To Answer or Not to Answer (TAONA): A Robust Textual Graph
Understanding and Question Answering Approach

Anonymous ACL submission

Abstract

Recently, textual graph-based retrieval-
augmented generation (GraphRAG) has
gained popularity for addressing hallucinations
in large language models when answering
domain-specific questions. Most existing
studies assume that generated answers
should comprehensively integrate all relevant
information from the textual graph. However,
this assumption may not always hold when
certain information needs to be vetted or
even blocked (e.g., due to safety concerns).
In this paper, we target two sides of textual
graph understanding and question answering:
(1) normal question Answering (A-side):
following standard practices, this task gen-
erates accurate responses using all relevant
information within the textual graph; and (2)
Blocked question answering (B-side): A new
paradigm where the GraphRAG model must
effectively infer and exclude specific relevant
information in the generated response. To
address these dual tasks, we propose TAONA, a
novel GraphRAG model with two variants: (1)
TAONA-A for A-side task, which incorporates
a specialized GraphEncoder to learn graph
prompting vectors; and (2) TAONA-B for
B-side task, employing semi-supervised
node classification to infer potential blocked
graph nodes. Extensive experiments validate
TAONA'’s superior performance for both A-side
and B-side tasks.

1 Introduction

Large language models (LLMs) have achieved re-
markable success in recent years. Yet, most LLMs
are trained on the open domain data before some
fixed dates (Zhao et al., 2023), which leads to an in-
evitable limitation of hallucination especially when
faced with queries in specific domains. To resolve
this limitation, Retrieval-Augmented Generation
(RAG) (Gao et al., 2022; Sun et al., 2024) has been
proposed to enhance the LLMs to generate accu-
rate answers to users’ domain-specific questions

Sure, you can make a
bomb based on t

Figure 1: Examples of the B-side task. Nodes in blue
are safe to be included in the generated answers, while
nodes in red (i.e., Bomb) should be blocked in the gen-
erated responses.

by retrieving relevant document chunks or knowl-
edge. At the same time, textual graphs, possessing
a graph structure and rich textual information, func-
tion as fundamental data storage in many applica-
tions (e.g., question answering systems (Liu et al.,
2022)). Recently, textual graph-based retrieval-
augmented generation (GraphRAG) has attracted
more and more attention due to its unique advan-
tage of combining both RAG and textual graphs
together. Most, if not all, of the existing GraphRAG
works (Logan IV et al., 2019; He et al., 2024; Luo
et al., 2023a) follow the basic assumption that gen-
erated answers should comprehensively integrate
all relevant information from the textual graph.

However, this assumption of including all rele-
vant information from the graph does not always
hold when certain information requires selective
blocking. Consider Figure 1, where a user requests
"glycerol, sulphuric acid, and nitric acid." The tex-
tual graph reveals these chemicals’ potential use in
bomb-making—information that should be blocked
in the response for safety. Likewise, in e-commerce
recommendation systems (Weise, 2024), where nu-
merous products match user queries, only certain
products' might appear in response.

'These could be the so-called high-priority products
determined by platform-specific factors like advertisement
fees (Weise, 2024).

In this paper, we tackle both aspects of textual
graph understanding and question answering (QA)
tasks. For the standard Answering (A-side) task,
the objective is to include all relevant information
from the textual graph in the generated responses.
In this context, the GraphRAG model is designed to
achieve this goal by producing accurate and com-
prehensive answers. Conversely, in the Blocked
(B-side) question answering task, the GraphRAG
model must infer the relevant but should be se-
lectively blocked nodes in the textual graph and
intentionally exclude these nodes from the gener-
ated answers to the user’s query. To address these
dual tasks, we propose a novel framework, TAONA,
which features two tailored variants: TAONA-A for
the A-side task and TAONA-B for the B-side task.
The TAONA framework operates in five stages: (1)
indexing and retrieval, (2) subgraph construction
and refining, (3) subgraph encoding and prompting,
(4) textual prompt construction, and (5) response
generation using a frozen LLM. While steps (1)
and (5) adopt methodologies from the state-of-the-
art G-Retriever model (He et al., 2024), TAONA
introduces innovations in steps (2), (3), and (4).
Specifically, TAONA-A incorporates a customized
TAONA-GraphEncoder to model interactions be-
tween node pairs in the textual graph, generating
a graph prompting vector that serves as input to
the frozen LLM. Building on this, TAONA-B adds
a semi-supervised TAONA-NodeClassifier, which
predicts node statuses (e.g., Unblocked/Blocked)
and incorporates this information during the tex-
tual prompt construction stage. Extensive experi-
ments conducted on the GraphQA benchmark (He
et al., 2024) demonstrate the effectiveness of both
TAONA-A and TAONA-B, confirming their abil-
ity to handle A-side and B-side tasks with high
performance.

To summarize, our contributions are threefold:

* Problem. To the best of our knowledge, we
are the first to propose and explore the B-side
task, which aims to provide accurate informa-
tion while excluding contents that should be
blocked based on the textual graph.

¢ Model. We introduce a novel model named
TAONA, featuring two variants: TAONA-A for
the A-side task and TAONA-B for the B-side
task.

» Experiments. We conducted extensive exper-
iments on the GraphQA benchmark, empiri-

cally demonstrating that TAONA outperforms
other baselines in both the A- and B-side tasks,
highlighting the superiority of our approach.

2 Problem Definition

In this section, we formally define the A-side and
B-side tasks. Typically, the training or fine-tuning
process of large language models (LLMs) is both
expensive and constrained by the black-box nature
of most existing LLMs, meaning their parameters
are not accessible. Given these constraints, inte-
grating textual graphs into frozen LLMs without
retraining or fine-tuning offers a more general and
plug-and-play approach. Therefore, in this paper,
we focus on GraphRAG with frozen LLMs. In the
A-side task, all nodes are unblocked and the formal
definition of this task is as follows:

Problem 1. A-SIDE TASK. Given: (1) a textual
graph G = (V, E), where V is the node set and
E is the edge set %; (2) a query q about G; (3) a
frozen large language model LLM(-). Output: the
answer Qgen for q via LLM(-).

Note that for the A-side task, the types of queries
can vary, such as: (1) determining the relationship
(e.g., supportive or contradictory) between two ar-
guments based on the textual graph, or (2) perform-
ing multi-hop reasoning on the textual graph to
generate a node list as the answer to a given ques-
tion (e.g., knowledge graph question answering,
KGQA). Accordingly, the generated answers may
be a single word (e.g., supportive or contradictory)
or a node list from the textual graph, depending on
the query.

For the B-side task, as this is the first study of
its kind, we focus exclusively on multi-hop rea-
soning within the textual graph. The goal is to
generate a node list as the response to a given ques-
tion (e.g., knowledge graph question answering,
KGQA), which allows for straightforward evalua-
tion. The formal definition of the B-side task is as
follows:

Problem 2. B-SIDE TASK. Given: (1) a tex-
tual graph G = (V, E); (2) a query q about G;
(3) a frozen large language model LLM(-); (4) a
node set Virain C 'V with labelled statuses (i.e.,
Unblocked/Blocked) for nodes. Qutput: the an-
swer agen for q via LLM(-), where agey is an
answer list and each answer is formulated as

For each node/edge in G, it corresponds to some textual
information (e.g., text(v;)) as shown in Figure 1.

(Sv,, text(v;)), where s, is the node status (i.e.,
Unblocked/Blocked) and text(v;) is the text of node
v;. For example, one answer can be (Blocked,
Bomb) or (Unblocked, Glycerol).

Remarks. One naive idea to solve the B-side task
is to simply deleting all nodes that are labelled with
Blocked from the textual graph. However, this idea
does not work for two reasons. First, most nodes in
the texutual graph are not labelled with statuses and
their statuses need to be inferred. Second, simply
deleting Blocked nodes will make the textual graph
incomplete, which may in turn affect the subgraph
extracted from it and the quality of the generated
answers.

3 Model

In this section, we detail the proposed TAONA
model, which comprises two variants: TAONA-
A for the A-side task and TAONA-B for the B-
side task. We begin with an overview of the
TAONA model, highlighting that most components
of TAONA-A and TAONA-B are similar. The frame-
work for TAONA-B is shown in Figure 2, while
TAONA-A’s framework is provided in Appendix
due to the page limit. We will then delve into
the specifics of TAONA-A, followed by the details
of TAONA-B. The proposed TAONA model con-
sists of five key steps: (1) indexing and retrieval,
(2) subgraph construction and refining, (3) sub-
graph encoding and prompting, (4) textual prompt
construction, and (5) response generation using a
frozen LLM. Our focus is primarily on steps (2),
(3), and (4), while steps (1) and (5) adhere to stan-
dard procedures as outlined in (He et al., 2024).
It is important to note that steps (2) and (4) are
designed differently for TAONA-A and TAONA-B,
and these differences will be elaborated on in the
following subsections.

3.1 TAONA-A

For the A-side task, given the question ¢ and the
underlying textual graph G = (V| E), the target
is to generate the most accurate answer Ggen to
q without considering whether the information in
agen should be blocked or not. For TAONA-A,
the core component is the TAONA-GraphEncoder,
which we will introduce in details.

Indexing and retrieval. We first utilize a lan-
guage model LM(+) (i.e., SentenceBert (Reimers
and Gurevych, 2019)) to initialize the embedding
for (1) the question ¢, and (2) nodes and edges in

the textual graph as follows:

zq =LM(q), ey
z,, =LM(text(v;)), (2)
Ze, ; :LM(text(eiyj)), 3)

where text(v;) and text(e; ;) are textual attributes
of node v; € V and edge ¢; ; € E. After initializ-
ing these embeddings, we adopt the cos(-, -) to cal-
culate the similarity between the query embedding
z4 and all node/edge embeddings z,,/z, ;. Then,
we sort the similarity scores and retrieve the most
similar nodes and edges to the query:

Visim =argtopk,, ¢y, cos(zq, 2y,), ()

Esim =argtopke, ;e €08(2g, Ze;), ()

where argtopk(-) refers to the operation of sorting
and selecting the top-k.

Subgraph construction. After identifying the rel-
evant nodes and edges, we construct a connected
subgraph that includes other potentially relevant
nodes and edges. For the A-side task, we assume
all nodes in G are unblocked. Thus, the subgraph is
built directly from the retrieved Vi, and Egy,, with-
out the need for the refining process that TAONA-B
undertakes, as described in the next subsection. To
construct the subgraph for steps (3) and (4), we em-
ploy the same approach as G-Retriever (He et al.,
2024), utilizing the Prize-Collecting Steiner Tree
(PCST) algorithm (Bienstock et al., 1993). Specifi-
cally, for a node or edge in Vg, or Fgiy,, we assign
a prize based on its rank: prize(v;) = k — 1y,
for nodes and prize(e; ;) = k — re, ; for edges,
where 7, is the rank of v; in Vg, and Tei; is the
rank of e; ; in Egjy,. The PCST algorithm aims
to maximize the total prize of the subgraph while
minimizing its size (i.e., cost):

Geup = argmax Z prize(v;)
gSchg 'Uie‘/sim

+ Z prize(e; j) — cost(Gsub),

€i,; €EFsim

(6)

where cost(Gsub) = ¢ * || Eg,,, ||, and c is the cost
for each edge in the constructed subgraph.

TAONA-GraphEncoder. After retrieving relevant
information and constructing Gg,p, we introduce
the TAONA-GraphEncoder to encode the informa-
tion within Gg,1,, the key component of TAONA-A.
For the A-side task, the goal of the graph encoder
is to generate a graph prompting vector, which will

Do you know - text(vy) - text(ey)

@ery q a text(egg) - ?

\ Step 1: indexing and retrieval

r
1
1
1
1
1
1 Textual
I Graph
1
1
I input
1
1
1
1/
: AT 2., = LM(text(v,))
zg=LM(q) -~
| | - ... = LM(xt(e1.))
&= -
: S, - M (text(esp)
.
1 o I I
: Similarity calculation: cos(zq,z) €05(Zg, Ze, o),
1
1

% I
t

Step 3: subgraph encoding & prompting

TAONA plirsal .
GraphEncoder ifg MLP

Graph prompting vector: Pgraph

T

Pgraph

* In this step, statuses of nodes are
not taken into consideration.

s Q.

Subgraph construction Subgraph refining

Step 2: subgraph construction & refining,

/ Step 5: response generation
é text(vy), ... text(ey) ... text(vy) ... outpi

text(eys) ... text(vs)

. Fomaum
- e EE

Query g Task prompting
vector

)

Textual prompting
vector

\&

o
/

1, Unblocked text(v;)
2, vy, text(ey), v,
3, Unblocked text(v,)
4, Blocked text(vg)
5, vg , text(egg), Vg
6, Blocked text(vg)
7‘
kStep 4: textual prompt construction j

i

Pbs text

Textual prompting
VeCtor : Pps text

Figure 2: Overview of TAONA-B. Nodes in blue are labelled with Unblocked. Nodes in red are labelled with

Blocked. The remaining nodes are unlabelled. Nodes within the

circle belong to Vi, and e1 2 and eg 5

belong to Fgim. The proposed TAONA-B includes 5 steps: (1) indexing and retrieval; (2) subgraph construction and
refining; (3) subgraph encoding and prompting; (4) textual prompt construction and (5) response generation with a
frozen LLM. The framework of TAONA-A is attached in Appendix due to the page limit. Compared with TAONA-B,
TAONA-A removes the TAONA-NodeClassifier in step (2) and has a different textual prompt construction in step

.

® ®
= LINEAR «-=v;
%y 1 (=) Yer, = LINEAR (z, ,)

-~

BS) = LINEAR, (z?)

V2

[} L L
@ = tanh (af +ve,, - B) € (-1,1)
1.0

dy, =5, the message passing along ey, is E('QJYZCONCAT (zl(,l) z,(,lz), Ze],z)-

1

Figure 3: One layer of TAONA-GraphEncoder on G-
All nodes are marked in blue to indicate that they are as-
sumed unblocked for inclusion in the generated answer
within TAONA-A.

be used as part of the prompt for the frozen LLM.
In this context of TAONA-A, we do not need to con-
sider the blocked status of nodes (Figure 3). In G-
Retriever (He et al., 2024) and other related works,
a Graph Convolutional Network (GCN) (Kipf and
Welling, 2016) or Graph Attention Network (GAT)
(Velickovi¢ et al., 2017) is commonly employed
as the graph encoder. However, as highlighted in
(Boetal., 2021; Yan et al., 2024), GCNs and GATs
belong to homophilic GCNs, which rely on Lapla-
cian smoothing (Chung, 1997) and tend to produce
similar embeddings for adjacent nodes. This de-
sign is suitable for the A-side task. However, the
proposed graph encoder should also work for the
B-side task. Unfortunately, GCN and GAT do not
satisfy this requirement. In the B-side task, the ho-
mophilic assumption that connected nodes should
have similar embeddings does not always hold. For

instance, in the examples provided in Figure 1, the
node Glycerol is unblocked to be included in the
generated response, whereas the node Bomb should
be blocked. Therefore, the proposed graph encoder
must be capable of adaptively determining whether
connected node pairs should have similar embed-
dings. To address this, we propose the TAONA-
GraphEncoder, which meets this requirement by
capturing the interaction between nodes v; and v;
connected by edge e; ;. The computation of the

interaction weight Céf) . in one convolution layer of
TAONA-GraphEncoder is as follows:

oll) = LINEAR, (), (7)
B = LINEAR;(z)), (8)
Ye;; = LINEAR3(ze,), 9)
O = tanh(al) + 7., — BD), (10)

where zs,li) and zq(,l].) represent the embeddings of

nodes v; and v; in the [-th layer, respectively.
The functions LINEAR,(-), LINEARs(-), and
LINEARg;(-) are linear layers that map their in-
puts to scalar values. The interaction weight gé?g
captures the relationship between the nodes and
serves as the attention weight for message passing
along edge ¢; ;:

1
2 = o > ¢! LINEAR(CONCAT(z!), 2, 2, ,)),

v,
i,

an

where d,; denotes the degree of node wv; in
Gsub- To highlight the strengths of the TAONA-

GraphEncoder, we briefly compare the learned céf)J
with the attention « learned in a GAT encoder.
From Eq. (10), it is evident that (éf)] first cap-
tures the relationship among (v;, €; j, v;), similar
to TransE (Bordes et al., 2013), and then maps this
relationship to the range (—1,1) using a tanh(-)
function. During the message-passing process, if
(0

Cei,j €
become similar. Conversely, if Céf)J € (—1,0), the
embeddings of v; and v; will diverge, which meets
the requirement for the B-side task mentioned ear-
lier. In contrast, the attention mechanism in GAT
always produces attention values « in the range
(0, 1), making embeddings of connected nodes be-
coming similar. Thus, the convolution layer of
TAONA-GraphEncoder generalizes the attention
mechanism used in GAT and offers enhanced capa-
bilities by incorporating negative attentions.

(0,1), the embeddings of v; and v; will

After passing through L layers of convolution,
we obtain the embedding z%) for each node v;
in Gguh. We then perform mean pooling on these
embeddings to obtain the overall embedding for

gsub:

2G,,, = POOL(z{")),vj € Gaup. ~ (12)

Then, we leverage a multilayer perceptron (MLP)
(Hastie, 2009) to map this embedding to the em-
bedding space of the frozen LLM:

Pgraph = MLP(zg,,,,), (13)

where Pgraph is the graph prompting vector for the
frozen LLM.

Textual prompt construction. Since the A-side
task does not involve any node status (i.e., Un-
blocked/Blocked), all nodes and edges in G}, are
textualized (e.g., text(v;) and text(e; ;)). Then,
Prext = text(Gsup) serves as the textual prompt for
the frozen LLM (e.g., step (4) in Figure 2).

Response generation with frozen LLM. In the fi-
nal step, we add task-specific descriptions, such as
"please answer the following question:", to serve
as the task prompt. All textual information is vec-
torized using the first layer of the frozen LLM, pro-
ducing the query vector, the task prompting vector,

and the textual prompting vector:

q =tokenize(q), (14)
Ptask =tokenize (ptask)y (15)
Ptext =tokenize (ptext) . (16)

Next, all embeddings of the prompts (i.e., Piasks
Pgraph and Prext) and the query vector q are con-
catenated and fed into the frozen LLM to generate
the answer agen:

Qgen = LLM(CONCAT(q, Ptask; Pgraph, Prext)),

(17
where agey is the generated answer. Note that in
TAONA-A, only the TAONA-GraphEncoder and
the projection MLP in Eq. (13) are trainable.

3.2 TAONA-B

After presenting TAONA-A for the A-side task,
we will now introduce TAONA-B for the B-side
task. For TAONA-B, the initial steps of indexing
and retrieval are the same as those in TAONA-A.
However, unlike TAONA-A, where all nodes are
considered unblocked, most nodes in TAONA-B
have unlabelled statuses that need to be inferred.
Therefore, we employ a TAONA-NodeClassifier to
perform semi-supervised node classification on the
textual graph G.

TAONA-NodeClassifier. As described in the prob-
lem definition, each textual graph G contains a
small proportion of nodes with labelled statuses,
denoted as Vi;ain, Which serves as the training set
for the node classification task. The architecture
of the TAONA-NodeClassifier is designed to be
similar to that of the TAONA-GraphEncoder in
TAONA-A, ensuring that the interaction properties
between node pairs are adaptively detected. Specif-
ically, the TAONA-NodeClassifier consists of M
convolution layers, analogous to those in TAONA-
GraphEncoder, followed by a linear layer that maps
the output embeddings to 2 dimensions. A softmax
(Goodfellow, 2016) layer is then used to predict the
status §,, of each node (i.e., Unblocked or Blocked),
with the model optimized using the cross-entropy
loss function (Goodfellow, 2016):

Lo=——— 3 (50 log(p(su = 1))

H ‘/train || ; € Virain

+ (1 - svi) log(p(évi = 0)))’
(18)

3In this paper, the terms vector and embedding are used
interchangeably.

where s,, = 1 indicates that node v; should be
blocked in the generated answer, while s,, = 0
means that v; is fine to include. After performing
node classification, TAONA-B can infer the statuses
of all nodes in the subgraph Gqp,.

Subgraph refining and textual prompt construc-
tion. In the B-side task, after predicting the statuses
of all nodes in Gy}, we add the predicted status §,,
with the original text of the node v; to act as v;’s
new textual information:

bs_text(v;) = §,, + text(v;). (19)
One example for the above equation is 5,, =
Blocked and text(v;) is Bomb, then bs_text(v;)
would be Blocked Bomb. Then, the textual prompt
Dbs_text for the B-side task is constructed with
bs_text(v;) and text(e; ;). Note that all remain-
ing components of TAONA-B are same as those
in TAONA-A. The model will also input q, P¢ask,
Pgraph and Pps_text into the frozen LLM, but the
expected output will include both the answer node
and its status.

4 Experiments

In this section, we evaluate the proposed TAONA-A
for the A-side task and TAONA-B for the B-side
task. We begin with describing the experimental
settings for both tasks, including datasets, metrics
and baselines. The hyper-parameter settings are
attached in Appendix 8.3. Next, we present the
results for both the A-side and B-side tasks. Finally,
we conduct an ablation study and a hyperparameter
study.

4.1 Datasets

A-side task. For the A-side task, we utilize the
GraphQA benchmark (He et al., 2024) for evalua-
tion. This benchmark includes three datasets: Ex-
plaGraphs, SceneGraphs, and WebQSP. The statis-
tics for these datasets are provided in Table 1. De-
tailed descriptions of these three datasets are at-
tached in Appendix 8.1 due to page limit.

B-side task. To the best of our knowledge, we are
the first to explore the B-side task, and currently,
there are no existing datasets tailored for this task.
Therefore, we modify the WebQSP dataset used in
the A-side task to construct the B-WebQSP dataset
for the B-side task. The details of the dataset con-
struction are attached in Appendix 8.2.

4.2 Metrics

A-side task. For the A-side task, we strictly adhere
to the evaluation metrics of the GraphQA bench-
mark. Specifically, accuracy (ACC) is used as
the metric for both ExplaGraphs and SceneGraphs
datasets. In the WebQSP dataset, where multiple
correct answers may exist for a single question, the
Hit@1 metric is employed. This metric considers
a generated answer to be correct if it matches any
of the answers in the ground truth list.

B-side task. For the B-WebQSP dataset, designed
for the B-side task, we aim to evaluate the model’s
ability to correctly generate both the status (i.e.,
Unblocked or Blocked) and the corresponding an-
swer (e.g., Bomb). We employ the more stringent
F1-score metric to assess the quality of the gener-
ated answer list. For instance, if the ground truth
answer list is [Unblocked Glycerol, Blocked Bomb,
Unblocked Nitric Acid], and the model generates
[Unblocked Glycerol, Unblocked Bomb], the preci-
sion would be % and the recall would be % Con-
sequently, the F1-score would be %, while Hit@1
for this example would be 1 because Unblocked
Glycerol is correctly generated. Overall, the F1-
score provides a more precise evaluation of the
performance for the B-side task.

4.3 Baselines

For the A-side task, we have two categories of
baselines: (1) Inference-Only methods: Zero-shot,
Zero-CoT(Kojima et al., 2022), CoT-BAG (Wang
et al., 2024), KAPING (Baek et al., 2023) and
Graph-based Inference; (2) Prompt-Tuning meth-
ods: Frozen LLM + Prompt Tuning (PT), GraphTo-
ken (Perozzi et al., 2024) and G-Retriever (He et al.,
2024). For the B-side task, since most methods’
performances are close to 0%, we mainly compare
with the SOTA method, i.e., G-Retriever. In addi-
tion, we have a specific baseline G-Retriever-B for
the B-side task, which is a modified version of the
original G-Retriever. This variant incorporates the
groundtruth statuses of nodes in Vj,;, into the gen-
erated textual prompt. More details about baselines
are attached in Appendix 8.4.

4.4 Effectiveness of TAONA-A

The results for the A-side task, comparing TAONA-
A with all baselines, are presented in Table 2.
Firstly, TAONA-A consistently outperforms all

*We include Frozen LLM + Prompt Tuning (PT) in Table
3 as an example to demonstrate the low performances of most
baselines in the B-side task.

Table 1: Statistic

s of datasets.

Dataset ExplaGraphs SceneGraphs WebQSP B-WebQSP
#Graphs 2,766 100,000 4,737 4,737
Average #Nodes 5.17 19.13 1370.89 1370.89
Average #Edges 4.25 68.44 4252.37 4252.37
Node Attribute Commonsense concepts ~ Object attributes Entities in Freebase Entities in Freebase
Edge Attribute Commonsense relations Spatial relations Relations in Freebase Relations in Freebase
Task Commonsense reasoning Scene graph QA KGQA KGQA with blocked information
Evaluation metrics Accuracy Accuracy Hit@1 F1-score
Table 2: Performance comparison for the A-side task (%).
Dataset (Metrics) ExplaGraphs (ACC) SceneGraphs (ACC) WebQSP (Hit@1)
Zero-shot 56.50 39.74 41.06
Zero-CoT(Kojima et al., 2022) 57.04 52.60 51.30
CoT-BAG (Wang et al., 2024) 57.94 56.80 39.60
KAPING (Baek et al., 2023) 62.27 43.75 52.64
Graph-based Inference 33.93 42.17 47.22
Frozen LLM + Prompt Tuning (PT) 58.98 63.72 54.11
GraphToken (Perozzi et al., 2024) 85.08 49.03 57.05
G-Retriever 86.19 80.86 70.02
TAONA-A 87.01 82.20 71.23

baselines across different datasets. For instance, it
surpasses the best baseline, G-Retriever, by approx-
imately 1% on ExplaGraphs and 1.5% on Scene-
Graphs. Secondly, the performance improvements
of TAONA-A over G-Retriever highlight the eftec-
tiveness of the TAONA-GraphEncoder component,
which is the key difference between TAONA-A
and G-Retriever. Lastly, an interesting observation
is that the performance of Graph-based Inference
(33.93% Accuracy) is significantly lower than other
Inference-Only methods on ExplaGraphs. This in-
dicates that simply feeding the graph information
can prevent LLM from making the best of its own
reasoning ability to conduct commonsense tasks.

4.5 Effectiveness of TAONA-B

For the B-side task, we conducted experiments on
the B-WebQSP dataset, and the F1-scores are pre-
sented in Table 3. Firstly, since the B-side task
involves predicting both the status and the node, it
is significantly more challenging than the A-side
task. As a result, some simple baselines struggle
with this complexity. For instance, Inference-Only
and Graph-based Inference methods yield almost
zero performance, while soft prompt tuning with a
frozen LLLM achieves only about 1.29% F1-score.
Secondly, our proposed TAONA-B achieves the
highest F1-score for the B-side task. We also in-
troduced a modified version of G-Retriever, which
incorporates the groundtruth node status informa-
tion in the training set, named G-Retriever-B. G-
Retriever-B shows the best performance among

all baselines. However, TAONA-B still outper-
forms G-Retriever-B, with a 2% improvement in
Fl-score. This enhancement is attributed to its spe-
cially designed components, such as the TAONA-
GraphEncoder and TAONA-NodeClassifier.

Table 3: Performance comparison for the B-side task
(%) on B-WebQSP.

Metrics \ F1-score
Frozen LLM + Prompt Tuning (PT) 1.29
G-Retriever 28.24
G-Retriever-B 28.57
TAONA-B 30.53

4.6 Ablation study and hyperparameter study

In this subsection, we perform an ablation study
on TAONA-B and a hyperparameter study on
the number of layers in TAONA-GraphEncoder
for both TAONA-A and TAONA-B. For the abla-
tion study, we focus on evaluating the effective-
ness of the TAONA-NodeClassifier, as TAONA-
GraphEncoder’s role in TAONA-A was previously
analyzed. Figure 4 (a) shows the performance of
TAONA-B without TAONA-NodeClassifier. It is
evident that TAONA-NodeClassifier enhances F1-
score by approximately 2%, demonstrating its cru-
cial role in improving TAONA-B’s performance
on the B-side task. Additionally, we examine the
impact of varying the number of layers in TAONA-
GraphEncoder, with results presented in Figure 4
(b) and Figure 4 (c). The results indicate that three
layers achieve the best performance in TAONA-A

Fl-score (%)

Fl-score

(a) Ablation study on TAONA-B.

1 2 3 4
Layers of GraphEncoder

(b) Study on GNN’s layers in TAONA-A.(c) Study on GNN'’s layers in TAONA-B.

1 2 3 4
Layers of GraphEncoder

Figure 4: Ablation study (a) & parameter study (b and c).

on ExplaGraphs, whereas two layers offer about a
2% improvement in F1-score over configurations
with one, three, or four layers in TAONA-B. These
findings suggest that two/three layers are enough
for textual graph understanding and question an-
swering tasks.

5 Related Work
5.1 Retrieval Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) (Gao
et al., 2022; Sun et al., 2024) has earned signifi-
cant attention for its ability to address limitations
of large language models (LLMs), such as hal-
lucinations, when answering domain-specific or
knowledge-intensive questions. Existing RAG ap-
proaches can be categorized into three types: naive
RAG, advanced RAG, and modular RAG. Naive
RAGs (Ma et al., 2023) follow a straightforward
process consisting of indexing, retrieval, and gener-
ation. To enhance the performance of naive RAGs,
advanced RAGs employ additional techniques in
the pre-retrieval stage, such as query transforma-
tion, expansion, and rewriting (Peng et al., 2024;
Zheng et al., 2023; Gao et al., 2022). In the post-
retrieval stage, reranking (Blagojevi, 2023) is com-
monly used to improve results. Modular RAGs
integrate diverse strategies to enhance the RAG
pipeline. They may include various data types,
such as text, databases, and knowledge graphs, in
the search module. Additionally, modular RAGs
often use LLMs to refine retrieval queries (Yu et al.,
2022). The proposed TAONA framework falls into
the category of modular RAGs.

5.2 Graphs and Large Language Models

Large language models (LLMs) are trained on
extensive corpora, while textual and knowledge
graphs provide rich factual and structural infor-
mation. Combining LLMs with graphs is a nat-
ural choice for applications such as question an-

swering and text generation. This integration can
be categorized into three main approaches: KG-
enhanced LLMs involve incorporating knowledge
graphs (KGs) into LLMs in various ways. KG-
enhanced pre-training (Liu et al., 2020; Sun et al.,
2020) improves LLMs’ knowledge representation
by integrating KGs during the training process.
KG-enhanced inference (Lewis et al., 2020; Wang
et al., 2023a) enables LLMs to utilize KG infor-
mation during inference without retraining. KG-
enhanced interpretability (Meng et al., 2021; Luo
et al., 2023b) uses KGs to better understand the
knowledge learned by LLMs. LLM-augmented
KGs enhance traditional KG tasks with the capabil-
ities of LLMs. This includes KG embedding (Wang
et al., 2023b), which improves the representation
of KGs; KG completion (Kim et al., 2020), which
helps fill in missing information; and KG construc-
tion (Bosselut et al., 2019; Hao et al., 2022), which
supports the creation of new KGs. Synergized
LLMs+KGs (Yasunaga et al., 2022) merge KG-
enhanced LLMs and LLM-augmented KGs in an
iterative fashion, leveraging the strengths of both
approaches to create a unified solution. Additional
insights into the integration of graphs and LLMs
can be found in (Pan et al., 2024).

6 Conclusion

In this paper, we explore the problem of textual
graph understanding and question answering, ad-
dressing both the A-side and B-side tasks. To the
best of our knowledge, we are the first to intro-
duce the B-side task. To tackle these tasks, we
present a novel model, TAONA, which includes
TAONA-A for the A-side task and TAONA-B for
the B-side task. TAONA-A features a specialized
TAONA-GraphEncoder designed to generate the
graph prompting vector, while TAONA-B incor-
porates a TAONA-NodeClassifier to predict node
statuses. Extensive experiments demonstrate the
effectiveness of both TAONA-A and TAONA-B.

7 Limitations and Ethical Impact

Our work focuses on a plug-and-play approach
with frozen LLMs, which limits potential per-
formance improvements that could be achieved
through fine-tuning. Integrating the node status
inference module with an LLM fine-tuning module
in an end-to-end training pipeline may yield better
results, which we leave for future work.

Additionally, our approach may have ethical im-
plications, as the proposed TAONA-B framework
can be used to filter toxic or harmful information
in QA systems designed to exclude such content.
However, we do not emphasize this aspect in our
paper, as TAONA-B is not restricted to such use
cases; it can also be applied to other domains, such
as product recommendation in e-commerce plat-
forms.

References

Jinheon Baek, Alham Fikri Aji, and Amir Saffari. 2023.
Knowledge-augmented language model prompting
for zero-shot knowledge graph question answering.
arXiv preprint arXiv:2306.04136.

Daniel Bienstock, Michel X Goemans, David Simchi-
Levi, and David Williamson. 1993. A note on the
prize collecting traveling salesman problem. Mathe-
matical programming, 59(1):413-420.

Vladimir Blagojevi. 2023. Enhancing rag pipelines
in haystack: Introducing diversityranker and
lostinthemiddleranker.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen.
2021. Beyond low-frequency information in graph
convolutional networks. In Proceedings of the AAAI
conference on artificial intelligence, volume 35,

pages 3950-3957.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247-1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. Comet: Commonsense transformers for auto-
matic knowledge graph construction. arXiv preprint
arXiv:1906.05317.

Fan RK Chung. 1997. Spectral graph theory, volume 92.
American Mathematical Soc.

Thomas H Cormen, Charles E Leiserson, Ronald L
Rivest, and Clifford Stein. 2022. Introduction to
algorithms. MIT press.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2022. Precise zero-shot dense retrieval without rele-
vance labels. arXiv preprint arXiv:2212.10496.

Ian Goodfellow. 2016. Deep Learning. MIT Press.

Shibo Hao, Bowen Tan, Kaiwen Tang, Bin Ni, Xiyan
Shao, Hengzhe Zhang, Eric P Xing, and Zhiting Hu.
2022. Bertnet: Harvesting knowledge graphs with
arbitrary relations from pretrained language models.
arXiv preprint arXiv:2206.14268.

T Hastie. 2009. The elements of statistical learning:
Data mining, inference, and prediction.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla,
Thomas Laurent, Yann LeCun, Xavier Bresson, and
Bryan Hooi. 2024. G-retriever: Retrieval-augmented
generation for textual graph understanding and ques-
tion answering. arXiv preprint arXiv:2402.07630.

Bosung Kim, Taesuk Hong, Youngjoong Ko, and
Jungyun Seo. 2020. Multi-task learning for knowl-
edge graph completion with pre-trained language
models. In Proceedings of the 28th international
conference on computational linguistics, pages 1737—
1743.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199—

22213.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Lihui Liu, Boxin Du, Jiejun Xu, Yinglong Xia, and
Hanghang Tong. 2022. Joint knowledge graph com-
pletion and question answering. In Proceedings of
the 28th ACM SIGKDD conference on knowledge
discovery and data mining, pages 1098-1108.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-bert: En-
abling language representation with knowledge graph.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 2901-2908.

Robert L Logan IV, Nelson F Liu, Matthew E
Peters, Matt Gardner, and Sameer Singh. 2019.
Barack’s wife hillary: Using knowledge-graphs
for fact-aware language modeling. arXiv preprint
arXiv:1906.07241.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Linhao Luo, Jiaxin Ju, Bo Xiong, Yuan-Fang Li, Gho-
lamreza Haffari, and Shirui Pan. 2023a. Chatrule:
Mining logical rules with large language models
for knowledge graph reasoning. arXiv preprint
arXiv:2309.01538.

Linhao Luo, Thuy-Trang Vu, Dinh Phung, and Gho-
lamreza Haffari. 2023b. Systematic assessment of
factual knowledge in large language models. arXiv
preprint arXiv:2310.11638.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting for retrieval-
augmented large language models. arXiv preprint
arXiv:2305.14283.

Zaiqgiao Meng, Fangyu Liu, Ehsan Shareghi, Yixuan Su,
Charlotte Collins, and Nigel Collier. 2021. Rewire-
then-probe: A contrastive recipe for probing biomedi-
cal knowledge of pre-trained language models. arXiv
preprint arXiv:2110.08173.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-
apu Wang, and Xindong Wu. 2024. Unifying large
language models and knowledge graphs: A roadmap.
IEEE Transactions on Knowledge and Data Engi-
neering.

Wenjun Peng, Guiyang Li, Yue Jiang, Zilong Wang, Dan
Ou, Xiaoyi Zeng, Derong Xu, Tong Xu, and Enhong
Chen. 2024. Large language model based long-tail
query rewriting in taobao search. In Companion
Proceedings of the ACM on Web Conference 2024,
pages 20-28.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsit-
sulin, Mehran Kazemi, Rami Al-Rfou, and Jonathan
Halcrow. 2024. Let your graph do the talking: En-
coding structured data for llms. arXiv preprint
arXiv:2402.05862.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Andy Sun, Tianqi Zheng, Aakash Kolekar, Rohit Patki,
Hossein Khazaei, Xuan Guo, George Cai, David
Liu, Ruirui Li, Yupin Huang, Dante Everaert, Han-
qing Lu, Garima Patel, and Monica Cheng. 2024. A
product-aware query auto-completion framework for
e-commerce search via retrieval-augmented genera-
tion method. In SIGIR 2024 Workshop on Informa-
tion Retrieval’s Role in RAG Systems (IR-RAG).

10

Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng Guo,
Yaru Hu, Xuanjing Huang, and Zheng Zhang. 2020.
Colake: Contextualized language and knowledge em-
bedding. arXiv preprint arXiv:2010.00309.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan
Tan, Xiaochuang Han, and Yulia Tsvetkov. 2024.
Can language models solve graph problems in natural
language? Advances in Neural Information Process-
ing Systems, 36.

Jianing Wang, Qiushi Sun, Xiang Li, and Ming Gao.
2023a. Boosting language models reasoning with
chain-of-knowledge prompting. arXiv preprint
arXiv:2306.06427.

Peng Wang, Xin Xie, Xiaohan Wang, and Ninyu Zhang.
2023b. Reasoning through memorization: Nearest
neighbor knowledge graph embeddings. In CCF In-
ternational Conference on Natural Language Pro-
cessing and Chinese Computing, pages 111-122.
Springer.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Karen Weise. 2024. Amazon has new chatbot for shop-
pers. The New York Times, pages BI-B1.

Yuchen Yan, Yuzhong Chen, Huiyuan Chen, Minghua
Xu, Mahashweta Das, Hao Yang, and Hanghang
Tong. 2024. From trainable negative depth to edge
heterophily in graphs. Advances in Neural Informa-
tion Processing Systems, 36.

Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren,
Xikun Zhang, Christopher D Manning, Percy S
Liang, and Jure Leskovec. 2022. Deep bidirectional
language-knowledge graph pretraining. Advances in
Neural Information Processing Systems, 35:37309—
37323.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong
Xu, Mingxuan Ju, Soumya Sanyal, Chenguang
Zhu, Michael Zeng, and Meng Jiang. 2022. Gen-
erate rather than retrieve: Large language mod-
els are strong context generators. arXiv preprint
arXiv:2209.10063.

https://www.amazon.science/publications/a-product-aware-query-auto-completion-framework-for-e-commerce-search-via-retrieval-augmented-generation-method
https://www.amazon.science/publications/a-product-aware-query-auto-completion-framework-for-e-commerce-search-via-retrieval-augmented-generation-method
https://www.amazon.science/publications/a-product-aware-query-auto-completion-framework-for-e-commerce-search-via-retrieval-augmented-generation-method
https://www.amazon.science/publications/a-product-aware-query-auto-completion-framework-for-e-commerce-search-via-retrieval-augmented-generation-method
https://www.amazon.science/publications/a-product-aware-query-auto-completion-framework-for-e-commerce-search-via-retrieval-augmented-generation-method
https://www.amazon.science/publications/a-product-aware-query-auto-completion-framework-for-e-commerce-search-via-retrieval-augmented-generation-method
https://www.amazon.science/publications/a-product-aware-query-auto-completion-framework-for-e-commerce-search-via-retrieval-augmented-generation-method

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,
Heng-Tze Cheng, Ed H Chi, Quoc V Le, and Denny
Zhou. 2023. Take a step back: Evoking reasoning via
abstraction in large language models. arXiv preprint
arXiv:2310.06117.

11

8 Appendix

In this appendix, we include the following contents
for the reviewers’ reference: (1) The overview of
TAONA-A in Figure 5; (2) Detailed descriptions
for datasets in the A-side task (Subsection 8.1) and
examples of datasets and corresponding tasks of
GraphQA benchmark from (He et al., 2024) (Fig-
ure 6); (3) Construction of B-WebQSP (Subsection
8.2); (4) Hyperparameter settings (Subsection 8.3);
and (5) Baselines for the A-side task (Subsection
8.4).

8.1 Dataset descriptions for A-side task

ExplaGraphs is designed for generative common-
sense reasoning and focuses on constructing ex-
planation graphs for stance prediction in debates.
It offers detailed, unambiguous commonsense-
augmented graphs to evaluate whether arguments
support or refute a given belief. The primary task is
to determine whether the arguments are supportive
or contradictory. SceneGraphs is a visual ques-
tion answering dataset that includes 100,000 scene
graphs, each describing objects, attributes, and re-
lations within an image. This dataset challenges
users with tasks that require spatial understanding
and multi-step inference. The task is to answer
open-ended questions based on the textual descrip-
tion of a scene graph. WebQSP is a large-scale
multi-hop knowledge graph QA dataset containing
4,737 questions. It utilizes a subset of Freebase
(Bollacker et al., 2008), focusing on facts within 2
hops of the entities mentioned in the questions. The
task involves answering questions that necessitate
multi-hop reasoning.

8.2 Construction of B-WebQSP

In this subsection, we introduce the details of con-
structing the B-WebQSP dataset. Specifically, we
start by randomly selecting a small ratio of nodes
as initial blocked nodes (w; = 0.1). Then, using
these labelled nodes as a starting point, we apply
the Breadth-First Search (BFS) algorithm (Cormen
et al., 2022) within an H-hop area ° to label addi-
tional nodes. During the BFS process, within H
hops from the initially labelled nodes, we assign
a probability of wo = 0.95 that the next reach-
able node will be marked as a blocked node. After
completing this step, any remaining nodes are con-
sidered unblocked nodes. Once the ground truth
statuses for all nodes are established, we randomly

SH = 1 in our experiments.

select 10% of the nodes’ statuses as labelled to
form the training set Vi;.i, for the B-side task. The
output of the B-side task is a list of the combination
of status and the node itself (e.g., Blocked Bomb).

8.3 Hyperparameters configuration

We utilize the open-source LLaMA 2-7b model
(Touvron et al., 2023) as the frozen large lan-
guage model (LLM). All experiments are con-
ducted on two NVIDIA A100-80G GPUs, with
four random seeds 0, 1, 2, 3. The number of lay-
ers for both TAONA-GraphEncoder and TAONA-
NodeClassifier is selected from 1, 2, 3, 4, while the
dropout rate is fixed at 0.05. In the Frozen LLM
+ Prompt Tuning setup, the virtual token length
is set to 10, with a maximum text length of 512
tokens and a maximum generated token length of
32. We use the AdamW optimizer (Loshchilov and
Hutter, 2017) with a learning rate of le-5. The
batch size is selected from 1, 2, 4, 8, and the num-
ber of epochs is searched within 1, 5, 10. The
hidden dimension for both TAONA-GraphEncoder
and TAONA-NodeClassifier is set to 1024. For the
subgraph construction process, the parameter k£ and
all other parameters follow those set in G-retriever
(He et al., 2024). Specifically: For SceneGraphs,
we set k = 3 for both edges and nodes, with ¢ = 1.
For WebQSP and B-WebQSP, we set k = 3 for
nodes, k = 5 for edges, and ¢ = 0.5 for edge cost.
For ExplaGraphs, given the small graph size, the
entire graph is retrieved as the subgraph. The hyper-
parameters for all baseline models are consistent
with those specified in the GraphQA benchmark
(He et al., 2024).

8.4 Baselines

‘We have 8 baselines for the A-side task.

* Zero-shot. In this baseline, Given a textual
graph description and a task description, the
LLM is immediately asked to produce the de-
sired output without any other information.

e Zero-CoT (Kojima et al., 2022). This base-
line is a follow-up to CoT prompting (Wei
et al., 2022) and appends the words "Let’s
think step by step." to the end of a question.

¢ CoT-BAG (Wang et al., 2024). This method
adds "Let’s construct a graph with the nodes
and edges first." after the textual description
of the graph, which forms a whole prompt.

12

* KAPING (Baek et al., 2023). This method is
specially designed for knowledge graph ques-
tion answering. It first retrieves all relevant
triples and adds them to the input question in
the form of a prompt, which is then forwarded
to LLMs to generate the answer.

* Graph-based Inference. In this method, all
textual information in G is included as a tex-
tual prompt, and a frozen LLM is used for
question answering, with the query.

* Frozen LLM + Prompt Tuning (PT). This
approach adds a soft prompt for tuning while
keeping the LLM’s parameters frozen;

* GraphToken (Perozzi et al., 2024). This
method encodes the whole graph with clas-
sical GNN (Kipf and Welling, 2016) as an
embedding and regards this embedding as a
graph prompting vector.

¢ G-Retriever (He et al., 2024). This base-
line performs RAG over the textual graph and
is also part of the GraphQA benchmark (He
et al., 2024).

1
1
|
|
|
1
1
1
1
|
|
|
1
1
1
1
|
|
1
|
|
1
1
|
|
|
1
1
|
1
|
|
1
|
1
1
1
|
|
|
|
1
1
1
|
|
1
1
|
1
|
|
|
1
|
1
1
|
|
|
|

Query G & text(eqs)

Do you know

“text(vy) text(ey) \

KStep 3: subgraph encoding & prompting\

/ Step 5: response generation
text(vy), ... text(ey) ... text(vy) ...
text(esq) ... text(vg)

output

Similari

Step 1: indexing and retrieval

ity calculation: cos(zq, zV‘), €05(Zg, Ze,), ***

2N

Figure 5: Overview of TAONA-A. Compared with TAONA-B, TAONA-A does not include TAONA-NodeClassifier

VeCtor : Prext

Step 2: subgraph construction / \Step 4: textual prompt construction /

1
1
1
1
1
Ll Teua w | OO0 |
- : ;
1 Graph prompting vector: Pgraph - Pgraph
I 7 .
Query g Task prompting Textual promptlng
1 et / \ \ verctov I vector
1
I 4 1)
: \ / \ / 1, text(v,) 4
1 2y, = LM(text(v,)) 2, vy, text(ey), v
I ... = M(ext(es.) i ‘Eextgvzg |
. > ., - V(e y 4 text(vg . —
1 . e e =) 5, vy, text(eze), Vs Prext
g
: 6, text(vg) Textual prompting
: 7, v, text(egg), Vg
1
1
=

in step 2 and the statuses of nodes in step 4 when constructing the textual prompt.

Query.
Asgucment 1 Women should not be in combat.
Arguement 2: Women and men have the same rights.

Question: Do argument 1 and argument 2 suppart or counter cach other?
Answer in ane word in the form of ‘support”or 'count

Response

El]llln:llan Graph | H Knowledge Graph |

o i :

1 H 08 sy \

. bleof : I N”" nbimg o '
capa e of } people.person. parents . H

=4 ‘ =
causes '

|

causes ot epersons® ——— H
rlema relatio™® '

o si0NDE! H

have same rights ustin bicber P '
umpku:mnnhlldlm\ ; H

Textualized Graph Textualized Graph Textualized Graph '

node_id, node_attr sre, edge.attr, dst Tl ol node_id, node_atir sre, edge_atm, dst |
0, women and men 0isal \ 2, name: clock; atiribute: brown, round, framed; (xy,wh): (359, 150, 64, 65) 15, justin bieber L e 1 '
1, citizens 1, causcs, 2 B 6, name: blinds; attribute: horizontal; (x,y,w,h): (714, 0, 85, 233) 151, i 294, s rents, 356 N
2, have samerights 2, causes, 3 28, mames blinds; atribute: whitc; Geywh): (479, 0, 215, 217) 294, jaxan bicber 15, people person sibling s, 551 !
5, women 3, capable of, 4 ! 356, jeremy bicber 294, people person.sibling_s, 351 i
4, help the country 4, desires, 5 551, m.Ogenawp 551, people.sibling relationship sibling, 294 H
6,10 the right of, 28 551, people sibling relationship sibling, 15 '

28, to the right of, 2 N

5, be in cambat o

Figure 6:

' ; sre, edge_atr, dst
| Question: Ase the wite blinds to he right of a clock?

Query
Question: wha is the name of justin bicber brother

Query

Response

Example of datasets and corresponding tasks.

13

	Introduction
	Problem Definition
	Model
	TaoNa-A
	TaoNa-B

	Experiments
	Datasets
	Metrics
	Baselines
	Effectiveness of TaoNa-A
	Effectiveness of TaoNa-B
	Ablation study and hyperparameter study

	Related Work
	Retrieval Augmented Generation (RAG)
	Graphs and Large Language Models

	Conclusion
	Limitations and Ethical Impact
	Appendix
	Dataset descriptions for A-side task
	Construction of B-WebQSP
	Hyperparameters configuration
	Baselines

