
Published as a conference paper at ICLR 2021

REPRESENTATION MATTERS: OFFLINE PRETRAINING
FOR SEQUENTIAL DECISION MAKING

Mengjiao Yang
Google Research
sherryy@google.com

Ofir Nachum
Google Research
ofirnachum@google.com

ABSTRACT

The recent success of supervised learning methods on ever larger offline datasets
has spurred interest in the reinforcement learning (RL) field to investigate whether
the same paradigms can be translated to RL algorithms. This research area, known
as offline RL, has largely focused on offline policy optimization, aiming to find a
return-maximizing policy exclusively from offline data. In this paper, we consider
a slightly different approach to incorporating offline data into sequential decision-
making. We aim to answer the question, what unsupervised objectives applied to
offline datasets are able to learn state representations which elevate performance
on downstream tasks, whether those downstream tasks be online RL, imitation
learning from expert demonstrations, or even offline policy optimization based
on the same offline dataset? Through a variety of experiments utilizing standard
offline RL datasets, we find that the use of pretraining with unsupervised learn-
ing objectives can dramatically improve the performance of policy learning algo-
rithms that otherwise yield mediocre performance on their own. Extensive abla-
tions further provide insights into what components of these unsupervised objec-
tives – e.g., reward prediction, continuous or discrete representations, pretraining
or finetuning – are most important and in which settings1.

1 INTRODUCTION
Within the reinforcement learning (RL) research field, offline RL has recently gained a significant
amount of interest (Levine et al., 2020; Lange et al., 2012). Offline RL considers the problem of per-
forming reinforcement learning – i.e., learning a policy to solve a sequential decision-making task –
exclusively from a static, offline dataset of experience. The recent interest in offline RL is partly mo-
tivated by the success of data-driven methods in the supervised learning literature. Indeed, the last
decade has witnessed ever more impressive models learned from ever larger static datasets (Halevy
et al., 2009; Krizhevsky et al., 2012; Brown et al., 2020; Dosovitskiy et al., 2020). Solving offline
RL is therefore seen as a stepping stone towards developing scalable, data-driven methods for policy
learning (Fu et al., 2020). Accordingly, much of the recent offline RL research focuses on proposing
new policy optimization algorithms amenable to learning from offline datasets (e.g., Fujimoto et al.
(2019); Wu et al. (2019); Agarwal et al. (2020); Kumar et al. (2020); Yu et al. (2020); Matsushima
et al. (2020)).
In this paper, we consider a slightly different approach to incorporating offline data into sequen-
tial decision-making. We are inspired by recent successes in semi-supervised learning (Mikolov
et al., 2013; Devlin et al., 2018; Chen et al., 2020), in which large and potentially unlabelled offline
datasets are used to learn representations of the data – i.e., a mapping of input to a fixed-length
vector embedding – and these representations are then used to accelerate learning on a downstream
supervised learning task. We therefore consider whether the same paradigm can apply to RL. Can
offline experience datasets be used to learn representations of the data that accelerate learning on a
downstream task?
This broad and general question has been partially answered by previous works (Ajay et al., 2020;
Singh et al., 2020). These works focus on using offline datasets to learn representations of behav-
iors, or actions. More specifically, these works learn a spectrum of behavior policies, conditioned on
a latent z, through supervised action-prediction on the offline dataset. The latent z then effectively
provides an abstract action space for learning a hierarchical policy on a downstream task, and this
straightforward paradigm is able to accelerate learning in a variety of sequential decision-making

1Code available at https://github.com/google-research/google-research/tree/master/rl repr.

1

https://github.com/google-research/google-research/tree/master/rl_repr

Published as a conference paper at ICLR 2021

Figure 1: A summary of the advantages of representation learning via contrastive self-prediction,
across a variety of settings: imitation learning, offline RL, and online RL. Each subplot shows the
aggregated mean reward and standard error during training, with aggregation over offline datasets
of different behavior (e.g., expert, medium, etc.), with five seeds per dataset (see Section 3). Repre-
sentation learning yields significant performance gains in all domains and tasks.

settings. Inspired by these promising results and to differentiate our own work, we focus our efforts
on the question of representation learning for observations, or states, as opposed to learning repre-
sentations of behaviors or actions. That is, we aim to answer the question, can offline experience
datasets be used to learn representations of state observations such that learning policies from these
pretrained representations, as opposed to the raw state observations, improves performance on a
downstream task?2

To approach this question, we devise a variety of offline datasets and corresponding downstream
tasks. For offline datasets, we leverage the Gym-MuJoCo datasets from D4RL (Fu et al., 2020),
which provide a diverse set of datasets from continuous control simulated robotic environments.
For downstream tasks, we consider three main categories: (1) low-data imitation learning, in which
we aim to learn a task-solving policy from a small number of expert trajectories; (2) offline RL, in
which we aim to learn a task-solving policy from the same offline dataset used for representation
learning; and (3) online RL, in which we aim to learn a task-solving policy using online access to
the environment.
Once these settings are established, we then continue to evaluate the ability of state representation
learning on the offline dataset to accelerate learning on the downstream task. Our experiments
are separated into two parts, breadth and depth. First for breadth, we consider a diverse variety
of representation learning objectives taken from the RL and supervised learning literature. The
results of these experiments show that, while several of these objectives perform poorly, a few yield
promising results. This promising set essentially comprises of objectives which we call contrastive
self-prediction; these objectives take sub-trajectories of experience and then use some components
of the sub-trajectory to predict other components, with a contrastive loss when predicting states –
e.g., using a contrastive loss on the affinity between a sequence of states and actions and the next
state, akin to popular methods in the supervised learning literature (Mikolov et al., 2013; Devlin
et al., 2018).
These initial findings guide our second set of experiments. Aiming for depth, we devise an extensive
ablation based on contrastive self-prediction to investigate what components of the objective are
most important and in which settings. For example, whether it is important to include reward as
part of the sub-trajectory, or whether discrete representations are better than continuous, whether
pre-training and fixing the representations is better than finetuning, etc. In short, we find that state
representation learning can yield a dramatic improvement in downstream learning. Compared to
performing policy learning from raw observations, we show that relatively simple representation
learning objectives on offline datasets can enable better and faster learning on imitation learning,
offline RL, and online RL (see Figure 1). We believe these results are especially compelling for

2Whether the two aspects of representation learning – action representations and state representations –
can be combined is an intriguing question. However, to avoid an overly broad paper, we focus only on state
representation learning, and leave the question of combining this with action representation learning to future
work.

2

Published as a conference paper at ICLR 2021

the imitation learning setting – where even a pretraining dataset that is far from expert behavior
yields dramatic improvement in downstream learning – and in the offline RL setting – where we
show the benefits of representation learning are significant even when the pretraining dataset is the
same as the downstream task dataset. We hope that these impressive results guide and encourage
future researchers to develop even better ways to incorporate representation learning into sequential
decision-making.

2 BACKGROUND AND RELATED WORK

Representation learning for RL has a rich and diverse existing literature, and we briefly review these
relevant works.

Abstraction and Bisimulation Traditionally, representation learning has been framed as learning
or identifying abstractions of the state or action space of an environment (Andre & Russell, 2002;
Mannor et al., 2004; Dearden & Boutilier, 1997; Abel et al., 2018). These methods aim to reduce
the original environment state and action spaces to more compact spaces by clustering those states
and actions which yield similar rewards and dynamics. Motivated by similar intuitions, research
into bisimulation metrics has aimed to devise or learn similarity functions between states (Ferns
et al., 2004; Castro & Precup, 2010). While these methods originally required explicit knowledge
of the reward and dynamics functions of the environment, a number of recent works have translated
these ideas to stochastic representation learning objectives using deep neural networks (Gelada et al.,
2019; Zhang et al., 2020; Agarwal et al., 2021). Many of these modern approaches effectively learn
reward and transition functions in the learned embedding space, and training of these models is used
to inform the learned state representations.

Representations in Model-Based Learning The idea of learning latent state representations via
learning reward and dynamics models leads us to related work in the model-based RL literature.
Several recent model-based RL methods use latent state representations as a way to simplify the
model learning and policy rollout elements of model-based policy optimization (Oh et al., 2017;
Silver et al., 2018; Hafner et al., 2020), with the rollout in latent space sometimes referred to as
‘imagination’ (Racanière et al., 2017; Hafner et al., 2019). Similar ideas have also appeared under
the label of ‘embed to control’ (Watter et al., 2015; Levine et al., 2019). Other than learning rep-
resentations through forward models, there are also works which propose to learn inverse models,
in which an action is predicted based on the representations of its preceding state and subsequent
state (Pathak et al., 2017; Shelhamer et al., 2016).

Contrastive Objectives Beyond model-based representations, many previous works propose the
use of contrastive losses as a way of learning useful state representations (Wu et al., 2018; Nachum
et al., 2018; Srinivas et al., 2020; Stooke et al., 2020). These works effectively define some notion
of similarity between states and use a contrastive loss to encourage similar states to have similar
representations. The similarity is usually based on either temporal vicinity (pairs of states which
appear in the same sub-trajectory) or user-specified augmentations, such as random shifts of image
observations (Srinivas et al., 2020). Previous work has established connections between the use of
contrastive loss and mutual information maximization (van den Oord et al., 2019) and energy-based
models (LeCun & Huang, 2005).

State Representation Learning in Offline RL The existing works mentioned above almost ex-
clusively focus on online settings, often learning the representations on a continuously evolving
dataset and in tandem with online policy learning. In contrast, our work focuses on representation
learning on offline datasets and separated from downstream task learning. This serves two purposes:
First, using static offline datasets makes comparisons between different methods easier, avoiding
confounding factors associated with issues of exploration or nonstationary datasets. Second, the
offline setting is arguably more practical; in practice, static offline datasets are more common than
cheap online access to an environment (Levine et al., 2020). Previous work in a similar vein to
ours includes Stooke et al. (2020) and Shelhamer et al. (2016), which propose to use unsupervised
pretraining, typically only on expert demonstrations, as a way of initializing an image encoder for
downstream online RL. Our own work complements these existing studies, by presenting extensive
comparisons of a variety of representation learning objectives in several distinct settings. Moreover,
our work is unique for showing benefits of representation learning on non-image tasks, thus avoiding
the use of any explicit or implicit prior knowledge that is typically exploited for images (e.g., using
image-based augmentations or using a convolutional network architecture).

3

Published as a conference paper at ICLR 2021

3 TASK SETUPS

We now continue to our own contributions, starting by elaborating on the experimental protocol we
design to evaluate representation learning in the context of low-data imitation learning, offline RL
(specifically, offline policy optimization), and online RL in partially observable environments. This
protocol is summarized in Table 1.

Table 1: A summary of our experimental setups. In total, there are 16 choices of offline data and
downstream task combinations each for imitation learning, offline RL, and online RL. Given that
we run each setting with five random seeds, this leads to a total of 240 training runs for every
representation learning objective we consider.

Imitation
Choose domain ∈ {halfcheetah, hopper,walker2d, ant}

→
Offline dataset: {domain}-{data}-v0

Downstream task: Behavioral cloning (BC) on first N
transitions from {domain}-expert-v0

Choose data ∈ {medium,medium-replay}
Choose N ∈ {10000, 25000}

Offline RL
Choose domain ∈ {halfcheetah, hopper,walker2d, ant}

→
Offline dataset: {domain}-{data}-v0

Downstream task: Behavior regularized actor critic (BRAC)
on data from {domain}-{data}-v0

Choose data ∈ {expert,medium-expert,medium,
medium-replay}

Online RL
Choose domain ∈ {halfcheetah, hopper,walker2d, ant}

→
Offline dataset: {domain}-{data}-v0 with random masking

Downstream task: Soft actor critic (SAC) on randomly
masked version of {domain}

Choose data ∈ {expert,medium-expert,medium}
medium-replay}

3.1 DATASETS

We leverage the Gym-MuJoCo datasets from D4RL (Fu et al., 2020). These datasets are gen-
erated from running policies on the well-known MuJoCo benchmarks of simulated locomotive
agents: halfcheetah, hopper, walker2d, and ant. Each of these four domains is associated with
four datasets – expert, medium-expert, medium, and medium-replay – corresponding to the qual-
ity of the policies used to collect that data. Each dataset is composed of a number of trajectories
τ := (s0, a0, r0, s1, a1, r1, . . . , sT). For example, the dataset ant-expert-v0 is a dataset of trajec-
tories generated by expert task-solving policies on the ant domain, while the dataset halfcheetah-
medium-v0 is generated by mediocre, far from task-solving, policies.
Notably, although the underyling MuJoCo environments are Markovian, the datasets are not neces-
sarily Markovian, as they may be generated by multiple distinct policies.

3.2 IMITATION LEARNING IN LOW-DATA REGIME

Imitation learning (Hussein et al., 2017) seeks to match the behavior of an agent with that of an
expert. While expert demonstrations are often limited and expensive to obtain in practice, non-expert
experience data (e.g., generated from a mediocre agent randomly interacting with an environment)
can be much more easily accessible.
To mimic this practical scenario, we consider an experimental protocol in which the downstream
task is behavioral cloning (Pomerleau, 1991) on a small set of expert trajectories – selected by
taking either the first 10k or 25k transitions from an expert dataset in D4RL, corresponding to about
10 and 25 expert trajectories, respectively. We then consider either the medium or medium-replay
datasets from the same domain for representation learning.3 Thus, this set of experiments aims to
determine whether representations learned from large datasets of mediocre behavior can help elevate
the performance of behavioral cloning on a much smaller expert dataset.

3.3 OFFLINE RL WITH BEHAVIOR REGULARIZATION

One of the main motivations for the introduction of the D4RL datasets was to encourage research
into fully offline reinforcement learning; i.e., whether it is possible to learn return-maximizing poli-
cies exclusively from a static offline dataset. Many algorithms for this setting have recently been
proposed, commonly employing some sort of behavior regularization (Kumar et al., 2019; Jaques
et al., 2019; Wu et al., 2019). In its simplest form, behavior regularization augments a vanilla actor-
critic algorithm with a divergence penalty measuring the divergence of the learned policy from the
offline data, thus compelling the learned policy to choose the same actions appearing in the dataset.

3To avoid issues of extrapolation when transferring learned representations to the expert dataset, we include
the small number of expert demonstrations in the offline dataset during pretraining.

4

Published as a conference paper at ICLR 2021

While the actor and critic are typically trained with the raw observations as input, with this next
set of experiments, we aim to determine whether representation learning can help in this regime
as well. In this setting, the pretraining and downstream datasets are the same, determined by a
single choice of domain (halfcheetah, hopper, walker2d, or ant) and data (expert, medium-expert,
medium, or medium-replay). For the downstream algorithm, we use behavior regularized actor-critic
(BRAC) (Wu et al., 2019), which is a simple behavior regularized method employing a KL diver-
gence penalty. Notably, although the original BRAC paper uses different regularization strengths
and policy learning rates for different domains, we fix these to values which we found to generally
perform best (regularization strength of 1.0 and policy learning rate of 0.00003).
Thus, this set of experiments aims to determine whether learning BRAC from learned state repre-
sentations is better (in terms of performance and less dependence on hyperparameters) than learning
BRAC from the raw states, even when the state representations are learned using the same offline
dataset.

3.4 ONLINE RL IN PARTIALLY OBSERVABLE ENVIRONMENTS

In this set of experiments, we aim to determine whether representations learned from offline datasets
can improve or accelerate learning in an online domain. One of the most popular online RL algo-
rithms is soft actor critic (SAC) (Haarnoja et al., 2019). SAC is a well-performing algorithm on its
own, and so to increase the difficulty of the downstream task, we consider a simple modification to
make our domains partially observable: zero-masking out a random dimension of the state observa-
tion. This modification also brings our domains closer to practice, where partial observability due
to flaky sensor readings is common (Dulac-Arnold et al., 2019).
Accordingly, the offline dataset is determined by a choice of domain (halfcheetah, hopper, walker2d,
or ant) and data (expert, medium-expert, medium, or medium-replay), with the same masking ap-
plied to this dataset. Representations learned on this dataset are then applied downstream, where
SAC is trained on the online domain, with the representation module providing an embedding of the
masked observations of the environment within a learned embedding space.

3.5 EVALUATION

Each representation learning variant we evaluate is run with five seeds on each of the experimental
setups described above. Unless otherwise noted, a single seed corresponds to an initial pretraining
phase of 200k steps, in which a representation learning objective is optimized using batches of 256
sub-trajectories randomly sampled from the offline dataset. After pretraining, the learned represen-
tation is fixed and applied to the downstream task, which performs the appropriate training (BC,
BRAC, or SAC) for 1M steps. In this downstream phase, every 10k steps, we evaluate the learned
policy on the downstream domain environment by running it for 10 episodes and computing the
average total return. We normalize this total return according to the normalization proposed in Fu
et al. (2020), such that a score of 0 roughly corresponds to a random agent and a score of 100 to
an expert agent. We average the last 10 evaluations within the 1M downstream training, and this
determines the final score for the run. To aggregate over multiple seeds and task setups, we simply
compute the average and standard error of this final score.

4 EXPERIMENTS: BREADTH STUDY

We begin our empirical study with an initial assessment into the performance of a broad set of
representation learning ideas from the existing literature.

4.1 REPRESENTATION LEARNING OBJECTIVES

We describe the algorithms we consider below. While it is infeasible for us to extensively evaluate
all previously proposed representation learning objectives, our choice of objectives here aims to
cover a diverse set of recurring themes and ideas from previous work (see Section 2).
We use the notation

τt:t+k := (st, at, rt, . . . , st+k−1, at+k−1, rt+k−1, st+k)
to denote a length-(k + 1) sub-trajectory of state observations, actions, and rewards; we use
st:t+k, at:t+k, rt:t+k to denote a subselection of this trajectory based on states, actions, and re-
wards, respectively. We use φ to denote the representation function; i.e., φ(s) is the representation
associated with state observation s, and φ(st:t+k) := (φ(st), . . . , φ(st+k)). All learned functions,
including φ, are parameterized by neural networks. Unless otherwise noted, φ is parameterized as
a two-hidden layer fully-connected network with 256 units per layer and output of dimension 256
(see further details in Appendix A).

5

Published as a conference paper at ICLR 2021

Inverse model Given a sub-trajectory τt:t+1, use φ(st:t+1) to predict at. That is, we train an
auxiliary f such that f(φ(st:t+1)) is a distribution over actions, and the learning objective is
− logP (at|f(φ(st:t+1))). This objective may be generalized to sequences longer than k+1 = 2 as
− logP (at+k−1|f(φ(st:t+k), at:t+k−1)).

Forward raw model Given a sub-trajectory τt:t+1, use φ(st), at to predict rt, st+1. That
is, we train an auxiliary f, g such that f(φ(st), at) is a distribution over next states and
g(φ(st), at) is a scalar reward prediction. The learning objective is ||rt − g(φ(st), at)||2 −
logP (st+1|f(φ(st), at)). This objective may be generalized to sequences longer than k + 1 = 2 as
||rt − g(φ(st:t+k−1), at:t+k−1)||2 − logP (st+1|f(φ(st:t+k−1), at:t+k)).

Forward latent model; a.k.a., DeepMDP (Gelada et al., 2019) This is the same as the forward
raw model, only that f now describes a distribution over next state representations. Thus, the log-
probability with respect to f becomes − logP (φ(st+1)|f(φ(st), at)).

Forward energy model This is the same as the forward raw model, only that f is no longer a
distribution over raw states. Rather, f maps φ(st), at to the same embedding space as φ and the
probability P (st+1|f(φ(st), at)) is defined in an energy-based way:

ρ(st+1) exp{φ(st+1)
>Wf(φ(st), at)}

Eρ[exp{φ(s̃)>Wf(φ(st), at)}]
, (1)

where W is a trainable matrix and ρ is a non-trainable prior distribution (we set ρ to be the distribu-
tion of states in the offline dataset).

(Momentum) temporal contrastive learning (TCL) Given a sub-trajectory τt:t+1, we apply a
contrastive loss between φ(st), φ(st+1). The objective is

−φ(st+1)
>Wφ(st) + logEρ[exp{φ(s̃)>Wφ(st)}], (2)

where W and ρ are as in the forward energy model above. This objective may be generalized to
sequences longer than k + 1 = 2 by having multiple terms in the loss for i = 1, . . . , k:

−φ(st+i)>Wiφ(st) + logEρ[exp{φ(s̃)>Wiφ(st)}]. (3)
If momentum is used, we apply the contrastive loss between f(φ(st)) and φtarget(st+i), where f is
a learned function and φtarget denotes a non-trainable version of φ, with weights corresponding to
a slowly moving average of the weights of φ, as in Stooke et al. (2020); He et al. (2020).

Attentive Contrastive Learning (ACL) Following the theme of contrastive losses and inspired by
a number of works in the RL (van den Oord et al., 2019) and NLP (Mikolov et al., 2013) literature
which apply such losses between tokens and contexts using an attention mechanism, we devise a
similar objective for our settings. Implementation-wise, we borrow ideas from BERT (Devlin et al.,
2018), namely we (1) take a sub-trajectory st:t+k, at:t+k, rt:t+k, (2) randomly mask a subset of
these, (3) pass the masked sequence into a transformer, and then (4) for each masked input state,
apply a contrastive loss between its representation φ(s) and the transformer output at its sequential
position. We use k + 1 = 8 in our implementation. Figure 3 provides a diagram of ACL.

Value prediction network (VPN) Taken from Oh et al. (2017), this objective uses an RNN start-
ing at φ(st) and inputting at:t+k for k steps to predict the k-step future rewards and value functions.
While the original VPN paper defines the (k + 1)-th value function in terms of a max over actions,
we avoid this potential extrapolation issue and simply use the (k+1)-th action provided in the offline
data. As we will elaborate on later, VPN bears similarities to ACL in that it uses certain components
of the input sequence (states and actions) to predict other components (values).

Deep bisimulation for control This objective is taken from Zhang et al. (2020), where the repre-
sentation function φ is learned to respect an L1 distance based on a bisimulation similarity deduced
from Bellman backups.

4.2 RESULTS

The results of these representation learning objectives are presented in Figure 2. Representation
learning, even before the extensive ablations we will embark on in Section 5, on average improves
downstream imitation learning, offline RL, and online RL tasks by 1.5x, 2.5x, and 15% respectively.
The objectives that appear to work best – ACL, (Momentum) TCL, VPN – fall under a class of
objectives we term contrastive self-prediction, where self-prediction refers to the idea that certain
components of a sub-trajectory are predicted based on other components of the same sub-trajectory,

6

Published as a conference paper at ICLR 2021

Figure 2: Performance of downstream imitation learning, offline RL, and online RL tasks under a
variety of representation learning objectives. x-axis shows aggregated average rewards (over five
seeds) across the domains and datasets described in Section 3. Methods that failed to converge are
eliminated from the results (see Appendix A). ACL is set to the default configuration that favors
imitation learning (see Section 5). When applicable, we also label variants with k + 1 ∈ {2, 8}.
Methods above the dotted line are variants of contrastive self-prediction. ACL performs well on
imitation learning. VPN and (momentum) TCL perform well on offline and online RL.

context
embedding ?

ϕ transformer

s′ 0 s′ 1 s′ 2

a′ 0 a′ 1

r′ 0 r′ 1

s0 s1 s2 s3

a0 a1 a2 a3

r0 r1 r2 r3

e0 e1 e2 e3

ẽ0 ẽ1 ẽ2 ẽ3

r0 r1 r2 r3

a0 a1 a2 a3

s0 s1 s2 s3

maskr

maska

masks

input embedding ?

input reward ?

input action ?

e0 e1 e2 e3

1 − masks

ẽ0 ẽ1 ẽ2 ẽ3
1 − masks

bidirectional ?

ℒs

action decoder

reward decoder

ã0 ã1 ã2 ã3
ℒa

reconstruct action ?

r̃0 r̃1 r̃2 r̃3

reconstruct reward ?

ℒr

contrastive state
prediction

r̃0 r̃1 r̃2 r̃3

ã0 ã1 ã2 ã3

ℒr

ℒa predict action ?

predict reward ?

ϕ

momentum? transformer

𝒟
Attentive Contrastive Learning (ACL) Downstream Tasks

imitation learning
offline RL
online RL

input τ′

e′ 0 e′ 1 e′ 2 ẽ′ 0 ẽ′ 1 ẽ′ 2

ē0 ē1 ē2 ē3

input τ

Figure 3: A pictoral representation of our depth study based on contrastive self-prediction. We use
the transformer-based architecture of attentive contrastive learning (ACL) as a skeleton for ablations
with respect to various representation learning details. Solid arrows correspond to the configuration
of ACL. Dotted arrows and blue text are factors considered in the ablation study. Gray blocks are
masked state/action/reward entries. After the pretraining phase, the representation network φ is
reused for downstream tasks, unless ‘context embedding’ is true, in which case the transformer is
used.

while contrastive refers to the fact that this prediction should be performed via a contrastive energy-
based loss when the predicted component is a state observation.
We also find that a longer sub-trajectory k + 1 = 8 is generally better than a short one k + 1 = 2.
The advantage here is presumably due to the non-Markovian nature of the dataset. Even if the
environment is Markovian, the use of potentially distinct policies for data collection can lead to
non-Markovian data.
Despite these promising successes, there are a number of objectives which perform poorly. Raw
predictions of states (forward model) yields disappointing results in these settings. Forward models
of future representations – DeepMDP, Bisimulation – also exhibit poor performance. This latter
finding was initially surprising to us, as many theoretical notions of state abstractions are based on
the principle of predictability of future state representations. Nevertheless, even after extensive tun-
ing of these objectives and attempts at similar objectives (e.g., we briefly investigated incorporating
ideas from Hafner et al. (2020)), we were not able to achieve any better results. Even if it is possible
to find better architectures or hyperparameters, we believe the difficulty in tuning these baselines
makes them unattractive in comparison to the simpler and better performing alternatives.

5 EXPERIMENTS: DEPTH STUDY

The favorable results of objectives based on the idea of contrastive self-prediction is compelling, but
the small number of objectives evaluated leaves many questions unanswered. For example, when
generating the context embedding for a specific prediction, should one use past states (as in TCL
and Momentum TCL) or also include actions and/or rewards (as in ACL and VPN)? Should this

7

Published as a conference paper at ICLR 2021

Table 2: Factors of contrastive self-prediction considered in our ablation study and summaries of
their effects. Input action and input reward default to true. The remaining factors default to false.
For each effect entry, ↓means decreased performance, ↑means improved performance, and = means
no significant effect.

Factor Description Imitation Offline Online

reconstruct action Add action prediction loss based on φ(s). ↓ ↑ ↑
reconstruct reward Add a reward prediction loss based on φ(s). ↓ ↑ ↑
predict action Add an action prediction loss based on transformer outputs.

Whenever this is true, we also set ‘input embed’ to true.
↓ ↑ ↑

predict reward Add a reward prediction loss based on transformer outputs.
Whenever this is true, we also set ‘input embed’ to true.

↓ ↑ ↑

input action Include actions in the input sequence to transformer. ↓ ↑ ↑
input reward Include rewards in the input sequence to transformer. ↓ ↑ ↑
input embed Use representations φ(s) as input to transformer, as op-

posed to raw observations.
↓ = ↑

bidirectional To generate sequence output at position i, use full input
sequence as opposed to only inputs at position ≤ i.

↓ = ↑

finetune Pass gradients into φ during learning on downstream tasks. ↓ ↓ ↑
auxiliary loss Use representation learning objective as an auxiliary loss

during downstream learning, as opposed to pretraining.
↓ ↓ ↑

momentum Adopt an additional momentum representation network.
Whenever this is true, we also set ‘input embed’ to true.

↓ ↓ ↑

discrete embedding Learn discrete representations. Following Hafner et al.
(2020), we treat the 256-dim output of φ as logits to sam-
ple 16 categorical distributions of dimension 16 each and
use straight-through gradients.

↓ ↓ ↓

context embedding Following Devlin et al. (2018), use transformer output as
representations for downstream tasks. Whenever this is
true, we also set ‘input embed’ to true.

↓ ↓ ↓

context use the same representation network φ (as in TCL and VPN), a momentum version of it (as
in Momentum TCL), or a completely separate network (as in ACL)?
We use this section to study these and other important questions by conducting a series of ablations
on the factors which compose a specific contrastive self-prediction objective and how it is applied
to downstream learning. We describe all these factors in Table 2, as well as a high-level summary
of their effects. Further anecdotal observations found during our research are summarized in Ap-
pendix C.
We choose the transformer-based implementation of ACL to serve as the skeleton for all these ab-
lations (see Figure 3), due to its general favorable empirical performance in the previous section,
as well as its ease of modification. For each downstream task below, we present the ablations with
respect to the default configuration of the factors in Table 2 that corresponds to the original ACL
introduced in Section 4, and change one factor at a time to observe its effect on downstream task
performance.

5.1 RESULTS

The results of our ablation studies are presented in Figure 4, and we highlight some of the main
findings below. We also take the best performing ablation from each row (imitation, offline RL, and
online RL) and plot the performance during training in Figure 1.
Let us first consider the effects of inclusion or prediction of actions and rewards. We notice some
interesting behavior across the different downstream modes. Namely, it appears that imitation learn-
ing is best served by focusing only on state contrastive learning and not including or predicting
actions and rewards, whereas the offline and online RL settings appear to benefit from these. Due
to the mixed results we initially observed from including or predicting actions and rewards, we also
introduce the idea of reconstructing actions and rewards based on φ(s), and we found this to have
much more consistent benefit in the RL settings, although it still degrades imitation learning per-
formance. This disconnect between objectives which are good for imitation learning vs. RL, first
seen in Section 4, thus continues to be present in these ablations as well, and we find that no single
objective dominates in all settings.

8

Published as a conference paper at ICLR 2021

Figure 4: Ablation results on imitation learning, offline RL, and online RL. x-axis shows average
rewards and standard error aggregated over either different Gym-MuJoCo datasets (imitation and of-
fline RL) or domains (online RL). Blue dotted lines show average rewards without pretraining. (T)
and (F) mean setting each factor to true or false (opposite from the default configuration). Recon-
structing, predicting, or inputting action or reward (row 2-7) impairs imitation performance but are
important for offline and online RL. Bidirectional transformer hurts imitation learning when down-
stream sample size is small. Finetuning and auxiliary loss can help online RL. Additional results are
presented in Appendix B.

We also evaluate a number of representation learning paradigms popular in the NLP literature (De-
vlin et al., 2018), namely using bidirectional transformers, finetuning, and context embedding. Al-
though these techniques are ubiquitous in the NLP literature, we find mixed results in RL settings.
Context embedding consistently hurts performance. Bidirectional transformer hurts imitation learn-
ing but helps online RL. Finetuning leads to a modest degredation in performace in imitation and
offline RL but can improve online RL depending on the domain being evaluated.
We additionally considered using the representation learning objective as an auxiliary training loss,
which is popular in the online RL literature (Shelhamer et al., 2016; Stooke et al., 2020). And indeed,
we find that it can dramatically improve representation learning in online RL, but at the same time,
dramatically degrade performance in the offline settings (imitation learning or offline RL).

6 CONCLUSION

Overall, our results show that relatively simple representation learning objectives can dramatically
improve downstream imitation learning, offline RL, and online RL (Figure 1). Interestingly, our
results suggest that the ideal representation learning objective may depend on the nature of the
downstream task, and no single objective appears to dominate generally. Our extensive ablations
also provide a number of intriguing insights, showing that representational paradigms which are
popular in NLP or online RL may not translate to good performance in offline settings.
Even with this multitude of fresh insight into the question of representation learning in RL, our study
is limited in a number of aspects, and these aspects can serve as a starting point for future work. For
example, one may consider additional downstream tasks such as multi-task, transfer, or exploration.
Alternatively, one can extend our ablations to real-world domains like robot learning. Or, one may
consider ablating over different network architectures.
Despite these limitations, we hope our current work proves useful to RL researchers, and serves as
a guide for developing even better and more general representation learning objectives.

9

Published as a conference paper at ICLR 2021

REFERENCES

David Abel, Dilip Arumugam, Lucas Lehnert, and Michael Littman. State abstractions for lifelong
reinforcement learning. In International Conference on Machine Learning, pp. 10–19. PMLR,
2018.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning, 2020.

Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive
behavioral similarity embeddings for generalization in reinforcement learning. arXiv preprint
arXiv:2101.05265, 2021.

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline prim-
itive discovery for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611,
2020.

David Andre and Stuart J Russell. State abstraction for programmable reinforcement learning agents.
In Aaai/iaai, pp. 119–125, 2002.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Pablo Castro and Doina Precup. Using bisimulation for policy transfer in mdps. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 24, 2010.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Richard Dearden and Craig Boutilier. Abstraction and approximate decision-theoretic planning.
Artificial Intelligence, 89(1-2):219–283, 1997.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning, 2019.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
In UAI, volume 4, pp. 162–169, 2004.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062, 2019.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deepmdp:
Learning continuous latent space models for representation learning. In International Conference
on Machine Learning, pp. 2170–2179. PMLR, 2019.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

10

Published as a conference paper at ICLR 2021

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable effectiveness of data. IEEE
Intelligent Systems, 24(2):8–12, 2009.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing Sys-
tems, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning, pp. 45–73. Springer, 2012.

Yann LeCun and Fu Jie Huang. Loss functions for discriminative training of energy-based models.
In AIStats, volume 6, pp. 34. Citeseer, 2005.

Nir Levine, Yinlam Chow, Rui Shu, Ang Li, Mohammad Ghavamzadeh, and Hung Bui. Predic-
tion, consistency, curvature: Representation learning for locally-linear control. arXiv preprint
arXiv:1909.01506, 2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Shie Mannor, Ishai Menache, Amit Hoze, and Uri Klein. Dynamic abstraction in reinforcement
learning via clustering. In Proceedings of the twenty-first international conference on Machine
learning, pp. 71, 2004.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal representation learning
for hierarchical reinforcement learning. arXiv preprint arXiv:1810.01257, 2018.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. arXiv preprint
arXiv:1707.03497, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning, pp. 2778–2787.
PMLR, 2017.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neu-
ral computation, 3(1):88–97, 1991.

11

Published as a conference paper at ICLR 2021

Sébastien Racanière, Théophane Weber, David P Reichert, Lars Buesing, Arthur Guez, Danilo
Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al. Imagination-
augmented agents for deep reinforcement learning. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, pp. 5694–5705, 2017.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions, 2017.

Evan Shelhamer, Parsa Mahmoudieh, Max Argus, and Trevor Darrell. Loss is its own reward: Self-
supervision for reinforcement learning. CoRR, abs/1612.07307, 2016. URL http://arxiv.
org/abs/1612.07307.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
Data-driven behavioral priors for reinforcement learning. arXiv preprint arXiv:2011.10024, 2020.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning, 2020.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning, 2020.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding, 2019.

Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to
control: A locally linear latent dynamics model for control from raw images. arXiv preprint
arXiv:1506.07365, 2015.

Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in rl: Learning representations with
efficient approximations. arXiv preprint arXiv:1810.04586, 2018.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. arXiv preprint
arXiv:2006.10742, 2020.

12

http://arxiv.org/abs/1612.07307
http://arxiv.org/abs/1612.07307

Appendix
A EXPERIMENTAL DETAILS

A.1 REPRESENTATION NETWORK

We parametrize the representation function φ as a two-hidden layer fully connected neural network
with 256 units per layer and output dimension 256. A Swish (Ramachandran et al., 2017) activation
function is applied to the output of each hidden layer. We experimented with representation dimen-
sion sizes 16, 64, 256, and 512, and found 256 and 512 to generally work the best (see Figure 7 in
Appendix B.3).

A.2 TRANSFORMER NETWORK

The BERT-style transformer used in attentive contrastive learning (ACL) consists of one prepro-
cessing layer of 256 units and ReLU activaiton, followed by a multi-headed attention layer (4 heads
with 128 units each), followed by a fully connected feed forward layer with hidden dimension 256
and ReLU activation, finally followed by an output layer of 256 units (the same as φ’s output). We
experimented with different number of attention blocks and number of heads in each block, but did
not observe significant difference in performance.
When masking input (sequences of state, actions, or rewards), we randomly choose to ‘drop’ each
item with probability 0.3, ’switch’ with probability 0.15, and ‘keep’ with probability 0.15. ‘Drop’
refers to replacing the item with a trainable variable of the same dimension. ‘Switch’ refers to
replacing the item with a randomly sampled item from the same batch. ‘Keep’ refers to leaving the
item unchanged. These probability rates where chosen arbitrarily and not tuned.

A.3 ACTION PREDICTION AND RECONSTRUCTION

Whenever a loss includes action prediction or reconstruction, we follow Haarnoja et al. (2019),
and (1) utilize an output distribution given by a tanh-squashed Gaussian and (2) apply an additive
adaptive entropy regularizer to the action prediction loss.

A.4 OTHER NETWORKS

With few exceptions, all other functions f, g mentioned in Section 4 are two-hidden layer fully
connected neural networks with 256 units per layer and using a Swish (Ramachandran et al., 2017)
activation.
The only exception is Momentum TCL, where f is the same structure but using a residual connection
on the output.

A.5 TRAINING

During pretraining, we use the Adam optimizer with learning rate 0.0001, except for the TCL vari-
ants, for which we found 0.0003 to work better. For Momentum TCL, we use a moving average
with rate 0.05.

A.6 CONVERGENCE FAILURES

Representations learned under objectives including forward-raw model, VPN (with k+ 1 = 2), and
DeepMDP consistently diverge and output NaNs on offline and online RL, and are therefore removed
from the results in Figure 2. The bisimulation objective on offline and online RL fails to converge
in some runs but occasionally succeeds, therefore the means of succeeded runs are computed and
shown in Figure 2.

13

Published as a conference paper at ICLR 2021

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 FULLY-OBSERVABLE ONLINE ENVIRONMENTS

Figure 5: Average reward of best ACL ablation on fully-observable online RL compared to the
baseline without pretraining.

B.2 ADDITIONAL CONTRASTIVE LEARNING RESULTS

Figure 6: Additional training curves of contrastive learning objectives aggregated over different of-
fline datasets in the same domain. Both in this figure and in Figure 1, we plot the best variant of
ACL according to the ablation study, namely we set “input reward” to false in imitation learning,
“reconstruct action” to true in offline RL, and “auxiliary loss” (in ant and halfcheetah) or “finetun-
ing” (in hopper and walker2d) to true in online RL. The best variant of ACL generally performs the
best compared to other contrastive learning objectives, although TCL’s performance is competitive
in offline RL.

14

Published as a conference paper at ICLR 2021

B.3 ABLATION OVER REPRESENTATION SIZE

Figure 7: Average reward across domains and datasets with different representation dimensions. 256
and 512 work the best (this ablation is conducted with “reconstruct action” and “reconstruct reward”
set to true).

B.4 ABLATION OVER PRETRAINING WINDOW SIZE

Figure 8: Average reward across domains and datasets with different pretraining window k in imi-
tation learning, offline RL, and partially/fully observable online RL.

B.5 ABLATION OVER PREDICTION DIRECTION

Figure 9: Average reward across domains and datasets with different prediction direction during
embedding pretraining.

15

Published as a conference paper at ICLR 2021

B.6 ABLATION OVER COMPOUNDING FACTORS AND ON SPARSE REWARD

Figure 10: Left: Ablation (with compounding factors) with reconstructing action/reward as default.
Right: reward ablation on antmaze-umaze with sparse reward.

16

Published as a conference paper at ICLR 2021

B.7 ABLATION RESULTS FOR INDIVIDUAL DOMAINS AND DATASETS

0 20 40
ctx. embed (T)

disc. embed (T)
momentum (T)

aux. loss (T)
finetune (T)

bidirectional (T)
input embed (T)
input reward (F)
input action (F)

pred. reward (T)
pred. action (T)

reconst. reward (T)
reconst. action (T)

default

ant-medium 10k

0 20 40 60

ant-medium 25k

0 20 40

ant-medium-replay 10k

0 20 40 60

ant-medium-replay 25k

0 10 20
ctx. embed (T)

disc. embed (T)
momentum (T)

aux. loss (T)
finetune (T)

bidirectional (T)
input embed (T)
input reward (F)
input action (F)

pred. reward (T)
pred. action (T)

reconst. reward (T)
reconst. action (T)

default

halfcheetah-medium 10k

0 20 40

halfcheetah-medium 25k

0 10 20

halfcheetah-medium-replay 10k

0 20 40 60

halfcheetah-medium-replay 25k

0 25 50 75 100
ctx. embed (T)

disc. embed (T)
momentum (T)

aux. loss (T)
finetune (T)

bidirectional (T)
input embed (T)
input reward (F)
input action (F)

pred. reward (T)
pred. action (T)

reconst. reward (T)
reconst. action (T)

default

hopper-medium 10k

0 25 50 75 100

hopper-medium 25k

0 25 50 75 100

hopper-medium-replay 10k

0 25 50 75 100

hopper-medium-replay 25k

0 20 40
ctx. embed (T)

disc. embed (T)
momentum (T)

aux. loss (T)
finetune (T)

bidirectional (T)
input embed (T)
input reward (F)
input action (F)

pred. reward (T)
pred. action (T)

reconst. reward (T)
reconst. action (T)

default

walker2d-medium 10k

0 20 40 60

walker2d-medium 25k

0 10 20 30 40

walker2d-medium-replay 10k

0 20 40 60

walker2d-medium-replay 25k

Figure 11: Imitation learning ablation on individual domains and datasets. The negative impact
of inputting action and reward to pretraining is more evident in halfcheetah and walker2d. Recon-
structing/predicting action/reward is especially harmful in halfcheetah, hopper, and walker2d. There
always exists some variant of ACL that is better than without representation learning (blue lines) in
all domain-dataset combinations.

17

Published as a conference paper at ICLR 2021

0 50 100
ctx. embed (T)

disc. embed (T)
momentum (T)

aux. loss (T)
finetune (T)

bidirectional (T)
input embed (T)
input reward (F)
input action (F)

pred. reward (T)
pred. action (T)

reconst. reward (T)
reconst. action (T)

default

ant-expert

0 50 100

ant-medium

0 50 100

ant-medium-expert

0 50

ant-medium-replay

0 25 50 75 100
ctx. embed (T)

disc. embed (T)
momentum (T)

aux. loss (T)
finetune (T)

bidirectional (T)
input embed (T)
input reward (F)
input action (F)

pred. reward (T)
pred. action (T)

reconst. reward (T)
reconst. action (T)

default

halfcheetah-expert

0 10 20 30 40

halfcheetah-medium

0 25 50 75 100

halfcheetah-medium-expert

0 20 40

halfcheetah-medium-replay

0 25 50 75 100
ctx. embed (T)

disc. embed (T)
momentum (T)

aux. loss (T)
finetune (T)

bidirectional (T)
input embed (T)
input reward (F)
input action (F)

pred. reward (T)
pred. action (T)

reconst. reward (T)
reconst. action (T)

default

hopper-expert

0 20 40 60 80

hopper-medium

0 25 50 75 100

hopper-medium-expert

0 10 20 30

hopper-medium-replay

0 25 50 75 100
ctx. embed (T)

disc. embed (T)
momentum (T)

aux. loss (T)
finetune (T)

bidirectional (T)
input embed (T)
input reward (F)
input action (F)

pred. reward (T)
pred. action (T)

reconst. reward (T)
reconst. action (T)

default

walker2d-expert

0 20 40 60

walker2d-medium

0 25 50 75 100

walker2d-medium-expert

0 5 10

walker2d-medium-replay

Figure 12: Offline RL ablation on individual domains and datasets. The benefit of representation
learning is more evident when expert trajectories are present (e.g., expert and medium-expert) than
when they are absent (medium and medum-replay). Reconstructing action and reward is more im-
portant in ant and halfcheetah than in hopper and walker2d.

18

Published as a conference paper at ICLR 2021

0 50 100
ctx. embed (T)

disc. embed (T)
momentum (T)

aux. loss (T)
finetune (T)

bidirectional (T)
input embed (T)
input reward (F)
input action (F)

pred. reward (T)
pred. action (T)

reconst. reward (T)
reconst. action (T)

default

ant-expert

50 0 50 100

ant-medium

0 50 100

ant-medium-expert

0 50

ant-medium-replay

0 10 20 30
ctx. embed (T)

disc. embed (T)
momentum (T)

aux. loss (T)
finetune (T)

bidirectional (T)
input embed (T)
input reward (F)
input action (F)

pred. reward (T)
pred. action (T)

reconst. reward (T)
reconst. action (T)

default

halfcheetah-expert

0 10 20 30

halfcheetah-medium

0 10 20 30

halfcheetah-medium-expert

0 10 20 30

halfcheetah-medium-replay

0 10 20
ctx. embed (T)

disc. embed (T)
momentum (T)

aux. loss (T)
finetune (T)

bidirectional (T)
input embed (T)
input reward (F)
input action (F)

pred. reward (T)
pred. action (T)

reconst. reward (T)
reconst. action (T)

default

hopper-expert

0 10 20 30

hopper-medium

0 10 20

hopper-medium-expert

0 10 20

hopper-medium-replay

0 10 20
ctx. embed (T)

disc. embed (T)
momentum (T)

aux. loss (T)
finetune (T)

bidirectional (T)
input embed (T)
input reward (F)
input action (F)

pred. reward (T)
pred. action (T)

reconst. reward (T)
reconst. action (T)

default

walker2d-expert

0 5 10 15 20

walker2d-medium

0 10 20

walker2d-medium-expert

0 10 20 30

walker2d-medium-replay

Figure 13: Online RL ablation on individual domains and datasets. Auxiliary loss generally im-
proves performance in all domains and datasets. Finetuning improves halfcheetah, hopper, and
walker2d but significantly impairs ant.

19

Published as a conference paper at ICLR 2021

C ADDITIONAL ANECDOTAL CONCLUSIONS

1. More ablations. Although we present our ablations as only changing one factor at a time,
we also experimented with changing multiple factors at a time. We did not find any of these
additional ablations to change the overall conclusions.

2. Reconstruct action. One ablation that did work surprisingly well was to only reconstruct
the action (with no other loss). This appeared to perform poorly on imitation learning, but
well on other settings.

3. More transformers. We experimented with a different application of transformers than
ACL. Namely, we attempted to treat each dimension of the state as a token in a sequence
(as opposed to using the whole state observation as the token). We found this to provide
promising results, although it did not convincingly improve upon the configuration of ACL.
Still, it may merit further investigation by future work.

4. Transformer architecture. We experimented with a different number of attention blocks
or number of heads in each block, but did not observe significant differences in perfor-
mance.

5. Normalized or regularized representations. We experimented with applying an explicit
normalization layer on the output of φ and found no benefits. We also experimented with
a stochastic representation along with a KL-divergence regularizer to the standard normal
distribution, and again found no benefits.

D ADDITIONAL INTERPRETATIONS OF RESULTS

While we wanted to avoid making claims without exhaustive proof regarding why certain design
choices are better than others, we believe many of our findings are interpretable, and here is a
selection of our hypotheses:

1. Reward prediction helps in offline/online RL because rewards are critical to the downstream
task.

2. Bisimulation-style approaches perform poorly because they are too eager to reduce the
latent space (e.g., in the absence of reward, φ would be constant).

3. The poor performance of auxiliary training in offline RL may reflect the fact that offline
RL is generally more liable to divergence in training, which would dominate gradients from
any auxiliary objective and render the representation learning objective useless.

4. The poor performance of context embeddings in all setups may be explained as a conse-
quence of an overly-rich representation – i.e., using context embedding means in the down-
stream task the same state may appear multiple times as different representations (since it
is in a different context), and this can complicate learning in near-Markovian environments,
unlike NLP.

20

	Introduction
	Background and Related Work
	Task Setups
	Datasets
	Imitation Learning in Low-Data Regime
	Offline RL with Behavior Regularization
	Online RL in Partially Observable Environments
	Evaluation

	Experiments: Breadth Study
	Representation Learning Objectives
	Results

	Experiments: Depth Study
	Results

	Conclusion
	Experimental Details
	Representation Network
	Transformer Network
	Action Prediction and Reconstruction
	Other Networks
	Training
	Convergence Failures

	Additional Experimental Results
	Fully-Observable Online Environments
	Additional Contrastive Learning Results
	Ablation over Representation Size
	Ablation over Pretraining Window Size
	Ablation over Prediction Direction
	Ablation over Compounding Factors and on Sparse Reward
	Ablation Results for Individual Domains and Datasets

	Additional Anecdotal Conclusions
	Additional Interpretations of Results

