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Abstract
Contemporary Multimodal Large Language Mod-1

els (MLLMs) demonstrate exceptional capabili-2

ties in synthesizing visual and linguistic infor-3

mation with external knowledge repositories for4

sophisticated reasoning applications. Neverthe-5

less, their substantial computational requirements6

present significant obstacles for implementation7

in resource-constrained settings. This research8

presents a knowledge-guided distillation method-9

ology that facilitates the transfer of reasoning ca-10

pabilities from large, knowledge-enriched teacher11

networks to streamlined student frameworks. Our12

technique preserves 87.3% of the teacher model’s13

performance while achieving a 1.4× acceleration in14

inference speed and a 49% reduction in parameter15

count. Evaluations on knowledge-enhanced visual16

question answering datasets demonstrate that our17

distillation approach surpasses conventional dis-18

tillation methods by 0.4 percentage points while19

maintaining comparable factual accuracy. These20

findings establish a viable pathway for develop-21

ing efficient MLLMs optimized for knowledge-22

intensive applications demanding real-time pro-23

cessing capabilities.24

1 Introduction25

Multimodal Large Language Models have demonstrated un-26

precedented performance in visual-textual comprehension27

tasks through the integration of external knowledge reposito-28

ries, including structured knowledge graphs [Lu et al., 2022;29

Li et al., 2019; Tan and Bansal, 2019]. However, the massive30

parametric complexity of these models, frequently exceed-31

ing one billion parameters, introduces substantial deploy-32

ment constraints, particularly in edge computing environ-33

ments where computational resources remain severely lim-34

ited.35

Knowledge distillation presents a theoretically grounded36

approach for model compression, enabling the transfer37

of learned representations from computationally intensive38

teacher models to architecturally efficient student net-39

works [Hinton, Vinyals, and Dean, 2015; Romero et al.,40

2014]. Nevertheless, conventional distillation methodologies41

encounter significant challenges when applied to knowledge- 42

grounded multimodal architectures, frequently failing to pre- 43

serve the intricate reasoning patterns necessary for effective 44

external knowledge integration. 45

This work introduces a knowledge-guided distillation 46

framework that systematically transfers knowledge-grounded 47

reasoning capabilities from teacher to student models. In con- 48

trast to traditional distillation approaches that prioritize out- 49

put mimicry, the proposed methodology incorporates external 50

knowledge graphs to guide the distillation process, ensuring 51

that student models acquire the capacity to effectively utilize 52

external knowledge for complex reasoning tasks. 53

The primary contributions of this research encompass: 54

first, a multi-level knowledge distillation algorithm that trans- 55

fers factual knowledge, reasoning patterns, and cross-modal 56

attention mechanisms; second, a progressive training strategy 57

that incrementally introduces knowledge complexity during 58

the distillation process; third, comprehensive experimental 59

validation demonstrating improvements over standard distil- 60

lation baselines while maintaining deployment efficiency. 61

2 Related Work 62

2.1 Multimodal Knowledge Integration 63

Recent developments in multimodal architectures, including 64

LXMERT, VL-BERT, and UNITER, have established that 65

incorporating structured knowledge substantially enhances 66

performance on reasoning-intensive tasks [Su et al., 2019; 67

Chen et al., 2020; Tan and Bansal, 2019]. These archi- 68

tectures typically employ knowledge retrieval mechanisms 69

from knowledge graphs during inference or integrate knowl- 70

edge during pre-training phases. However, the computational 71

overhead associated with knowledge retrieval and processing 72

compounds the deployment challenges inherent in large-scale 73

models. 74

2.2 Knowledge Distillation 75

Knowledge distillation facilitates the transfer of learned 76

representations from large teacher models to compact stu- 77

dent architectures [Hinton, Vinyals, and Dean, 2015]. Re- 78

cent methodological advances include feature-level distil- 79

lation [Romero et al., 2014], attention transfer mecha- 80

nisms [Zagoruyko and Komodakis, 2016], and multi-teacher 81

frameworks [You, Xu, and Tao, 2017]. However, limited 82



research addresses knowledge-grounded reasoning in multi-83

modal contexts, where external knowledge integration intro-84

duces additional complexity to the distillation process.85

2.3 Multimodal Model Compression86

Contemporary efforts in multimodal compression have87

investigated various techniques including network prun-88

ing [Michel, Levy, and Neubig, 2019], quantization meth-89

ods [Zafrir et al., 2019], and architectural simplification.90

However, these approaches frequently neglect the preserva-91

tion of knowledge-grounded reasoning capabilities, resulting92

in disproportionate performance degradation on knowledge-93

intensive tasks.94

3 Methodology95

3.1 Problem Formulation96

Given a large-scale pre-trained MLLM teacher model T with97

parameters θT and a compact student model S with parame-98

ters θS , along with an external multimodal knowledge graph99

KG, the objective is to train S to preserve T ’s knowledge-100

grounded reasoning capabilities while achieving substantial101

computational efficiency.102

3.2 Knowledge-Guided Distillation Algorithm103

The proposed algorithm incorporates multiple distillation ob-104

jectives to transfer distinct aspects of knowledge-grounded105

reasoning:106

Ltotal =αLtask + βLoutput

+ γLfeature + δLknowledge + ϵLattention
(1)

where each component targets specific aspects of knowl-107

edge transfer.108

Output-Level Distillation109

The standard knowledge distillation loss utilizing110

temperature-scaled softmax distribution:111

Loutput = KL
(
σ
(zS
T

)
∥ σ

(zT
T

))
(2)

where zS and zT represent student and teacher logits re-112

spectively, and T denotes the temperature parameter.113

Feature-Level Knowledge Transfer114

Intermediate representation alignment between teacher and115

student models, with emphasis on knowledge-aware feature116

mappings:117

Lfeature =
1

N

N∑
i=1

∥ϕS(xi)−W · ϕT (xi)∥22 (3)

where ϕS and ϕT denote student and teacher feature ex-118

tractors respectively, and W represents a learned projection119

matrix to accommodate dimensionality differences.120

Knowledge Consistency Loss 121

A knowledge-specific loss function that encourages align- 122

ment with external knowledge facts: 123

Lknowledge =
1

|K|
∑
k∈K

CE(pS(k|x), pT (k|x)) (4)

where K represents the set of retrieved knowledge facts, 124

and pS(k|x) and pT (k|x) denote student and teacher proba- 125

bilities for fact k conditioned on input x. 126

Cross-Modal Attention Transfer 127

To preserve cross-modal reasoning patterns, attention mecha- 128

nisms connecting visual and textual information are distilled: 129

Lattention =
1

H

H∑
h=1

MSE(A(h)
S , A

(h)
T ) (5)

where A
(h)
S and A

(h)
T represent attention weights for head 130

h in student and teacher models respectively. 131

3.3 Progressive Knowledge Distillation 132

A curriculum learning approach is adopted to gradually in- 133

crease the complexity of knowledge presented to the student 134

model. In the first stage, the model focuses on fundamental 135

multimodal understanding, where it is trained on visual- 136

textual alignment tasks without relying on external knowl- 137

edge, thereby learning essential cross-modal representations. 138

The second stage introduces elementary knowledge inte- 139

gration, in which single-hop knowledge facts are incorpo- 140

rated, enabling the student to utilize fundamental external in- 141

formation. Finally, the third stage targets complex reason- 142

ing patterns, where multi-hop reasoning examples are em- 143

ployed to transfer the teacher model’s ability to chain multi- 144

ple knowledge facts for sophisticated inference. 145

4 Experiments 146

4.1 Experimental Setup 147

The experimental setup involves both teacher and student 148

models, benchmark datasets, external knowledge sources, 149

baseline methods, and multiple evaluation metrics. The 150

teacher model is LXMERT-Base with 183M parameters, aug- 151

mented with knowledge graph integration modules. The 152

student models are compact architectures with 93M pa- 153

rameters, employing DistilBERT as the language backbone 154

and ResNet-34 for visual encoding. For evaluation, we 155

use OK-VQA [Marino et al., 2019] (14,031 questions) and 156

FVQA [Wang et al., 2017] (5,826 questions), which are 157

widely adopted benchmarks for knowledge-grounded visual 158

question answering. External knowledge is provided by 159

ConceptNet 5.7 [Speer, Chin, and Havasi, 2017] and Vi- 160

sual Genome [Krishna et al., 2017], covering both com- 161

monsense and visual concepts. The proposed approach 162

is compared against several baselines, including standard 163

knowledge distillation [Hinton, Vinyals, and Dean, 2015], 164

feature-level distillation [Romero et al., 2014], attention 165

distillation [Zagoruyko and Komodakis, 2016], and multi- 166

teacher distillation frameworks. Model performance is as- 167

sessed using accuracy, knowledge preservation score, infer- 168

ence speedup, and parameter efficiency as evaluation metrics. 169



4.2 Main Results170

Table 1 presents comprehensive comparative results of171

the proposed knowledge-guided distillation against standard172

baseline methodologies.173

Table 1: Performance comparison of distillation methods on OK-
VQA

Method Params Accuracy Knowledge Speedup
(M) (%) Preserv. (%) (×)

Teacher (LXMERT-Base) 183 42.7 100.0 1.0×

Standard Distillation 93 35.1 82.2 1.3×
Feature Distillation 93 36.4 85.3 1.3×
Attention Distillation 93 36.8 86.2 1.3×
Multi-Teacher Distillation 93 36.9 86.5 1.2×

Ours (Single-Stage) 93 37.0 86.7 1.4×
Ours (Progressive) 93 37.3 87.3 1.4×

The proposed knowledge-guided distillation achieves174

37.3% accuracy with progressive training, representing175

87.3% retention of teacher performance (42.7%). The176

methodology maintains 87.3% of the teacher’s factual rea-177

soning capabilities while achieving 1.4× speedup and 49%178

parameter reduction.179

4.3 Progressive Training Analysis180

Table 2 demonstrates the effectiveness of the proposed pro-181

gressive curriculum approach.182

Table 2: Progressive training stage analysis

Training Stage Accuracy Knowledge Training
(%) Preserv. (%) Time (hrs)

Stage 1: Basic MM 31.8 74.5 12
Stage 2: Simple KG 35.2 82.5 18
Stage 3: Complex Reason. 37.3 87.3 24

End-to-End Training 36.7 85.9 28

Progressive training methodology achieves superior final183

performance while providing better knowledge retention and184

more stable convergence patterns compared to end-to-end185

training approaches.186

4.4 Ablation Studies187

Table 3 quantifies the contribution of each distillation compo-188

nent.189

Table 3: Ablation study on loss components

Configuration Accuracy (%) Knowledge Preserv. (%)

Full Framework 37.3 87.3

w/o Knowledge Loss 36.1 84.6
w/o Attention Transfer 36.8 86.2
w/o Feature Distillation 36.9 86.4
w/o Progressive Training 36.7 85.9

Output Distillation Only 35.1 82.2

Table 4: Cross-dataset evaluation results

Method OK-VQA FVQA GQA

Teacher Model 42.7 56.8 39.2

Standard Distillation 35.1 46.3 31.8
Ours (Progressive) 37.3 49.6 33.9
Retention Rate 87.3% 87.3% 86.5%

4.5 Cross-Dataset Evaluation 190

Generalization capability assessment across heterogeneous 191

VQA datasets: 192

The proposed approach maintains consistent performance 193

across domains, achieving 86.5-87.3% retention rates com- 194

pared to 81.2-82.2% for standard distillation methodologies. 195

4.6 Computational Efficiency Analysis 196

The proposed knowledge-guided distillation algorithm intro- 197

duces a moderate training overhead when compared to stan- 198

dard distillation due to the additional processes of knowledge 199

retrieval and multi-level loss computation. Despite this in- 200

crease in training cost, the distilled models offer meaningful 201

efficiency gains at inference time, achieving a 1.4× speedup 202

over teacher models while retaining 87.3% of their accuracy. 203

Furthermore, memory consumption is reduced from 1.2 GB 204

to 0.61 GB, demonstrating the practicality of the approach for 205

deployment in resource-constrained environments. 206

5 Analysis and Discussion 207

5.1 Knowledge Transfer Effectiveness 208

An analysis of the proposed framework highlights its ef- 209

fectiveness in transferring distinct reasoning patterns. For 210

single-hop reasoning, which involves direct fact lookup, the 211

transfer effectiveness reaches 78.1%. In the case of multi- 212

hop reasoning, where complex inference chains are required, 213

the effectiveness is lower at 71.3%. Finally, commonsense 214

reasoning, which relies on the implicit application of exter- 215

nal knowledge, achieves 74.7% transfer effectiveness. These 216

results demonstrate that the framework successfully preserves 217

diverse reasoning capabilities, with particularly strong perfor- 218

mance in direct fact retrieval tasks. 219

5.2 Limitations 220

The proposed approach exhibits certain limitations in specific 221

scenarios. First, in the case of complex visual reasoning, 222

performance degradation becomes more evident for questions 223

that demand fine-grained visual analysis in combination with 224

extensive background knowledge, showing a 8-12% addi- 225

tional drop compared to simpler visual tasks. Second, with 226

respect to domain-specific knowledge, transfer effective- 227

ness diminishes when applied to highly specialized areas that 228

are insufficiently represented in general-purpose knowledge 229

graphs. Finally, the framework shows a notable dependency 230

on knowledge graph coverage, with results indicating a 6- 231

9% reduction in accuracy when coverage falls below 75%. 232

These findings suggest that future improvements may require 233

enhanced visual reasoning modules, domain-adaptive knowl- 234

edge sources, and robustness against incomplete knowledge 235

coverage. 236



6 Conclusion237

This research presents a knowledge-guided distillation frame-238

work for compressing multimodal language models while239

preserving knowledge-grounded reasoning capabilities. The240

proposed approach leverages external knowledge graphs to241

guide the teacher-student transfer process, achieving modest242

but consistent improvements compared to standard distilla-243

tion techniques.244

Experimental results demonstrate practical efficiency245

gains: progressive distillation achieves 87.3% accuracy re-246

tention with 1.4× inference speedup and 49% parameter re-247

duction. Knowledge preservation scores of 87.3% confirm248

that the proposed approach successfully transfers reasoning249

capabilities to compact student models, though with some ex-250

pected degradation in complex reasoning tasks.251

Future research directions should explore adaptive knowl-252

edge selection during distillation and investigate domain-253

specific knowledge transfer techniques. The broader impact254

encompasses enabling deployment of multimodal reasoning255

models in resource-constrained environments while acknowl-256

edging the trade-offs between efficiency and performance.257

Limitations: The proposed approach requires high-quality258

knowledge graphs and introduces moderate training complex-259

ity. Performance gains are most pronounced for knowledge-260

intensive tasks, with diminishing benefits for purely percep-261

tual reasoning. The method shows sensitivity to knowledge262

graph coverage and may require domain-specific adaptations263

for specialized applications.264
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