
Under review as a conference paper at ICLR 2024

BOOLFORMER: SYMBOLIC REGRESSION OF LOGIC
FUNCTIONS WITH TRANSFORMERS

Anonymous authors

Paper under double-blind review

ABSTRACT

In this work, we introduce Boolformer, the first Transformer architecture trained to
perform end-to-end symbolic regression of Boolean functions. First, we show that
Boolformer can predict compact formulas for complex functions which were not
seen during training, when provided a complete truth table. Then, we demonstrate
its ability to find approximate expressions when provided incomplete and noisy
observations. We evaluate the Boolformer on a broad set of real-world binary
classification datasets, demonstrating its potential as an interpretable alternative to
classic machine learning methods. Finally, we apply it to the widespread task of
modelling the dynamics of gene regulatory networks. Using a recent benchmark,
we show that Boolformer is competitive with state-of-the art genetic algorithms
with a speedup of several orders of magnitude.

1 INTRODUCTION

Deep neural networks, in particuler those based on the Transformer architecture (Vaswani et al.,
2017), have lead to breakthroughs in computer vision (Dosovitskiy et al., 2020) and language
modelling (Brown et al., 2020), and have fuelled the hopes to accelerate scientific discovery (Jumper
et al., 2021). However, their ability to perform simple logic tasks remains limited (Delétang et al.,
2022). These tasks differ from traditional vision or language tasks in the combinatorial nature of their
input space, which makes representative data sampling challenging.
Reasoning tasks have thus gained major attention in the deep learning community, either (i) with
explicit reasoning in the logical domain, e.g., tasks in the realm of arithmetic (Saxton et al., 2019;
Lewkowycz et al., 2022), algebra (Zhang et al., 2022) or algorithmics (Veličković et al., 2022), or
(ii) implicit reasoning in other modalities, e.g., benchmarks such as Pointer Value Retrieval (Zhang
et al., 2021) and Clevr (Johnson et al., 2017) for vision models, or LogiQA (Liu et al., 2020) and
GSM8K (Cobbe et al., 2021) for language models. Reasoning also plays a key role in tasks which
can be tackled via Boolean modelling, particularly in the fields of biology (Wang et al., 2012) and
medicine (Hemedan et al., 2022).
As these endeavours remain challenging for current Transformer architectures, it is natural to examine
whether they can be handled more effectively with different approaches, e.g., by better exploiting the
Boolean nature of the task. In particular, when learning Boolean functions with a ‘classic’ approach
based on minimizing the training loss on the outputs of the function, Transformers learn potentially
complex interpolators as they focus on minimizing the degree profile in the Fourier spectrum, which
is not the type of bias desirable for generalization on domains that are not well sampled (Abbe et al.,
2022). In turn, the complexity of the learned function makes its interpretability challenging. This
raises the question of how to improve generalization and interpretability of such models.
In this paper, we tackle Boolean function learning with Transformers, but we rely directly on
‘symbolic regression’: our Boolformer is tasked to directly predict a Boolean formula, i.e., a
symbolic expression of the Boolean function in terms of the three fundamental logical gates (AND,
OR, NOT) such as those of Figs. 1,2. As illustrated in Fig. 3, this task is framed as a sequence
prediction problem: each training example is a synthetically generated function whose truth table is
the input and whose formula is the target.
By moving to this setting, we decouple the symbolic task of inferring the logical formula and the
numerical task of evaluating it on new inputs: the Boolformer only has to handle the first part. We
show that this approach can give surprisingly strong performance both in abstract and real-world
settings, and discuss how this lays the ground for future improvements and applications.

1

Under review as a conference paper at ICLR 2024

or

and

s0 or

s1 x1

or

not

s1

x3

and

not

s0

or

s1 x0

or

not

s1

x2

(a) Multiplexer

and

or

x0 not

x5

or

and

x0 not

x5

and

x1 not

x6

and

or

x1 not

x6

or

x2 not

x7

or

and

x2 not

x7

and

x3 not

x8

and

x4 not

x9

or

x3 not

x8

(b) Comparator

Figure 1: Some logical functions for which our model predicts an optimal formula. Left: the
multiplexer, a function commonly used in electronics to select one out of four sources x0, x1, x2, x3

based on two selector bits s0, s1. Right: given two 5-bit numbers a = (x0x1x2x3x4) and b =
(x5x6x7x7x9), returns 1 if a > b, 0 otherwise.

or

gill size ring
type=3 and

stalk
root=1

cap
surface=3

and

stalk surface
below ring=2 or

stalk
root=1 gill size

Figure 2: A Boolean formula predicted to deter-

mine whether a mushroom is poisonous. We con-
sidered the "mushroom" dataset from the PMLB
database (Olson et al., 2017), and this formula
achieves an F1 score of 0.96.

Figure 3: Summary of our approach. We
feed N points (x, f(x)) 2 {0, 1}D+1 to a
seq2seq Transformer, and supervise the pre-
diction to f via cross-entropy loss.

1.1 CONTRIBUTIONS

1. We train Transformers over synthetic datasets to perform end-to-end symbolic regression of
Boolean formulas and show that given the full truth table of an unseen function, the Boolformer is
able to predict a compact formula, as illustrated in Fig. 1.

2. We show that Boolformer is robust to noisy and incomplete observations, by providing incomplete
truth tables with flipped bits and irrelevant variables.

3. We evaluate Boolformer on various real-world binary classification tasks from the PMLB
database (Olson et al., 2017) and show that it is competitive with classic machine learning
approaches such as Random Forests while providing interpretable predictions, as illustrated in
Fig. 2.

4. We apply Boolformer to the well-studied task of modelling gene regulatory networks (GRNs) in
biology. Using a recent benchmark, we show that our model is competitive with state-of-the-art
methods with several orders of magnitude faster inference.

1.2 RELATED WORK

Reasoning in deep learning Several papers have studied the ability of deep neural networks to
solve logic tasks. Evans & Grefenstette (2018) introduce differential inductive logic as a method
to learn logical rules from noisy data, and a few subsequent works attempted to craft dedicated
neural architectures to improve this ability (Ciravegna et al., 2023; Shi et al., 2020b; Dong et al.,

2

Under review as a conference paper at ICLR 2024

2019). Large language models (LLMs) such as ChatGPT, however, have been shown to perform
poorly at simple logical tasks such as basic arithmetic (Delétang et al., 2022; Jelassi et al., 2023), and
tend to rely on approximations and shortcuts (Liu et al., 2022). Although some reasoning abilities
seem to emerge with scale (Wei et al., 2022a) and can be enhanced via several procedures such as
scratchpads (Nye et al., 2021) and chain-of-thought prompting (Wei et al., 2022b), achieving holistic
and interpretable reasoning in LLMs remains an unsolved challenge.

Learning Boolean functions Leaning Boolean functions has been an active area in theoretical
machine learning, mostly under the probably approximately correct (PAC) and statistical query (SQ)
learning frameworks (Hellerstein & Servedio, 2007; Reyzin, 2020). More recently, Abbe et al. (2023)
shows that regular neural networks learn by gradually fitting monomials of increasing degree, in such
a way that the sample complexity is governed by the ‘leap complexity’ of the target function, i.e.
the largest degree jump the Boolean function sees in its Fourier decomposition. In turn, Abbe et al.
(2022) shows that this leads to a ‘min-degree bias’ limitation: Transformers tend to learn interpolators
having least ‘degree profile’ in the Boolean Fourier basis, which typically lose the Boolean nature of
the target and often produce complex solutions with poor out-of-distribution generalization.

Inferring Boolean formulas A few works have explored the paradigm of inferring Boolean
formulas in symbolic form, using SAT solvers (Narodytska et al., 2018), ILP solvers (Wang & Rudin,
2015; Su et al., 2015) or LP-relaxation (Malioutov et al., 2017). However, all these works predict
the formulas in conjunctive or disjunctive normal forms (CNF/DNF), which typically amounts to
exponentially long formulas. In contrast, the Boolformer is biased towards predicting compact
expressions1, which is more akin to logic synthesis – the task of finding the shortest circuit to express
a given function, also known as the Minimum Circuit Size Problem (MCSP). While a few heuristics
(e.g. Karnaugh maps (Karnaugh, 1953)) and algorithms (e.g. ESPRESSO (Rudell & Sangiovanni-
Vincentelli, 1987)) exist to tackle the MCSP, its NP-hardness (Murray & Williams, 2017) remains a
barrier towards efficient circuit design. Given the high resilience of computers to errors, approximate
logic synthesis techniques have been introduced (Scarabottolo et al., 2018; Venkataramani et al.,
2012; 2013; Boroumand et al., 2021; Oliveira & Sangiovanni-Vincentelli, 1993; Rosenberg et al.,
2023), with the aim of providing approximate expressions given incomplete data – this is similar in
spirit to what we study in the noisy regime of Section 4.

Symbolic regression Symbolic regression (SR), i.e. the search of mathematical expressions
underlying a set of numerical values, is still today a rather unexplored paradigm in the ML literature.
Since this search cannot directly be framed as a differentiable problem, the dominant approach for
SR is genetic programming (see (La Cava et al., 2021) for a recent review). A few recent publications
applied Transformer-based approaches to SR (Biggio et al., 2021; Valipour et al., 2021; Kamienny
et al., 2022; Tenachi et al., 2023), yielding comparable results but with a significant advantage: the
inference time rarely exceeds a few seconds, several orders of magnitude faster than existing methods.
Indeed, while the latter need to be run from scratch on each new set of observations, Transformers
are trained over synthetic datasets, and inference simply consists in a forward pass.

2 METHODS

Our task is to infer Boolean functions of the form f : {0, 1}D ! {0, 1}, by predicting a Boolean
formula built from the basic logical operators: AND, OR, NOT, as illustrated in Figs. 1,2. We
train Transformers (Vaswani et al., 2017) on a large dataset of synthetic examples, following the
seminal approach of Lample & Charton (2019). For each example, the input Dfit is a set of pairs
{(xi, y = f(xi))}i=1...N , and the target is the function f as described above. Our general method is
summarized in Fig. 3. Examples are generated by first sampling a random function f , then generating
the corresponding (x, y) pairs as described in the sections below.

1Consider for example the comparator of Fig. 1: since the truth table has roughly as many positive and
negative outputs, the CNF/DNF involves O(2D) terms where D is the number of input variables, which for
D = 10 amounts to several thousand binary gates, versus 17 for our model.

3

Under review as a conference paper at ICLR 2024

2.1 GENERATING FUNCTIONS

We generate random Boolean formulas2 in the form of random unary-binary trees with mathematical
operators as internal nodes and variables as leaves. The procedure is detailed as follows:

1. Sample the input dimension D of the function f uniformly in [1, Dmax] .
2. Sample the number of active variables S uniformly in [1, Smax]. S determines the number of

variables which affect the output of f : the other variables are inactive. Then, select a set of S
variables from the original D variables uniformly at random.

3. Sample the number of binary operators B uniformly in [S � 1, Bmax] then sample B operators
from {AND, OR} independently with equal probability.

4. Build a binary tree with those B nodes, using the sampling procedure of Lample & Charton
(2019), designed to produce a diverse mix of deep and narrow versus shallow and wide trees.

5. Negate some of the nodes of the tree by adding NOT gates independently with probability
pNOT = 1/2.

6. Fill in the leaves: for each of the B + 1 leaves in the tree, sample independently and uniformly
one of the variables from the set of active variables3.

7. Simplify the tree using Boolean algebra rules, as described in App. A. This greatly reduces the
number of operators, and occasionally reduces the number of active variables.

Note that the distribution of functions generated in this way spans the whole space of possible
Boolean functions (which is of size 22

D

), but in a non-uniform fashion4 with a bias towards functions
which can be expressed with short formulas. To maximize diversity, we sample large formulas (up to
Bmax = 500 binary gates), which are then heavily pruned in the simplification step5. As discussed
quantitatively in App. B, the diversity of functions generated in this way is such that throughout the
whole training procedure, functions of dimension D � 7 are typically encountered at most once.
To represent Boolean formulas as sequences fed to the Transformer, we enumerate the nodes of
the trees in prefix order, i.e., direct Polish notation as in (Lample & Charton, 2019): operators and
variables are represented as single autonomous tokens, e.g. [AND, x1,NOT, x2]6. The inputs are
embedded using {0,1} tokens.

2.2 GENERATING INPUTS

Once the function f is generated, we sample N points x uniformly in the Boolean hypercube and
compute the corresponding outputs y = f(x). Optionally, we may flip the bits of the inputs and
outputs independently with probability �flip; we consider the two following setups.

Noiseless regime The noiseless regime, studied in Sec. 3, is defined as follows:

• Noiseless data: there is no bit flipping, i.e. �flip = 0.
• Full support: all the input bits affect the output, i.e. S = D.
• Full observability: the model has access to the whole truth table of the Boolean function, i.e.
N = 2D. Due to the quadratic length complexity of Transformers, this limits us to rather small
input dimensions, i.e. Dmax = 10.

Noisy regime In the noisy regime, studied in Sec. 4, the model must determine which variables
affect the output, while also being able to cope with corruption of the inputs and outputs. During
training, we vary the amount of noise for each sample so that the model can handle a variety of noise
levels:

• Noisy data: the probability of each bit (both input and output) being flipped �flip is sampled
uniformly in [0, 0.1].

2A Boolean formula is a tree where input bits can appear more than once, and differs from a Boolean circuit,
which is a directed graph which can feature cycles, but where each input bit appears once at most.

3The first S variables are sampled without replacement in order for all the active variables to appear in the
tree.

4More involved generation procedures, e.g. involving Boolean circuits, could be envisioned as discussed in
Sec. 5, but we leave this for future work.

5The simplification leads to a non-uniform distribution of number of operators as shown in App. A.
6We discard formulas which require more than 200 tokens.

4

Under review as a conference paper at ICLR 2024

• Partial support: the model can handle high-dimensional functions, Dmax = 120, but the number
of active variables is sampled uniformly in [0, 6]. All the other variables are inactive.

• Partial observability: a subset of the hypercube is observed: the number of input points N is
sampled uniformly in [30, 300], which is typically much smaller that 2D. Additionally, instead of
sampling uniformly (which would cause distribution shifts if the inputs are not uniformly distributed
at inference), we generate the input points via a random walk in the hypercube. Namely, we sample
an initial point x0 then construct the following points by flipping independently each coordinate
with a probability �expl sampled uniformly in [0.05, 0.25].

2.3 MODEL

Embedder Our model is provided N input points (x, y) 2 {0, 1}D+1, each of which is represented
by D + 1 tokens of dimension Demb. As D and N become large, this would result in very long input
sequences (e.g. 104 tokens for D = 100 and N = 100) which challenge the quadratic complexity of
Transformers. To mitigate this, we introduce an embedder to map each input pair (x, y) to a single
embedding, following Kamienny et al. (2022). The embedder pads the empty input dimensions to
Dmax, enabling our model to handle variable input dimension, then concatenates all the tokens and
feeds the (Dmax + 1)Demb-dimensional result into a 2-layer fully-connected feedforward network
(FFN) with ReLU activations, which projects down to dimension Demb. The resulting N embeddings
of dimension Demb are then fed to the Transformer.

Transformer We use a sequence-to-sequence Transformer architecture (Vaswani et al., 2017)
where both the encoder and the decoder use 8 layers, 16 attention heads and an embedding dimension
of 512, for a total of around 60M parameters (2M in the embedder, 25M in the encoder and 35M in
the decoder). A notable property of this task is the permutation invariance of the N input points. To
account for this invariance, we remove positional embeddings from the encoder. The decoder uses
standard learnable positional encodings.

2.4 TRAINING AND EVALUATION

Training We optimize a cross-entropy loss with the Adam optimizer and a batch size of 128,
warming up the learning rate from 10�7 to 2 ⇥ 10�4 over the first 10,000 steps, then decaying it
using a cosine anneal for the next 300,000 steps, then restarting the annealing cycle with a damping
factor of 3/2. We do not use any regularization, either in the form of weight decay or dropout. We
train our models on around 30M examples; on a single NVIDIA A100 GPU with 80GB memory and
8 CPU cores, this takes about 3 days.

Inference At inference time, we find that beam search is the best decoding strategy in terms of
diversity and quality. In most results presented in this paper, we use a beam size of 10. One major
advantage here is that we have an easy criterion to rank candidates, which is how well they fit the
input data – to assess this, we use the fitting error defined below. Note that when the data is noiseless,
the model will often find several candidates which perfectly fit the inputs, as shown in App. G: in this
case, we select the shortest formula, i.e. that with smallest number of gates.

Evaluation Given a set of input-output pairs D generated by a target function f?, we compute the
error of a predicted function f as ✏D = 1

|D|
P

(x,y)2D 1[f(x) = f?(x)]. We can then define:

• Fitting error: error obtained when re-using the points used to predict the formula, D = Dfit

• Fitting accuracy: defined as 1 if the fitting error is strictly equal to 0, and 0 otherwise.
• Test error: error obtained when sampling points uniformly at random in the hypercube outside of
Dfit. Note that we can only assess this in the noisy regime, where the model observes a subset of
the hypercube.

• Test accuracy: defined as 1 if the test error is strictly equal to 0, and 0 otherwise.

3 NOISELESS REGIME: FINDING THE SHORTEST FORMULA

We begin by the noiseless regime (see Sec. 2.2). This setting is akin to logic synthesis, where the
goal is to find the shortest formula that implements a given function.

5

Under review as a conference paper at ICLR 2024

In-domain performance In Fig. 4, we report
the performance of the model when varying the
number of input bits and the number of opera-
tors of the ground truth. Metrics are averaged
over 104 samples from the random generator; as
demonstrated in App. B, these samples have typ-
ically not been seen during training for D � 7.
We observe that the model is able to recover
the target function with high accuracy in all
cases, even for D � 7 where memorization is
impossible. We emphasize however that these
results only quantify the performance of our
model on the distribution of functions it was
trained on, which is highly-nonuniform in the
22

D

-dimensional space of Boolean functions.
We give a few examples of success and failure
cases below.

Figure 4: Our model is able to recover the for-

mula of unseen functions with high accuracy.

We report the fitting accuracy of our model when
varying the number of binary gates and input bits.
Metrics are averaged over 10k samples from the
random function generator.

Success and failure cases In Fig. 1, we show two examples of Boolean functions where our model
successfully predicts a compact formula for: the 4-to-1 multiplexer (which takes 6 input bits) and the
5-bit comparator (which takes 10 input bits). In App. D, we provide more examples: addition and
multiplication, as well as majority and parity functions. By increasing the dimensionality of each
problem up to the point of failure, we show that in all cases our model typically predicts exact and
compact formulas as long as the function can be expressed with less than 50 binary gates (which is
the largest size seen during training) and fails beyond.
Hence, the failure point depends on the intrinsic difficulty of the function: for example, Boolformer
can predict an exact formula for the comparator function up to D = 10, but only D = 6 for
multiplication, D = 5 for majority and D = 4 for parity as well as typical random functions (whose
outputs are independently sampled from {0, 1}). Parity functions are well-known to be the most
difficult functions to learn for SQ models due to their leap-complexity, and are also the hardest to
learn in our framework because they require the most operators to be expressed (the XOR operator
being excluded in this work).

4 NOISY REGIME: APPLICATIONS TO REAL-WORLD DATA

We now turn to the noisy regime, which is defined at the end of Sec. 2.2. We begin by examining
in-domain performance as before, then present two real-world applications: binary classification and
gene regulatory network inference.

4.1 RESULTS ON NOISY DATA

In Fig. 5, we show how the performance of our model depends on the various factors of difficulty of
the problem. The different colors correspond to different numbers of active variables, as shown in the
leftmost panel: in this setting with multiple sources of noise, we see that accuracy drops much faster
with the number of active variables than in the noiseless setting.
As could be expected, performance improves as the number of input points N increases, and degrades
as the amount of random flipping and the number of inactive variables increase. However, our model
copes relatively well with noise in general, as it displays nontrivial generalization even when we add
up to 120 inactive variables and up to 10% random flipping.

4.2 APPLICATION TO INTERPRETABLE BINARY CLASSIFICATION

In this section, we show that our noisy model can be applied to binary classification tasks, providing
an interpretable alternative to classic machine learning methods on tabular data.

Method We consider the tabular datasets from the Penn Machine Learning Benchmark (PMLB)
from (Olson et al., 2017). These encapsulate a wide variety of real-world problems such as predicting
chess moves, toxicity of mushrooms, credit scores and heart diseases. Since our model can only take
binary features as input, we discard continuous features, and binarize the categorical features with
C > 2 classes into C binary variables. Note that this procedure can greatly increase the total number

6

Under review as a conference paper at ICLR 2024

Figure 5: Our model is robust to data incompleteness, bit flipping and noisy variables. We
display the test accuracy of our model when varying the four factors of difficulty described in Sec. 2.
The colors depict different number of active variables, as shown in the first panel. Metrics are
averaged over 10k samples from the random generator.

of features – we only keep datasets for which it results in less than 120 features (the maximum our
model can handle). We randomly sample 25% of the examples for testing and report the F1 score
obtained on this held out set.
We compare our model with two classic machine learning methods: logistic regression and random
forests, using the default hyperparameters from sklearn. For random forests, we test two values
for the number of estimators: 1 (in which case we obtain a simple decision tree as for the boolformer)
and 100.

Results Results are reported in
Fig. 6, where for readability we only
display the datasets where the random
forest with 100 estimators achieves an
F1 score above 0.75. The performance
of the Boolformer is similar on average
to that of logistic regression: logistic
regression typically performs better on
"hard" datasets where there is no ex-
act logical rule, for example medical
diagnosis tasks such as heart_h, but
worse on logic-based datasets where
the data is not linearly separable such
as xd6.
The F1 score of our model is slightly
below that of a random forest of
100 trees, but slightly above that of
the random forest with a single tree.
This is remarkable considering that
the Boolean formula it outputs only
contains a few dozen nodes at most,
whereas the trees of random forest use
up to several hundreds. We show an ex-
ample of a Boolean formula predicted
for the mushroom toxicity dataset in
Fig. 2, and a more extensive collection
of formulas in App. E.

Figure 6: Our model is competitive with classic machine

learning methods while providing highly interpretable

results. We display the F1 score obtained on various bi-
nary classification datasets from the Penn Machine Learning
Benchmark (Olson et al., 2017). We compare the F1 score
of the Boolformer with random forests (using 1 and 100 esti-
mators) and logistic regression, using the default settings of
sklearn, and display the average F1 score of each method
in the legend.

4.3 INFERRING BOOLEAN NETWORKS: APPLICATION TO GENE REGULATORY NETWORKS

A Boolean network is a dynamical system composed of D bits whose transition from one state to
the next is governed by a set of D Boolean functions7. These types of networks have attracted a

7The i-th function fi takes as input the state of the D bits at time t and returns the state of the i-th bit at time
t+ 1.

7

Under review as a conference paper at ICLR 2024

(a) Dynamic and structural metrics

(b) Average inference time (c) Example of a GRN inferred

Figure 7: Our model is competitive with state-of-the-art methods for GRN inference with orders

of magnitude faster inference. (a) We compare the ability of our model to predict the next states
(dynamic accuracy) and the influence graph (structural accuracy) with that of other methods using
a recent benchmark (Pušnik et al., 2022) – more details in Sec. 4.3. (b) Average inference time of
the various methods. (c) From the Boolean formulas predicted, one can construct an influence graph
where each node represents a gene, and each arrow signals that one gene regulates another.

lot of attention in the field of computational biology as they can be used to model gene regulatory
networks (GRNs) (Zhao et al., 2021) – see App. F for a brief overview of this field. In this setting,
each bit represents the (discretized) expression of a gene (on or off) and each function represents
the regulation of a gene by the other genes. In this section, we investigate the applicability of our
symbolic regression-based approach to this task.

Benchmark We use the recent benchmark for GRN inference introduced by Pušnik et al. (2022).
This benchmark compares 5 methods for Boolean network inference on 30 Boolean networks inferred
from biological data, with sizes ranging from 16 to 64 genes, and assesses both dynamical prediction
(how well the model predicts the dynamics of the network) and structural prediction (how well the
model predicts the Boolean functions compared to the ground truth). Structural prediction is framed
as the binary classification task of predicting whether variable i influences variable j, and can hence
be evaluated by many binary classification metrics; we report here the structural F1 and the AUROC
metrics which are the most holistic, and defer other metrics to App. F.

Method Our model predicts each component fi of the Boolean network independently, by taking
as input the whole state of the network at times [0 . . . t � 1] and as output the state of the ith bit
at times [1 . . . t]. Once each component has been predicted, we can build a causal influence graph,
where an arrow connects node i to node j if j appears in the update equation of i: an example is
shown in Fig. 7c. Note that since the dynamics of the Boolean network tend to be slow, an easy way
to get rather high dynamical accuracy would be to simply predict the trivial fixed point fi = xi. In

8

Under review as a conference paper at ICLR 2024

concurrent approaches, the function set explored excludes this solution; in our case, we simply mask
the ith bit from the input when predicting fi.

Results We display the results of our model on the benchmark in Fig. 7a. The Boolformer performs
on par with the SOTA algorithms, GABNI (Barman & Kwon, 2018) and MIBNI (Barman & Kwon,
2017). A striking feature of our model is its inference speed, displayed in Fig. 7b: a few seconds,
against up to an hour for concurrent approaches, which mainly rely on genetic programming. Note
also that our model predicts an interpretable Boolean function, whereas the other SOTA methods
(GABNI and MIBNI) simply pick out the most important variables and the sign of their influence.

5 DISCUSSION AND LIMITATIONS

In this work, we have shown that Transformers excel at symbolic regression of logical functions, both
in the noiseless setup where they could potentially provide valuable insights for circuit design, and in
the real-world setup of binary classification where they can provide interpretable solutions. Their
ability to infer GRNs several orders of magnitude faster than existing methods offers the promise of
many other exciting applications in biology, where Boolean modelling plays a key role (Hemedan
et al., 2022). There are however several limitations in our current approach, which open directions
for future work.
First, due to the quadratic cost of self-attention, the number of input points is limited to a thousand
during training, which limits the model’s performance on high-dimensional functions and large
datasets (although the model does exhibit some length generalization abilities at inference, as shown
in App. C). One could address this shortcoming with linear attention mechanisms (Choromanski
et al., 2020; Wang et al., 2020), at the risk of degrading performance8.
Second, the logical functions which our model is trained on do not include the XOR gate explicitly,
limiting both the compactness of the formulas it predicts and its ability to express complex formulas
such as parity functions. The reason for this limitation is that our generation procedure relies on
expression simplification, which requires rewriting the XOR gate in terms of AND, OR and NOT.
We leave it as a future work to adapt the generation of simplified formulas containing XOR gates, as
well as operators with higher parity as in Rosenberg et al. (2023).
Third, the simplicity of the formulas predicted is limited in two additional ways: our model only
handles (i) single-output functions – multi-output functions are predicted independently component-
wise and (ii) gates with a fan-out of one9. As a result, our model cannot reuse intermediary results
for different outputs or for different computations within a single output10. One could address this
either by post-processing the generated formulas to identify repeated substructures, or by adapting
the data generation process to support multi-output functions (a rather easy extension) and cyclic
graphs (which would require more work).
Finally, this paper mainly focused on investigating concrete applications and benchmarks to motivate
the potential and development of Boolformers. However, the ability to control the formula generator
can help correcting the simplicity bias of the model in order to help with reasoning tasks. In future
research, we will tackle various theoretical aspects of this paradigm, playing with the model simplicity
bias to investigate the sample complexity and ‘generalization on the unseen’ (Abbe et al., 2023) of
the Boolformer.
We conclude by emphasizing that the difficulty and potential ambiguity in inferring logical functions
calls for caution during deployment. Methods like the Boolformer primarily serve as hypothesis
generators, ultimately requiring further experimental verification.

8We hypothesize that full attention span is particularly important in this specific task: the attention maps
displayed in App. H are visually quite dense and high-rank matrices.

9Note that although the fan-in is fixed to 2 during training, it is easy to transform the predictions to larger
fan-in by merging ORs and ANDs together.

10Consider the D-parity: one can build a formula with only 3(n� 1) binary AND-OR gates by storing D� 1
intermediary results: a1 = XOR(x1, x2), a2 = XOR(a1, x3), . . . , an�1 = XOR(aD�2, xD). Our model
needs to recompute these intermediary values, leading to much larger formulas, e.g. 35 binary gates instead of 9
for the 4-parity as illustrated in App. D.

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

The reproducibility of our work is ensured through several means. All code and model weights
will be made publicly available at anonymized together with notebooks to directly reproduce key
aspects of the results, as well as a pip-installable package for easy usage. We also describe in detail
the data generation, our architecture and training choices in Sec. 2.

REFERENCES

Emmanuel Abbe, Samy Bengio, Elisabetta Cornacchia, Jon Kleinberg, Aryo Lotfi, Maithra Raghu,
and Chiyuan Zhang. Learning to reason with neural networks: Generalization, unseen data and
boolean measures. arXiv preprint arXiv:2205.13647, 2022.

Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. Sgd learning on neural networks:
leap complexity and saddle-to-saddle dynamics. arXiv preprint arXiv:2302.11055, 2023.

Emmanuel S Adabor and George K Acquaah-Mensah. Restricted-derestricted dynamic bayesian
network inference of transcriptional regulatory relationships among genes in cancer. Computational

biology and chemistry, 79:155–164, 2019.

Shohag Barman and Yung-Keun Kwon. A novel mutual information-based boolean network inference
method from time-series gene expression data. PloS one, 12(2):e0171097, 2017.

Shohag Barman and Yung-Keun Kwon. A boolean network inference from time-series gene expres-
sion data using a genetic algorithm. Bioinformatics, 34(17):i927–i933, 2018.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales, 2021.

Sina Boroumand, Christos-Savvas Bouganis, and George A Constantinides. Learning boolean circuits
from examples for approximate logic synthesis. In Proceedings of the 26th Asia and South Pacific

Design Automation Conference, pp. 524–529, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-

vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Gabriele Ciravegna, Pietro Barbiero, Francesco Giannini, Marco Gori, Pietro Lió, Marco Maggini,
and Stefano Melacci. Logic explained networks. Artificial Intelligence, 314:103822, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky
hierarchy. arXiv preprint arXiv:2207.02098, 2022.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. arXiv preprint arXiv:1904.11694, 2019.

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Under review as a conference paper at ICLR 2024

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint

arXiv:2010.11929, 2020.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal of

Artificial Intelligence Research, 61:1–64, 2018.

Anne-Claire Haury, Fantine Mordelet, Paola Vera-Licona, and Jean-Philippe Vert. Tigress: trustful
inference of gene regulation using stability selection. BMC systems biology, 6(1):1–17, 2012.

Lisa Hellerstein and Rocco A Servedio. On pac learning algorithms for rich boolean function classes.
Theoretical Computer Science, 384(1):66–76, 2007.

Ahmed Abdelmonem Hemedan, Anna Niarakis, Reinhard Schneider, and Marek Ostaszewski.
Boolean modelling as a logic-based dynamic approach in systems medicine. Computational

and Structural Biotechnology Journal, 20:3161–3172, 2022.

Vân Anh Huynh-Thu and Pierre Geurts. dyngenie3: dynamical genie3 for the inference of gene
networks from time series expression data. Scientific reports, 8(1):3384, 2018.

Vân Anh Huynh-Thu, Alexandre Irrthum, Louis Wehenkel, and Pierre Geurts. Inferring regulatory
networks from expression data using tree-based methods. PloS one, 5(9):e12776, 2010.

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and François
Charton. Length generalization in arithmetic transformers. arXiv preprint arXiv:2306.15400,
2023.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2901–2910, 2017.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and Francois Charton. End-to-
end symbolic regression with transformers. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=GoOuIrDHG_Y.

Maurice Karnaugh. The map method for synthesis of combinational logic circuits. Transactions

of the American Institute of Electrical Engineers, Part I: Communication and Electronics, 72(5):
593–599, 1953.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio Olivetti de Franca, Marco Virgolin,
Ying Jin, Michael Kommenda, and Jason H Moore. Contemporary symbolic regression methods
and their relative performance. arXiv preprint arXiv:2107.14351, 2021.

Harri Lähdesmäki, Ilya Shmulevich, and Olli Yli-Harja. On learning gene regulatory networks under
the boolean network model. Machine learning, 52(1-2):147, 2003.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv preprint

arXiv:1912.01412, 2019.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Shoudan Liang, Stefanie Fuhrman, and Roland Somogyi. Reveal, a general reverse engineering
algorithm for inference of genetic network architectures. In Biocomputing, volume 3, 1998.

11

https://openreview.net/forum?id=GoOuIrDHG_Y

Under review as a conference paper at ICLR 2024

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint

arXiv:2007.08124, 2020.

Dmitry M Malioutov, Kush R Varshney, Amin Emad, and Sanjeeb Dash. Learning interpretable
classification rules with boolean compressed sensing. Transparent Data Mining for Big and Small

Data, pp. 95–121, 2017.

Cody D Murray and R Ryan Williams. On the (non) np-hardness of computing circuit complexity.
Theory of Computing, 13(1):1–22, 2017.

Nina Narodytska, Alexey Ignatiev, Filipe Pereira, Joao Marques-Silva, and I Ras. Learning optimal
decision trees with sat. In Ijcai, pp. 1362–1368, 2018.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021.

Arlindo Oliveira and Alberto Sangiovanni-Vincentelli. Learning complex boolean functions: Algo-
rithms and applications. Advances in Neural Information Processing Systems, 6, 1993.

Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, and Jason H. Moore.
Pmlb: a large benchmark suite for machine learning evaluation and comparison. BioData Mining,
10(1):36, Dec 2017. ISSN 1756-0381. doi: 10.1186/s13040-017-0154-4. URL https://doi.
org/10.1186/s13040-017-0154-4.

Žiga Pušnik, Miha Mraz, Nikolaj Zimic, and Miha Moškon. Review and assessment of boolean
approaches for inference of gene regulatory networks. Heliyon, pp. e10222, 2022.

Lev Reyzin. Statistical queries and statistical algorithms: Foundations and applications. arXiv

preprint arXiv:2004.00557, 2020.

Gili Rosenberg, J Kyle Brubaker, Martin JA Schuetz, Grant Salton, Zhihuai Zhu, Elton Yechao Zhu,
Serdar Kadıoğlu, Sima E Borujeni, and Helmut G Katzgraber. Explainable ai using expressive
boolean formulas. arXiv preprint arXiv:2306.03976, 2023.

Richard L Rudell and Alberto Sangiovanni-Vincentelli. Multiple-valued minimization for pla
optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 6
(5):727–750, 1987.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. arXiv preprint arXiv:1904.01557, 2019.

Ilaria Scarabottolo, Giovanni Ansaloni, and Laura Pozzi. Circuit carving: A methodology for the
design of approximate hardware. In 2018 Design, Automation & Test in Europe Conference &

Exhibition (DATE), pp. 545–550. IEEE, 2018.

Ning Shi, Zexuan Zhu, Ke Tang, David Parker, and Shan He. Aten: And/or tree ensemble for inferring
accurate boolean network topology and dynamics. Bioinformatics, 36(2):578–585, 2020a.

Shaoyun Shi, Hanxiong Chen, Weizhi Ma, Jiaxin Mao, Min Zhang, and Yongfeng Zhang. Neural
logic reasoning. In Proceedings of the 29th ACM International Conference on Information &

Knowledge Management, pp. 1365–1374, 2020b.

Nitin Singh and Mathukumalli Vidyasagar. blars: An algorithm to infer gene regulatory networks.
IEEE/ACM transactions on computational biology and bioinformatics, 13(2):301–314, 2015.

Guolong Su, Dennis Wei, Kush R Varshney, and Dmitry M Malioutov. Interpretable two-level
boolean rule learning for classification. arXiv preprint arXiv:1511.07361, 2015.

12

https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1186/s13040-017-0154-4

Under review as a conference paper at ICLR 2024

Wassim Tenachi, Rodrigo Ibata, and Foivos I Diakogiannis. Deep symbolic regression for physics
guided by units constraints: toward the automated discovery of physical laws. arXiv preprint

arXiv:2303.03192, 2023.

Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. Symbolicgpt: A generative trans-
former model for symbolic regression. arXiv preprint arXiv:2106.14131, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information

processing systems, pp. 5998–6008, 2017.

Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Banino,
Misha Dashevskiy, Raia Hadsell, and Charles Blundell. The clrs algorithmic reasoning benchmark.
In International Conference on Machine Learning, pp. 22084–22102. PMLR, 2022.

Swagath Venkataramani, Amit Sabne, Vivek Kozhikkottu, Kaushik Roy, and Anand Raghunathan.
Salsa: Systematic logic synthesis of approximate circuits. In Proceedings of the 49th Annual

Design Automation Conference, pp. 796–801, 2012.

Swagath Venkataramani, Kaushik Roy, and Anand Raghunathan. Substitute-and-simplify: A unified
design paradigm for approximate and quality configurable circuits. In 2013 Design, Automation &

Test in Europe Conference & Exhibition (DATE), pp. 1367–1372. IEEE, 2013.

Rui-Sheng Wang, Assieh Saadatpour, and Reka Albert. Boolean modeling in systems biology: an
overview of methodology and applications. Physical biology, 9(5):055001, 2012.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Tong Wang and Cynthia Rudin. Learning optimized or’s of and’s. arXiv preprint arXiv:1511.02210,
2015.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals,
Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in

Neural Information Processing Systems, 35:24824–24837, 2022b.

Chiyuan Zhang, Maithra Raghu, Jon Kleinberg, and Samy Bengio. Pointer value retrieval: A
new benchmark for understanding the limits of neural network generalization. arXiv preprint

arXiv:2107.12580, 2021.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301,
2022.

Mengyuan Zhao, Wenying He, Jijun Tang, Quan Zou, and Fei Guo. A comprehensive overview and
critical evaluation of gene regulatory network inference technologies. Briefings in Bioinformatics,
22(5):bbab009, 2021.

13

