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Abstract

We evaluate the video understanding capabilities of existing foundation models (FMs) using a
carefully designed experiment protocol consisting of three hallmark tasks (action recognition,
temporal localization, and spatiotemporal localization), eight datasets well received by the
community, and four adaptation methods tailoring an FM for downstream tasks. Furthermore,
we jointly profile FMs’ efficacy and efficiency when adapting to general video understanding
tasks using cost measurements during both training and inference. Our main findings are
as follows. First, task-specialized models significantly outperform the seven FMs studied
in this work, in sharp contrast to what FMs have achieved in natural language and image
understanding. Second, video-native FMs, whose pretraining data mainly contains the
video modality, are generally better than image-native FMs in classifying motion-rich videos,
localizing actions in time, and understanding a video of more than one action. Third, the
video-native FMs can perform well on video tasks under light adaptations to downstream
tasks (e.g., freezing the FM backbones), while image-native FMs win in full end-to-end
finetuning. The first two observations reveal the need and tremendous opportunities to
conduct research on video-focused FMs, and the last confirms that both tasks and adaptation
methods matter when it comes to the evaluation of FMs. Our code is released under https:
//github.com/tensorflow/models/tree/master/official/projects/videoglue.

1 Introduction

Foundation model (FM) is a term coined by Bommasani et al. (2021), referring to “any model that is trained
on broad data that can be adapted (e.g., finetuned) to a wide range of downstream tasks.” Some representative
FMs include but are not limited to BERT (Devlin et al., 2018), GPT-3 (Brown et al., 2020), CLIP (Radford
et al., 2021), and ALIGN (Jia et al., 2021). This work primarily investigates the video understanding
capabilies of seven visual and multimodal FMs: CLIP (Radford et al., 2021), FLAVA (Singh et al., 2022),
CoCa (Yu et al., 2022), DINOv2 (Oquab et al., 2023), VATT (Akbari et al., 2021), VideoMAE (Tong et al.,
2022), and InternVideo (Wang et al., 2022b). We select these models because they are amendable for the
video understanding and make their checkpoints accessible to us.
∗Equal technical contributions.
†Corresponding to lzyuan@google.com and bgong@google.com.
‡Work done at Google. YC is now at NVIDIA; LJ is now at ByteDance; MJ was an intern at Google and is now at Meta.
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Figure 1: Performance of FMs with end-to-end finetuning (red) and frozen backbone (blue), in comparison
with state-of-the-art task-specialized models (black) on VideoGLUE benchmarks. VC-A, VC-M, and VC-ML
stand for appearance-focused, motion-focused, and multi-label Video Classification tasks, respectively; TAL
stands for Temporal Action Localization; STAL stands for Spatiotemporal Action Localization. The highest
and lowest performance numbers on each dataset are mapped to 0.9 and 0.1, and the other numbers are
linearly scaled accordingly on the radar chart. We also use gray shades to represent tasks that are more
focused on appearance understanding more than motion. We observe that: (1) FMs generally fall behind
task-specialized models; (2) FMs that are trained with video data are generally better than image-native
FMs on motion-focused tasks under the frozen backbone setting, and image-native FMs can generally catch
up when finetuned end-to-end on the target dataset.

It is nontrivial to evaluate FMs. In contrast to “specialist” models developed for a particular task, FMs are
considered as “generalists” that learn shareable meta-knowledge across tasks so that one can quickly adapt
them to achieve superior performance on various downstream tasks. Hence, both the tasks and adaptation
methods matter when it comes to the evaluation of FMs. However, the community has not reached a consensus
on these two aspects. FM developers select their own different sets of downstream tasks — interestingly,
often covering no video or only appearance-rich video classification tasks (Buch et al., 2022; Lei et al., 2023).
Moreover, they rely on distinct adaptation methods, making apples-to-apples comparisons challenging and
causing mismatches with the FMs’ actual use cases.

To this end, we propose to evaluate FMs’ video understanding capabilities using a carefully designed experiment
protocol, named VideoGLUE, consisting of three hallmark tasks (action recognition, temporal localization,
and spatiotemporal localization), eight datasets well received by the research community, and four model
adaptation methods tailoring a foundation model for downstream tasks. The tasks examine an FM from
various aspects needed for understanding video. The “all-around” adaptations represent the main use cases
of FMs in the literature and, more importantly, allow us to thoroughly probe an FM’s potential in video
understanding.

Why do we specifically focus on videos? The main motivation is to promote video understanding in the
evaluation of FMs. More concretely, we test the following conjectures through this work. First, FMs’ high
performance on existing evaluation suites does not necessarily indicate their potential in video since these
suites either lack video-specific tasks or selectively choose video tasks whose appearance feature is more
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important than motion — InternVideo (Wang et al., 2022b) is an exception as discussed in the next paragraph.
Second, many existing FMs are unlikely to be able to handle motion in video well, given that they learn
primarily from static images (Radford et al., 2021; Singh et al., 2022; Yu et al., 2022) or short video clips
containing limited motion (Feichtenhofer et al., 2022; Wang et al., 2022b). Third, popular adaptation methods
(e.g., finetuning all weights) cannot supplement FMs with all the cues needed to recognize motion-rich actions
and localize entities temporally and/or spatiotemporally, as elaborated in Sections 4.1 and 4.2.

While our work is not the first to emphasize the evaluation of FMs, it is unique on multiple fronts. Unlike
ELEVATER (Li et al., 2022a)’s target of evaluating language-augmented FMs, we consider all FMs adaptable
to video understanding which does not necessarily involve language. Unlike Perception Test (Patraucean
et al., 2024)’s coverage of a broad spectrum of perception tasks, we focus on video, allowing us to cover
various aspects of this vertical domain. Interestingly, many of our datasets also appear in InternVideo (Wang
et al., 2022b), a video-oriented FM. However, we promote model adaptation methods as an inherent part of
the evaluation protocol — a consistent set of diverse adaptation methods is necessary to provide FMs ample
opportunities to expose their video understanding capabilities. Moreover, unlike InternVideo’s focus on their
single FM, we evaluate FMs developed by different research groups in an uniform experiment protocol — the
first of its kind for visual and multimodal FMs, to the best of our knowledge.

Our main findings are as follows. First, task-specialized models still significantly outperform the seven FMs
studied in this work (see Figure 1), in sharp contrast to what FMs have achieved in natural language (OpenAI,
2022; Roberts et al., 2022) and image understanding (Radford et al., 2021; Yu et al., 2022; Chen et al., 2022).
Hence, there is a need and tremendous opportunities to research video-focused FMs. Second, video-native
FMs, whose pretraining data mainly contains the video modality, are generally better than image-native FMs
in classifying motion-rich videos, localizing actions in time, and understanding a video of more than one
action. Third, the video-native FMs can perform well on video tasks under light adaptations to downstream
tasks (e.g., freezing the FM backbones), while image-native FMs win in full end-to-end finetuning. This
observation confirms that both tasks and adaptation methods matter when it comes to the evaluation of
FMs.

2 Related work

Foundation models. One common type of FMs are Large Language Models (LLMs) trained to acquire
generic, transferable, and diverse representations that can enable sample-efficient learning and knowledge
transfer across a broad range of downstream tasks. FMs are often trained with simple self-supervised learning
objectives such as predicting the next token in a sentence (e.g., GPT-3 (Brown et al., 2020), PaLM (Chowdhery
et al., 2022)), or denoising the masked tokens (e.g., BERT (Devlin et al., 2018), UniLM (Dong et al., 2019),
and BEiT (Bao et al., 2021)). An intriguing characteristic of FMs is their ability to gradually acquire new
capabilities as the model grows and the training data size increases, despite being trained on simple learning
objectives (Wei et al., 2022). For example, PaLM (Chowdhery et al., 2022; Anil et al., 2023), a massive LM
with 540 billion parameters, has started to show new capabilities in tasks such as explaining jokes, solving
math, and performing common-sense reasoning when scaled to over 100B parameters.

In addition to self-supervised transformers, FMs in computer vision also encompass transformers specifically
trained to align image-text paired data. These FMs use learning objectives include contrastive learning (e.g.,
CLIP (Radford et al., 2021)), denoising masked tokens (e.g., BEiT-3 (Wang et al., 2022a)), predicting the
next token in a single modality (e.g., DALL-E (Ramesh et al., 2021)) or in the interleaved image-text sequence
(e.g., Flamingo (Alayrac et al., 2022), Kosmos-1 (Huang et al., 2023)). Recent FMs are also trained on a
mixture of these objectives (e.g., MAE (He et al., 2022), FLAVA (Singh et al., 2022), and CoCa (Yu et al.,
2022)). Our criteria of choosing foundation models to study are primarily based on the definition of FMs,
and their amendability on video understanding and accessibility of checkpoints. We leave some models (e.g.,
detection, segmentation models) out of the scope of this work, because of their current lack of generalization
on video understanding tasks. Finally we choose seven representative FMs, i.e., CLIP (Radford et al., 2021),
FLAVA (Singh et al., 2022), CoCa (Yu et al., 2022), DINOv2 (Oquab et al., 2023), VATT (Akbari et al.,
2021), VideoMAE (Tong et al., 2022), and InternVideo (Wang et al., 2022b).
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Table 1: Foundation models studied in this work (MxM stands for Masked Image/Language/Video Modeling).

Foundation Model Pretraining Modality Pretraining Data Pretraining Objective
CoCa (Yu et al., 2022) Image + Text JFT3B + ALIGN Contrastive + Captioning
CLIP (Radford et al., 2021) Image + Text WebImageText Contrastive
FLAVA (Singh et al., 2022) Image + Text PMD Contrastive + MIM + MLM
DINOv2 (Oquab et al., 2023) Image LVD-142M MIM + DINO
VideoMAE (Tong et al., 2022) Video K400 MVM
InternVideo (Wang et al., 2022b) Video UnlabeledHybrid MVM + Contrastive
VATT (Akbari et al., 2021) Video + Audio + Text HT100M Contrastive

Evaluation of foundation models. As the mission of FMs is to enable sample-efficient knowledge transfer,
the design of downstream tasks is critical to evaluate the capabilities and limitations of these models. The
evaluation of FMs is pioneered by the NLP researchers. For example, GLUE (Wang et al., 2018a) and
SuperGLUE (Wang et al., 2019) introduced a suite of tools for evaluating language understanding tasks. The
authors utilized established public benchmarks and provided tools for evaluating, probing, and benchmarking
pretrained FMs, allowing for a comparison to human baselines. ELEVATER (Li et al., 2022a) introduced
this concept to vision FMs along with a toolkit for evaluating vision-language tasks, including knowledge
augmentation, hyperparameter tuning, and three adaptation techniques. In parallel, there have been attempts
to establish a diagnostic benchmark for perceptual understanding of the world. For instance, Perception
Test (Patraucean et al., 2024) crowd-sourced 11K videos in which about 100 users performed scripted activities.
This benchmark comprises videos filmed by only about 100 participants, which may not provide the same
level of domain coverage and diversity as the other FM evaluation works mentioned earlier.

Evaluation of video foundation models. While some vision-language FMs have incorporated video
tasks, their evaluation typically follows that of static images and neglects the unique aspects of video
spatial-temporal modeling and reasoning. To our knowledge, no previous work has been solely dedicated to
evaluating video FMs. The closest work to ours are InternVideo (Wang et al., 2022b) and VideoMAE (Tong
et al., 2022), which introduce new FMs and show their superiority over several video datasets. This work has
two key differences to the prior ones. First, our evaluation is video-centric using the tasks that require motion
understanding or long-term temporal reasoning. Second, instead of promoting new video FMs, our work
proposes no new models and is solely dedicated to evaluating current and future video FMs in an impartial
reproducible experimental setup. Concretely, our goal is to provide tools for probing and benchmarking FMs
on motion tasks in various settings.

3 Tasks and adaptation methods both matter when evaluating foundation models

This section describes our video general understanding evaluation (VideoGLUE) benchmark. We first
introduce the visual and multimodal FMs evaluated in this work. Then we discuss the video-focused
downstream tasks and methods to adapt an FM to the tasks. The former concretizes the video understanding
capabilities we want to evaluate from an FM, while the latter provides various paths for an FM to showcase
the corresponding capabilities.

3.1 Foundation models for video understanding

We are interested in examining which FMs are good at solving video tasks, what makes them better than
others in the video domain, and how to best adapt them to video understanding. Table 1 shows the seven
FMs we gained access to via public repositories or personal communications. Thanks to the powerfulness and
scalability of the transformer architecture (Vaswani et al., 2017), most developed FMs converge to adopt the
vision transformer architecture. Thus for all evaluated FMs, we intentionally choose the ViT-B (Dosovitskiy
et al., 2020) variant to bring fair comparison into our benchmark. We also notice, in previous literature,
models may be evaluated with different number of frames and resolutions, resulting in unfair comparison (Yan
et al., 2022; Feichtenhofer et al., 2021). In VideoGLUE, we control the number of tokens observed by the
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Table 2: Summary of statistics, video properties, and data sources of each dataset. Tasks involved are video
classification (VC), spatiotemporal action localization (STAL), and temporal action localization (TAL).

Task Dataset # of videos (train/validation) Avg. length Source Notes

VC

Kinetics-400 235, 693 / 19, 165 10 secs Web Holistic, appearance
Moments in Time 791, 246 / 33, 898 3 secs Web Holistic, appearance
Something-Something v2 168, 913 / 24, 777 2 ∼ 6 secs Crowdsource Holistic, motion
Diving48 15, 027 / 1, 970 5 secs Web Holistic, motion
Charades 7, 811 / 1, 814 30 secs Crowdsource Multi-label, long-clip

TAL ActivityNet v1.3 10, 002 / 4, 926 5 ∼ 10 mins Web Temporal

STAL AVA v2.2 210, 634 / 57, 371 15 mins Movie Spatiotemporal, instance
AVA-Kinetics 354, 201 / 91, 919 10 secs Web Spatiotemporal, instance

ViT to be consistent for different FMs on the same task. For the detailed setup on each dataset, please refer
to supplementary materials D.

3.2 Video understanding tasks

Like objects’ role in image understanding, actions are the core of video understanding, leading us to select
tasks and datasets that recognize and localize actions in time and space. Table 2 provides a quick summary.
Next, we explain the rationale behind the particular choices of datasets and postpone the datasets’ details to
the supplementary materials B.

3.2.1 Recognizing actions

General actions. We first include the action recognition datasets of Kinetics-400 (K400) (Kay et al., 2017),
Moments in Time (MiT) (Monfort et al., 2019), and Charades (Sigurdsson et al., 2016), considering their
popularity and they are complementary to each other. Data domain coverage is an important factor when
designing benchmarks for FMs, as nowadays FMs are typically trained on massive data sources. K400 videos
are from YouTube, MiT draws videos from different Web venues, while Charades contains scripted indoor
videos. Internet often returns entertaining and atypical videos, while Charades is about typical everyday
videos (Sigurdsson et al., 2016). Regarding action labels, the datasets differ in granularities and real-life
scenarios: a verb defines an action in MiT, K400 groups actions by verb-subject pairs, and Charades actions
are about indoor activities. Regarding the average length, K400 and MiT videos are between 3 and 10
seconds, each with one action label, while Charades videos are about 30 seconds, each with multiple actions.

Fine-grained motion-focused actions. We also include Something-something v2 (SSv2) (Goyal et al.,
2017) and Diving48 (D48) (Li et al., 2018) as another two action recognition datasets, whose actions are
fine-grained and motion-focused. SSv2 contains 174 human hand gestures as action labels, such as putting
something into something, turning something upside down, and covering something with something. The
videos are mostly focusing on hand-object interactions. D48 videos are all about competitive diving recordings
collected from Web sources. Notably, in these datasets the foreground objects’ motion is a more significant
discriminative cue than their appearance.

3.2.2 Localizing actions

The videos in action recognition are trimmed, but actions could occur anywhere in a video in the wild. Hence,
temporal and spatiotemporal action localization is also crucial to video understanding. Accordingly, we
choose three datasets for the experiments: the action localization track of ActivityNet v1.3 (ANet) (Fabian
Caba Heilbron & Niebles, 2015), Atomic Visual Actions (AVA) (Gu et al., 2018), and AVA-Kinetics (AVA-
K) (Li et al., 2020). The last two require a model to localize and recognize actions in both time and space,
and their underlying videos are movies and general YouTube videos, respectively.
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Figure 2: We study four adaptation methods to apply a foundation model (FM) to video understanding
downstream tasks: (a) end-to-end finetuning, (b) frozen backbone, (c) frozen backbone with multi-layer
attention pooler (MLAP), and (d) a low-rank adapter.

3.3 Adaptation methods

In this section, we detail the task-specific neural architecture design and adaptation methods when applying
FMs to downstream tasks.

3.3.1 Modifying foundation model architectures for downstream tasks

Given an fm(·), we can apply fm(·) to a video clip C to extract a set of k feature maps {F}k = fm(C), F ∈
Rn×h×w×c, where k is the number of endpoint layers from an FM, and n, h,w, c are respectively a feature
map’s length, height, width, and number of channels.

For video classification tasks, we cast a feature map F as n× h× w tokens and aggregate them into a global
representation using a learnable query token τ and lightweight cross-attention layers (Dosovitskiy et al., 2020).
For spatiotemporal action localization, following the standard practice (Feichtenhofer et al., 2019; Tong et al.,
2022), we first detect humans on key-frames using a human detector (Ren et al., 2015), producing a set of
human bounding boxes B. We then apply the RoI pooling operation (Jaderberg et al., 2015) that takes both
the feature map F and box coordinates B as inputs and outputs one feature vector per box as the query
token, τ = RoIPool(F,B), followed by the same cross-attention layers as in video classification. For both
groups of tasks, we stack a linear classifier on top of the task token’s last-layer encoding for final classification:

p = LinearClassifier(CrossAttention(τ, F )). (1)

For temporal action localization, we first perform feature extraction in a sliding window manner, resulting in
a sequence of globally average pooled features {AvgPool(F1), · · · ,AvgPool(Ft)} for each video. Following
a popular choice of prior works (Alwassel et al., 2021; Ju et al., 2022; Liu et al., 2022), we employ G-TAD (Xu
et al., 2020) as our task head for predicting the action category and its start and end timestamps.

3.3.2 Adapting modified foundation model to downstream tasks

Adapting the modified FMs to a downstream task is to tune their weights. Then, we immediately have two
basic adaptation strategies: (1) full finetuning to update all weights in the original FM plus the task head
and (2) freezing FM weights and only updating newly added weights. The choice of the adaptation methods
depends on specific application scenarios such as computation and memory constraints. We argue that an
ideal FM should perform well across various adaptation methods to support the breadth of use cases.
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End-to-end finetuning. End-to-end finetuning is the most common FM evaluation method for videos
(Akbari et al., 2021; Feichtenhofer et al., 2022; Tong et al., 2022; Wang et al., 2022b), but it requires the
deployment of a separate and possibly expensive FM for each downstream task. When finetuning all weights
in the modified FMs, we limit cross-attention to a single transformer layer with 12 heads and hidden size 768.
We vary learning rates and weight decays for each experiment to ensure every FM is configured to its best
setup. Figure 2(a) illustrates this end-to-end finetuning.

Freezing foundation model weights. Linear probing and cross-attention based pooling over frozen FM
features are routinely used to test the strength of the FM representation (Tong et al., 2022; Yu et al., 2022;
Singh et al., 2022; He et al., 2022; Lin et al., 2022). In practice, adapting task-specific heads with a frozen
FM allows us to deploy the same FM for multiple tasks. If we use light-weight heads over the FM features,
then a single FM inference can serve multiple tasks efficiently in terms of both compute and memory. To
this end, we examine two variations with a frozen FM, one with a single cross-attention layer and the other
with multiple layers. The first results in exactly the same model architectures as in end-to-end finetuning
(Figure 2(b)), and the second allows us to leverage an FM’s hierarchical features beyond its last endpoint
layer (Figure 2(c)). First, the frozen features are extracted from the last k layers, FN−k+1, FN−k+2, ..., FN .
Then, attention pooling is applied between a learnable token τ and the features FN−k+1 using multi-head
cross-attention (MHCA). The output of this layer serves as the query token for the next round of attention
pooling with the features FN−k+2. This process is repeated for k rounds:

τN−k+1 = MLP(MHCA(τ, FN−k+1)),
τN−k+2 = MLP(MHCA(τN−k+1, FN−k+2)),

...

τN = MLP(MHCA(τN−1, FN )),

(2)

where k = 4 in our experiments, and the final classifier is p = LinearClassifier(τN ).

Freezing foundation model weights with low-rank adaptation. Finally, we explore a frozen FM
beyond the last k layers using a low-rank adapter (Hu et al., 2021), which is a bottleneck architecture
that projects a feature tensor into a low-dimensional space and then up-samples to the original space. The
bottleneck space’s dimension is 64 in our experiments. Through inserting a few adapter layers with trainable
weights {w} into the pretrained FM while keeping all FM’s weights frozen, the feature adapter is more
parameter-efficient than end-to-end finetuning the whole network while achieving better performance than
simply adding a task head to the frozen FM. Essentially, the adapter leads to a new FM with some trainable
weights {w}: F̃ = F̃M(C, {w}), such that the output feature maps remain the same in shape as the original
FM’s output (Figure 2(d)). Hence, different pooling schemes and task heads aforementioned could be applied
to the extracted feature map F̃ . For simplicity, we still choose the single-layer cross-attention as the default
task head due to its computation efficiency and performance.

The low-rank adaptation allows a single FM for multiple tasks, in contrast to the per-task models in end-to-
end finetuning. However, it incurs a per-task forward pass at inference time, being less efficient than the
task-specific heads over frozen features.

4 Experiments

4.1 End-to-end finetuning

Table 3 shows the end-to-end finetuning results of six FMs on eight datasets. We split the FMs into two
groups based on their input modalities at the time of pretraining: CLIP, FLAVA, CoCa, and DINOv2 are
image-native FMs, while VATT, VideoMAE, and InternVideo are video-native. The datasets span video
classification (VC) and spatiotemporal action localization (STAL). Note that it is infeasible to end-to-end
fine-tune or LoRA fine-tune the vision encoder on TAL task, because the videos in ANet are typically long
(up to 30 minutes). We follow the common practice of pre-computing visual features in a sliding window
manner offline, and training a temporal detection network on top of the visual features (Wang et al., 2021;
Zhang et al., 2022). We will report TAL results in the next section. We draw the following observations from
Table 3.
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Table 3: Evaluating FMs when adapted to video understanding tasks using end-to-end finetuning. We report
the Top-1 accuracy on K400, MiT, SSv2 and D48, MAP on Charades and ANet, and mAP@IOU0.5 on AVA
and AVA-K.

Models VC-A) VC-M VC-ML TAL STAL Avg.K400 MiT SSv2 D48 Charades ANet AVA AVA-K
CLIP 81.0 39.0 46.6 75.7 54.3 − 27.1 28.9 52.8
FLAVA 79.1 38.3 61.1 72.0 48.6 − 22.0 25.6 49.4
CoCa 82.6 43.6 66.8 79.6 55.0 − 27.7 31.0 55.2
DINOv2 80.3 38.7 60.9 70.2 52.4 − 24.6 27.0 50.5
VATT 77.1 34.8 65.1 77.6 55.7 − 27.0 28.4 52.7
VideoMAE 78.7 36.1 65.5 75.5 51.4 − 23.5 26.2 51.0
InternVideo 80.1 35.9 67.0 75.8 52.2 − 27.2 29.8 52.5
Task- 88.6 42.7 68.7 88.9 63.2 37.5 42.3 38.9 −specialized (TubeViT) (UniformerV2) (MViT) (AIM) (MoViNet) (PRN) (RAFT) (RAFT)

FMs underperform task-specialized models on video tasks in general. Table 3’s last row collects the state-of-the-
art results on the eight datasets, each obtained by a task-specialized model with comparable architecture or
size to ours in the prior work. Specifically, those task-specialized models are RAFT (Rajasegaran et al., 2023),
PRN (Wang et al., 2021), TubeViT (Piergiovanni et al., 2023), UniformerV2 (Li et al., 2022b), AIM (Yang
et al., 2023), MViT (Fan et al., 2021), and MoViNet (Kondratyuk et al., 2021), respectively. All seven FMs
underperform the task-specialized models on all video tasks except on Moments in Time at the comparable
model scale, indicating the lack of strong video-focused FMs. This observation is in sharp contrast to what
FMs have achieved on natural language (OpenAI, 2022; Anil et al., 2023) and image understanding (Chen
et al., 2022).

CoCa performs the best among image-native FMs on the video tasks. It actually gives rise to the highest
accuracy on all datasets, with slightly inferior performance on SSv2 and Charades. This shows strong
generalization capability of the CoCa model, regardless it is an image-based model with image-only pre-
training data. However, in the latter session, we will reveal that under light-weight and parameter efficient
adaptation scenarios, the same model may perform inferior on many video understanding tasks, especially
on SSv2 (Tables 4, 5, and 6), Charades (Tables 4, 5, and 6), and ANet (Tables 4, and 5), which require
complex motion or multiple actions understanding per video. These are in contrast that CoCa achieves the
best general performance in end-to-end fine-tuning (Table 3), highlighting the importance of considering
adaptation methods on FMs benchmarking.

4.2 Freezing foundation models

End-to-end finetuning is infeasible for some application scenarios due to FMs’ rapidly growth in size and
the consequent demands in computational resources. In the following, we evaluate frozen FMs with various
adaptation methods. Tables 4, 5, and 6 are the results of adaptation with a single cross-attention layer,
multiple cross-attention layers, and a low-rank adapter, respectively.

Generally speaking, DINOv2 performs the best in the frozen feature pooler evaluation (Tables 4), CLIP
performs the best with multi-head attention pooler among image-native frozen FMs (Tables 5), but CoCa
catches up thanks to the low-rank adapter (Table 6). It is worth noting that this ranking of image-native
frozen FMs differs from the ranking of image-native FMs in end-to-end finetuning. It seems that DINOv2
and CLIP’s frozen features are more amendable to the video tasks than CoCa, but CoCa as a whole adapts
better to video under both finetuning and the adapter. Hence, it is crucial to consider adaptation methods as
an organic part of the evaluation of FMs to supply them various paths to demonstrate their capabilities.

Video-native FMs are better than image-native FMs in understanding motion-rich SSv2 and D48, Charades
that contain multiple actions per video, and ANet for temporal action localization. This observation is
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Table 4: Evaluating FMs when adapted to video understanding using frozen features. Only weights in the
task heads are updated using the downstream tasks’ training sets.

Models VC-A VC-M VC-ML TAL STAL Avg.K400 MiT SSv2 D48 Charades ANet AVA AVA-K
CLIP 75.2 32.6 41.0 44.1 11.2 32.7 21.1 25.9 32.8
FLAVA 71.3 29.7 40.6 45.9 12.6 32.2 18.8 21.5 31.7
CoCa 73.1 32.0 41.5 34.1 8.8 33.0 23.3 24.7 31.2
DINOv2 72.3 29.0 40.0 40.4 25.8 32.6 24.6 26.9 35.0
VATT 75.1 32.1 57.8 49.7 33.3 35.3 20.3 22.2 39.1
VideoMAE 65.1 23.0 53.9 59.5 11.3 33.0 16.0 19.9 32.6
InternVideo 69.3 26.3 58.2 55.6 13.0 33.3 13.4 15.7 33.1

Table 5: Evaluating FMs when adapted to video understanding using multi-layer attention pooler (MLAP),
which takes multiple frozen features from an FM as inputs and map them hierarchically for the final task
prediction. Only the multi-layer attention pooling layers are updated using the downstream tasks’ training
sets.

Models VC-A VC-M VC-ML TAL STAL Avg.K400 MiT SSv2 D48 Charades ANet AVA AVA-K
CLIP 77.1 39.0 50.1 55.8 41.5 33.9 27.7 29.6 43.3
FLAVA 71.5 34.5 43.1 58.5 38.2 32.4 21.3 23.2 39.3
CoCa 74.2 37.2 45.9 48.4 19.6 33.3 24.4 27.0 36.3
DINOv2 75.4 36.0 46.3 51.9 47.8 33.6 25.4 27.0 42.5
VATT 75.1 35.6 58.7 60.1 58.2 35.0 22.9 24.1 46.3
VideoMAE 71.7 32.2 57.4 69.6 35.9 33.4 19.6 22.1 40.9
InternVideo 73.7 34.7 60.3 71.9 40.5 33.6 15.9 17.7 42.2

Table 6: The low-rank adapter results of FMs for video understanding. We only update the weights of the
adapter and task head while keeping the original FMs’ weights frozen.

Models VC-A VC-M VC-ML TAL STAL Avg.K400 MiT SSv2 D48 Charades ANet AVA AVA-K
CLIP 80.2 39.7 56.0 77.2 44.2 − 24.5 28.0 49.3
FLAVA 74.7 34.1 52.1 68.4 40.8 − 17.9 23.8 44.1
CoCa 80.9 41.4 56.1 67.1 45.8 − 26.6 28.7 49.0
DINOv2 77.7 36.1 59.0 76.6 38.0 − 22.5 27.9 47.0
VATT 75.0 36.5 63.5 68.9 53.5 − 22.3 25.8 49.9
VideoMAE 73.6 30.6 61.4 76.0 43.0 − 16.6 23.3 45.9
InternVideo 75.5 31.3 63.9 73.6 46.2 − 19.2 25.5 47.7

about the same as the one under end-to-end finetuning. The image-native FMs are mainly superior on
appearance-rich video datasets, where high-quality spatial perceptual features are the key. We conjecture
that the vast image data empowering image-native FMs is more diverse in appearance than videos used to
pretrain video-native FMs.

Given frozen FMs, the low-rank adapter outperforms cross-attention layers, and multiple layers of cross-
attention is better than a single cross-attention layer. Many works (Caron et al., 2021; He et al., 2022)
have shown features from different layers of a vision transformer have different attention maps. Hence, it
is potentially beneficial to have an adaptation method to leverage multiple layers of a frozen FM. Table 5
reports the results with four cross-attention layers, whose average score per model (across different columns) is
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Figure 3: (a) We measures the training (red diamond) and inference (blue square) cost of different adaptation
methods in terms of number of trainable parameters and inference FLOPs, respectively. (b) We report
VideoGLUE Score that combines a FM’s performance weighted by its training costs with different adaptation
methods for all the image-native (red circle) and video-native (blue pentagon) models.

higher than that with a single cross-attention layer (Table 4) by 18% to 40%. The low-rank adapter (Table 6)
further improves upon the cross-attention results partially because it explores all layers of a frozen FM.

On average, image-native FMs outperform video-native FMs under end-to-end finetuning and the adapter, but
it becomes the inverse in the other two adaptation methods. The adapter experiment paired with end-to-end
finetuning experiment reveal the fact that existing image-based FMs could be more easily adapted to video
tasks when we could adjust the feature space of FMs, possibly caused by the large-scale higher quality
image(-text) pretraining datasets. On the other hand, frozen feature experiments discussed above present us
the inverse picture where video-based FMs perform better. The seemingly paradox encourages more future
research on bridging the gap on video-based pretraining with high-quality data, more effective modeling and
better design on video benchmarks.

4.3 Profiling foundation models for video understanding

In this section, we consolidate our studies of the FMs with different adaptation methods and video tasks,
focusing on their overall efficacy and efficiency. Specifically, we use trainable parameters and inference FLOPs
to approximately represent the training and inference costs of an FM. Since all FMs in our evaluation are
ViT-B and we align the same number of input tokens for each task. The models have almost the same cost in
one adaptation method. The left of Figure 3 shows the cost values for each adaptation method. Note that an
FM with LoRA adaptor tuning could have high inference cost despite lower training/adaptation costs than
end-to-end fine-tuning. While the figure provides a holistic view of an FM from multiple dimensions, one
might be interested in a ranking among the FMs in terms of their video understanding capabilities. To this
end, we summarize the multi-dimensional comparisons across different datasets, adaptation methods, and
costs using a simplified scalar measure, termed VideoGLUE Score (VGS), to probe an FM’s general video
understanding capability.

We use the cost values to normalize an adapted FM’s average performance s over all tasks. Formally, denoting
by Si an FM’s average performance score over our video tasks under the i-th adaptation method and by Ck

i

the corresponding cost value under the k-th developmental scenario, we calculate the FM’s VGSk by

VGSk =
N∑

i=1
wk

i Si, where wk
i = Ak

i∑N
j=1Ak

j

and Ak
i = 1

log10 C
k
i

, (3)

where N = 4 is the number of adaptation methods, and wi ∈ [0, 1] weighs score Si according to the cost Ck
i .

The final VGS is the arithmetic average on {VGSk}, where k = 1, 2 corresponding to training and inference
respectively.

On the right panel of Figure 3, we plot each FM’s VideoGLUE Score. We notice the average VGS for
video-native and image-native FMs on our video understanding tasks are 40.67 vs. 38.84 respectively. Zooming
in to the individual FMs, we find that VATT, a video-native FM, is at the first place with VGS 43.97, followed
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by the image-native DINOv2 with VGS 40.17. This suggests that in-domain pretraining yields overall the
best adaptation capability to video tasks, and image-native FMs could also achieve competitive results on
many but not all video understanding tasks.

5 Limitations

VideoGLUE serves as a comprehensive benchmark for studying and probing various video understanding
capabilities of foundation models. The current task portfolio includes various unimodal action understanding
tasks. We believe the scope of this work could be further extended as there are many other important video
tasks not covered here, e.g. object or point-level tracking, long-term memory and forecasting. Moreover, our
benchmark could be strengthened by adding multimodal tasks like video captioning and question answering,
given the rise of general Vision Language Models (VLM). We chose three representative FM adaptation
methods and used them to provide as uniform experiment protocols for different FMs as possible. However,
some of our observations could be flipped with the evolution of FMs development and adaptation methods,
which are an active research area. We proposed a scalar score, VideoGLUE Score (VGS), to capture the
efficacy and efficiency of an FM on video understanding. However, VGS might be dominated by one or a few
datasets — when it becomes a serious issue, we should probably improve the score and/or retire the datasets
from future versions of VideoGLUE. Indeed, VGS is not a perfect score that covers all aspects of FMs in a
comprehensive manner. For example, it does not account for an FM’s model size, model architecture, etc.
We hope future research will lead to new metrics to complement VGS and a more comprehensive evaluation
of FMs for visual tasks.

6 Conclusion

In this report, we study four image-based and three video-based foundation models and their adaptation
capability on general video understanding tasks. Experiments are conducted on three hallmark video tasks,
eight diverse datasets with four distinct adaption methods. Our study shows existing image-based FMs
performs well on some appearance-rich video datasets, while video-based FMs tend to achieve better on
motion and temporal reasoning. Four studied adaption methods curve different landscape, revealing the
critical role of considering adaption methods as an organic part of evaluating FMs. Finally, we propose
one single metric VGS to represent the video task adaptation efficiency of FMs. We hope our research
provides useful resources for evaluating and analyzing video foundation models, and address the current gap
in foundation model evaluation within the video domain.
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Supplementary Materials

We first discuss the ethcial concerns and broader impact of this work (Section A). We detail the datasets (Sec-
tion B), models (Section C), and training setups (Section D) in the supplementary materials to improve this
work’s reproducibility. Besides, Section E includes more experimental studies to strengthen the main text.

A Ethical concern and broader impact

Ethical concern. We evaluate FMs on three video tasks, eight datasets in total. We select the tasks and
datasets based on their popularity and representativeness. Although carefully designed, our benchmark
inevitably inherited some ethical concerns from those datasets. For instance, many of the datasets are curated
by crawling videos from the Internet, which do not proportionately represent the experiences of the global
population and can potentially lead to biased evaluations of FMs. Moreover, the video datasets involve
human daily activities, leading to privacy concerns about the human actors in the videos. How to evaluate
FMs for video understanding in a fair and privacy-preserving manner could be an important direction for
future research.

Broader impact. Our research reveals the need and tremendous opportunities to research video-first FMs
by improving pretraining video data and methodologies. Our studies on different adaptation methods on
versatile tasks confirms that both tasks and adaptation methods matter when it comes to the evaluation of
FMs, shedding light on the already vibrant area of FM adaptations. Finally, we hope our research could
inspire research on foundation models development and video understanding in general, along with their
applications in the real world.

B Video understanding datasets

Table 7: Summary of dataset publishing year, venue and citations (as of October 17, 2024).

Task Dataset Year Venue Citation

VC

Kinetics-400 (Kay et al., 2017) 2017 arXiv 4, 558
Moments in Time (Monfort et al., 2019) 2018 TPAMI 651
Something-Something v2 (Goyal et al., 2017) 2017 ICCV 1, 582
Diving48 (Li et al., 2018) 2018 ECCV 369
Charades (Sigurdsson et al., 2016) 2016 ECCV 1, 415

TAL ActivityNet v1.3 (Fabian Caba Heilbron & Niebles, 2015) 2015 CVPR 2, 881

STAL AVA v2.2 (Gu et al., 2018) 2018 CVPR 1, 200
AVA-Kinetics (Li et al., 2020) 2020 arXiv 151

In Table 7 we show the publishing year, venues and citations to demonstrate the popularity and community
acceptance of datasets of our choice. Below we provide dataset details.

B.1 Appearance-focused action recognition

Video classification is a task of classifying videos into pre-defined labels, with the major focus on human
actions.

Kinetics-400 (Kay et al., 2017) (K400) is a large-scale, high-quality video dataset widely used as a standard
video classification benchmark. It contains more than 250K video clips with annotations of 400 human daily
actions. The actions are human focused and cover a broad range of classes including human-human interactions
and human-object interactions. Although the video clips span 10 seconds on average, many studies (Sevilla-
Lara et al., 2021; Wang et al., 2018b) have pointed out the task could be easily solved on the Kinetics
datasets by inferring from the static objects appeared or background environment — motion information is
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less important than the visual appearance. Hence, we categorize Kinetics400 as an appearance-focused action
classification dataset.

Moments in Time (Monfort et al., 2019) (MiT) is a large-scale video event classification dataset, with one
million human annotated short video clips (around 3 seconds each). The temporal span corresponds to the
averaged duration of human working memory and is a temporal envelope holding meaningful actions between
people, objects, and phenomena. Videos in MiT are annotated with 339 most used verbs in the English
vocabulary.

B.2 Motion-focused action recognition

Videos contain much more commonsense knowledge than still images do, such as an object’s motion patterns
and the causal consequences of an action, just to name a few. However, appearance-based benchmarks do
not evaluate a model’s understanding of such commonsense knowledge, complex scenes, and situations. In
observance of this, some video datasets have been proposed and studied in recent years with the focus on
motions and common-sensing reasoning that are prosperous in video data.

Something-Something v2 (Goyal et al., 2017) (SSv2) is a collection of around 200K videos of human performing
pre-defined, basic actions with everyday objects. There are 174 unique labels in total depicting atomic hand
manipulations, like putting something into something, turning something upside down or covering something
with something. This dataset benchmarks a model’s fine-grained understanding capability of object motions
and scene changes by making the label space atomic-action-focused and background-invariant.

Diving48 (Li et al., 2018) (D48) is introduced to evaluate a model’s dynamic reasoning capability. The video
clips in this dataset are obtained by segmenting online videos of major diving competitions. In total, there
are around 18K videos annotated with 48 classes. Because of its standardization, the diving scenario is
purposefully chosen to avoid the scene, object, and person biases.

B.3 Multi-label daily action classification

Most of current action classification datasets involve video clips with a clean snapshot of a single action.
In contrast, humans perform daily complex activities step-by-step, simultaneously, or in an interleaving
manner. Towards more comprehensive human daily activity reasoning, Charades (Sigurdsson et al., 2016) is
introduced. Different from web-collected datasets whose contents are more structured, Charades is collected
by crowd-sourcing from hundreds of actors recording their videos in their own homes, acting out casual
everyday activities. Charades brings in more diversity into the video classification task due to its close-to-
daily-life setting. Its videos are 30 seconds long on average and have multi-label annotations testing models’
understanding of complex daily activities with multiple steps. Charades provides 110k videos with 157 action
classes for training and evaluation.

B.4 Temporal action localization

Natural long videos contain scene changes and semantic shifts, while most of the existing video benchmarks
formulate problems to focus on trimmed video clips. Such a gap introduces evaluation bias as clip-level
benchmarks could not reflect a model’s temporal feature discriminativeness, which is of key importance to
solve long-form video understanding tasks. To comprehend the study on foundation models’ video capabilities,
we include the temporal action localization (TAL) task in our evaluation. The task of TAL is to predict not
only the action labels but also each action instance’s temporal boundary in untrimmed videos. We adopt
ActivityNet v1.3 (Fabian Caba Heilbron & Niebles, 2015) as the dataset for the TAL task, which contains
10, 002 untrimmed videos in training and 4, 985 in validation. The video length in this dataset is between
5-10 minutes. In total, there are 200 types of activities annotated.

B.5 Spatiotemporal action localization

Spatiotemporal Action Localization (STAL) is a person-centric task that asks a system to localize actors and
predict their atomic actions (Barker & Wright, 1955; Gu et al., 2018) in a transitory duration.
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Figure 4: (a) Single-layer pooler head and (b) multi-layer attention pooling head for video classification and
spatiotemporal action localization.

Table 8: Early vs. late fusion on image-native FMs. In this experiment, the frozen feature with a single-layer
pooler head is used.

Models K400 SSv2
Early Late Early Late

CLIP 70.5 75.2 38.1 41.0
FLAVA 67.9 71.3 40.4 40.6
CoCa 72.7 61.4 41.5 33.3

In AVA (Gu et al., 2018), 15 minutes long movie clips are densely annotated at 1Hz. In the key frames, every
person is localized using a bounding box and labels corresponding to actions being performed by the actor.
The label vocabulary consists of 80 different atomic visual actions. There are 430 different movies in total.

AVA-Kinetics (Li et al., 2020) follows the same labeling protocol as AVA, while its data source comes from
the Kinetics700 (Kay et al., 2017) video pool. The dataset contains over 230K clips annotated with the 80
AVA action classes for each of the humans in key frames.

C Model details

C.1 Task head architectures

In Figure 4, we plot the task heads used in our video classification and spatiotemporal action localization
experiments, namely, the simple pooler head and multi-layer attention pooling head. For temporal localization,
please refer to Xu et al. (2020) for the task head’s detailed architecture.

Figure 5 illustrates the encoder adapter layer’s architecture. In the the adapter layer, only the down-sample
layer, up-sample layer, and the scaling factor are tunable.

C.2 Image-to-video adaptation

Adapting image backbones to video tasks requires us to fuse the image embeddings at some point in the
network and also introduce additional temporal information.
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Figure 5: The adapter used in vision transformer. In the adapter layer, only the down-sample layer, up-sample
layer, and the scaling factor are tunable. Between the down-sample layer and up-sample layer, an activation
function is applied, which in our case is ReLU.

Table 9: Ablation study on the temporal positional embedding for image-to-video adaption. We choose
FLAVA (Singh et al., 2022) with the frozen feature setting in this experiment.

Adds temporal VC-A VC-M VC-ML
positional embedding? K400 MiT SSv2 D48 Charades

7 71.3 29.7 30.3 41.6 10.7
3 71.3 29.7 40.6 45.9 12.6

We consider two choices, early-fusion and late-fusion, and ablate them in the frozen feature setting in Table 8.
In both early-fusion and late-fusion, we first apply the projection layer on each frame independently to embed
pixel patches into embedding tokens. We then average-pool the embedding tokens from nearby frames to
reduce the sequence length to n× h×w. In the early-fusion setting, we pass all tokens together to the image
backbone to extract video features. In late-fusion, we pass each set of h × w tokens independently to the
image backbone. Empirically, we find that the FLAVA (Singh et al., 2022) and CLIP (Radford et al., 2021)
models do better with late-fusion while CoCa (Yu et al., 2022) does better with early-fusion.

Furthermore, we ablate the importance of temporal information using the frozen-features from FLAVA (Singh
et al., 2022). In Table 9, we find that adding temporal positional embedding to the input is essential for
D48 (Li et al., 2018), SSv2 (Goyal et al., 2017), and Charades (Sigurdsson et al., 2016) while not necessary
for K400 (Kay et al., 2017) and MiT (Monfort et al., 2019). This supports our grouping that K400 and MiT
are appearance-focused datasets.

Based on these findings, we use late-fusion for FLAVA (Singh et al., 2022) and CLIP (Radford et al., 2021)
and early-fusion for CoCa (Yu et al., 2022). We add learnable temporal positional embeddings for all the
image-native FMs.

D Task-specific hyperparameters

In the following, we provide experiment settings and hyperparamters we used in this study. In Table 10, we list
the hyperparameters we applied in the video classification task. In Table 11, we present the hyperparameters
we used on spatiotemporal action localization. In Table 12, we present the hyperparameters we used on
temporal action localization task.
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Table 10: Experimental configurations for video classification tasks. We let learning rate and weight decay to
be tunable per model to allow some flexibility for task adaptations.

Configurations K400 MiT SSv2 D48 Charades
General
Batch size 256 256 256 256 256
Training epochs 150 50 50 100 50
ViT sequence length 8 × 14 × 14 8 × 14 × 14 8 × 14 × 14 8 × 14 × 14 8 × 14 × 14
Optimization
Optimizer AdamW AdamW AdamW AdamW AdamW
Optimizer momentum 0.9 0.9 0.9 0.9 0.9
Learning rate schedule Cosine decay Cosine decay Cosine decay Cosine decay Cosine decay
Warmup ratio 5% 5% 5% 5% 5%
Data augmentations
Random horizontal flip Yes Yes No Yes No
Aspect ratio (0.5, 2.0) (0.5, 2.0) (0.5, 2.0) (0.5, 2.0) (0.5, 2.0)
Area ratio (0.3, 1.0) (0.3, 1.0) (0.3, 1.0) (0.3, 1.0) (0.3, 1.0)
RandAug (9, 0.5) - (9, 0.5) - -
MixUp 0.8 - 0.8 - -
CutMix 1.0 - 1.0 - -
Evaluation
Multi-clips 4 4 1 4 4
Multi-views 3 3 3 3 3
Segment-based sampling No No Yes No No

We performed a greedy search on the learning rate and weight decay in all our experiments while keeping most
other hyperparameters (e.g., data augmentation magnitude, dropout rate, drop path rate, etc.) consistent
across different models and datasets. Specifically, we start with learning rate 1e-4 and weight decay 1e-5
and uniformly sample learning rates and weight decay factors with a rate of 5 and 10, respectively, centered
around the starting points. After the first round, we pick the best-identified learning rate and weight decay
factor as the new starting point and conduct another round of sampling with a rate of 2. We repeat another
two to three rounds of hyperparameter search (with a rate of 2) until the model’s performance converges.
This process is a trade-off between computation costs and thoroughly examining an FM’s performance under
each experiment setup. The search ranges for the learning rate and weight decay are [4e-5, 2.5e-3] and [1e-6,
1e-4], respectively. We found that the learning rate is the most crucial factor when adapting an FM to
downstream video understanding tasks.

E More studies

E.1 Large model adaptations

For the completeness of this report and reader’s reference, in Table 13 we report experimental results under
our settings with large FMs under the frozen backbone with one pooler head setup.

VideoMAE-v2-B/DL (Wang et al., 2023) denotes the ViT-B model distilled from ViT-g on the Kinetics710
datasets1. VideoMAE-v2-g (Wang et al., 2023) is the model that pretrained on UnlabeledHybrid dataset,
while VideoMAE-v2-g/FT (Wang et al., 2023) conducts further finetuning using supervised training on
Kinetics710. InternVideo-v2-g (Wang et al., 2024) and VideoPrism-g (Zhao et al., 2024) are two video
foundation models with multi-stage pre-training on curated in-house web video data. For InternVideo-v2-g,
we use their stage-2 checkpoint2. For videoPrism-g, we use their final checkpoint.

1https://github.com/OpenGVLab/VideoMAEv2/blob/master/docs/MODEL_ZOO.md
2https://github.com/OpenGVLab/InternVideo/blob/main/InternVideo2/multi_modality/MODEL_ZOO.md
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Table 11: Experimental configurations for spatiotemporal action localization.

Configurations AVA v2.2 AVA-Kinetics
General
Batch size 256 256
Training epochs 50 50
ViT sequence length 8 × 16 × 16 8 × 16 × 16
Optimization
Optimizer AdamW AdamW
Optimizer momentum 0.9 0.9
Layer decay 0.75 0.75
Learning rate schedule Cosine decay Cosine decay
Warmup ratio 5% 5%
Data augmentations
Random horizontal flip Yes Yes
Random scale (0.5, 2.0) (0.5, 2.0)
Random color augmentation Yes Yes

Table 12: Experimental configurations for temporal action localization.

Configurations ActivityNet v1.3
General
Batch size 32
Training epochs 10
Feature extraction
Frame rate (FPS) 15
Per-clip length (second) 16
Clip stride 16
Optimization
Optimizer AdamW
Optimizer momentum 0.9
Learning rate schedule Cosine decay

Table 13: Evaluating large-scale FMs when using frozen feature with a one-layer pooler head. We report the
Top-1 accuracy on K400, MiT, D48, SSv2 and MAP on Charades.

Models VC-A VC-M VC-ML
K400 MiT SSv2 D48 Charades

InternVideo-L 78.6 33.7 67.4 69.6 20.9
VideoMAE-v2-B/DL 86.7 38.9 57.7 61.4 33.2
VideoMAE-v2-g 59.7 20.7 44.2 42.5 12.7
VideoMAE-v2-g/FT 82.1 35.0 56.1 60.5 22.4
InternVideo-v2-g 85.0 43.0 61.6 53.1 40.9
VideoPrism-g 86.6 44.7 67.4 66.1 61.0
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Table 14: Benchmark FMs adaptation on video understanding tasks under sample-efficient transfer learning.
This table shows Top-1 classification accuracy and the relative accuracy to training with 100% data (shown
in parentheses). Results are achieved by using frozen features with pooler head.

Models K400 SSv2
1% 10% 100% 1% 10% 100%

CLIP 36.9 (46.2%) 66.8 (83.6%) 79.0 8.7 (19.3%) 25.1 (55.5%) 45.3
FLAVA 14.4 (20.2%) 35.8 (50.3%) 71.3 7.2 (17.7%) 14.3 (35.3%) 40.6
CoCa 27.1 (37.8%) 48.9 (67.0%) 73.1 5.6 (13.4%) 20.9 (50.4%) 41.5
VATT 34.1 (45.4%) 63.7 (84.8%) 75.1 12.9 (22.4%) 37.6 (65.0%) 57.8
VideoMAE 15.5 (23.9%) 32.0 (49.2%) 65.0 13.7 (25.4%) 30.3 (56.2%) 53.9
InternVideo 20.4 (29.5%) 50.2 (72.4%) 69.3 19.5 (33.6%) 41.1 (70.7%) 58.2

E.2 Sample-efficient transfer learning

A strong FM should be able to adapt to downstream tasks with a few training samples. In this section,
we test the adaption ability of FMs in a sample-efficient transfer learning setting. Particularly, we freeze
backbones and train a pooler head to adapt the FMs on K400 and SSv2. For either dataset, we sample 1%
and 10% data from the training set uniformly for training and evaluate on the full evaluation dataset.

We show our experimental results in Table 14. To better understand the data efficiency, we also show the
relative Top-1 accuracy for each model (shown in the bracket), which is defined as the ratio between accuracy
with fewer training examples and the accuracy achieved using all the training data. A higher relative Top-1
accuracy means the performance of the model is closer to its “full” capacity under the sample-efficient setting.
We notice that the best performed model on each dataset in fully fine-tuned model also performs best in the
few-shot setting. Especially, CLIP (Radford et al., 2021) achieves 46.2% and 83.6% relative Top-1 accuracy
on K400 using only 1% and 10% of the training data, respectively. On SSv2, InternVideo (Wang et al., 2022b)
achieves 33.6% and 70.6% relative Top-1 accuracy with only 1% and 10% of the training data.
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