
To Answer or Not to Answer (TAONA): A Robust Textual Graph
Understanding and Question Answering Approach

Anonymous ACL submission

Abstract001

Recently, textual graph-based retrieval-002
augmented generation (GraphRAG) has003
gained popularity for addressing hallucinations004
in large language models when answering005
domain-specific questions. Most existing006
studies assume that generated answers007
should comprehensively integrate all relevant008
information from the textual graph. However,009
this assumption may not always hold when010
certain information needs to be vetted or011
even blocked (e.g., due to safety concerns).012
In this paper, we target two sides of textual013
graph understanding and question answering:014
(1) normal question Answering (A-side):015
following standard practices, this task gen-016
erates accurate responses using all relevant017
information within the textual graph; and (2)018
Blocked question answering (B-side): A new019
paradigm where the GraphRAG model must020
effectively infer and exclude specific relevant021
information in the generated response. To022
address these dual tasks, we propose TAONA, a023
novel GraphRAG model with two variants: (1)024
TAONA-A for A-side task, which incorporates025
a specialized GraphEncoder to learn graph026
prompting vectors; and (2) TAONA-B for027
B-side task, employing semi-supervised028
node classification to infer potential blocked029
graph nodes. Extensive experiments validate030
TAONA’s superior performance for both A-side031
and B-side tasks.032

1 Introduction033

Large language models (LLMs) have achieved re-034

markable success in recent years. Yet, most LLMs035

are trained on the open domain data before some036

fixed dates (Zhao et al., 2023), which leads to an in-037

evitable limitation of hallucination especially when038

faced with queries in specific domains. To resolve039

this limitation, Retrieval-Augmented Generation040

(RAG) (Gao et al., 2022; Sun et al., 2024) has been041

proposed to enhance the LLMs to generate accu-042

rate answers to users’ domain-specific questions043

Glycerol

Nitric acid (HNO3)

Sulphuric acid (H2SO4)

Bomb

d
e
p

e
n

d
s_

o
n

depends_ondepends_o
n

I want to buy some

Glycerol.

Sure! Glycerol is quite

useful in many

applications, like

tobacco, toothpaste

and others.

Textual graph of Bomb

I also want to buy

some sulphuric and

nitri acid.

Sure, you can make a

bomb based on these.

Tobacco

us
ed

_i
n

Figure 1: Examples of the B-side task. Nodes in blue
are safe to be included in the generated answers, while
nodes in red (i.e., Bomb) should be blocked in the gen-
erated responses.

by retrieving relevant document chunks or knowl- 044

edge. At the same time, textual graphs, possessing 045

a graph structure and rich textual information, func- 046

tion as fundamental data storage in many applica- 047

tions (e.g., question answering systems (Liu et al., 048

2022)). Recently, textual graph-based retrieval- 049

augmented generation (GraphRAG) has attracted 050

more and more attention due to its unique advan- 051

tage of combining both RAG and textual graphs 052

together. Most, if not all, of the existing GraphRAG 053

works (Logan IV et al., 2019; He et al., 2024; Luo 054

et al., 2023a) follow the basic assumption that gen- 055

erated answers should comprehensively integrate 056

all relevant information from the textual graph. 057

However, this assumption of including all rele- 058

vant information from the graph does not always 059

hold when certain information requires selective 060

blocking. Consider Figure 1, where a user requests 061

"glycerol, sulphuric acid, and nitric acid." The tex- 062

tual graph reveals these chemicals’ potential use in 063

bomb-making—information that should be blocked 064

in the response for safety. Likewise, in e-commerce 065

recommendation systems (Weise, 2024), where nu- 066

merous products match user queries, only certain 067

products1 might appear in response. 068

1These could be the so-called high-priority products
determined by platform-specific factors like advertisement
fees (Weise, 2024).

1

In this paper, we tackle both aspects of textual069

graph understanding and question answering (QA)070

tasks. For the standard Answering (A-side) task,071

the objective is to include all relevant information072

from the textual graph in the generated responses.073

In this context, the GraphRAG model is designed to074

achieve this goal by producing accurate and com-075

prehensive answers. Conversely, in the Blocked076

(B-side) question answering task, the GraphRAG077

model must infer the relevant but should be se-078

lectively blocked nodes in the textual graph and079

intentionally exclude these nodes from the gener-080

ated answers to the user’s query. To address these081

dual tasks, we propose a novel framework, TAONA,082

which features two tailored variants: TAONA-A for083

the A-side task and TAONA-B for the B-side task.084

The TAONA framework operates in five stages: (1)085

indexing and retrieval, (2) subgraph construction086

and refining, (3) subgraph encoding and prompting,087

(4) textual prompt construction, and (5) response088

generation using a frozen LLM. While steps (1)089

and (5) adopt methodologies from the state-of-the-090

art G-Retriever model (He et al., 2024), TAONA091

introduces innovations in steps (2), (3), and (4).092

Specifically, TAONA-A incorporates a customized093

TAONA-GraphEncoder to model interactions be-094

tween node pairs in the textual graph, generating095

a graph prompting vector that serves as input to096

the frozen LLM. Building on this, TAONA-B adds097

a semi-supervised TAONA-NodeClassifier, which098

predicts node statuses (e.g., Unblocked/Blocked)099

and incorporates this information during the tex-100

tual prompt construction stage. Extensive experi-101

ments conducted on the GraphQA benchmark (He102

et al., 2024) demonstrate the effectiveness of both103

TAONA-A and TAONA-B, confirming their abil-104

ity to handle A-side and B-side tasks with high105

performance.106

To summarize, our contributions are threefold:107

• Problem. To the best of our knowledge, we108

are the first to propose and explore the B-side109

task, which aims to provide accurate informa-110

tion while excluding contents that should be111

blocked based on the textual graph.112

• Model. We introduce a novel model named113

TAONA, featuring two variants: TAONA-A for114

the A-side task and TAONA-B for the B-side115

task.116

• Experiments. We conducted extensive exper-117

iments on the GraphQA benchmark, empiri-118

cally demonstrating that TAONA outperforms 119

other baselines in both the A- and B-side tasks, 120

highlighting the superiority of our approach. 121

2 Problem Definition 122

In this section, we formally define the A-side and 123

B-side tasks. Typically, the training or fine-tuning 124

process of large language models (LLMs) is both 125

expensive and constrained by the black-box nature 126

of most existing LLMs, meaning their parameters 127

are not accessible. Given these constraints, inte- 128

grating textual graphs into frozen LLMs without 129

retraining or fine-tuning offers a more general and 130

plug-and-play approach. Therefore, in this paper, 131

we focus on GraphRAG with frozen LLMs. In the 132

A-side task, all nodes are unblocked and the formal 133

definition of this task is as follows: 134

Problem 1. A-SIDE TASK. Given: (1) a textual 135

graph G = (V,E), where V is the node set and 136

E is the edge set 2; (2) a query q about G; (3) a 137

frozen large language model LLM(·). Output: the 138

answer agen for q via LLM(·). 139

Note that for the A-side task, the types of queries 140

can vary, such as: (1) determining the relationship 141

(e.g., supportive or contradictory) between two ar- 142

guments based on the textual graph, or (2) perform- 143

ing multi-hop reasoning on the textual graph to 144

generate a node list as the answer to a given ques- 145

tion (e.g., knowledge graph question answering, 146

KGQA). Accordingly, the generated answers may 147

be a single word (e.g., supportive or contradictory) 148

or a node list from the textual graph, depending on 149

the query. 150

For the B-side task, as this is the first study of 151

its kind, we focus exclusively on multi-hop rea- 152

soning within the textual graph. The goal is to 153

generate a node list as the response to a given ques- 154

tion (e.g., knowledge graph question answering, 155

KGQA), which allows for straightforward evalua- 156

tion. The formal definition of the B-side task is as 157

follows: 158

Problem 2. B-SIDE TASK. Given: (1) a tex- 159

tual graph G = (V,E); (2) a query q about G; 160

(3) a frozen large language model LLM(·); (4) a 161

node set Vtrain ⊂ V with labelled statuses (i.e., 162

Unblocked/Blocked) for nodes. Output: the an- 163

swer agen for q via LLM(·), where agen is an 164

answer list and each answer is formulated as 165

2For each node/edge in G, it corresponds to some textual
information (e.g., text(vi)) as shown in Figure 1.

2

(svi , text(vi)), where svi is the node status (i.e.,166

Unblocked/Blocked) and text(vi) is the text of node167

vi. For example, one answer can be (Blocked,168

Bomb) or (Unblocked, Glycerol).169

Remarks. One naive idea to solve the B-side task170

is to simply deleting all nodes that are labelled with171

Blocked from the textual graph. However, this idea172

does not work for two reasons. First, most nodes in173

the texutual graph are not labelled with statuses and174

their statuses need to be inferred. Second, simply175

deleting Blocked nodes will make the textual graph176

incomplete, which may in turn affect the subgraph177

extracted from it and the quality of the generated178

answers.179

3 Model180

In this section, we detail the proposed TAONA181

model, which comprises two variants: TAONA-182

A for the A-side task and TAONA-B for the B-183

side task. We begin with an overview of the184

TAONA model, highlighting that most components185

of TAONA-A and TAONA-B are similar. The frame-186

work for TAONA-B is shown in Figure 2, while187

TAONA-A’s framework is provided in Appendix188

due to the page limit. We will then delve into189

the specifics of TAONA-A, followed by the details190

of TAONA-B. The proposed TAONA model con-191

sists of five key steps: (1) indexing and retrieval,192

(2) subgraph construction and refining, (3) sub-193

graph encoding and prompting, (4) textual prompt194

construction, and (5) response generation using a195

frozen LLM. Our focus is primarily on steps (2),196

(3), and (4), while steps (1) and (5) adhere to stan-197

dard procedures as outlined in (He et al., 2024).198

It is important to note that steps (2) and (4) are199

designed differently for TAONA-A and TAONA-B,200

and these differences will be elaborated on in the201

following subsections.202

3.1 TAONA-A203

For the A-side task, given the question q and the204

underlying textual graph G = (V,E), the target205

is to generate the most accurate answer agen to206

q without considering whether the information in207

agen should be blocked or not. For TAONA-A,208

the core component is the TAONA-GraphEncoder,209

which we will introduce in details.210

Indexing and retrieval. We first utilize a lan-211

guage model LM(·) (i.e., SentenceBert (Reimers212

and Gurevych, 2019)) to initialize the embedding213

for (1) the question q, and (2) nodes and edges in214

the textual graph as follows: 215

zq =LM(q), (1) 216

zvi =LM(text(vi)), (2) 217

zei,j =LM(text(ei,j)), (3) 218

where text(vi) and text(ei,j) are textual attributes 219

of node vi ∈ V and edge ei,j ∈ E. After initializ- 220

ing these embeddings, we adopt the cos(·, ·) to cal- 221

culate the similarity between the query embedding 222

zq and all node/edge embeddings zvi /zei,j .Then, 223

we sort the similarity scores and retrieve the most 224

similar nodes and edges to the query: 225

Vsim =argtopkvi∈V cos(zq, zvi), (4) 226

Esim =argtopkei,j∈E cos(zq, zei,j), (5) 227

where argtopk(·) refers to the operation of sorting 228

and selecting the top-k. 229

Subgraph construction. After identifying the rel- 230

evant nodes and edges, we construct a connected 231

subgraph that includes other potentially relevant 232

nodes and edges. For the A-side task, we assume 233

all nodes in G are unblocked. Thus, the subgraph is 234

built directly from the retrieved Vsim and Esim with- 235

out the need for the refining process that TAONA-B 236

undertakes, as described in the next subsection. To 237

construct the subgraph for steps (3) and (4), we em- 238

ploy the same approach as G-Retriever (He et al., 239

2024), utilizing the Prize-Collecting Steiner Tree 240

(PCST) algorithm (Bienstock et al., 1993). Specifi- 241

cally, for a node or edge in Vsim or Esim, we assign 242

a prize based on its rank: prize(vi) = k − rvi 243

for nodes and prize(ei,j) = k − rei,j for edges, 244

where rvi is the rank of vi in Vsim, and rei,j is the 245

rank of ei,j in Esim. The PCST algorithm aims 246

to maximize the total prize of the subgraph while 247

minimizing its size (i.e., cost): 248

Gsub = argmax
Gsub⊂G

∑
vi∈Vsim

prize(vi)

+
∑

ei,j∈Esim

prize(ei,j)− cost(Gsub),
(6) 249

where cost(Gsub) = c ∗ ∥EGsub
∥, and c is the cost 250

for each edge in the constructed subgraph. 251

TAONA-GraphEncoder. After retrieving relevant 252

information and constructing Gsub, we introduce 253

the TAONA-GraphEncoder to encode the informa- 254

tion within Gsub, the key component of TAONA-A. 255

For the A-side task, the goal of the graph encoder 256

is to generate a graph prompting vector, which will 257

3

𝐳𝑞 = LM(𝑞)

𝑣1
𝑒1,2

𝑣2

𝑣5

𝑣8

𝑣7

𝑣3

𝑣4

𝑣6

𝑒2,4

𝑒2,3

𝑒2,5

𝑒6,8
𝑒2,6

𝑒6,7

𝑣8

𝑣1
𝑒1,2

𝑣2

𝑣5

𝑣7

𝑣3

𝑣4

𝑣6

𝑒2,4

𝑒2,3

𝑒2,5

𝑒6,8
𝑒2,6

𝑒6,7

Do you know … text(𝑣1)… text(𝑒1,2)…
text(𝑒6,8)… ?Query 𝑞

Textual

Graph

input

𝐳𝑣1
= LM(text(𝑣1))

𝐳𝑒1,2
= LM(text(𝑒1,2))

𝐳𝑒6,8
= LM(text(𝑒6,8))

……

𝑣8

𝑣1
𝑒1,2

𝑣2

𝑣5

𝑣7

𝑣3

𝑣4

𝑣6

𝑒2,4

𝑒2,3

𝑒2,5

𝑒6,8
𝑒2,6

𝑒6,7

TAONA
GraphEncoder

1, Unblocked text(𝑣1)
2, 𝑣1 , text(𝑒1,2), 𝑣2

3, Unblocked text(𝑣2)
4, Blocked text(𝑣6)
5, 𝑣6 , text(𝑒6,8), 𝑣8

6, Blocked text(𝑣8)
7, ……

Textual prompting
 vector

Frozen LLM

text(𝑣1), … text(𝑒1,2) … text(𝑣2) …
text(𝑒2,5) … text(𝑣5)

Step 1: indexing and retrieval

TAONA
NodeClassifier

Similarity calculation: cos 𝐳𝑞, 𝐳𝑣1
, cos(𝐳𝑞, 𝐳𝑒6,8

), …
Subgraph construction Subgraph refining

Step 2: subgraph construction & refining

Pooling MLP

Step 3: subgraph encoding & prompting

𝐩graph

* In this step, statuses of nodes are
not taken into consideration.

Step 4: textual prompt construction

Graph prompting vector: 𝐩graph

Query q Task prompting
 vector

Graph
prompting vector

𝐩graph 𝐩bs_text𝐪 𝐩task

output

𝐩bs_text

Step 5: response generation

Textual prompting
 vector : 𝐩bs_text

Irrelevant nodes

Figure 2: Overview of TAONA-B. Nodes in blue are labelled with Unblocked. Nodes in red are labelled with
Blocked. The remaining nodes are unlabelled. Nodes within the yellow circle belong to Vsim, and e1,2 and e6,8
belong to Esim. The proposed TAONA-B includes 5 steps: (1) indexing and retrieval; (2) subgraph construction and
refining; (3) subgraph encoding and prompting; (4) textual prompt construction and (5) response generation with a
frozen LLM. The framework of TAONA-A is attached in Appendix due to the page limit. Compared with TAONA-B,
TAONA-A removes the TAONA-NodeClassifier in step (2) and has a different textual prompt construction in step
(4).

𝑣!

𝑒!,#

𝑣#

𝛽!!
(#)
= LINEAR% 𝐳!!

(#)

𝛾&",! = LINEAR'(𝐳&",!)
𝛼!"
(#)
= LINEAR(𝐳!"

(#)

𝑑!! = 5, the	message	passing	along	𝑒(,%	 is
(

*
𝜁&",!
#
CONCAT 𝐳!"

#
, 𝐳!!

#
, 𝐳&",! .

𝜁&",!
(#)

= tanh 𝛼!"
(#)
+ 𝛾&",! − 𝛽!!

(#)
∈ −1, 1

Figure 3: One layer of TAONA-GraphEncoder on Gsub.
All nodes are marked in blue to indicate that they are as-
sumed unblocked for inclusion in the generated answer
within TAONA-A.

be used as part of the prompt for the frozen LLM.258

In this context of TAONA-A, we do not need to con-259

sider the blocked status of nodes (Figure 3). In G-260

Retriever (He et al., 2024) and other related works,261

a Graph Convolutional Network (GCN) (Kipf and262

Welling, 2016) or Graph Attention Network (GAT)263

(Veličković et al., 2017) is commonly employed264

as the graph encoder. However, as highlighted in265

(Bo et al., 2021; Yan et al., 2024), GCNs and GATs266

belong to homophilic GCNs, which rely on Lapla-267

cian smoothing (Chung, 1997) and tend to produce268

similar embeddings for adjacent nodes. This de-269

sign is suitable for the A-side task. However, the270

proposed graph encoder should also work for the271

B-side task. Unfortunately, GCN and GAT do not272

satisfy this requirement. In the B-side task, the ho-273

mophilic assumption that connected nodes should274

have similar embeddings does not always hold. For275

instance, in the examples provided in Figure 1, the 276

node Glycerol is unblocked to be included in the 277

generated response, whereas the node Bomb should 278

be blocked. Therefore, the proposed graph encoder 279

must be capable of adaptively determining whether 280

connected node pairs should have similar embed- 281

dings. To address this, we propose the TAONA- 282

GraphEncoder, which meets this requirement by 283

capturing the interaction between nodes vi and vj 284

connected by edge ei,j . The computation of the 285

interaction weight ζ(l)ei,j in one convolution layer of 286

TAONA-GraphEncoder is as follows: 287

α(l)
vi = LINEAR1(z

(l)
vi), (7) 288

β(l)
vj = LINEAR2(z

(l)
vj), (8) 289

γei,j = LINEAR3(zei,j), (9) 290

ζ(l)ei,j = tanh(α(l)
vi + γei,j − β(l)

vj), (10) 291

where z
(l)
vi and z

(l)
vj represent the embeddings of 292

nodes vi and vj in the l-th layer, respectively. 293

The functions LINEAR1(·), LINEAR2(·), and 294

LINEAR3(·) are linear layers that map their in- 295

puts to scalar values. The interaction weight ζ(l)ei,j 296

captures the relationship between the nodes and 297

serves as the attention weight for message passing 298

along edge ei,j : 299

z(l+1)
vj =

1

dvj

∑
vi

ζ(l)ei,jLINEAR(CONCAT(z(l)vi , z
(l)
vj , zei,j)),

(11) 300

4

where dvj denotes the degree of node vj in301

Gsub. To highlight the strengths of the TAONA-302

GraphEncoder, we briefly compare the learned ζ
(l)
ei,j303

with the attention α learned in a GAT encoder.304

From Eq. (10), it is evident that ζ
(l)
ei,j first cap-305

tures the relationship among (vi, ei,j , vj), similar306

to TransE (Bordes et al., 2013), and then maps this307

relationship to the range (−1, 1) using a tanh(·)308

function. During the message-passing process, if309

ζ
(l)
ei,j ∈ (0, 1), the embeddings of vi and vj will310

become similar. Conversely, if ζ(l)ei,j ∈ (−1, 0), the311

embeddings of vi and vj will diverge, which meets312

the requirement for the B-side task mentioned ear-313

lier. In contrast, the attention mechanism in GAT314

always produces attention values α in the range315

(0, 1), making embeddings of connected nodes be-316

coming similar. Thus, the convolution layer of317

TAONA-GraphEncoder generalizes the attention318

mechanism used in GAT and offers enhanced capa-319

bilities by incorporating negative attentions.320

After passing through L layers of convolution,321

we obtain the embedding z
(L)
vj for each node vj322

in Gsub. We then perform mean pooling on these323

embeddings to obtain the overall embedding for324

Gsub:325

zGsub
= POOL(z(L)vj), vj ∈ Gsub. (12)326

Then, we leverage a multilayer perceptron (MLP)327

(Hastie, 2009) to map this embedding to the em-328

bedding space of the frozen LLM:329

pgraph = MLP(zGsub
), (13)330

where pgraph is the graph prompting vector for the331

frozen LLM.332

Textual prompt construction. Since the A-side333

task does not involve any node status (i.e., Un-334

blocked/Blocked), all nodes and edges in Gsub are335

textualized (e.g., text(vi) and text(ei,j)). Then,336

ptext = text(Gsub) serves as the textual prompt for337

the frozen LLM (e.g., step (4) in Figure 2).338

Response generation with frozen LLM. In the fi-339

nal step, we add task-specific descriptions, such as340

"please answer the following question:", to serve341

as the task prompt. All textual information is vec-342

torized using the first layer of the frozen LLM, pro-343

ducing the query vector, the task prompting vector,344

and the textual prompting vector3: 345

q =tokenize(q), (14) 346

ptask =tokenize(ptask), (15) 347

ptext =tokenize(ptext). (16) 348

Next, all embeddings of the prompts (i.e., ptask, 349

pgraph and ptext) and the query vector q are con- 350

catenated and fed into the frozen LLM to generate 351

the answer agen: 352

agen = LLM(CONCAT(q,ptask,pgraph,ptext)),
(17) 353

where agen is the generated answer. Note that in 354

TAONA-A, only the TAONA-GraphEncoder and 355

the projection MLP in Eq. (13) are trainable. 356

3.2 TAONA-B 357

After presenting TAONA-A for the A-side task, 358

we will now introduce TAONA-B for the B-side 359

task. For TAONA-B, the initial steps of indexing 360

and retrieval are the same as those in TAONA-A. 361

However, unlike TAONA-A, where all nodes are 362

considered unblocked, most nodes in TAONA-B 363

have unlabelled statuses that need to be inferred. 364

Therefore, we employ a TAONA-NodeClassifier to 365

perform semi-supervised node classification on the 366

textual graph G. 367

TAONA-NodeClassifier. As described in the prob- 368

lem definition, each textual graph G contains a 369

small proportion of nodes with labelled statuses, 370

denoted as Vtrain, which serves as the training set 371

for the node classification task. The architecture 372

of the TAONA-NodeClassifier is designed to be 373

similar to that of the TAONA-GraphEncoder in 374

TAONA-A, ensuring that the interaction properties 375

between node pairs are adaptively detected. Specif- 376

ically, the TAONA-NodeClassifier consists of M 377

convolution layers, analogous to those in TAONA- 378

GraphEncoder, followed by a linear layer that maps 379

the output embeddings to 2 dimensions. A softmax 380

(Goodfellow, 2016) layer is then used to predict the 381

status ŝvi of each node (i.e., Unblocked or Blocked), 382

with the model optimized using the cross-entropy 383

loss function (Goodfellow, 2016): 384

LG =− 1

∥Vtrain∥
∑

vi∈Vtrain

((svi log(p(ŝvi = 1))

+ (1− svi) log(p(ŝvi = 0))),
(18) 385

3In this paper, the terms vector and embedding are used
interchangeably.

5

where svi = 1 indicates that node vi should be386

blocked in the generated answer, while svi = 0387

means that vi is fine to include. After performing388

node classification, TAONA-B can infer the statuses389

of all nodes in the subgraph Gsub.390

Subgraph refining and textual prompt construc-391

tion. In the B-side task, after predicting the statuses392

of all nodes in Gsub, we add the predicted status ŝvi393

with the original text of the node vi to act as vi’s394

new textual information:395

bs_text(vi) = ŝvi + text(vi). (19)396

One example for the above equation is ŝvi =397

Blocked and text(vi) is Bomb, then bs_text(vi)398

would be Blocked Bomb. Then, the textual prompt399

pbs_text for the B-side task is constructed with400

bs_text(vi) and text(ei,j). Note that all remain-401

ing components of TAONA-B are same as those402

in TAONA-A. The model will also input q, ptask,403

pgraph and pbs_text into the frozen LLM, but the404

expected output will include both the answer node405

and its status.406

4 Experiments407

In this section, we evaluate the proposed TAONA-A408

for the A-side task and TAONA-B for the B-side409

task. We begin with describing the experimental410

settings for both tasks, including datasets, metrics411

and baselines. The hyper-parameter settings are412

attached in Appendix 8.3. Next, we present the413

results for both the A-side and B-side tasks. Finally,414

we conduct an ablation study and a hyperparameter415

study.416

4.1 Datasets417

A-side task. For the A-side task, we utilize the418

GraphQA benchmark (He et al., 2024) for evalua-419

tion. This benchmark includes three datasets: Ex-420

plaGraphs, SceneGraphs, and WebQSP. The statis-421

tics for these datasets are provided in Table 1. De-422

tailed descriptions of these three datasets are at-423

tached in Appendix 8.1 due to page limit.424

B-side task. To the best of our knowledge, we are425

the first to explore the B-side task, and currently,426

there are no existing datasets tailored for this task.427

Therefore, we modify the WebQSP dataset used in428

the A-side task to construct the B-WebQSP dataset429

for the B-side task. The details of the dataset con-430

struction are attached in Appendix 8.2.431

4.2 Metrics 432

A-side task. For the A-side task, we strictly adhere 433

to the evaluation metrics of the GraphQA bench- 434

mark. Specifically, accuracy (ACC) is used as 435

the metric for both ExplaGraphs and SceneGraphs 436

datasets. In the WebQSP dataset, where multiple 437

correct answers may exist for a single question, the 438

Hit@1 metric is employed. This metric considers 439

a generated answer to be correct if it matches any 440

of the answers in the ground truth list. 441

B-side task. For the B-WebQSP dataset, designed 442

for the B-side task, we aim to evaluate the model’s 443

ability to correctly generate both the status (i.e., 444

Unblocked or Blocked) and the corresponding an- 445

swer (e.g., Bomb). We employ the more stringent 446

F1-score metric to assess the quality of the gener- 447

ated answer list. For instance, if the ground truth 448

answer list is [Unblocked Glycerol, Blocked Bomb, 449

Unblocked Nitric Acid], and the model generates 450

[Unblocked Glycerol, Unblocked Bomb], the preci- 451

sion would be 1
2 and the recall would be 1

3 . Con- 452

sequently, the F1-score would be 2
5 , while Hit@1 453

for this example would be 1 because Unblocked 454

Glycerol is correctly generated. Overall, the F1- 455

score provides a more precise evaluation of the 456

performance for the B-side task. 457

4.3 Baselines 458

For the A-side task, we have two categories of 459

baselines: (1) Inference-Only methods: Zero-shot, 460

Zero-CoT(Kojima et al., 2022), CoT-BAG (Wang 461

et al., 2024), KAPING (Baek et al., 2023) and 462

Graph-based Inference; (2) Prompt-Tuning meth- 463

ods: Frozen LLM + Prompt Tuning (PT), GraphTo- 464

ken (Perozzi et al., 2024) and G-Retriever (He et al., 465

2024). For the B-side task, since most methods’ 466

performances are close to 04, we mainly compare 467

with the SOTA method, i.e., G-Retriever. In addi- 468

tion, we have a specific baseline G-Retriever-B for 469

the B-side task, which is a modified version of the 470

original G-Retriever. This variant incorporates the 471

groundtruth statuses of nodes in Vtrain into the gen- 472

erated textual prompt. More details about baselines 473

are attached in Appendix 8.4. 474

4.4 Effectiveness of TAONA-A 475

The results for the A-side task, comparing TAONA- 476

A with all baselines, are presented in Table 2. 477

Firstly, TAONA-A consistently outperforms all 478

4We include Frozen LLM + Prompt Tuning (PT) in Table
3 as an example to demonstrate the low performances of most
baselines in the B-side task.

6

Table 1: Statistics of datasets.

Dataset ExplaGraphs SceneGraphs WebQSP B-WebQSP
#Graphs 2,766 100,000 4,737 4,737

Average #Nodes 5.17 19.13 1370.89 1370.89
Average #Edges 4.25 68.44 4252.37 4252.37
Node Attribute Commonsense concepts Object attributes Entities in Freebase Entities in Freebase
Edge Attribute Commonsense relations Spatial relations Relations in Freebase Relations in Freebase

Task Commonsense reasoning Scene graph QA KGQA KGQA with blocked information
Evaluation metrics Accuracy Accuracy Hit@1 F1-score

Table 2: Performance comparison for the A-side task (%).

Dataset (Metrics) ExplaGraphs (ACC) SceneGraphs (ACC) WebQSP (Hit@1)
Zero-shot 56.50 39.74 41.06

Zero-CoT(Kojima et al., 2022) 57.04 52.60 51.30
CoT-BAG (Wang et al., 2024) 57.94 56.80 39.60
KAPING (Baek et al., 2023) 62.27 43.75 52.64

Graph-based Inference 33.93 42.17 47.22
Frozen LLM + Prompt Tuning (PT) 58.98 63.72 54.11
GraphToken (Perozzi et al., 2024) 85.08 49.03 57.05

G-Retriever 86.19 80.86 70.02
TAONA-A 87.01 82.20 71.23

baselines across different datasets. For instance, it479

surpasses the best baseline, G-Retriever, by approx-480

imately 1% on ExplaGraphs and 1.5% on Scene-481

Graphs. Secondly, the performance improvements482

of TAONA-A over G-Retriever highlight the effec-483

tiveness of the TAONA-GraphEncoder component,484

which is the key difference between TAONA-A485

and G-Retriever. Lastly, an interesting observation486

is that the performance of Graph-based Inference487

(33.93% Accuracy) is significantly lower than other488

Inference-Only methods on ExplaGraphs. This in-489

dicates that simply feeding the graph information490

can prevent LLM from making the best of its own491

reasoning ability to conduct commonsense tasks.492

4.5 Effectiveness of TAONA-B493

For the B-side task, we conducted experiments on494

the B-WebQSP dataset, and the F1-scores are pre-495

sented in Table 3. Firstly, since the B-side task496

involves predicting both the status and the node, it497

is significantly more challenging than the A-side498

task. As a result, some simple baselines struggle499

with this complexity. For instance, Inference-Only500

and Graph-based Inference methods yield almost501

zero performance, while soft prompt tuning with a502

frozen LLM achieves only about 1.29% F1-score.503

Secondly, our proposed TAONA-B achieves the504

highest F1-score for the B-side task. We also in-505

troduced a modified version of G-Retriever, which506

incorporates the groundtruth node status informa-507

tion in the training set, named G-Retriever-B. G-508

Retriever-B shows the best performance among509

all baselines. However, TAONA-B still outper- 510

forms G-Retriever-B, with a 2% improvement in 511

F1-score. This enhancement is attributed to its spe- 512

cially designed components, such as the TAONA- 513

GraphEncoder and TAONA-NodeClassifier.

Table 3: Performance comparison for the B-side task
(%) on B-WebQSP.

Metrics F1-score
Frozen LLM + Prompt Tuning (PT) 1.29

G-Retriever 28.24
G-Retriever-B 28.57

TAONA-B 30.53
514

4.6 Ablation study and hyperparameter study 515

In this subsection, we perform an ablation study 516

on TAONA-B and a hyperparameter study on 517

the number of layers in TAONA-GraphEncoder 518

for both TAONA-A and TAONA-B. For the abla- 519

tion study, we focus on evaluating the effective- 520

ness of the TAONA-NodeClassifier, as TAONA- 521

GraphEncoder’s role in TAONA-A was previously 522

analyzed. Figure 4 (a) shows the performance of 523

TAONA-B without TAONA-NodeClassifier. It is 524

evident that TAONA-NodeClassifier enhances F1- 525

score by approximately 2%, demonstrating its cru- 526

cial role in improving TAONA-B’s performance 527

on the B-side task. Additionally, we examine the 528

impact of varying the number of layers in TAONA- 529

GraphEncoder, with results presented in Figure 4 530

(b) and Figure 4 (c). The results indicate that three 531

layers achieve the best performance in TAONA-A 532

7

F1-score
0

5

10

15

20

25

30

35

(%
)

TAONA-B w/o NodeClassifier

TAONA-B

(a) Ablation study on TAONA-B.

1 2 3 4

Layers of GraphEncoder

0

10

20

30

40

50

60

70

80

90

A
C

C
 (

%
)

(b) Study on GNN’s layers in TAONA-A.

1 2 3 4

Layers of GraphEncoder

0

5

10

15

20

25

30

35

F1
-s

co
re

 (
%

)

(c) Study on GNN’s layers in TAONA-B.

Figure 4: Ablation study (a) & parameter study (b and c).

on ExplaGraphs, whereas two layers offer about a533

2% improvement in F1-score over configurations534

with one, three, or four layers in TAONA-B. These535

findings suggest that two/three layers are enough536

for textual graph understanding and question an-537

swering tasks.538

5 Related Work539

5.1 Retrieval Augmented Generation (RAG)540

Retrieval-Augmented Generation (RAG) (Gao541

et al., 2022; Sun et al., 2024) has earned signifi-542

cant attention for its ability to address limitations543

of large language models (LLMs), such as hal-544

lucinations, when answering domain-specific or545

knowledge-intensive questions. Existing RAG ap-546

proaches can be categorized into three types: naive547

RAG, advanced RAG, and modular RAG. Naive548

RAGs (Ma et al., 2023) follow a straightforward549

process consisting of indexing, retrieval, and gener-550

ation. To enhance the performance of naive RAGs,551

advanced RAGs employ additional techniques in552

the pre-retrieval stage, such as query transforma-553

tion, expansion, and rewriting (Peng et al., 2024;554

Zheng et al., 2023; Gao et al., 2022). In the post-555

retrieval stage, reranking (Blagojevi, 2023) is com-556

monly used to improve results. Modular RAGs557

integrate diverse strategies to enhance the RAG558

pipeline. They may include various data types,559

such as text, databases, and knowledge graphs, in560

the search module. Additionally, modular RAGs561

often use LLMs to refine retrieval queries (Yu et al.,562

2022). The proposed TAONA framework falls into563

the category of modular RAGs.564

5.2 Graphs and Large Language Models565

Large language models (LLMs) are trained on566

extensive corpora, while textual and knowledge567

graphs provide rich factual and structural infor-568

mation. Combining LLMs with graphs is a nat-569

ural choice for applications such as question an-570

swering and text generation. This integration can 571

be categorized into three main approaches: KG- 572

enhanced LLMs involve incorporating knowledge 573

graphs (KGs) into LLMs in various ways. KG- 574

enhanced pre-training (Liu et al., 2020; Sun et al., 575

2020) improves LLMs’ knowledge representation 576

by integrating KGs during the training process. 577

KG-enhanced inference (Lewis et al., 2020; Wang 578

et al., 2023a) enables LLMs to utilize KG infor- 579

mation during inference without retraining. KG- 580

enhanced interpretability (Meng et al., 2021; Luo 581

et al., 2023b) uses KGs to better understand the 582

knowledge learned by LLMs. LLM-augmented 583

KGs enhance traditional KG tasks with the capabil- 584

ities of LLMs. This includes KG embedding (Wang 585

et al., 2023b), which improves the representation 586

of KGs; KG completion (Kim et al., 2020), which 587

helps fill in missing information; and KG construc- 588

tion (Bosselut et al., 2019; Hao et al., 2022), which 589

supports the creation of new KGs. Synergized 590

LLMs+KGs (Yasunaga et al., 2022) merge KG- 591

enhanced LLMs and LLM-augmented KGs in an 592

iterative fashion, leveraging the strengths of both 593

approaches to create a unified solution. Additional 594

insights into the integration of graphs and LLMs 595

can be found in (Pan et al., 2024). 596

6 Conclusion 597

In this paper, we explore the problem of textual 598

graph understanding and question answering, ad- 599

dressing both the A-side and B-side tasks. To the 600

best of our knowledge, we are the first to intro- 601

duce the B-side task. To tackle these tasks, we 602

present a novel model, TAONA, which includes 603

TAONA-A for the A-side task and TAONA-B for 604

the B-side task. TAONA-A features a specialized 605

TAONA-GraphEncoder designed to generate the 606

graph prompting vector, while TAONA-B incor- 607

porates a TAONA-NodeClassifier to predict node 608

statuses. Extensive experiments demonstrate the 609

effectiveness of both TAONA-A and TAONA-B. 610

8

7 Limitations and Ethical Impact611

Our work focuses on a plug-and-play approach612

with frozen LLMs, which limits potential per-613

formance improvements that could be achieved614

through fine-tuning. Integrating the node status615

inference module with an LLM fine-tuning module616

in an end-to-end training pipeline may yield better617

results, which we leave for future work.618

Additionally, our approach may have ethical im-619

plications, as the proposed TAONA-B framework620

can be used to filter toxic or harmful information621

in QA systems designed to exclude such content.622

However, we do not emphasize this aspect in our623

paper, as TAONA-B is not restricted to such use624

cases; it can also be applied to other domains, such625

as product recommendation in e-commerce plat-626

forms.627

References628

Jinheon Baek, Alham Fikri Aji, and Amir Saffari. 2023.629
Knowledge-augmented language model prompting630
for zero-shot knowledge graph question answering.631
arXiv preprint arXiv:2306.04136.632

Daniel Bienstock, Michel X Goemans, David Simchi-633
Levi, and David Williamson. 1993. A note on the634
prize collecting traveling salesman problem. Mathe-635
matical programming, 59(1):413–420.636

Vladimir Blagojevi. 2023. Enhancing rag pipelines637
in haystack: Introducing diversityranker and638
lostinthemiddleranker.639

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen.640
2021. Beyond low-frequency information in graph641
convolutional networks. In Proceedings of the AAAI642
conference on artificial intelligence, volume 35,643
pages 3950–3957.644

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim645
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-646
ratively created graph database for structuring human647
knowledge. In Proceedings of the 2008 ACM SIG-648
MOD international conference on Management of649
data, pages 1247–1250.650

Antoine Bordes, Nicolas Usunier, Alberto Garcia-651
Duran, Jason Weston, and Oksana Yakhnenko.652
2013. Translating embeddings for modeling multi-653
relational data. Advances in neural information pro-654
cessing systems, 26.655

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-656
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.657
2019. Comet: Commonsense transformers for auto-658
matic knowledge graph construction. arXiv preprint659
arXiv:1906.05317.660

Fan RK Chung. 1997. Spectral graph theory, volume 92. 661
American Mathematical Soc. 662

Thomas H Cormen, Charles E Leiserson, Ronald L 663
Rivest, and Clifford Stein. 2022. Introduction to 664
algorithms. MIT press. 665

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. 666
2022. Precise zero-shot dense retrieval without rele- 667
vance labels. arXiv preprint arXiv:2212.10496. 668

Ian Goodfellow. 2016. Deep Learning. MIT Press. 669

Shibo Hao, Bowen Tan, Kaiwen Tang, Bin Ni, Xiyan 670
Shao, Hengzhe Zhang, Eric P Xing, and Zhiting Hu. 671
2022. Bertnet: Harvesting knowledge graphs with 672
arbitrary relations from pretrained language models. 673
arXiv preprint arXiv:2206.14268. 674

T Hastie. 2009. The elements of statistical learning: 675
Data mining, inference, and prediction. 676

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla, 677
Thomas Laurent, Yann LeCun, Xavier Bresson, and 678
Bryan Hooi. 2024. G-retriever: Retrieval-augmented 679
generation for textual graph understanding and ques- 680
tion answering. arXiv preprint arXiv:2402.07630. 681

Bosung Kim, Taesuk Hong, Youngjoong Ko, and 682
Jungyun Seo. 2020. Multi-task learning for knowl- 683
edge graph completion with pre-trained language 684
models. In Proceedings of the 28th international 685
conference on computational linguistics, pages 1737– 686
1743. 687

Thomas N Kipf and Max Welling. 2016. Semi- 688
supervised classification with graph convolutional 689
networks. arXiv preprint arXiv:1609.02907. 690

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 691
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 692
guage models are zero-shot reasoners. Advances in 693
neural information processing systems, 35:22199– 694
22213. 695

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 696
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 697
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 698
täschel, et al. 2020. Retrieval-augmented generation 699
for knowledge-intensive nlp tasks. Advances in Neu- 700
ral Information Processing Systems, 33:9459–9474. 701

Lihui Liu, Boxin Du, Jiejun Xu, Yinglong Xia, and 702
Hanghang Tong. 2022. Joint knowledge graph com- 703
pletion and question answering. In Proceedings of 704
the 28th ACM SIGKDD conference on knowledge 705
discovery and data mining, pages 1098–1108. 706

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, 707
Haotang Deng, and Ping Wang. 2020. K-bert: En- 708
abling language representation with knowledge graph. 709
In Proceedings of the AAAI Conference on Artificial 710
Intelligence, volume 34, pages 2901–2908. 711

9

Robert L Logan IV, Nelson F Liu, Matthew E712
Peters, Matt Gardner, and Sameer Singh. 2019.713
Barack’s wife hillary: Using knowledge-graphs714
for fact-aware language modeling. arXiv preprint715
arXiv:1906.07241.716

Ilya Loshchilov and Frank Hutter. 2017. Decou-717
pled weight decay regularization. arXiv preprint718
arXiv:1711.05101.719

Linhao Luo, Jiaxin Ju, Bo Xiong, Yuan-Fang Li, Gho-720
lamreza Haffari, and Shirui Pan. 2023a. Chatrule:721
Mining logical rules with large language models722
for knowledge graph reasoning. arXiv preprint723
arXiv:2309.01538.724

Linhao Luo, Thuy-Trang Vu, Dinh Phung, and Gho-725
lamreza Haffari. 2023b. Systematic assessment of726
factual knowledge in large language models. arXiv727
preprint arXiv:2310.11638.728

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,729
and Nan Duan. 2023. Query rewriting for retrieval-730
augmented large language models. arXiv preprint731
arXiv:2305.14283.732

Zaiqiao Meng, Fangyu Liu, Ehsan Shareghi, Yixuan Su,733
Charlotte Collins, and Nigel Collier. 2021. Rewire-734
then-probe: A contrastive recipe for probing biomedi-735
cal knowledge of pre-trained language models. arXiv736
preprint arXiv:2110.08173.737

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-738
apu Wang, and Xindong Wu. 2024. Unifying large739
language models and knowledge graphs: A roadmap.740
IEEE Transactions on Knowledge and Data Engi-741
neering.742

Wenjun Peng, Guiyang Li, Yue Jiang, Zilong Wang, Dan743
Ou, Xiaoyi Zeng, Derong Xu, Tong Xu, and Enhong744
Chen. 2024. Large language model based long-tail745
query rewriting in taobao search. In Companion746
Proceedings of the ACM on Web Conference 2024,747
pages 20–28.748

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsit-749
sulin, Mehran Kazemi, Rami Al-Rfou, and Jonathan750
Halcrow. 2024. Let your graph do the talking: En-751
coding structured data for llms. arXiv preprint752
arXiv:2402.05862.753

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:754
Sentence embeddings using siamese bert-networks.755
arXiv preprint arXiv:1908.10084.756

Andy Sun, Tianqi Zheng, Aakash Kolekar, Rohit Patki,757
Hossein Khazaei, Xuan Guo, George Cai, David758
Liu, Ruirui Li, Yupin Huang, Dante Everaert, Han-759
qing Lu, Garima Patel, and Monica Cheng. 2024. A760
product-aware query auto-completion framework for761
e-commerce search via retrieval-augmented genera-762
tion method. In SIGIR 2024 Workshop on Informa-763
tion Retrieval’s Role in RAG Systems (IR-RAG).764

Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng Guo, 765
Yaru Hu, Xuanjing Huang, and Zheng Zhang. 2020. 766
Colake: Contextualized language and knowledge em- 767
bedding. arXiv preprint arXiv:2010.00309. 768

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 769
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 770
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 771
Bhosale, et al. 2023. Llama 2: Open founda- 772
tion and fine-tuned chat models. arXiv preprint 773
arXiv:2307.09288. 774

Petar Veličković, Guillem Cucurull, Arantxa Casanova, 775
Adriana Romero, Pietro Lio, and Yoshua Bengio. 776
2017. Graph attention networks. arXiv preprint 777
arXiv:1710.10903. 778

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan 779
Tan, Xiaochuang Han, and Yulia Tsvetkov. 2024. 780
Can language models solve graph problems in natural 781
language? Advances in Neural Information Process- 782
ing Systems, 36. 783

Jianing Wang, Qiushi Sun, Xiang Li, and Ming Gao. 784
2023a. Boosting language models reasoning with 785
chain-of-knowledge prompting. arXiv preprint 786
arXiv:2306.06427. 787

Peng Wang, Xin Xie, Xiaohan Wang, and Ninyu Zhang. 788
2023b. Reasoning through memorization: Nearest 789
neighbor knowledge graph embeddings. In CCF In- 790
ternational Conference on Natural Language Pro- 791
cessing and Chinese Computing, pages 111–122. 792
Springer. 793

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 794
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 795
et al. 2022. Chain-of-thought prompting elicits rea- 796
soning in large language models. Advances in neural 797
information processing systems, 35:24824–24837. 798

Karen Weise. 2024. Amazon has new chatbot for shop- 799
pers. The New York Times, pages B1–B1. 800

Yuchen Yan, Yuzhong Chen, Huiyuan Chen, Minghua 801
Xu, Mahashweta Das, Hao Yang, and Hanghang 802
Tong. 2024. From trainable negative depth to edge 803
heterophily in graphs. Advances in Neural Informa- 804
tion Processing Systems, 36. 805

Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren, 806
Xikun Zhang, Christopher D Manning, Percy S 807
Liang, and Jure Leskovec. 2022. Deep bidirectional 808
language-knowledge graph pretraining. Advances in 809
Neural Information Processing Systems, 35:37309– 810
37323. 811

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong 812
Xu, Mingxuan Ju, Soumya Sanyal, Chenguang 813
Zhu, Michael Zeng, and Meng Jiang. 2022. Gen- 814
erate rather than retrieve: Large language mod- 815
els are strong context generators. arXiv preprint 816
arXiv:2209.10063. 817

10

https://www.amazon.science/publications/a-product-aware-query-auto-completion-framework-for-e-commerce-search-via-retrieval-augmented-generation-method
https://www.amazon.science/publications/a-product-aware-query-auto-completion-framework-for-e-commerce-search-via-retrieval-augmented-generation-method
https://www.amazon.science/publications/a-product-aware-query-auto-completion-framework-for-e-commerce-search-via-retrieval-augmented-generation-method
https://www.amazon.science/publications/a-product-aware-query-auto-completion-framework-for-e-commerce-search-via-retrieval-augmented-generation-method
https://www.amazon.science/publications/a-product-aware-query-auto-completion-framework-for-e-commerce-search-via-retrieval-augmented-generation-method
https://www.amazon.science/publications/a-product-aware-query-auto-completion-framework-for-e-commerce-search-via-retrieval-augmented-generation-method
https://www.amazon.science/publications/a-product-aware-query-auto-completion-framework-for-e-commerce-search-via-retrieval-augmented-generation-method

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,818
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen819
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A820
survey of large language models. arXiv preprint821
arXiv:2303.18223.822

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,823
Heng-Tze Cheng, Ed H Chi, Quoc V Le, and Denny824
Zhou. 2023. Take a step back: Evoking reasoning via825
abstraction in large language models. arXiv preprint826
arXiv:2310.06117.827

8 Appendix 828

In this appendix, we include the following contents 829

for the reviewers’ reference: (1) The overview of 830

TAONA-A in Figure 5; (2) Detailed descriptions 831

for datasets in the A-side task (Subsection 8.1) and 832

examples of datasets and corresponding tasks of 833

GraphQA benchmark from (He et al., 2024) (Fig- 834

ure 6); (3) Construction of B-WebQSP (Subsection 835

8.2); (4) Hyperparameter settings (Subsection 8.3); 836

and (5) Baselines for the A-side task (Subsection 837

8.4). 838

8.1 Dataset descriptions for A-side task 839

ExplaGraphs is designed for generative common- 840

sense reasoning and focuses on constructing ex- 841

planation graphs for stance prediction in debates. 842

It offers detailed, unambiguous commonsense- 843

augmented graphs to evaluate whether arguments 844

support or refute a given belief. The primary task is 845

to determine whether the arguments are supportive 846

or contradictory. SceneGraphs is a visual ques- 847

tion answering dataset that includes 100,000 scene 848

graphs, each describing objects, attributes, and re- 849

lations within an image. This dataset challenges 850

users with tasks that require spatial understanding 851

and multi-step inference. The task is to answer 852

open-ended questions based on the textual descrip- 853

tion of a scene graph. WebQSP is a large-scale 854

multi-hop knowledge graph QA dataset containing 855

4,737 questions. It utilizes a subset of Freebase 856

(Bollacker et al., 2008), focusing on facts within 2 857

hops of the entities mentioned in the questions. The 858

task involves answering questions that necessitate 859

multi-hop reasoning. 860

8.2 Construction of B-WebQSP 861

In this subsection, we introduce the details of con- 862

structing the B-WebQSP dataset. Specifically, we 863

start by randomly selecting a small ratio of nodes 864

as initial blocked nodes (ω1 = 0.1). Then, using 865

these labelled nodes as a starting point, we apply 866

the Breadth-First Search (BFS) algorithm (Cormen 867

et al., 2022) within an H-hop area 5 to label addi- 868

tional nodes. During the BFS process, within H 869

hops from the initially labelled nodes, we assign 870

a probability of ω2 = 0.95 that the next reach- 871

able node will be marked as a blocked node. After 872

completing this step, any remaining nodes are con- 873

sidered unblocked nodes. Once the ground truth 874

statuses for all nodes are established, we randomly 875

5H = 1 in our experiments.

11

select 10% of the nodes’ statuses as labelled to876

form the training set Vtrain for the B-side task. The877

output of the B-side task is a list of the combination878

of status and the node itself (e.g., Blocked Bomb).879

8.3 Hyperparameters configuration880

We utilize the open-source LLaMA 2-7b model881

(Touvron et al., 2023) as the frozen large lan-882

guage model (LLM). All experiments are con-883

ducted on two NVIDIA A100-80G GPUs, with884

four random seeds 0, 1, 2, 3. The number of lay-885

ers for both TAONA-GraphEncoder and TAONA-886

NodeClassifier is selected from 1, 2, 3, 4, while the887

dropout rate is fixed at 0.05. In the Frozen LLM888

+ Prompt Tuning setup, the virtual token length889

is set to 10, with a maximum text length of 512890

tokens and a maximum generated token length of891

32. We use the AdamW optimizer (Loshchilov and892

Hutter, 2017) with a learning rate of 1e-5. The893

batch size is selected from 1, 2, 4, 8, and the num-894

ber of epochs is searched within 1, 5, 10. The895

hidden dimension for both TAONA-GraphEncoder896

and TAONA-NodeClassifier is set to 1024. For the897

subgraph construction process, the parameter k and898

all other parameters follow those set in G-retriever899

(He et al., 2024). Specifically: For SceneGraphs,900

we set k = 3 for both edges and nodes, with c = 1.901

For WebQSP and B-WebQSP, we set k = 3 for902

nodes, k = 5 for edges, and c = 0.5 for edge cost.903

For ExplaGraphs, given the small graph size, the904

entire graph is retrieved as the subgraph. The hyper-905

parameters for all baseline models are consistent906

with those specified in the GraphQA benchmark907

(He et al., 2024).908

8.4 Baselines909

We have 8 baselines for the A-side task.910

• Zero-shot. In this baseline, Given a textual911

graph description and a task description, the912

LLM is immediately asked to produce the de-913

sired output without any other information.914

• Zero-CoT (Kojima et al., 2022). This base-915

line is a follow-up to CoT prompting (Wei916

et al., 2022) and appends the words "Let’s917

think step by step." to the end of a question.918

• CoT-BAG (Wang et al., 2024). This method919

adds "Let’s construct a graph with the nodes920

and edges first." after the textual description921

of the graph, which forms a whole prompt.922

• KAPING (Baek et al., 2023). This method is 923

specially designed for knowledge graph ques- 924

tion answering. It first retrieves all relevant 925

triples and adds them to the input question in 926

the form of a prompt, which is then forwarded 927

to LLMs to generate the answer. 928

• Graph-based Inference. In this method, all 929

textual information in G is included as a tex- 930

tual prompt, and a frozen LLM is used for 931

question answering, with the query. 932

• Frozen LLM + Prompt Tuning (PT). This 933

approach adds a soft prompt for tuning while 934

keeping the LLM’s parameters frozen; 935

• GraphToken (Perozzi et al., 2024). This 936

method encodes the whole graph with clas- 937

sical GNN (Kipf and Welling, 2016) as an 938

embedding and regards this embedding as a 939

graph prompting vector. 940

• G-Retriever (He et al., 2024). This base- 941

line performs RAG over the textual graph and 942

is also part of the GraphQA benchmark (He 943

et al., 2024). 944

12

𝐳! = LM(𝑞)

Query	𝑞

Textual
Graph	

input

𝐳"! = LM(text(𝑣#))

𝐳$!,# = LM(text(𝑒#,&))

𝐳$$,% = LM(text(𝑒',())

……

TAONA
GraphEncoder

Textual prompting
 vector

Frozen LLM

Step 1: indexing and retrieval

Similarity calculation: cos 𝐳!, 𝐳"! , cos(𝐳!, 𝐳$$,%), …

Step 2: subgraph construction

Pooling MLP

Step 3: subgraph encoding & prompting

𝐩)*+,-

Step 4: textual prompt construction

Graph prompting vector: 𝐩)*+,-
Query q Task prompting

 vector
Graph

prompting vector

𝐩)*+,- 𝐩./0.𝐪 𝐩.+12

output

𝐩./0.

Step 5: response generation

Textual prompting
 vector :	𝐩./0.

Irrelevant nodes

𝑣#
𝑒&,'
𝑣&

𝑣3

𝑣(

𝑣4

𝑣5

𝑣6

𝑣'

𝑒',(

𝑒',)

𝑒',*

𝑒+,,
𝑒',+

𝑒+,-

𝑣#
𝑒&,'
𝑣&

𝑣3
𝑣4

𝑣5

𝑣6

𝑣'

𝑒',(

𝑒',)
𝑒',*

𝑒+,,𝑒',+
𝑒+,-

text(𝑣#), … text(𝑒#,&)… text(𝑣&)…
text(𝑒&,')… text(𝑣')

1, text(𝑣!)
2, 𝑣! , text(𝑒!,#), 𝑣#
3, text(𝑣#)
4, text(𝑣$)
5, 𝑣# , text(𝑒#,$), 𝑣$
6, text(𝑣%)
7, 𝑣$, text(𝑒$,%), 𝑣%
8, ……

Do you know … text(𝑣#)…	text(𝑒#,&)…
text(𝑒',()… ?

Figure 5: Overview of TAONA-A. Compared with TAONA-B, TAONA-A does not include TAONA-NodeClassifier
in step 2 and the statuses of nodes in step 4 when constructing the textual prompt.

Figure 6: Example of datasets and corresponding tasks.

13

	Introduction
	Problem Definition
	Model
	TaoNa-A
	TaoNa-B

	Experiments
	Datasets
	Metrics
	Baselines
	Effectiveness of TaoNa-A
	Effectiveness of TaoNa-B
	Ablation study and hyperparameter study

	Related Work
	Retrieval Augmented Generation (RAG)
	Graphs and Large Language Models

	Conclusion
	Limitations and Ethical Impact
	Appendix
	Dataset descriptions for A-side task
	Construction of B-WebQSP
	Hyperparameters configuration
	Baselines

