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Abstract

Mixture-of-Experts (MoE) is widely adopted to
deploy Large Language Models (LLMs) on edge
devices with limited memory budgets. Although
MoE is, in theory, an inborn memory-friendly
architecture requiring only a few activated ex-
perts to reside in the memory for inference, cur-
rent MoE architectures cannot effectively fulfill
this advantage and will yield intolerable inference
latencies of LLMs on memory-constrained de-
vices. Our investigation pinpoints the essential
cause as the remarkable temporal inconsistencies
of inter-token expert activations, which generate
overly frequent expert swapping demands dom-
inating the latencies. To this end, we propose a
novel MoE architecture, Oracle-MoE, to fulfill
the real on-device potential of MoE-based LLMs.
Oracle-MoE route tokens in a highly compact
space suggested by attention scores, termed the
oracle space, to effectively maintain the seman-
tic locality across consecutive tokens to reduce
expert activation variations, eliminating massive
swapping demands. Theoretical analysis proves
that Oracle-MoE is bound to provide routing de-
cisions with better semantic locality and, there-
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fore, better expert activation consistencies. Exper-
iments on the pretrained GPT-2 architectures of
different sizes (200M, 350M, 790M, and 2B) and
downstream tasks demonstrate that without com-
promising task performance, our Oracle-MoE has
achieved state-of-the-art inference speeds across
varying memory budgets, revealing its substantial
potential for LLM deployments in industry.

1. Introduction
The unprecedented prevalence of Large Language Models
(LLMs) calls for their sink from remote servers to local
edge devices for better accessibility, privacy protections,
and personalizations. Mixture-of-Experts (MoE) (Fedus
et al., 2022; Cai et al., 2024) is the most widely adopted
technique for the on-device deployment of LLMs. A well-
established advantage of MoE is that it could effectively
scale up LLMs’ capacities without increasing the inference
computational complexity, which is vital for their execu-
tions on edge devices of less powerful computing hardware.
However, we would like to underline a less-mentioned but
crucial property of MoE: it is, in theory, a memory-friendly
architecture that could naturally satisfy the memory con-
straint of edge devices. Only a few activated experts are
needed to reside in the device memory for a feedforward
MoE inference, and thus, the minimum memory occupa-
tions of MoE-based LLMs can be significantly less than
their dense counterparts, which indicates the edge-friendly
nature of MoE architectures.

In practice, the fulfilling of MoE’s memory-saving advan-
tage, however, is still far from satisfying. To date, deploy-
ing MoE-based LLMs on memory-constrained devices will
commonly introduce intolerable inference latencies that sub-
stantially impair the industrial values of LLMs. Those la-
tencies are predominantly caused by the overheads from
frequently loading activated experts into the memory and
cleaning old ones during successive inferences of tokens.
As shown in Figure 1(a) (Top), the memory-constrained in-
ference of MoE-based LLMs can result in latencies approxi-
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(a) (b)

Figure 1. a). Top: compared with a full model residing in the
memory, memory-constrained inference of LLMs suffers from
severe latency issues; Bottom: 50%-85% latencies are incurred
by the I/O overheads from expert swapping. An edge device with
8GiB GPU memory is adopted. b). Visualization of 60 expert
activations of layer 7 in Qwen (Yang et al., 2024) across a sequence
of 300 tokens.

mately 15 to 30 times higher than the same model entirely
residing in the memory. 50%-85% of those latencies, as
portrayed in Figure 1(a) (Bottom), were incurred by the I/O
overheads from expert swappings. Despite several prior
attempts (Kong et al., 2024; Yi et al., 2023; Huang et al.,
2023b; Zhang et al., 2024; Rajbhandari et al., 2022) to op-
timize those latencies, they followed an engineering-based
perspective to develop comparatively naive and empirical
strategies, such as quantization (Zhu et al., 2023), expert
pruning (Cheng et al., 2023; Rajbhandari et al., 2022), re-
taining frequently-used experts (Kong et al., 2024; Yi et al.,
2023; Huang et al., 2023b; Artetxe et al., 2022), which lack
systematic, in-depth investigations.

This work thoroughly examines the underlying mechanism
behind the high latencies of memory-constrained MoE-
based LLM inference. Figure 1(b) depicts the inter-token
activations of 60 experts of one layer across a sequence of
300 tokens, which exhibit a highly spare and temporally
inconsistent pattern. Such a pattern will inevitably create a
plethora of expert-swapping demands to be resolved, and
it is challenging to develop an effective empirical strategy
due to the complexity, sparsity, and inconsistency of activa-
tions. The essential cause for this pattern can arguably be
attributed to that current MoE routings are predominantly
influenced by token embeddings, which tend to be domi-
nated by token-specific information with high inter-token
variations.

To this end, we devise Oracle-MoE, a novel MoE architec-
ture to generate routing decisions that naturally activate iden-
tical experts across consecutive tokes to reduce inter-token
variations, eliminating massive expert-swapping needs and
accelerating memory-constrained inference. Oracle-MoE is
bridged on a characteristic of edge scenarios such that the
linguistic meaning between consecutively generated tokens

is typically consistent, and successive queries from a user
usually share similar knowledge grounds. In other words, a
token sequence represents notable semantic locality across
nearby tokens. Inspired by this observation, Oracle-MoE
conducts routing in a highly compact space, termed the
oracle space to assign tokens instead of the usual token
embeddings.

Particularly, our analysis revealed that tokens with higher
mutual attention scores share similar high-level semantics,
which we call semantic groups. To efficiently extract high-
level semantics, we use average token embeddings in each
group as semantic group embeddings and denote the set of
these embeddings as oracle space. Empirical evidence and
theoretical analysis demonstrate that this concise calculation
of oracle space captures semantic locality and routing in the
oracle space could preserve semantic locality better when
selecting experts, considerably decreasing the swapping fre-
quencies. On GPT-2-based networks (Radford et al., 2019)
of different capacities (200M, 350M, 790M, and 2.06B) and
the downstream tasks including classification, QA and sum-
marization, our Oracle-MoE has attained state-of-the-art
inference speeds than those baseline strategies across vary-
ing memory budges without comprising the performance.

2. Analysis
In this section, we begin with defining the latency opti-
mization problem in semantic space with introducing the
Consecutive Semantic Difference (CSD). Given that con-
secutive tokens show semantic localities, we aim to find a
low-variance semantic embedding for each token. We first
model the token embeddings as the combination of high-
level semantics and token-identity semantics. Then, we use
attention scores to discover high-level semantics similar-
ity and obtain semantic groups, and construct the Oracle
Space with semantic group embeddings. Finally, we show
that oracle-space-based routing yields significantly lower
CSD compared to token-level routing, both theoretically
and empirically.

2.1. Latency Problem Formalization

Deploying Mixture of Expert (MoE) models on edge devices
faces the challenge of expert swapping latency. Meanwhile,
we do not want latency optimization to degrade the model’s
performance. So, we introduced a constraint that the la-
tency optimization must ensure that the measurement of
performance M that the user is interested in is better than a
threshold γ:

min Ltotal s.t. M > γ

Our experiments in Section 5 will show that latency opti-
mization does not necessarily lead to performance degra-
dation. For simplicity, we omit the subject to item in the
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following of this section. The total latency Ltotal can be
written as:

Ltotal =

T∑
t=1

Lcompute(t) + Lswap(et, et−1),

where Lcompute(tt) denotes computation latency for token
embedding tt, and et denotes the set of activated expert
indices for token tt. Lswap(et, et−1) captures swapping
latency caused by loading experts that are activated by tt
but not activated by tt−1. Specifically:

Lswap(et, et−1) = lswap · |et \ et−1|,

where |et \ et−1| is a set minus operation. In practice, MoE-
based LLMs on edge devices generate continuous semantics,
the large variance in the token-level MoE routing mecha-
nism is essentially due to the high inter-token semantic vari-
ance, resulting in frequent changes in routing results. We
define Consecutive Semantic Difference (CSD) to measure
the variation in expert selection over consecutive tokens:

CSD =

T∑
t=2

∆et,

Given fixed hardware and swapping algorithms, Lcompute

and lswap are fixed, thus CSD determines Ltotal. The final
optimization goal is:

min

T∑
t=2

∆et.

Remark: Setting ∆et = 0 leads to a dense model that
would trivially minimize CSD, which is not considered
in our work as it negates the fundamental advantage of
MoE models—leveraging multiple experts for specialized
processing.

In existing token-level MoE models, experts are usually
selected through a linear gate Wg ∈ RN×d (Cai et al., 2024),
which projects the token embedding tt ∈ Rd into expert
scores g(tt) = Wgtt ∈ RN . The experts are then chosen
as:

et = Top-ki∈{1,...N}(softmax(Wgtt)i)

where Top-k denotes the indices of top k largest elements.
Inspired by previous work (Xue et al., 2024), current token-
level MoEs tend to dispatch on token-identity semantics.
So, we approximate the change in Top-k expert selection
between consecutive tokens by the difference in their trans-
formed embeddings:

CSDtoken =

T∑
t=2

∆et ≈
T∑

t=2

C(Wg, k)∥tt − tt−1∥

where C(Wg, k)is a constant dependent on Wg, k.

However, since there is a large variance between token em-
beddings, as is shown in Figure 2 left, the CSD is hard to
optimize for existing token-level MoE. Xue et al. (2024)
also mentioned that token-level MoEs tend to dispatch to-
kens according to token ID. But the linguistic meaning of
consecutive user interactions on edge devices is notably
similar, which we term as semantic locality. This inspires
us to minimize swapping latency by extracting high-level
semantics and designing a new gating mechanism.

2.2. Semantic Groups and Oracle Space

Token Embeddings In token-level MoEs, tokens in the
same sequence do share some similar high-level semantics,
with their high-level semantics’ locality and tendency to
cluster logically, as shown in Figure 2. But their embed-
dings are still influenced primarily by the token-identity fea-
tures, leading us to explore semantic spaces. These tokens
simultaneously contain two types of semantic information.

Definition 1 (Token Embedding). For each token embed-
ding ti,

ti = si + ui,

where si represents shared high-level semantic information
between consecutive tokens and ui represents unique token-
identity information.

Figure 2. UMAP visualization of embedding space in existing
token-level MoE models. Left: Tokens tend to cluster accord-
ing to token-identity semantics. Right: Tokens from the same
sequence are colored the same. They share similar semantics and
stay closer to each other in each token cluster.

Semantic Groups Studies ((Vaswani et al., 2017; Koval-
eva et al., 2019; Clark et al., 2019)) indicate that attention
captures high-level semantic correlations between tokens.
Therefore, we intuitively claim that the mapping of the Q/K
matrices and the calculation of the attention scores will
group consecutive tokens with similar high-level semantics
together through significant attention score distribution dif-
ferences. Our analysis in Appendix A.1 demonstrates that
under our definition of token embedding and analysis of the
Q/K matrix, a high attention score between tokens indicates
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that they share similar high-level semantics. So, we propose
to model this through a causal graph perspective, where
semantic groups emerge from connectivity in the attention
score matrix.

Consider a directed acyclic graph Gglobal = (Vglobal, Eglobal),
where Vglobal contains all tokens and Eglobal consists of edges
ti → tj weighted by aij from the lower-triangular attention
score matrix Aglobal = [aij ] (i.e., aij exists only for i >
j). We define semantic groups as maximally connected
components that only tokens with an attention score larger
than a predefined threshold ϵ are considered connected:

Definition 2 (Semantic Group). A subset containing tokens
S = {tk1

, ..., tkm
} (indices k1 < ... < km) is called a

semantic group if:{
∀i, j ∈ {k1, . . . , km}, (i > j) =⇒ aij > ϵ

No proper superset of S satisfies the condition above

This can be regarded as a reformulation of the Minimum
Clique Cover Problem (Gavril, 1972) for DAGs. The defini-
tion leverages the block structure of attention score matrices
as is shown in Figure 3, which is also observed in previous
works((Liu et al., 2024)). So, although the Minimum Clique
Cover is NP-hard, we claim that it can be computation-
ally tractable on attention score matrix via polynomial-time
greedy algorithms (Farjas, 2018). We first initialize each
token as a singleton group, then for the token xi from left
to right, we find the maximal j < i with aij > ϵ and merge
xi into xj’s group if ∀xk in the group, aik > ϵ.

(a) (b)

Figure 3. Visualization of attention score matrix. There are two
semantic groups where tokens in each group show high attention
scores with each other.

Discussion: Previous studies (Kamath et al., 2019) on repre-
sentation space analysis have shown that semantically sim-
ilar samples exhibit higher similarity in their embeddings
compared to semantically dissimilar ones, which is also
widely validated in experiments with general-purpose large
models. We corroborate this observation and further identify
a more fine-grained similarity pattern: token representations
encapsulate both high-level semantics and token identity

semantics. Among tokens with the same identity, the em-
beddings of those that share the same high-level semantic
meaning tend to be more similar. This pattern is consis-
tently observed in various models, including widely used
large models like DeepSeek-16B-2.8B (Dai et al., 2024)
and Qwen1.5-MoE-A2.7B (Team, 2024), which are illus-
trated in Figure 2, Figure 10 and Figure 11 in Appendix B.2.
Theoretical insights into how attention mechanisms com-
pute correlations between tokens using the inner product
of query (Q) and key (K) vectors are also supported by ex-
isting studies (Raffel et al., 2020; Vig & Belinkov, 2019).
The computation of attention scores involves first assessing
token correlations through inner products of query (Q) and
key (K) vectors, followed by normalization of these correla-
tions via softmax, and finally allocating contextual informa-
tion through value (V) vectors weighted by the normalized
scores. Among which, the Q-K inner product effectively
captures token similarity and reflects high-level semantic
alignment, as visualized in Appendix B.2.

Oracle Space Following sentence meta-embedding tech-
niques (Poerner et al., 2019; Takahashi & Bollegala, 2022),
we compute semantic group embeddings as the average
token embeddings in it. Formally:

Definition 3 (Semantic Group Embedding). For a Semantic
Group Si, its semantic group embedding zSi

is defined as:

zSi =
1

|Si|
∑
tj∈Si

tj

As proven in (Xu et al., 2018; Soltanolkotabi et al., 2013)
and demonstrated in Appendix A.2, this aggregation reduces
token-identity noise while preserving essential high-level
semantics. Thus, we can efficiently extract various high-
level semantic information from the embedding space using
semantic group embeddings. We collect semantic group em-
beddings from different data and name the space consisting
of these embeddings as Oracle Space, efficiently describing
various high-level semantics.

In inference task, new tokens arrive sequentially over time.
To model the evolution of semantic groups and derive token
embeddings based on these groups, we propose the semantic
embedding of each token as its semantic group embedding.
Given a token tt at time step t, let S(t) denote the semantic
group corresponding to tt. We use the embedding of S(t)
as the token’s semantic embedding:

ztt = zS(t) =
1

|S(t)|
∑

t∈S(t)

t,

The S(t) includes all tokens from previous time steps t′ < t
such that:

∀tt′ ∈ S(t), att′ > ϵ,
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where att′ is the attention score between tokens tt and tt′ .
When the model generates consecutive tokens, it retains the
KV cache of previous tokens, so that att′ can be obtained
by adding a new row to Aglobal.

This provides a way to compute semantic groups with a
streaming input, which is the case for auto-regressive gen-
eration. As is shown in Figure 4, in an auto-regressive
generation process, the token’s semantic embedding varies
smoothly and slowly in the oracle space, preserving high-
level semantic information.

(a) (b)

Figure 4. UMAP visualization of sampled semantic group embed-
dings (token’s semantic embeddings) in different model layers.
Each color represents a sequence(user interaction). As token gen-
eration goes on, the embeddings based on semantic groups vary
slowly and smoothly.

2.3. Oracle-Space-Based Routing Yields Lower CSD

Based on the above analysis, routing tokens with similar se-
mantic embedding in the oracle space to the same expert is
highly likely to yield a low expert variation. Since semantic
group embeddings evolve locally in the oracle space (Fig-
ure 4), we employ clustering algorithms to allocate tokens
that belong to the same cluster in the oracle space to the
same expert, or:

et = argmin
k

∥ztt − ck∥ = argmin
k

∥zS(t) − ck∥ (1)

where ck denotes the cluster center in oracle space, which
will be detailed in Section 3. So, the change in expert
assignments can be approximated by the change of semantic
group of ztt . We provide a detailed analysis of this trend in
the AppendixA.3, and the following form:

Definition 4 (CSD for oracle-space-based routing). Let
S(t − 1) and S(t) denote the semantic groups of token
tt, tt−1at consecutive time steps. Without loss of generality,
based on semantic variations on semantic groups, we have
CSD of oracle-space-based routing:

CSDoracle =

T∑
t=2

∆et,oracle ≈
T∑

t=2

∥∥zS(t) − zS(t−1)

∥∥

Next, we highlight the low-variation gains of oracle-space-
based routing compared to token-level routing, which re-
duces unnecessary routing changes for semantically similar
tokens. This leads to the following theorem:
Theorem 1. With a high probability, ∀t ∈
N, tt, tt−1, att−1 > ϵ with a sufficiently high dimen-
sion of token identity information:

C(Wg, k)∥tt − tt−1∥ >
∥∥zS(t) − zS(t−1)

∥∥
Through the CSD estimation framework established in Sec-
tion 2.1, this induces the relationship:

CSDtoken > CSDoracle,

This indicates that oracle-space-based routing provides
lower variation by reducing routing changes for semanti-
cally similar tokens. The detailed proof is provided in the
Appendix A.4.

3. Oracle-MoE
Based on the above analysis, we propose Oracle-MoE, re-
placing the token-level MoE routing mechanism with a bet-
ter semantic locality in the oracle space and expert activation
consistencies for edge-side devices to generate text scenar-
ios.

Figure 5. Overview of an Oracle-MoE layer. Residual connections
are omitted.

Oracle Space Initialization We obtain the initial oracle
space after a short warm-up training phase of the token-
level MoE model. After the warm-up stage, we randomly
sample N data, and get the semantic group embeddings of
each data as is mentioned in Section 2, Definition 2, and
3. These semantic group embeddings form an initial ora-
cle space. Routing in the oracle space does not necessitate
complete information; only distinguishing high-level se-
mantics is required. Therefore, to improve computational
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efficiency, we adopt SVD to reduce these embeddings to
lower dimensions (Schmidt, 2020).

Oracle-MoE Routing at Pretraining Since the semantic
group embedding varies only locally within a small region
in the oracle space as tokens are generated, to ensure tokens
in the same semantic group to be dispatched to the same
expert, we run K-means (Jain, 2008) in the oracle space to
get k oracle clusters. The parameter k here is equal to the
expert number of the original token-level MoE, and Sec-
tion 5 will show that our method yields persistently good
results with k ranging from 4 to 32. In the following training
process, we replace the routing of the original token-level
MoE with the routing mechanism shown in Figure 5. For
each new incoming data, we first divide it into semantic
groups according to the attention scores and get their seman-
tic group embeddings in the oracle space with the same SVD
transform matrix computed in the previous stage. Then we
calculate which oracle cluster each semantic group belongs
to as Equation 1, and dispatch tokens in the semantic group
to the corresponding expert.

Oracle-MoE Routing at Inference The inference stage
can be divided into prefill and decode stages. The prefill
stage is the same as the training stage routing. In the decode
stage, Oracle-MoE first decides which semantic group the
coming token belongs to, and updates the semantic group
embedding with the coming token. Since KV cache is a
widely adopted strategy (Yuan et al., 2024), this does not
introduce memory overhead. Then we dispatch it to the
expert corresponding to the oracle cluster of its semantic
group. In our experiments, there are often fewer than 5
semantic groups in an input session within a length of 1024,
and semantic groups from the same session are likely to
belong to the same oracle cluster. So, the oracle space
routing preserves the semantic locality of input tokens and
yields a low expert variation, contributing to low expert
swapping latency.

4. Related Works
Mixture of Experts The Mixture of Experts (MoE) is a
fundamental model in machine learning (Jacobs et al., 1991;
Jordan & Jacobs, 1994) and an instance of the conditional
computation framework where different experts are respon-
sible for different inputs. To increase the model’s capacity
to deal with complex data, (Eigen et al., 2013) extended
the MoE structure to deep neural networks and proposed
a deep MoE model composed of multiple layers of routers
and experts. (Shazeer et al., 2017) simplified the MoE layer
by making the output of the gating function sparse for each
example, which greatly improves the training stability and
reduces the computational cost. Since then, the MoE layer
with different base neural network structures (Shazeer et al.,

2017; Dauphin et al., 2017; Vaswani et al., 2017) has been
proposed and achieved great success in a variety of tasks.
MoE has been widely explored to improve the training ef-
ficiency of Large Language Models(LLMs), with various
routing strategies like (i) letting tokens select the top-k ex-
perts (Lepikhin et al., 2021; Fedus et al., 2022; Zuo et al.,
2022; Chi et al., 2022; Dai et al., 2022; Chen et al., 2023),
(ii) letting experts select the top-k tokens (Zhou et al., 2022),
to (iii) globally decide expert assignment (Lewis et al., 2021;
Clark et al., 2022).

Memory-constrained Inference Solutions for Mixture
of Experts Huang et al. propose swapping experts from
GPU memory to CPU memory to reduce memory usage,
though this approach introduces significant latency over-
head (Huang et al., 2023a). SE-MoE (Shen et al., 2022)
employs Ring Memory offloading to minimize GPU mem-
ory consumption. EdgeMoE (Yi et al., 2023), the on-device
inference engine tailored for MoE-based LLMs, reduces ex-
pert I/O overhead through expert-wise bitwidth adaptation
and in-memory expert management, achieving low-latency
inference while maintaining task performance. While Swap-
MoE (Kong et al., 2024), by dynamically managing a small
set of Virtual Experts based on activation locality and hard-
ware profiling, reduces memory consumption and latency,
but sacrifices accuracy. These works do not take into ac-
count the characteristics of semantic space, especially the
cluster characteristics of high-level semantics and in-depth
investigations.

5. Experiments
5.1. Settings

Hardware Platform Since mainstream mobile
phones(like Android and Apple ) and NPU manufac-
turers (e.g., Apple, Hisilicon, Qualcomm, Samsung) do
not provide commercial APIs for low-level GPU memory
operations, we adopt NVIDIA Jetson Xavier NX as our
experimental platform. The NVIDIA Jetson Xavier NX is
equipped with a 384-core NVIDIA Volta architecture GPU
with 8 GiB of GPU memory and an estimated 21 TOPS AI
computing power.

Models We mainly compare Oracle-MoE with Switch
Transformer (Fedus et al., 2022), a representative token-
level MoE architecture. Experts are loaded on demand under
our experiment settings. We use models containing m MoE
layers with n experts each and with a total parameter of p,
denoted as n ∗ m(p). In our experiments, we use models
of 2*4(192M), 4*8(295M), 8*16(729M) and 9*24(2.06B).
Detailed model configurations are in Appendix B.
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(a) (b) (c) (d)

Figure 6. Expert activation results of (8*16)729M models. In Switch Transformer, almost every 2 consecutive tokens activate different
experts, and nearly all experts are activated, demanding frequent expert swapping. Whereas Oracle-MoE requires only a few expert
swappings as the token generation continues.

(a) (b) (c) (d)

Figure 7. Memory-Latency curve of models of different sizes, where n ∗ m(p) denotes a model consisting of n MoE Layers with m
experts each, and in total p parameters. Full model refers to a model with the same number of activated parameters.

Swapping Strategies As introduced in Section 1, swap-
ping strategies assign a certain priority to each expert so
that lower-priority experts can be swapped out first. We
evaluate both our model and the Switch Transformer with
First-In-First-Out (FIFO), Least Recently Used (LRU), and
the strategy in SwapMoE (Kong et al., 2024). FIFO swaps
out the expert that is loaded first, and LRU swaps out the
experts that have not been used for the longest time. In
SwapMoE(Kong et al., 2024), experts are weighted by their
frequency, magnitude, and input tokens. However, since
our model eliminates the requirement of expert swapping,
different strategies don’t make a big difference in our model.
So, we report the average of 3 strategies on our model.

Data & Workload Models are pretrained on Openweb-
Text (Komatsuzaki, 2019), which is one of the pretraining
datasets of GPT2 (Radford et al., 2019). We primarily use
downstream tasks of 3 types: question answering, clas-
sification, and summarization. For QA tasks, we adopt
Trivia QA (Joshi et al., 2017). For classification, we adopt
GLUE (Wang et al., 2019), MAG (Sinha et al., 2015) and
Sci-Cite (Beltagy et al., 2019). We also use XSum (Narayan
et al., 2018) for summarization tasks. In experiments, we
always kept the batch size equal to 1, which is the real sit-
uation when running on edge devices like mobile phones,
processing one user request at a time.

Metrics We adopt mainly 3 evaluation metrics. a) Expert
Activation, to evaluate the variation in expert activation of
different models. b) Memory-latency curve measures the
average time the model takes to process a single data point

for a given memory size. A larger memory provides models
with redundancy to store temporarily unused experts and
mitigate the penalty of expert activation variation. c) First
token Latency measures the time before the first token is
generated after the users provide the input. This is also an
important metric for user experience.

5.2. Results

Expert Activation Figure 6 illustrates the expert activa-
tion of two models. During consecutive auto-regressive
generation passes, our method shows a lower expert activa-
tion variation, where expert swapping is only triggered after
hundreds of tokens are generated. In Switch Transformer,
expert activation changes frequently.

Memory-Latency Figure 7 illustrates the memory-latency
curve for methods of different sizes. The result of our model
is reported as the average of different strategies. As is shown
in the figure, while with a small-sized model, the latency is
acceptable, the case becomes worse rapidly as the model
size gets larger. For the 8*16(729M) model, even though
only 1 expert is allowed for each layer (which is about only
25% of the full-size memory), our method introduces only
3s additional latency compared with the full-size inference.
Whereas Switch Transformer with FIFO, LRU, or Swap-
MoE load-on-demand strategy introduces inevitable latency,
increasing latency by up to 2000% compared to a full-size
memory inference. When the memory budget increases by
up to 50% of the full-size model, the latency of the Switch
Transformer with different strategies is still unacceptably
high, whereas our model does not introduce latency.
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Size Model TrivialQA(F1) GLUE(Acc.) MAG(Acc.) Sci-Cite(Acc.) Xsum(Rouge-1) Avg.

195M Switch 27.00 62.25 20.00 30.83 13.55 30.73
Ours 26.72 62.86 18.33 32.50 13.36 30.75

295M Switch 30.10 64.76 22.67 31.25 14.62 32.68
Ours 30.31 64.66 22.17 33.75 15.53 33.28

729M Switch 35.08 68.33 25.29 35.00 15.62 35.86
Ours 35.56 68.00 25.50 36.67 16.05 36.35

2.06B Switch 46.06 77.75 31.33 46.75 16.77 43.73
Ours 46.96 78.00 30.67 47.50 17.35 44.09

Table 1. The zero-shot performance of models of different sizes on different tasks. Metrics reported depend on specific tasks. Our method
does not pose a drawback to model performance on downstream tasks.

Figure 8. Latency composition of our proposed Oracle-MoE and
Switch Transformer equipped with different swapping strategies.
Our model reduces the percentage of expert swapping latency and
thus reduces the overall latency.

The latency composition breakdown in Figure 8 gives a
detailed visualization of the above results. It can be observed
that even with the most limited memory budget, the latency
introduced by expert swapping in our model only contributes
to 50% of the overall latency. In token-level routing, such
as the switch transformer, expert swapping contributes to
more than 99% of latency.

First token latency Our model activates fewer experts for
a single input, so that only 1 or 2 experts are needed for the
prefilling stage. So, our model requires only one-time expert
loading during the prefilling stage. However, existing token-
level MoE methods still need to swap experts during the
prefilling stage, leading to worse first token latency. Among
the three expert swapping strategies, FIFO does not help
at the prefilling stage, and the LRU strategy needs a warm-
up stage to decide on frequently used tokens. SwapMoE,
however, uses off-line statistical information to decide the
loaded expert at the beginning of inference, thus resulting
in a lower first token latency than baselines, but still not as
good as ours.

Model(Strategy) First token latency(s)

Switch(FIFO) 22.395
Switch(LRU) 23.428

Switch(SwapMoE) 12.767
Oracle-MoE 4.910

Table 2. First token latency of 765M models on different archi-
tectures(strategies) under 50% of full-size memory. The memory
budget only influences SwapMoE since it uses offline statistics to
determine which expert to load first.

5.3. Overhead Analysis

Performance on Downstream Tasks Although designed
for edge-oriented scenarios, our model does not sacrifice
performance on downstream tasks for edge-deploy inference
latency. As is shown in Table 1, our proposed semantic
group gating method shows a similar task performance,
in some tasks even surpasses, the widely accepted token-
level gating MoE models. We believe this is attributable to
our proposed semantic group-level routing strategy. This
setup allows each expert to focus on a subset of high-level
semantics rather than requiring every expert to learn all
possible high-level semantics present in their target tokens,
thereby reducing redundancy among experts.

Training Stage Overhead Our approach differs from ex-
isting token-level MoE in that it includes a one-time cluster
analysis after the warm-up phase and cluster routing in each
forward pass. In our experiments, with a sample size of
8192, the wall clock time for clustering analysis per layer
is approximately 4 min, which is negligible compared with
tens of hours of pretraining. For routing in each pass, token-
level MoE is equivalent to performing a matrix multiplica-
tion. It requires 1e-4 seconds, whereas our low-dimensional
cluster Euclidean distance computation requires three matrix
multiplications and a square root operation. Thanks to the
low-dimensional semantic space, the final wall-clock time
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of our routing is 2.5e-4 seconds, which is also negligible
compared to the single forward-backward pass taking 3.5
seconds.

5.4. Expert Prediction-based Optimization

The Oracle-MoE has significantly diminished the neces-
sity for expert swapping, thereby fundamentally reducing
latency. However, the load-on-demand strategy still inher-
ently suffers from another limitation: it cannot decide which
expert to load for a layer before that layer is reached. Conse-
quently, we propose to predict deep layers’ expert activation
at shallower layers, enabling inferring current tokens and
loading experts synchronously. Specifically, we use the em-
beddings of the first layer to predict the expert activation in
the following layers. Experimental results show that Oracle-
MoE reaches an expert prediction accuracy of 85% to 95%,
whereas Switch-Transformer-like token-level routing struc-
ture only has an accuracy of 40% to 60%. Employing this
can further reduce the expert loading latency of Oracle-MoE
by 10% to 15%. The underlying reasons for this expert pre-
dictability will be left for future investigation.

6. Conclusion
This paper introduces Oracle-MoE, an innovative MoE ar-
chitecture designed to optimize edge deployment by ad-
dressing latency issues inherent in token-level routing. By
incorporating an Oracle-Space-Based routing mechanism,
Oracle-MoE reduces expert activation variation and mini-
mizes memory swapping overhead. Extensive experiments
validate that Oracle-MoE achieves lower latency without in-
troducing any drawback on downstream tasks or pretraining
computation, which is vital for the on-device deployments
of LLMs. Future work could extend this approach to other
conditional computation frameworks and explore its appli-
cability across diverse hardware environments.
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A. Proof of Analysis
A.1. Property of semantic element

In this section, we delve into the detailed analysis of the
approximate attention mechanism, specifically focusing on
the impact of the inner product between query (WQ) and
key (WK) matrices.

Figure 9. Effective rank of matrices WQ and WK in different lay-
ers’ self-attention and their subspaces angle. The space determined
by WQ and WK is very similar.
The attention score computation can be viewed as a mapping
from two token representations to a scalar value:

A : H×H → R,

In Figure 9, WQ and WK exhibit similar ranks and mini-
mal angles between their subspaces. Combined with the
empirical success of shared QK matrices in transformers
(e.g., Kowsher et al. (2024)), we propose that WQ and WK

can be decomposed into a shared projection followed by
subspace-specific transformations. We therefore propose:

WQ = MQP, WK = MKP,

where P : H → HS is a shared projection matrix mapping
tokens to a common subspace HS of dimension r (with
r ≤ dim(H)), and MQ,MK : HS → HS are full-rank
linear transformations within HS .

Given this understanding:
Assumption 1 (Semantic Subspace). The token represen-
tation space H can be decomposed into a low-dimensional
semantic subspace Hs and its orthogonal complement H⊥

S :

H = HS ⊕H⊥
S .

Followed by the analysis and the experiment results in Sec-
tion 2.2, although we recognize that WQ ̸= WK , meaning
MQ ̸= MK , under our analysis, where both MQ and MK

are different full-rank linear mappings from HS to HS ,
we can derive a relatively symmetric bound for the inner
products involving these mappings. Specifically, for any
non-zero, unit vectors X,Y ∈ HS , we have:

|⟨MQX,MKY ⟩| ≤ ∥M∥ · |⟨X,Y ⟩|,
|⟨MQY,MKX⟩| ≤ ∥M∥ · |⟨Y,X⟩|.

where ∥M∥ denotes the operator norm (spectral norm) of
matrix MT

QMK This bound reflects how the transformations
MQ and MK affect the original inner product ⟨X,Y ⟩.

Furthermore, although the above discussion is based on
an approximate attention mechanism and focuses on the
properties of token components in the HS space, Figure 2
shows that tokens with the same identity (i.e., semantically
similar tokens) tend to cluster together in low-dimensional
representations that preserve relative distances. But this
clustering behavior also suggests that tokens with the same
high-level semantic meaning have small relative distances
in the semantic component space. Therefore, for tokens
within the same subgraph or semantic context, we make the
following assumption:

Assumption 2. For tokens ti in the same subgraph, or
Semantic Group Sj , their components in semantic space
HS si, there exist r, s.t. si ∈ BHS

(ci, r)

Assumption 3 (Uniform Distribution in Semantic Space).
Tokens in the same semantic group sj are uniformly dis-
tributed in the semantic space with an expected value at the
center:

E[si] = cj , ∀i ∈ sj .

A.2. The advantage of mean embedding of subgraph

Given the definition of semantic groups, we now make an
assumption about the distribution of token identity infor-
mation ui, which refers to the unique characteristics within
each subgraph, distinguishing one token from another be-
yond their shared high-level semantics:

Assumption 4 (Normal Distribution in Token Identity
Space). Token identical information follows a normal dis-
tribution within each subgraph Sj:

ui ∼ N (µj ,Σj), ∀i ∈ Sj .

Then we have The variance of the semantic representation
of token ti is defined as:

Var(ztt) = Var(
1

|S(t)|
∑

t∈S(t)

t)

Let the neighborhood size be n = |S(t)|, then:

zS(t) =
1

n

∑
i∈S(t)

ti =
1

n

∑
i∈S(t)

(si + ui) (2)

It can be decomposed into two parts:

zS(t) =
1

n

∑
i∈S(t)

si︸ ︷︷ ︸
Mean of semantic part

+
1

n

∑
i∈S(t)

ui︸ ︷︷ ︸
Mean of identity part

(3)
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Variance decomposition:

Var(zS(t)) = Var
(
1

n

∑
si

)
+ Var

(
1

n

∑
ui

)
+ 2Cov

(
1

n

∑
si,

1

n

∑
ui

) (4)

Then we have the analysis of each component:

1. Covariance term: Given the orthogonal subspace decom-
position Hs ⊥ H⊥

s , the semantic part si and the identity
part ui are independent, hence the covariance is zero:

Cov
(
1

n

∑
si,

1

n

∑
ui

)
= 0 (5)

2. Variance of the semantic part: According to As-
sumption 3 (uniform distribution), within the same sub-
graph, si are independently and identically distributed with
E[si] = cj . Let Var(si) = Σs, then:

Var
(
1

n

∑
si

)
=

1

n2

n∑
i=1

Var(si) =
Σs

n
(6)

3. Variance of the identity part: According to Assump-
tion 4 (normal distribution), within the same subgraph,
ui ∼ N (µj ,Σj) and they are independent, then:

Var
(
1

n

∑
ui

)
=

1

n2

n∑
i=1

Var(ui) =
Σj

n
(7)

thus we have

Var(zS(t)) =
Σs +Σj

n
< Var(tt) (8)

A.3. Approximation Analysis of Oracle CSD

The expert assignment change ∆et is defined as the sym-
metric difference between consecutive expert sets:

∆et = |et \ et−1|

For simplicity, assume each token activates a single expert,
so ∆et = I(et ̸= et−1) (0 or 1).

When zS(t) and zS(t−1) reside in the same cluster, ∆et = 0.
When they lie in different clusters, ∆et = 1. Let B denote
cluster boundaries in the oracle space. The probability of
crossing B between t − 1 and t increases with ∥zS(t) −
zS(t−1)∥.

For small displacements, we approximate the discrete
boundary-crossing event by the continuous embedding dis-
placement:

∆et ≈ ∥zS(t) − zS(t−1)∥ ·
Cluster density at B

Cluster volume

Under uniform cluster assumptions, the density-to-volume
ratio simplifies to a constant, yielding:

T∑
t=2

∆et ≈
T∑

t=2

∥zS(t) − zS(t−1)∥

A.4. Proof of Theorem 1

First, we have this lemma:
Lemma 5 (Norm Comparison with Additive Threshold).
For n < m, ∥Y ∥ + m < K∥Z∥ holds with probability
approaching 1 as d → ∞, where m > 0 and K > 0 are
fixed constants.

Proof. Let {xi}mi=1 be i.i.d. d-dimensional Gaussian vectors
with:

• E[xi] = µ ∈ Rd

• Cov(xi) = σ2Id, where Id is the d× d identity matrix.

Let S = {k1, . . . , kn} be a uniformly random subset of
{1, . . . ,m} (without replacement) with n < m. Define:

Y =
1

m

m∑
i=1

xi −
1

n

n∑
j=1

xkj , Z = x1 − x2.

For Y :

E[Y ] = 0,

Cov(Y ) = σ2

(
1

n
− 1

m

)
Id,

E[∥Y ∥2] = dσ2

(
1

n
− 1

m

)
.

For Z:

E[Z] = 0,

Cov(Z) = 2σ2Id,

E[∥Z∥2] = tr(Cov(Z)) = 2dσ2.

For n < m:
1

n
− 1

m
< 2

=⇒ E[∥Y ∥2] = dσ2

(
1

n
− 1

m

)
< 2dσ2 = E[∥Z∥2].

Define the modified gap WK = K2∥Z∥2 − ∥Y ∥2. We
analyze:

P (∥Y ∥+m < K∥Z∥) = P

(
∥Y ∥2 + 2m∥Y ∥

+m2 < K2∥Z∥2
)
.
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Table 3. Hyperparameters of Models

Hyperparameters 195M MoE 295M MoE 729M MoE 2.06B MoE

Attention heads 12 12 12 16
Transformer layers 12 12 12 24
MoE layers 2 4 8 9
Expert Number 4 8 16 32
Activated Expert Number 1 1 1 1
Hidden dimension size 768 768 768 1024
Dropout 0.1 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1 0.1
Sequence length 256 256 512 1024
Batch size 320 320 160 80
Learning rate decay Cosine Cosine Cosine Cosine
Maximum Learning rate 4e-4 4e-4 2e-4 1e-4

Activation inconsistency DeepSeek Qwen Switch Oracle

1st 1/4 layers avg 80.84 81.56 69.20 6.03
2nd 1/4 layers avg 65.35 71.04 64.87 4.82
3rd 1/4 layers avg 70.68 75.37 53.36 4.20
4th 1/4 layers avg 76.61 77.16 75.44 5.11

Table 4. Activation inconsistency comparison across layers.

Using Chebyshev’s inequality for WK :

E[WK ] = K2E[∥Z∥2]− E[∥Y ∥2] = dσ2

(
2K2 − 1

n
+

1

m

)
,

Var(WK) = K4Var(∥Z∥2) + Var(∥Y ∥2) (independence),

= 8K4dσ4 + 2dσ4

(
1

n
− 1

m

)2

.

Set ϵK = E[WK ] − 2m
√

E[∥Y ∥2] − m2. Substituting
E[∥Y ∥2]:

ϵK = dσ2

(
2K2 − 1

n
+

1

m

)
−2m

√
dσ2

(
1

n
− 1

m

)
−m2.

Applying Chebyshev’s inequality:

P (WK ≥ ϵK) ≥ 1− Var(WK)

ϵ2K
.

Thus:

P (∥Y ∥+m < K∥Z∥) ≥

1−
8K4dσ4 + 2dσ4

(
1
n − 1

m

)2[
dσ2

(
2K2 − 1

n + 1
m

)
− 2m

√
dσ2

(
1
n − 1

m

)
−m2

]2 .
The dominant terms scale as:

Var(WK) = O(d), ϵK = Θ(d).

Therefore:

Var(WK)

ϵ2K
= O

(
1

d

)
→ 0

=⇒ lim
d→∞

P (∥Y ∥+m < K∥Z∥) = 1.

Note:we also give the analysis of the impact of parameter
constrains: when n approaches m:

1

n
− 1

m
≈ 0 =⇒

{
E[W ] ≈ 2K2dσ2 −m2,

Var(W ) ≈ 8K4dσ4 + 4m2.

The probability bound becomes:

P (W > 0) ≥ 1− 8K4dσ4 + 4m2

(2K2dσ2 −m2)2
.

For large d, the dominant terms yield:

P (W > 0) ≥ 1− 8K4dσ4

4K4d2σ4
= 1− 2

d
.

So if we make an extreme assumption about the left and
right components in semantic space, that is

(tt − tt−1)|HS
= 0, (zS(t) − zS(t−1))|HS

= 2r
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∥∥zS(t) − zS(t−1)

∥∥ =

∥∥∥∥∥(zS(t) − zS(t−1)

) ∣∣∣∣⊥
HS

∥∥∥∥∥
+

∥∥∥∥∥(zS(t) − zS(t−1)

) ∣∣∣∣
HS

∥∥∥∥∥
=

∥∥∥∥∥(zS(t) − zS(t−1)

) ∣∣∣∣⊥
HS

+ 2r

∥∥∥∥∥ .
∥(tt − tt−1)|H⊥

S
∥ = ∥(tt − tt−1)∥

Since (tt − tt−1)|H⊥
S
, (zS(t) − zS(t−1))|⊥HS

follows
Lemma5, so let 2r , C(Wg, k) to be m,K in Lemma 5,
with a existing d mentioned in lemma 5,

C(Wg, k)∥(tt−tt−1)|H⊥
S
∥ >

∥∥zS(t) − zS(t−1))|⊥HS
+ 2r

∥∥
Thus we have

C(Wg, k)∥(tt − tt−1)∥ >
∥∥zS(t) − zS(t−1))

∥∥
B. Experiments
B.1. Pretraining Hyperparameters

Table 3 lists the hyperparameters used in our experiments.

B.2. Activation Inconsistency and Semantic Locality in
Existing MoEs

We propose temporal activation inconsistency, defined as
the average number of inconsistent expert activations per
100 consecutive tokens per expert. Results over the entire
dataset and across different models and layers are listed in
Table 4. Existing MoEs show strong temporal activation
inconsistency within all layers, while Oracle-MoE reduces
this.

Experiments with DeepSeekMoE-16B and Qwen1.5-MoE-
A2.7B on real chat datasets(Wizard-of-Wikipedia and
Synthetic-Persona-Chat) are shown in Figure 10 and Fig-
ure 11. Semantic locality appears across different mod-
els/layers/samples. Semantic groups can still be distin-
guished based on attention score and obtained by our
method, as shown in Figure 12 to Figure 15. It indicates the
potential of Oracle-MoE being a general-purpose solution.

We tested scenarios where the topic changes frequently.
We randomly sample sentences from different datasets and
combine them into a whole sequence. We observed that
our proposed oracle space can still distinguish semantic
groups efficiently, both in our models and public large MoE
models, as shown in Figure 16 to Figure 19. We also tested
the expert activation variation of such highly diverse data
with Oracle-MoE and switch-transformer. On average, in
every 100 consecutive token generations, Oracle-MoE only
changes 12.20 times while the switch transformer changes

Figure 10. UMAP visualization of embedding space in
DeepSeekMoE-16B from layer 10 on Wizard-of-Wikipedia
datasets. Left: Tokens tend to cluster according to token-identity
semantics. Right: Tokens from the same sequence are colored the
same. They share similar semantics and stay closer to each other
in each token cluster.

Figure 11. UMAP visualization of embedding space in
DeepSeekMoE-16B from layer 15 on Wizard-of-Wikipedia
datasets. Left: Tokens tend to cluster according to token-identity
semantics. Right: Tokens from the same sequence are colored the
same. They share similar semantics and stay closer to each other
in each token cluster.

90.54 times. This is because in human natural language,
it takes at least dozens of tokens to express a complete
meaning, so our method still benefits from such ”abrupt”
semantic locality.

B.3. MoE with fine-grained experts

We train a model following the setting of DeepSeekMoE-
16B but with fewer parameters(3B): 12 MoE layers with
64 routed experts each as baseline, where hidden size is set
to 1536 and expert intermediate size is set to 1024. The
top 6 experts are selected for each token. Our method still
achieved a 75% latency reduction at 2.5GB memory. Mean-
while, our model maintains the performance of downstream
tasks. On Trivia QA, our model achieves an F1 Score of
50.20, compared to the baseline of 50.75. On XSum, our
model attains a ROUGE-1 score of 21.74, while the baseline
score is 21.22.
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Figure 12. Attention scores on randomly sampled data of Wizard-of-Wikipedia(upper)and Synthetic-Persona-Chat(bottom) in
DeepSeekMoE-16B from layers 5,10,15,20.

Figure 13. Semantic groups obtained by the Oracle-MoE method on Wizard-of-Wikipedia and Synthetic-Persona-Chat across different
DeepSeekMoE-16B layers with semantic groups from the same sequence or user interaction are colored the same.

Figure 14. Attention scores on randomly sampled data of Wizard-of-Wikipedia(upper) and Synthetic-Persona-Chat(bottom) in Qwen1.5-
MoE-A2.7B from layers 5,10,15,20.

Figure 15. Semantic groups obtained by the Oracle-MoE method on Wizard-of-Wikipedia and Synthetic-Persona-Chat across different
Qwen1.5-MoE-A2.7B layers with semantic groups from the same sequence or user interaction are colored the same.
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Figure 16. Attention scores on dierent diverse data(the top and bottom rows are different data) in DeepSeekMoE-16B from layers
5,10,15,20.

Figure 17. Semantic groups obtained by the Oracle-MoE method on diverse data from DeepSeekMoE-16B layers 5,10,15,20 with semantic
groups from the same sequence or user interaction are colored the same.

Figure 18. Attention scores on different diverse data(the top and bottom rows are different data) in Qwen1.5-MoE-A2.7B from layers
5,10,15,20.

Figure 19. Semantic groups obtained by the Oracle-MoE method on diverse data from Qwen1.5-MoE-A2.7B layers 5,10,15,20 with
semantic groups from the same sequence or user interaction are colored the same.
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