Amit et al., 1985). A significant breakthrough
in capacity came with the introduction of Dense Associative
Memory (Krotov & Hopfield, 2016), which introduced a
polynomial non-linearity to separate the contribution of each
memory to the energy minimum. The non-linearity enabled
the models to store more memories than the number of neu-
rons (hence the term dense). Further studies extended these
ideas to continuous state spaces, and exponential memory
capacity (Demircigil et al., 2017). Currently, these models
form the fundamental components of transformer architec-
tures (Vaswani et al., 2017; Ramsauer et al., 2021) with
high levels of performance on large-scale natural language
processing tasks (Radford et al., 2018; Devlin et al., 2019)
and computer vision (Carion et al., 2020) tasks. Recently,
General Associative Memory Model (GAMM) (Krotov &
Hopfield, 2021) unified these advances in associative mem-
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Figure 1: System architecture and schematic retrieval process for the General Sequential Episodic Memory Model(GSEMM)
A The two-layer neural architecture with neural connectivity of GSEMM. The new delay-based synapses (®) we introduced
(shown in red) are directed connections between neurons in the hidden layer of GAMM. Dotted curved lines in the figure
indicate one-to-many connections. B The schematic representation of how the network performs its computations. The new
synapses create a delayed signal of the feature layer neurons, which is provided as input to the hidden layer. C The typical
retrieval process for GAMM with three stored memories (£1, &2, £3,). The energy surface is shown by the colormap with
high energy denoted by red and low energy blue. The system (shown by the white ball) flows to the basin corresponding to
the nearest attractor. Due to the energy surface’s static nature, GAMM stays in a low-energy memory. Consequently, the
system cannot retrieve more than one memory (£3 in the figure). D Similar retrieval process for GSEMM. Unlike GAMM,
the system changes the energy surface so that a new minimum is formed that connects to a sequentially related memory
(€3 — & in the figure). The dynamic nature of the energy surface allows the system to adapt to the new minimum under the
condition that the changes in the energy surface are adiabatic to changes in state. This feature of GSEMM enables it to
retrieve more than one memory organized in sequence.
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ory in a single theoretical framework. GAMM succeeded
in explaining the capacity improvements through a simple
energy function that characterized the long-term behavior of
these models just like its predecessors. However, GAMM’s
state-parameterized fixed energy surface restricts it to sin-
gleton memories.

The second research direction focuses on extending energy-
based models to handle sequences. In contrast to memo-
ries in singleton episodic memory, sequence memories are
meta-stable states in the dynamical evolution (Rabinovich
et al., 2008; Durstewitz & Deco, 2008; Camera et al., 2019).
Some of the early works to produce sequential meta-stable
memory (Kleinfeld, 1986; Sompolinsky & Kanter, 1986)
used a combination of symmetric interactions, asymmetric
interactions, and delay signals to produce stable sequen-
tial activation of memory patterns. However, these models
required additional mechanisms to selectively raise the en-
ergies of states, which added complications to the use of
the energy paradigm and demonstrated the difficulty of rec-
onciling the static nature of the energy surface with the
dynamical nature of models required for sequential mem-
ory retrieval. One way to alleviate this difficulty is the
introduction of stochasticity (Miller & Katz, 2010; Jones
et al., 2007) with sufficient noise to push the system’s state
beyond the basin of memory to another memory (Miller,
2016; Braun & Mattia, 2010). Models developed along
these directions relaxed the symmetric constraints on the
neural interactions of Hopfield Networks, resulting in a
rich repertoire of dynamics (Asllani et al., 2018; Orhan
& Pitkow, 2020). Theoretical proposals for meta-stable
memory models used non-equilibrium landscapes where the
energy function and a probability flux together determined
the stability of memory states (Yan et al., 2013). In these
models, stochasticity played a major role in determining the
stability of meta-stable states. In contrast to the theoretical
models, evidence from biology (Howard et al., 2014; Rolls
& Mills, 2019; Umbach et al., 2020) has emphasized the
importance of multiple timescales in SEM tasks. Empirical
models (Kurikawa & Kaneko, 2021; Kurikawa, 2021) also
use multiple timescales to generate SEM. However, current
energy models do not take advantage of multiple timescales,
and the SEM capacity is only about 12% of the number of
neurons (Kurikawa & Kaneko, 2021).

In the GSEMM, we extend the static energy paradigm of the
GAMM to the dynamic case using two timescales to define
the dynamic behavior of the model. In the process, we
discover mechanisms that significantly improve the memory
capacity of sequence networks.

General Sequential Episodic Memory Model
(GSEMM)

The General Sequential Episodic Memory Model unifies
singleton and sequence memory retrieval. To facilitate this
unification, we provide the mathematical description of
GSEMM as a two layer system of interacting neurons orga-
nized according to the General Associative Memory Model
(GAMM) (Krotov & Hopfield, 2021) with the addition of
delay based intra-layer interactions between neurons in the
hidden layer. The feature layer is mainly concerned with
the input and output of the model. There are no synaptic
connections between neurons in this layer. The hidden layer
encodes abstract information about stored memories. Unlike
the feature layer, the hidden layer neurons are connected
using synapses that delay the signal from the feature layer.
These intra-hidden layer connections enable interactions
between memories. In the most general case, there is no
restriction on the nature (in terms of symmetry) of the con-
nections between neurons in this layer. In addition to these
intra-layer connections, the neurons in the two layers are
connected through symmetric synaptic interactions. The
architecture for the model is shown in Figure 1B.

We now provide the mathematical description of GSEMM
using the notations summarized in Table 1. We use standard
linear algebra notations and indexed notations to denote
states and synapses in our model. We use mainly indexed
notation but switch to matrix and vector notation wherever
convenient. Let (V}); be the current through the i™ neuron
of the feature layer, o (V) be the activation function for
the feature layer, (V},); be the current through the j neuron
of the hidden layer, oj, be the activation function for the
hidden layer, and (V;;); be the delayed feature neuron signal
from the 7™ feature neuron. The states Vi, Vi, Vg evolve
with characteristic timescales T, 7Ty, T4 respectively. Let
E;; be the strength of the synaptic connection between the
neuron ¢ in the feature layer to the neuron j in the hidden
layer, ®;,; be the strength of the synaptic connection from
the k™ hidden neuron to the j® hidden neuron. Similar to
how memories are loaded in GAMM, each column of the
matrix = stores individual memories. We introduce two
scalar parameters to control the strength of signals through
the synapses. Let s, . be the strength of signals through
the synapses = and ® respectively. The governing dynamics
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Table 1: Mathematical Notation

Symbol Type Meaning
Ny Zy number of feature layer neurons
Np, Zy number of hidden layer neurons
Qs R parameter that controls the strength of feature-hidden interactions
[ R parameter that controls the strength of hidden-hidden interactions
Model Parameters .
Tr R timescale of feature layer neurons
Th R timescale of hidden layer neurons
Ta>Tn, Ty, 1 R timescale parameter attached to delay
Vy RNsx1 current through feature layer neurons
(Vi) R current through the ¥ feature neuron
Vi RNwx1 current through hidden layer neurons
State Definition (Vn)i R current through the 7*" hidden neuron
= RNs*Nn feature-hidden neurons interaction matrix
[ RNwxNn hidden-hidden neurons interaction matrix
™ R Identity matrix of size n
of RN>T 5 RNsx1 activation function for feature layer
on RNnx1 5 RNRX1 activation function for hidden layer
Operators Ly RNs>*1 4 R Lagrangian of feature layer
P Ly RN»x1 5 R Lagrangian of hidden layer
J Rnx1 — Rmxn Jacobian operator on a vector valued function f(X): R**! — Rmx!
H R — R™™™ Hessian operator of a scalar valued function acting on a vector f(X) : R"*! — R
are given by: neurons converged to one of the stored memories. The nec-
essary condition for convergence is that the dynamical trajec-
d(Vy)i N _ tory of the system follows an energy function with minima
Ty dar V% Z Eij (on(Va)); — (Vi) near the stored memory states. The delay-based synapses
J=t we introduced enable the energy function to change with
d(V:) Nt time, so the long-term behavior is not just a single memory
( h)] _ = .
Th Q@ V% Z Zij (op(Vy))it but a sequence of related memories.
i=1 (@))]
i o Energy Dynamics
o Z Z Prj Eir (Va)i — (Vi)
k=1i=1 The energy dynamics of the system is analyzed by con-
T d(Va)i (0 (V)i — (Vi) sidering the new delay variable V; as a control parameter.
Tt NS R i We show that for a delay signal V; that is changing suffi-

The dynamic evolution equations are analogous to GAMM
(Krotov & Hopfield, 2021) except with the addition of de-
layed intra-layer synapses ®, and two strength parameters
o, and «.. The timescale 7, characterizes the timescale
of delay and is assumed to be higher than the timescale of
the feature and hidden layers. The delay signal is obtained
by applying a continuous convolution operator (Kleinfeld,
1986) of the feature layer signal.

i =7 [ (ontvite = o) exp( -7 ). @

We transformed the convolution operation to a dynamical
state variable update dd% to simplify the theoretical analysis
of the system.

Without intra-layer synapses in the hidden layer, the
GSEMM has properties of associative memory. This means
that for certain conditions on the set of functions o and
o, the long-term behavior of the state of the feature layer

ciently slowly compared to V}, and V, the energy function
evaluated at the instantaneous state V; can still be used
to characterize the dynamical nature of Vy and V3. The
term sufficiently slowly means that Vy and V}, converge to
their instantaneous attractor states before V; changes the
energy surface. To derive the energy function, we use two
Lagrangian terms Ly and L;, for the feature and hidden
neurons respectively (Krotov & Hopfield, 2021), defined as

ar (Vi) =J(Ly)", and o (Vi) = T (La) . (3)
The new energy function (Appendix A.1) for GSEMM is
derived as.

FE = VfTO’f(Vf)—Lf + VhTO’h(Vh)—Lh

—Vas o (Vi) ZEon(Vi) | — ac |V 2@ 0y (Vi)

4)
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At this point, it is instructive to note that without the ad-
ditional synapses, ®, and setting the strength parameter
as = 1, the system and the associated energy function
reduce to GAMM energy with only singleton episodic mem-
ory.

In order to analyze how the dynamics of energy change
with the introduction of delay based synapses, we take the
time derivative of the GSEMM energy function along the
dynamical trajectory of the system. We assume the condi-
tions of positive semi-definite Hessians of the Lagrangian
terms and bounded activation functions oy and o}, (Krotov
& Hopfield, 2021). It is to be noted that the entire state
description of the system consists of three vectors Vi, Vg,
and V},. These states are grouped as a fast subsystem V and
V4, and a slow subsystem V;;. The analysis becomes easier
when we consider the slow subsystem as a control variable
of the fast subsystem. This allows the characterization of
the state dynamics of the fast subsystem as instantaneous
fixed point attractor dynamics modulated by input from the
slow subsystem.

The dynamical evolution of the energy function after sepa-
rating the slow and fast subsystems is given as (Appendix
A2),

dE  _ dV; dv, dvy
@ PG ) el ©)
avy Vi, ave\ " dv;
@)= [73" (%) e G
7 (W) yr,) W ©)
P\ dr Moar |-
v, _+dv,
G(d—td):fozC ah(Vh)Tq)T:Td—td .

F and G separate the contributions of the two timescales
- the fast ({77, 7x}) and slow ({7g}). It can be easily
seen that among the two terms, only G is affected by the
timescale of the delay signal. Just like in GAMM, under
the assumption of positive semi-definite Hessian of the La-
grangian and bounded energy, we get,

e E @
t ' dt

The inequality means that the fast subsystem can have two
possible long-term behaviors when F' eventually converges
to zero. One behavior is convergence to a single stable state
corresponding to minima of the energy function leading to
fixed point attractor dynamics. The second possible behav-
ior is when the system moves in an iso-energetic trajectory
without convergence. In this paper, we focus only on the
case of the fixed point attractor behavior of the system.

Like in GAMM, the fixed point attractor behavior of the
system acts to stabilize the dynamics on the energy surface
such that the energy is non-increasing and convergent, but
unlike GAMM, delay based synapses lead to another term
G.

avy
dt

_av,
a( ah(vh)T@T:Tde . ®

) = —ac

It may be difficult to specify the system’s behavior for any
general choice of ®, o1, and V;. However, in the adia-
batic limit of the slow subsystem (under the condition that
Ta > land T4 > Ty, Ty), the system can still exhibit a non-
increasing energy function because % — 0 in this limit
and G — 0. This condition is especially true when analyz-
ing the dynamic properties of the fast subsystem (% #0
and dd% # 0), which is the property that seems to be rel-
evant in dynamic memory models. The delay signals thus
have two functions. The slow-changing nature of the delay
signal helps to stabilize the dynamics of the fast subsystem
on the energy surface. The second function is that the delay
signal changes the energy surface to create new minima
and destroy old minima. In our numerical simulations, we
consider high enough settings of 7; such that V; changes
sufficiently slowly for the energy function to characterize
the dynamics but not so high as to prevent the system from
exhibiting state transitions in a reasonable time. It is to be
noted that although we consider a specific case for the delay
signal, the adiabatic theory is general enough to apply to any
adiabatic control signal to the previously introduced general
associate memory model (GAMM).

Dense GSEMM

We next derive the activation functions which will make
GSEMM dense and thus most useful both as human mem-
ory and for Al. Analogous to how practical models are de-
rived from GAMM, we consider the diabatic limit of hidden
neurons, 7, — 0, such that.

Ny
(Vh)j = \/CTsZ Eij (0r(Vy))i

Np Ny

+ o Z Z D1 i (Va)i -
k=1

i

©))

Substituting this in the dynamical evolution of feature neu-
rons we get,

d(Vf)i
dt

Np,
Ts =vas Y Eiyon(E op(Vi)+
j=1

ac® T ET V) — (Vy):

(10)
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Figure 2: Energy dynamics of the Dense GSEMM shows the instantaneous fixed point attractor behavior. A The energy
surface for the feature layer states Vy (x-axis), and the delayed feature layer states V;; (y-axis) visited by it in one simulation
during the time range 20 — 80. The plot shows that V; changes the energy surface so that a new state for Vy becomes a new
basin of attraction (darker shade) while the previous basin increases energy. The trajectory (green line) of the system during
retrieval shows the movement of V to the instantaneous minima of the energy surface. B The dynamics of Vy on a SEM
task. The time range 20-80 over which energy behavior is plotted is shown in the gray dotted box. The y-axis denotes the
overlap between the feature neuron state and each stored memory. C The first principal component (PC'1) of V; and how it
influences the fixed points of the energy function near all stored memories (depicted by colored circles). The size of the
circle is inversely proportional to the fixed points’ energy. The absence of circles near the state transition point shows the
momentary loss in the fixed point stability. D The first principal component (PC1) of the dynamical evolution of the nearest
fixed point (red circle) of the energy surface and the current state of the fast sub-system (green cross). The evolution shows

how the system is attracted to the nearest fixed point from the current state of the energy surface at each point in time.

It can be seen from the dynamical evolution of the feature
neurons that depending on the setting of oy, the feature-
hidden synapses may interact linearly with hidden-feature
synapses and hidden-hidden synapses. In Dense GSEMM,
we choose the feature layer activation function to be the
tanh non-linearity - o s(x) = tanh(z), and the hidden layer
activation to be the polynomial activation function of degree
n - op(x) = z™ forn > 0. When n = 1, the parametric
model has linear memory interactions, and n > 1 progres-
sively increases the order of these interactions. These set-
tings are analogous to polynomial interactions in associative
memory models that improved their capacity significantly
(Krotov & Hopfield, 2016).

According to the theoretical analysis above, the system fol-
lows the instantaneous minima of the energy function and
flows from memory to memory via the slow updates to the
energy function. We validate this for the case of n = 1 with
simulation in Figure 2. We plot the energy function and
the state of the system as time progresses for a simulated
episode of the system. The momentary loss in stability of

fixed points near memories that allow for state transition can
be clearly observed in the figure. The addition of the adia-
batic control signal provides a way to adaptively change the
energy surface once the system converges so that dynamic
properties can emerge from static energy models.

In Figure 3, we show that increasing the polynomial de-
gree of the hidden layer activation increases the sequence
memory capacity, similar to what is observed in associative
memory models with polynomial activations. This indicates
that the proposed polynomial non-linearity in GSEMM can
effectively improve the capacity of sequence memories.

Discussion

The General Sequential Episodic Memory Model (GSEMM)
introduced in this paper is an approach to encoding mem-
ories along with their sequential relationships. The key to
this capability is the slow-fast timescale dynamics created
by adding delay-based synapses in the hidden layer of the
General Associative Memory Model. These delay-based



General Sequential Episodic Memory Model

Sequence Memory Capacity of Dense GSEMM
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Figure 3: Memory capacity grows with the polynomial
degree in the hidden layer. The plot shows the distribution
of model capacities in 100 neuron network for different
sets of random binary vectors along with the mean of the
distributions (blue line) for 30 trials. The distributions can
be compared against the baseline of 12 length sequence
(black horizontal line). The baseline performance seems
to be maximum number of memories that can be stored
in a polynomial degree=1 Dense GSEMM. It can be seen
that for polynomial degree=15, there are models (with the
highest sequence length) capable of storing more than 100
memories making the SEM capacity dense in the number of
neurons.

synapses lead to an energy surface that slowly changes with
time, allowing the system to adapt to its instantaneous fixed
points. This shift from a single fixed point to a sequence of
instantaneous fixed points enables the storage of memory
sequences in meta-stable states during the dynamic evolu-
tion of the system. Numerical simulations revealed that
increasing the degree of the polynomial interactions in the
hidden layer directly increases the sequence memory capac-
ity of the system. These structural modifications provide a
roadmap for capacity improvements in sequence episodic
memory models.

We suggest GSEMM as the most relevant energy-based
memory model to date in that it incorporates sequences.
Although the current version of GSEMM is limited in its
biological plausibility due to the presence of symmetric
interactions and the specialized use of delays, the fact that
GSEMM utilizes mechanisms observed in episodic memory
experiments shows that it may be possible to build future
models that close the gap between artificial neural networks
and neuroscience. In addition to the potential impact on
neuroscience, the capacity experiments suggest that Dense
GSEMM may be used in machine learning applications
requiring robust, high-capacity sequence memory storage
and retrieval.
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Appendix
A. Energy

The most important aspect of the model we discussed is the energy function. We use the function to show the behavior of
the system in the adiabatic case and compute instantaneuos attractors.

A.1. Energy Function for GSEMM

Here, we will derive the Energy function of GSEMM starting from a previously derived energy function used for associative
memory. Assume a signal Z;, applied to the neurons in the hidden layer.

E= |V os(Vy)—Ls| + (11)

(Vi —Zw) " on(Va) — Lh‘| - [@Uf(vf)ggh(vh)

In our case, the input signal comes from the delay signal activity V; and is given as Z, = a.® " Z7 V; from our governing
dynamics. Substituting this in the energy equation

E = VfT O'f(Vf) —Lf + (Vh —Oécq)T = Vd)T O’}L(V}L) —L;;| - l\/a‘g O'f(Vf)TEO'h(Vh) (12)
Expanding this equation, we get
F = VfT O'f(Vf) —Lf + VhT Jh(Vh) —Lh‘| - [\/as O’f(Vf)TEO'h(Vh) — Q¢ VdTE(I)Uh(Vh) (13)

A.2. Energy Function Dynamics

To find how the energy function behaves along the dynamical trajectory of the system. Taking the derivative of the energy
function with respect time

dE _ |1 vy rdVy dLy T dvi
il LGRACE) R vl AU R vl Vi I (on) =,
av, dL av; (14)
TdVh dbn — = aVh
dv, d _ av, _ dv,
+ s on(Va) :TJ(U)T;’ — a4 VdT:@j(Jh)d—:—f—ah(Vh)T:T@Td—:

The derivatives of the lagrangian terms can be converted as % =op(Vy)T % and % =f(Vi)" %. Substituting these.

dFE _ T dv; T dvy, T dvy,
= |V Tl 5+ Vi Tlon) Vasop(V) 2T~ as)
dV. d dV; dV,
T=T 7]“ _ el T= 7}1 T=T TJ
+\/0450h(vh) = j(O'f) 1 Q¢ 1 | 20T (on) 1 +Uh(Vh) = O i
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Rearranging terms

de - dVy
Fr l(vasah(vh) = *Vf ) j(“f)ﬁ (16)
dV; dV,
+ (Vasar (V) T2+ a V) 2@~ V) T (o) dTh —a|on(V)TETOT dtd
Substituting from dynamical equations
= bk - L — 20— 1
dt Tr @ H( Dgp T H( w g | |on(Vh) dt {17

B. Simulation Procedures - Figure 1

We used the fourth order Runge-Kutta numerical procedure with step size 0.01 for numerical simulations. The out-
put for the Dense GSEMM is the state of the feature neurons. The similarity between the output and memory
is evaluated using the overlap of the feature neuron state with each memory in the system, which is defined as

m;(Vy) = (1/Ny) Z 7(&); (0§(Vy)); where () is the i*" memory in the system. Each memory in the model is a

random binary vector such that Pr [5 @) +1} = Pr [f (@) —1} = 1/2. These memories are organized as 2 separate

cyclical episodes: & — & — &3 — &1 and &y — &5 — & — &7 — &4 with their sequential relationships stored as an
adjacency matrix in ®. Two key factors were considered when we used these two episodes for evaluation. One factor is to
demonstrate the ability of the model to extract only the related stored episode, even in the presence of other episodes. The
second factor is that successfully generating the stored episode requires long-term non-equilibrium behavior with no stable
states in the dynamics. The input to the system is the memory &5 which retrieves the 4 length cycle.

B.1. Parameter Settings

We simulated Dense GSEMM with Ny = 100, s = 0.05, . = 0.007,7; = 1.0, and 74 = 20.0. The power of the
polynomial non-linearity is 1 for the energy surface shown in the figure. The code for the simulations are available in the
repository: https://github.com/arjun23496/gsemm.

B.2. Fixed point analysis

We used a fixed point finding algorithm to find the fixed points of the energy surface in Figure 1. The algorithm uses an
iterative process to find the fixed points of the energy surface evaluated from a certain point in the state space. Starting from
the neuron state on the energy landscape, the state is updated to follow the direction of the energy gradient till no more
updates are possible, indicating convergence to a fixed point on the energy surface. This fixed point is also one meta-stable
point in the network dynamics since it loses stability over time.

C. Simulation Procedures - Figure 3

We used the fourth order Runge-Kutta numerical procedure with step size 0.01 for numerical simulations. Each memory in
the model is a random binary vector such that Pr [5](,1) = —5—1} =Pr [{j@ = —1] = 1/2. These memories are organized in

a single cyclical episode with K memories such that: & — &;... g — & with their sequential relationships stored as an
adjacency matrix in ®. @ is thus a circulant matrix with a single cycle.

We simulated using this procedure, multiple instantiations of Dense GSEMM with polynomial degrees ranging from 1 — 15
with 30 different seeds for each polynomial degree. The parameters Ny = 100,7; = 1.0,74 = 20.0,s = 1.0 are
fixed. The parameter o, € {0.01,0.02,0.03,0.04, 0.05, 0.06, 0.07,0.08,0.09,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0}
is treated as hyperparameter and optimized to find the maximum number of memories that can be stored for each [seed,
polynomial] pair.
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We define that the model successfully retrieves the K size memory cycle if the output of the model can successfully retrieve
the memories in the cycle in the correct order at least 3 times with no errors.
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