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Abstract

We evaluate the video understanding capabilities of existing foundation models (FMs) using a
carefully designed experiment protocol consisting of three hallmark tasks (action recognition,
temporal localization, and spatiotemporal localization), eight datasets well received by the
community, and four adaptation methods tailoring an FM for downstream tasks. Furthermore,
we jointly profile FMs’ efficacy and efficiency when adapting to general video understanding
tasks using various cost measurements under different scenarios, namely training, inference,
and storage. Our main findings are as follows. First, task-specialized models significantly
outperform the six FMs studied in this work, in sharp contrast to what FMs have achieved
in natural language and image understanding. Second, video-native FMs, whose pretraining
data contains the video modality, are generally better than image-native FMs in classifying
motion-rich videos, localizing actions in time, and understanding a video of more than one
action. Third, the video-native FMs can perform well on video tasks under light adaptations
to downstream tasks (e.g., freezing the FM backbones), while image-native FMs win in
full end-to-end finetuning. The first two observations reveal the need and tremendous
opportunities to conduct research on video-focused FMs, and the last confirms that both
tasks and adaptation methods matter when it comes to the evaluation of FMs. We will
release our code upon acceptance.

1 Introduction

Foundation models (FMs) are a term coined by Bommasani et al. (2021), referring to “any model that is trained
on broad data that can be adapted (e.g., finetuned) to a wide range of downstream tasks.” Some representative
FMs include but are not limited to BERT (Devlin et al., 2018), GPT-3 (Brown et al., 2020), CLIP (Radford
et al., 2021), and ALIGN (Jia et al., 2021). This work primarily investigates the video understanding capabilies
of six visual and multimodal FMs: CoCa (Yu et al., 2022), CLIP (Radford et al., 2021), FLAVA (Singh et al.,
2022), VideoMAE (Tong et al., 2022), VATT (Akbari et al., 2021), and InternVideo (Wang et al., 2022b). We
select these models because they are amendable for the video understanding of our interest and make their
checkpoints accessible to us.

It is nontrivial to evaluate FMs. In contrast to “specialist” models developed for a particular task, FMs are
considered as “generalists” that learn shareable meta-knowledge across tasks so that one can quickly adapt
them to achieve superior performance on various downstream tasks. Hence, both the tasks and adaptation
methods matter when it comes to the evaluation of FMs. However, the community has not reached a consensus
on these two aspects. FM developers select their own different sets of downstream tasks — interestingly,
often covering no video or only appearance-rich video classification tasks (Buch et al., 2022; Lei et al., 2023).
Moreover, they rely on distinct adaptation methods, making apples-to-apples comparisons challenging and
causing mismatches with the FMs’ actual use cases.

To this end, we propose to evaluate FMs’ video understanding capabilities using a carefully designed experiment
protocol, named VideoGLUE, consisting of three hallmark tasks (action recognition, temporal localization,
and spatiotemporal localization), eight datasets well received by the research community, and four model
adaptation methods tailoring a foundation model for downstream tasks. The tasks examine an FM from
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Figure 1: FMs vs. state-of-the-art task-specialized models on video understanding. Unlike natural language
and image understanding, video tasks are where FMs generally fall behind “specialists”. VC(A), VC(M), and
VC(ML) stand for appearance-focused, motion-focused, and multi-labeled video classification, respectively.
STAL stands for spatiotemporal action localization, and TAL stands for temporal action localization. For
each task, we include the (min-max) range shown in the figure.

various aspects needed for understanding video. The “all-around” adaptations represent the main use cases
of FMs in the literature and, more importantly, allow us to thoroughly probe an FM’s potential in video
understanding.

Why do we specifically focus on videos? The main motivation is to promote video understanding in the
evaluation of FMs. More concretely, we test the following conjectures through this work. First, FMs’ high
performance on existing evaluation suites does not necessarily indicate their potential in video since these
suites either lack video-specific tasks or selectively choose video tasks whose appearance feature is more
important than motion — InternVideo (Wang et al., 2022b) is an exception as discussed in the next paragraph.
Second, many existing FMs probably cannot heed motion in video, given that they learn primarily from
static images (Radford et al., 2021; Singh et al., 2022; Yu et al., 2022) or short video clips containing limited
motion (Feichtenhofer et al., 2022; Wang et al., 2022b). Third, popular adaptation methods (e.g., finetuning
all weights) cannot supplement FMs with all the cues needed to recognize motion-rich actions and localize
entities temporally and/or spatiotemporally, as elaborated in Sections 4.1 and 4.2.

While our work is not the first to emphasize the evaluation of FMs, it is unique on multiple fronts. Unlike
ELEVATER (Li et al., 2022a)’s target of evaluating language-augmented FMs, we consider all FMs adaptable
to video understanding which does not necessarily involve language. Unlike Perception Test (Patraucean
et al., 2024)’s coverage of a broad spectrum of perception tasks, we focus on video, allowing us to cover
various aspects of this vertical domain. Interestingly, many of our datasets also appear in InternVideo (Wang
et al., 2022b), a video-oriented FM. However, we promote model adaptation methods as an inherent part of
the evaluation protocol — a consistent set of diverse adaptation methods is necessary to provide FMs ample
opportunities to expose their video understanding capabilities. Moreover, unlike InternVideo’s focus on their
single FM, we evaluate FMs developed by different research groups in an uniform experiment protocol — the
first of its kind for visual and multimodal FMs, to the best of our knowledge.

Our main findings are as follows. First, task-specialized models still significantly outperform the six FMs
studied in this work (see Figure 1), in sharp contrast to what FMs have achieved in natural language (OpenAI,
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2022; Roberts et al., 2022) and image understanding (Radford et al., 2021; Yu et al., 2022; Chen et al., 2022).
Hence, there is a need and tremendous opportunities to research video-focused FMs. Second, video-native
FMs, whose pretraining data contains the video modality, are generally better than image-native FMs in
classifying motion-rich videos, localizing actions in time, and understanding a video of more than one action.
Third, the video-native FMs can perform well on video tasks under light adaptations to downstream tasks
(e.g., freezing the FM backbones), while image-native FMs win in full end-to-end finetuning. This observation
confirms that both tasks and adaptation methods matter when it comes to the evaluation of FMs.

2 Related work

Foundation models. One common type of FMs are Large Language Models (LLMs) trained to acquire
generic, transferable, and diverse representations that can enable sample-efficient learning and knowledge
transfer across a broad range of downstream tasks. FMs are often trained with simple self-supervised learning
objectives such as predicting the next token in a sentence (e.g., GPT-3 (Brown et al., 2020), PaLM (Chowdhery
et al., 2022)), or denoising the masked tokens (e.g., BERT (Devlin et al., 2018), UNILM (Dong et al., 2019),
and BEiT (Bao et al., 2021)). An intriguing characteristic of FMs is their ability to gradually acquire new
capabilities as the model grows and the training data size increases, despite being trained on simple learning
objectives (Wei et al., 2022). For example, PaLM (Chowdhery et al., 2022; Anil et al., 2023), a massive LM
with 540 billion parameters has started to show new capabilities in tasks such as explaining jokes, solving
math, and performing common-sense reasoning when scaled to over 100B parameters.

In addition to self-supervised transformers, FMs in computer vision also encompass transformers specifically
trained to align image-text paired data. These FMs use learning objectives include contrastive learning
(e.g., CLIP (Radford et al., 2021)), denoising masked tokens (e.g., BEiT-3 (Wang et al., 2022a)), predicting
the next token in a single modality (e.g., DALL-E (Ramesh et al., 2021)) or in the interleaved image-text
sequence (e.g., Flamingo, KOSMOS-1 (Huang et al., 2023)). Recent FMs are also trained on a mixture of
these objectives (e.g., CoCa (Yu et al., 2022), FLAVA (Singh et al., 2022), MAE (He et al., 2022)). For
example, MAE combines autoencoder reconstruction objective jointly with the denoising objective (He et al.,
2022) that was extended to video (Feichtenhofer et al., 2022; Tong et al., 2022). In our study, we choose six
representative FMs (i.e., CoCa (Yu et al., 2022), CLIP (Radford et al., 2021), FLAVA (Singh et al., 2022),
VideoMAE (Tong et al., 2022), VATT (Akbari et al., 2021), and InternVideo (Wang et al., 2022b)) due to
their amendability on video understanding and accessibility of checkpoints.

Evaluation of foundation models. As the mission of FMs is to enable sample-efficient knowledge transfer,
the design of downstream tasks is critical to evaluate the capabilities and limitations of these models. The
evaluation of FMs is pioneered by the NLP researchers. For example, GLUE (Wang et al., 2018) and
SuperGLUE (Wang et al., 2019) introduced a suite of tools for evaluating language understanding tasks. The
authors utilized established public benchmarks and provided tools for evaluating, probing, and benchmarking
pretrained FMs, allowing for a comparison to human baselines. ELEVATER (Li et al., 2022a) introduced
this concept to vision FMs along with a toolkit for evaluating vision-language tasks, including knowledge
augmentation, hyperparameter tuning, and three adaptation techniques. In parallel, there have been attempts
to establish a diagnostic benchmark for perceptual understanding of the world. For instance, Perception
Test (Patraucean et al., 2024) crowd-sourced 11K videos in which about 100 users performed scripted activities.
This benchmark (Patraucean et al., 2024) comprises videos filmed by only about 100 participants, which may
not provide the same level of domain coverage and diversity as the other FM evaluation works mentioned
earlier.

Evaluation of video foundation models. While some vision-language FMs have incorporated video
tasks, their evaluation typically follows that of static images and neglects the unique aspects of video spatial-
temporal modeling and reasoning. To our knowledge, no previous work has been solely dedicated to evaluating
video FMs. The closest work to ours are InternVideo (Wang et al., 2022b) and VideoMAE (Tong et al.,
2022), which introduce new FMs and show their superiority over several dozen video datasets. There are two
key differences to the prior works. First, our evaluation is video-centric using the tasks that require motion
understanding or long-term temporal reasoning. Second, instead of promoting new video FMs, our work
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Table 1: Foundation models studied in this work (MxM stands for Masked Image/Language/Video Modeling).

Foundation Model Modality Pretraining Data Pretraining Objective
CoCa Image + Text JFT3B + ALIGN Contrastive + Captioning
CLIP Image + Text WebImageText Contrastive
FLAVA Image + Text PMD Contrastive + MIM + MLM
VideoMAE Video K400 MVM
InternVideo Video UnlabeledHybrid MVM + Contrastive
VATT Video + Audio + Text HT100M Contrastive

Table 2: Summary of statistics, video properties, and data sources of each dataset. Tasks involved are
spatiotemporal action localization (STAL), temporal action localization (TAL), and video classification (VC).
Column "Num. videos" contains video examples in train/evaluation splits, respectively.

Task Dataset Num. videos Avg. length Data source Note

STAL AVA v2.2 210, 634 / 57, 371 15 mins Movie spatiotemporal, instance
AVA-Kinetics 354, 201 / 91, 919 10 seconds Web spatiotemporal, instance

TAL ActivityNet v1.3 10, 002 / 4, 926 5-10 mins Web temporal

VC

Kinetics400 235, 693 / 19, 165 10 seconds Web holistic, appearance
Moments-in-Time 791, 246 / 33, 898 3 seconds Web holistic, appearance
Sth-sth v2 168, 913 / 24, 777 2-6 seconds Crowd-source holistic, motion
Diving48 15, 027 / 1, 970 5 seconds Web holistic, motion
Charades 7, 811 / 1, 814 30 seconds Crowd-source multi-label, long-clip

proposes no new models and is solely dedicated to evaluating current and future video FMs in an impartial
reproducible experimental setup. Concretely, our goal is to provide tools for probing and benchmarking FMs
on motion tasks in various setting include using the parameter-efficient adapter.

3 Tasks and adaptation methods both matter when evaluating foundation models

This section describes our video general understanding evaluation (VideoGLUE) benchmark. We first
introduce the visual and multimodal FMs evaluated in this work. Then we discuss the video-focused
downstream tasks and methods to adapt an FM to the tasks. The former concretizes the video understanding
capabilities we want to evaluate from an FM, while the latter provides various paths for an FM to showcase
the corresponding capabilities.

3.1 Foundation models for video understanding

We are interested in examining which FMs are good at solving video tasks, what makes them better than
others in the video domain, and how to best adapt them to video understanding. Table 1 shows the six FMs
we gained access to via public repositories or personal communications.

3.2 Video understanding tasks

Like objects’ role in image understanding, actions are the core of video understanding, leading us to select
tasks and datasets that recognize and localize actions in time and space. Table 2 provides a quick summary.
Next, we explain the rationale behind the particular choices of datasets and postpone the datasets’ details to
the supplementary materials.
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3.2.1 Recognizing actions

General actions. We first include the action recognition datasets of Kinetics400 (K400) (Kay et al., 2017),
Moments-in-Time (MiT) (Monfort et al., 2019), and Charades (Sigurdsson et al., 2016), considering their
popularity that they are being complementary to each other. Regarding data sources, K400 videos are from
Youtube, MiT draws videos from different Web venues, while Charades contains scripted videos. Regarding
action labels, the datasets differ in granularities and real-life scenarios, a verb defines an action in MiT, K400
groups actions by verb-subject pairs, and Charades actions are about indoor activities. Regarding the average
length, K400 and MiT videos are between 3 and 10 seconds, each with one action label, while Charades
videos are about 30 seconds, each with multiple actions.

Fine-grained motion-focused actions. We also include Something-something-v2 (SSv2) (Goyal et al.,
2017) and Diving48 (D48) (Li et al., 2018) as another two action recognition datasets, whose actions are
fine-grained and motion-focused. SSv2 contains 174 human hand gestures as action labels, such as putting
something into something, turning something upside down, and covering something with something. D48 is
all about competitive diving. Notably, the foreground objects’ motion is a more significant discriminative cue
than their appearance.

3.2.2 Localizing actions

The videos in action recognition are trimmed, but actions could occur anywhere in a video in the wild. Hence,
temporal and spatiotemporal action localization is also crucial to video understanding. Accordingly, we
choose three datasets for the experiments: the action localization track of ActivityNet v1.3 (ANet) (Fabian
Caba Heilbron & Niebles, 2015), Atomic Visual Actions (AVA) (Gu et al., 2018), and AVA-Kinetics (AVA-
K) (Li et al., 2020). The last two require a model to localize and recognize actions in both time and space,
and their underlying videos are movies and general YouTube videos, respectively.

3.3 Adaptation methods

In this section, we detail the task-specific neural architecture design and adaptation methods when applying
FMs to downstream tasks.

3.3.1 Modifying foundation model architectures for downstream tasks

Given an fm(·), we can apply fm(·) to a video clip C to extract a set of k feature maps {F}k = fm(C), F ∈
Rn×h×w×c, where k is the number of endpoint layers from an FM, and n, h,w, c are respectively a feature
map’s length, height, width, and number of channels.

For video classification tasks, we cast a feature map F as n× h× w tokens and aggregate them into a global
representation using a learnable query token τ and lightweight cross-attention layers (Dosovitskiy et al., 2020).
For spatiotemporal action localization, following the standard practice (Feichtenhofer et al., 2019; Tong et al.,
2022), we first detect humans on key-frames using a human detector (Ren et al., 2015), producing a set of
human bounding boxes B. We then apply the RoI pooling operation (Jaderberg et al., 2015) that takes both
the feature map F and box coordinates B as inputs and outputs one feature vector per box as the query
token, τ = RoIPool(F,B), followed by the same cross-attention layers as in video classification. For both
groups of tasks, we stack a linear classifier on top of the task token’s last-layer encoding for final classification:

p = LinearClassifier(CrossAttention(τ, F )). (1)

For temporal action localization, we first perform feature extraction in a sliding window manner, resulting in
a sequence of globally average pooled features {AvgPool(F1), · · · ,AvgPool(Ft)} for each video. Following
a popular choice of prior works (Alwassel et al., 2021; Ju et al., 2022; Liu et al., 2022), we employ G-TAD (Xu
et al., 2020) as our task head for predicting the action category and its start and end timestamps.
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Figure 2: We study four adaptation methods to apply a foundation model (FM) to video understanding
downstream tasks: (a) end-to-end finetuning, (b) frozen backbone evaluation, (c) frozen features with
multi-layer attention pooler (MLAP), and (d) a low-rank adapter.

3.3.2 Adapting modified foundation model to downstream tasks

Adapting the modified FMs to a downstream task is to tune their weights. Then, we immediately have two
basic adaptation strategies: 1) full finetuning to update all weights in the original FM plus the task head
and 2) freezing FM weights and only updating newly added weights. The choice of the adaptation methods
depends on specific application scenarios such as computation and memory constraints. We argue that an
ideal FM should perform well across various adaptation methods to support the breadth of use cases.

End-to-end finetuning. End-to-end finetuning is the most common FM evaluation method for videos
(Akbari et al., 2021; Feichtenhofer et al., 2022; Tong et al., 2022; Wang et al., 2022b), but it requires the
deployment of a separate and possibly expensive FM for each downstream task. When finetuning all weights
in the modified FMs, we limit cross-attention to a single transformer layer with 12 heads and hidden size 768.
We vary learning rates and weight decays for each experiment to ensure every FM is configured to its best
setup. Figure 2(a) illustrates this end-to-end finetuning.

Freezing foundation model weights. Linear probing and cross-attention based pooling over frozen FM
features are routinely used to test the strength of the FM representation (Tong et al., 2022; Yu et al., 2022;
Singh et al., 2022; He et al., 2022; Lin et al., 2022). In practice, adapting task-specific heads with a frozen
FM allows us to deploy the same FM for multiple tasks. If we use light-weight heads over the FM features,
then a single FM inference can serve multiple tasks efficiently in terms of both compute and memory. To
this end, we examine two variations with a frozen FM, one with a single cross-attention layer and the other
with multiple layers. The first results in exactly the same model architectures as in end-to-end finetuning
(Figure 2(b)), and the second allows us to leverage an FM’s hierarchical features beyond its last endpoint
layer (Figure 2(c)). First, the frozen features are extracted from the last k layers, FN−k+1, FN−k+2, ..., FN .
Then, attention pooling is applied between a learnable token τ and the features FN−k+1 using multi-head
cross-attention (MHCA). The output of this layer serves as the query token for the next round of attention
pooling with the features FN−k+2. This process is repeated for k rounds:

τN−k+1 = MLP(MHCA(τ, FN−k+1))
τN−k+2 = MLP(MHCA(τN−k+1, FN−k+2))

...

τN = MLP(MHCA(τN−1, FN ))

(2)

where k = 4 in our experiments, and the final classifier is p = LinearClassifier(τN ).
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Table 3: Evaluating FMs when adapted to video understanding tasks using end-to-end finetuning. We report
the Top-1 accuracy on K400, MiT, SSv2 and D48, MAP on Charades and ANet, and mAP@IOU0.5 on AVA
and AVA-K.

VC (A) VC (M) VC (ML) TAL STAL
Model K400 MiT SSv2 D48 Charades ANet AVA AVA-K AVG
CoCa 82.6 43.6 66.8 79.6 55.0 − 27.7 31.0 55.2
CLIP 81.0 39.0 46.6 75.7 54.3 − 27.1 28.9 52.8
FLAVA 79.1 38.3 61.1 72.0 48.6 − 22.0 25.6 49.4

VideoMAE 78.7 36.1 65.5 75.5 51.4 − 23.5 26.2 51.0
InternVideo 80.1 35.9 67.0 75.8 52.2 − 27.2 29.8 52.5

VATT 77.1 34.8 65.1 77.6 55.7 − 27.0 28.4 52.7

Task-specialized 88.6 42.7 68.7 88.9 63.2 37.5 42.3 38.9 −TubeViT UniformerV2 MViT AIM MoViNet PRN RAFT RAFT

Freezing foundation model weights with low-rank adaptation. Finally, we explore a frozen FM
beyond the last k layers using a low-rank adapter (Hu et al., 2021), which is a bottleneck architecture
that projects a feature tensor into a low-dimensional space and then up-samples to the original space.
The bottleneck space’s dimension is 64 in our experiments. Inserting a few adapter layers with trainable
weights {w} into the pretrained FM while keeping all FM’s weights frozen, the feature adapter is more
parameter-efficient than end-to-end finetuning the whole network while achieving better performance than
simply adding a task head to the frozen FM. Essentially, the adapter leads to a new FM with some trainable
weights {w}: F̃ = F̃M(C, {w}), such that the output feature maps remain the same in shape as the original
FM’s output (Figure 2(d)). Hence, different pooling schemes and task heads aforementioned could be applied
to the extracted feature map F̃ . For simplicity, we still choose the single-layer cross-attention as the default
task head due to its computation efficiency and performance.

The low-rank adaptation allows a single FM for multiple tasks, in contrast to the per-task models in end-to-
end finetuning. However, it incurs a per-task forward pass at inference time, being less efficient than the
task-specific heads over frozen features.

4 Experiments

4.1 End-to-end finetuning

Table 3 shows the end-to-end finetuning results of six FMs on eight datasets. We split the FMs into two
groups based on their input modalities at the time of pretraining: CoCa, CLIP, and FLAVA are image-native
FMs, and VideoMAE, VATT, and InternVideo are video-native. The datasets span spatiotemporal action
localization (STAL), video classification (VC), and temporal action localization (TAL). Note that we freeze
FM weights in TAL because otherwise its full finetuning consumes excessive memory and computation. We
draw the following observations from Table 3.

FMs underperform task-specialized models on video tasks in general. Table 3’s last row collects the state-of-
the-art results on the eight datasets, each obtained by a task-specialized model with comparable architecture
or size to ours in the prior work. Specifically, those task-specialized models are RAFT (Rajasegaran et al.,
2023), PRN (Wang et al., 2021), TubeViT (Piergiovanni et al., 2023), UniformerV2 (Li et al., 2022b),
AIM (Yang et al., 2023), MViT (Fan et al., 2021) and MoViNet (Kondratyuk et al., 2021) respectively. All
six FMs significantly underform the task-specialized models on the video tasks at the comparable model scale,
indicating the lack of strong video-focused FMs. This observation is in sharp contrast to what FMs have
achieved on natural language (OpenAI, 2022; Anil et al., 2023) and image understanding (Chen et al., 2022).

Video-native FMs outperform image-native FMs on SSv2, Charades, and ANet which require a model to
reason along the time dimension: SSv2 actions are motion-rich, Charades has multiple actions per video,
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Table 4: Evaluating FMs when adapted to video understanding using frozen features. Only weights in the
task heads are updated using the downstream tasks’ training sets.

VC (A) VC (M) VC (ML) TAL STAL
Model K400 MiT SSv2 D48 Charades ANet AVA AVA-K AVG
CoCa 73.1 32.0 41.5 34.1 8.8 33.0 23.3 24.7 31.2
CLIP 75.2 32.6 41.0 44.1 11.2 32.7 21.1 25.9 32.8
FLAVA 71.3 29.7 40.6 45.9 12.6 32.2 18.8 21.5 31.7

VideoMAE 65.1 23.0 53.9 59.5 11.3 33.0 16.0 19.9 32.6
InternVideo 69.3 26.3 58.2 55.6 13.0 33.3 13.4 15.7 33.1

VATT 75.1 32.1 57.8 49.7 33.3 35.3 20.3 22.2 39.1

Table 5: Evaluating FMs when adapted to video understanding using multi-layer attention pooler (MLAP),
which takes multiple frozen features from an FM as inputs and map them hierarchically for the final task
prediction. Only the multi-layer attention pooling layers are updated using the downstream tasks’ training
sets.

VC (A) VC (M) VC (ML) TAL STAL
Model K400 MiT SSv2 D48 Charades ANet AVA AVA-K AVG
CoCa 74.2 37.2 45.9 48.4 19.6 33.3 24.4 27.0 36.3
CLIP 77.1 39.0 50.1 55.8 41.5 33.9 27.7 29.6 43.3
FLAVA 71.5 34.5 43.1 58.5 38.2 32.4 21.3 23.2 39.3

VideoMAE 71.7 32.2 57.4 69.6 35.9 33.4 19.6 22.1 40.9
InternVideo 73.7 34.7 60.3 71.9 40.5 33.6 15.9 17.7 42.2

VATT 75.1 35.6 58.7 60.1 58.2 35.0 22.9 24.1 46.3

Table 6: The low-rank adapter results of FMs for video understanding. We only update the weights of the
adapter and task head while keeping the original FMs’ weights frozen.

VC (A) VC (M) VC (ML) TAL STAL
Model K400 MiT SSv2 D48 Charades ANet AVA AVA-K AVG
CoCa 80.9 41.4 56.1 67.1 45.8 − 26.6 28.7 49.0
CLIP 80.2 39.7 56.0 77.2 44.2 − 24.5 28.0 49.3
FLAVA 74.7 34.1 52.1 68.4 40.8 − 17.9 23.8 44.1

VideoMAE 73.6 30.6 61.4 76.0 43.0 − 16.6 23.3 45.9
InternVideo 75.5 31.3 63.9 73.6 46.2 − 19.2 25.5 47.7

VATT 75.0 36.5 63.5 68.9 53.5 − 22.3 25.8 49.9

and ANet is about temporal action localization. These results strut the advantages of video-native FMs over
image-native ones and, hopefully, prompt more efforts dedicating to the research of video-native FMs.

CoCa performs the best among image-native FMs on the video tasks. It actually gives rise to the highest
accuracy on all datasets except SSv2, Charades, and ANet probably because CoCa, pretrained using image-
text pairs, does not capture sufficient motion signals required for understanding SSv2, and it cannot handle
Charades and ANet’s complex, multiple actions per video.

4.2 Freezing foundation models

End-to-end finetuning is infeasible for some application scenarios due to FMs’ rapidly growth in size and
the consequent demands in computational resources. In the following, we evaluate frozen FMs with various
adaptation methods. Tables 4, 5, and 6 are the results of adaptation with a single cross-attention layer,
multiple cross-attention layers, and a low-rank adapter, respectively.
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Figure 3: On the left, we measures FMs’ training, inference and storage cost in trainable FLOPs, inference
FLOPs and number of parameters respectively. On the right, we report VideoGLUE Score, which considers a
FM’s video understanding capability amortized by the developmental costs and adaptation methods.

CLIP generally performs the best among image-native frozen FMs (Tables 4 and 5), but CoCa catches up
thanks to the low-rank adapter (Table 6). It is worth noting that this ranking of image-native frozen FMs
differs from the ranking of image-native FMs in end-to-end finetuning. It seems that CLIP’s endpoint features
are more amendable to the video tasks than CoCa, but CoCa as a whole adapts better to video under both
finetuning and the adapter. Hence, it is crucial to consider adaptation methods as an organic part of the
evaluation of FMs to supply them various paths to demonstrate their capabilities.

Video-native FMs are better than image-native FMs in understanding motion-rich SSv2 and D48, Charades
that contain multiple actions per video, and ANet for temporal action localization. This observation is about
the same as the one under end-to-end finetuning. The image-native FMs is mainly superior on appearance-rich
video datasets, where high-quality spatial perceptual features are the key. We conjecture that the vast image
data empowering image-native FMs is more diverse in appearance than videos used to pretrain video-native
FMs.

Given frozen FMs, the low-rank adapter outperforms cross-attention layers, and multiple layers of cross-
attention is better than a single cross-attention layer. Many works (Caron et al., 2021; He et al., 2022)
have shown features from different layers of a vision transformer have different attention maps. Hence, it
is potentially beneficial to have an adaptation method to leverage multiple layers of a frozen FM. Table 5
reports the results with four cross-attention layers, whose average score per model (across different columns) is
higher than that with a single cross-attention layer (Table 4) by 18% to 40%. The low-rank adapter (Table 6)
further improves upon the cross-attention results partially because it explores all layers of a frozen FM.

On average, image-native FMs outperform video-native FMs under end-to-end finetuning and the adapter, but
it becomes the inverse in the other two adaptation methods. The adapter experiment paired with end-to-end
finetuning experiment reveal the fact that existing image-based FMs could be more easily adapted to video
tasks when we could adjust the feature space of FMs, possibly caused by the large-scale higher quality
image(-text) pretraining datasets. On the other hand, frozen feature experiments discussed above present us
the inverse picture where video-based FM performs better. The seemingly paradox encourages more future
research on bridging the gap on video-based pretraining with high-quality data and more effective modeling.

4.3 Profiling foundation models for video understanding

In this section, we consolidate our studies of the FMs with different adaptation methods and video tasks,
focusing on their overall efficacy and efficiency. Specifically, we use trainable FLOPs, inference FLOPs, and
the number of parameters to approximately represent the training, inference, and storage costs of an FM.
The left of Figure 3 shows the cost values for each adaptation method. Note that an FM with LoRA adaptor
tuning could have high inference cost despite lower training/adaptation costs than end-to-end fine-tuning.
While the figure provides a holistic view of an FM from multiple dimensions, one might be interested in a
ranking among the FMs in terms of their video understanding capabilities. To this end, we summarize the
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multi-dimensional comparisons across different datasets, adaptation methods, and costs using a simplified
scalar measure, termed VideoGLUE Score (VGS), to probe an FM’s general video understanding capability.

We use the cost values to normalize an adapted FM’s average score s over all tasks. Formally, denoting by Si

an FM’s average score over our video tasks under the i-th adaptation method and by Ck
i the corresponding

cost value under the k-th developmental scenario, we calculate the FM’s VGSk by

VGSk =
N∑

i=1
wk

i Si, where wk
i = Ak

i∑N
j=1Ak

j

and Ak
i = 1

log10 C
k
i

, (3)

where N = 4 is the number of adaptation methods, and wi ∈ [0, 1] weighs score Si according to the cost Ck
i .

The final VGS is the arithmetic average on {VGSk}, where k = 1, 2, 3 corresponding to training, inference,
and storage, respectively.

On the right panel of Figure 3, we plot each FM’s VideoGLUE Score. We notice that the video-native FMs
overall outperform image-native FMs on our video understanding tasks, achieving averaged VGS 43.68 vs.
41.88. This is intuitive as video-native FMs probably have a smaller domain gap to our tasks and are more
capable of temporal and motion reasoning, which are important cues for video understanding. Zooming in to
the individual FMs, we find that VATT, a video-native FM, is at the first place with VGS 46.41, followed by
the image-native CLIP with VGS 43.53. This suggests that in-domain pretraining yields overall the best
adaptation capability to video tasks, and image-native FMs could also achieve competitive results on many
but not all video understanding tasks.

5 Conclusion

In this report, we study three image-based and three video-based foundation models and their adaptation
capability on general video understanding tasks. Experiments are conducted on three hallmark video tasks,
eight diverse datasets with four distinct adaption methods. Our study shows existing image-based FMs
performs well on some appearance-rich video datasets, while video-based FMs tend to achieve better on
motional and temporal reasoning. Four studied adaption methods curve different landscape, revealing the
critical role of considering adaption methods as an organic part of evaluating FMs. Finally, we propose
one single metric VGS to represent the video task adaptation efficiency of FMs. We hope our research
provides useful resources for evaluating and analyzing video foundation models, and address the current gap
in foundation model evaluation within the video domain.
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