
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT ALGORITHMS FOR INCREMENTAL METRIC
BIPARTITE MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

The minimum-cost bipartite matching between two sets of points R and S in a
metric space has a wide range of applications in machine learning, computer vi-
sion, and logistics. For instance, it can be used to estimate the 1-Wasserstein
distance between continuous probability distributions and for efficiently matching
requests to servers while minimizing cost. However, the computational cost of
determining the minimum-cost matching for general metrics spaces, poses a sig-
nificant challenge, particularly in dynamic settings where points arrive over time
and each update requires re-executing the algorithm. In this paper, given a fixed
set S, we describe a deterministic algorithm that maintains, after i additions to
R, an O(1/δ0.631)-approximate minimum-cost matching of cardinality i between
sets R and S in any metric space, with an amortized insertion time of Õ(n1+δ)
for adding points in R. To the best of our knowledge, this is the first algorithm for
incremental minimum-cost matching that applies to arbitrary metric spaces.
Interestingly, an important subroutine of our algorithm lends itself to efficient par-
allelization. We provide both a CPU implementation and a GPU implementation
that leverages parallelism. Extensive experiments on both synthetic and real world
datasets showcase that our algorithm either matches or outperforms all bench-
marks in terms of speed while significantly improving upon the accuracy.

1 INTRODUCTION

Large-scale online logistics systems typically consist of a fixed fleet of vehicles or robots, while
service requests appear dynamically over time. The task is to maintain a cost-effective assignment
of requests to servers. For example, the New York Taxi System processes more than 300,000 ride
requests daily with a fleet of several thousand taxis NYC Taxi & Limousine Commission (2024).
A plethora of prior studies model this problem as the classical minimum cost bipartite matching
problem (Tong et al., 2016; Zhao et al., 2019; Ke et al., 2019; Tong et al., 2023; Qin et al., 2021;
Abeywickrama et al., 2021). A non-trivial challenge in adapting minimum cost matching to a dy-
namic framework is that recomputing a matching from scratch whenever a new request arrives is
computationally prohibitive and slows down downstream decisions: if each assignment depends on
a full recomputation, the time to compute may exceed the time to dispatch a taxi, significantly in-
creasing passenger wait times. When requests arrive faster than the system can process them, queues
build up, causing cascading delays and further degrading responsiveness. This setting raises two key
challenges: (i) can we design data structures that maintain an approximate minimum-cost matching
while supporting efficient insertions, and (ii) can these structures process new arrivals concurrently
while earlier ones are still being handled? Addressing these challenges is the focus of this work.
Throughout, we assume that the cost function between locations satisfies the metric properties.

This connection to metric bipartite matching naturally extends beyond logistics. The 1-Wasserstein
distance, a widely used tool for comparing probability measures in machine learning, can be ex-
pressed as a minimum-cost matching between empirical distributions (Villani, 2009; Peyré & Cu-
turi, 2019). It has found broad applications in generative modeling, domain adaptation, fairness, and
distributional drift detection (Tolstikhin et al., 2018; Liu et al., 2018; Cao et al., 2019; Balaji et al.,
2020). Formally, for two probability measures µ and ν on a metric space (X , d), it is defined as

W1(µ, ν) = inf
π∈Π(µ,ν)

∫
X×X

d(x, y) dπ(x, y),

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

where Π(µ, ν) denotes the set of couplings of µ and ν.

In many practical scenarios, however, samples arrive in dynamic streams, so the optimal matching
may change at every step. Exact recomputation quickly becomes infeasible in high-throughput ap-
plications such as real-time monitoring (Rabin et al., 2011), adaptive learning (Chen et al., 2018),
or fairness auditing (Chouldechova, 2017). This challenge has spurred a growing body of work
on extending Wasserstein distances to richer domains, including graphs, manifolds, and structured
biological spaces, where data naturally resides beyond Euclidean geometry (Séjourné et al., 2021;
Kolouri et al., 2021; Haasler & Frossard, 2024; Ju & Guan, 2025). Beyond machine learning, dy-
namic geometric matching also arises in diverse real-world applications, such as quantifying similar-
ity between evolving datasets Alvarez-Melis & Fusi (2020), tracking longitudinal changes in patient
data (e.g., MRI scans) Gramfort et al. (2015), and employing matching-based metrics, such as the
Earth Mover’s Distance, in time series analysis Cheng et al. (2021).

Despite its importance, research on minimum-cost matchings in dynamic settings remains limited
and primarily focused on Euclidean spaces. For instance, Goranci et al. (2025) recently studied
the dynamic Euclidean bipartite matching problem, where updates are allowed on both sides of the
matching. Their algorithm achieves an O(1/δ)-approximation with sublinear (in n) update time,
and has applications such as monitoring distributional drift in streaming data. Also see Andoni
et al. (2009) for a streaming algorithm with similar approximation guarantee under insertions and
deletions. However, the framework of Goranci et al. (2025) crucially assumes that both sides of the
bipartite graph always contain the same number of vertices—an assumption that severely restricts its
use in logistics-style scenarios, where servers remain fixed while requests arrive incrementally and
in an unbalanced manner. In addition, the method is tailored to low-dimensional Euclidean spaces
and does not extend naturally to high-dimensional or general metric spaces.

These limitations motivate the central question of this work:

Is it possible to design a fast, constant-factor approximate bipartite matching algorithm for
insertions that works in any metric space?

This question forms the core of our study. It motivates a formal treatment of incremental match-
ings in general metric spaces and establishes a bridge between practical applications and theoretical
guarantees. We now formally define the problem.

Problem 1 (Incremental Metric Bipartite Matching) Let S be a fixed set of n servers embedded
in a metric space (X, d). Requests R = r1, r2, . . . arrive online, one at a time. At time t, the
algorithm has observed requests r1, . . . , rt and must maintain a matching Mt ⊆ S× r1, . . . , rt that
pairs each request to a distinct server in S. The cost of a matching is defined as the sum of edge
distances, and the objective is to maintain a matching whose cost is within a constant factor of the
optimal at all times.

1.1 OUR CONTRIBUTIONS

In this work, we resolve Problem 1 by presenting the first constant-factor approximation algo-
rithm for incremental metric bipartite matching that achieves sublinear update time in the num-
ber of edges. To the best of our knowledge, this is the first algorithm that applies to arbitrary metric
spaces while guaranteeing provably fast updates. Our main result is stated below.

Theorem 1 For any 0 < δ ≤ 1, there exists a deterministic algorithm that maintains an O(1/δα)-
approximate solution for the incremental metric bipartite matching problem on sets R and S em-
bedded in a metric space, with an update time of

O
(
n1+δ · log2

(
1
δ

)
· log(n∆)

)
,

where α = log3 2 and ∆ is the aspect ratio of the metric space.

The total execution time of our incremental algorithm matches the static algorithm of Agarwal and
Sharathkumar while achieving the same approximation ratio. In this sense, our result strictly gener-
alizes their work: it provides the same guarantees in the static setting while additionally supporting
dynamic insertions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In addition to its dynamic nature, our algorithm supports parallel request processing, allowing new
requests to begin execution even while earlier ones are still running. This design avoids queue build-
up and is well suited for many applications, since several core subroutines parallelize naturally. As a
result, incoming requests can be handled concurrently rather than sequentially, making the algorithm
particularly effective in batched-insertion scenarios. To complement the theoretical contribution,
we provide efficient implementations on both CPU and GPU. In extensive empirical evaluations
on synthetic and real-world datasets, we benchmark against standard baselines including a greedy
algorithm and (for low-dimensional Euclidean spaces) quadtree-based greedy approaches. Across
all settings, our implementations consistently match or outperform these baselines in running time
while maintaining competitive solution quality.

1.2 RELATED WORK

Classical algorithms for bipartite matching scale poorly in the incremental setting. The Hungar-
ian algorithm, built on a primal–dual framework Kuhn (1955); Munkres (1957), computes an exact
minimum-cost matching in O(n3) time; even optimized variants under mild assumptions require
Õ(n2.5) time Duan & Pettie (2016). Maintaining optimality as new requests arrive is particularly
expensive: each update requires a Hungarian search step costing Θ(n2) in metric graphs, so pro-
cessing n requests sequentially leads to a total runtime of O(n3). Such bounds are prohibitive
for large-scale systems. A recent breakthrough by Chen et al. (2022) achieves almost linear-time
algorithms for minimum-cost flow in general graphs with polynomial weights, but adapting these
techniques to the incremental setting remains highly nontrivial.

Approximation algorithms provide a way to circumvent these barriers. Agarwal and Sharathku-
mar Agarwal & Sharathkumar (2014) gave a deterministic offline algorithm for metric spaces that
constructs a 1/δ0.631-approximate minimum-cost matching in O(n2+δ) time by combining distance
scaling with simultaneous augmenting path searches. While this result shows that near-quadratic
approximations are achievable in the offline metric setting, directly extending it to an incremen-
tal model is difficult: every new request may trigger searches over Θ(n2) edges, and the distance
scaling framework depends on a constant-factor estimate of the optimum, which is hard to main-
tain dynamically. More recently, in the context of metric optimal transport, advances have yielded
(1+δ)-approximation algorithms running in near-quadratic time Zuzic (2023); Fox (2024), but these
results again apply only to the static case, in sharp contrast to our work, which addresses the more
general incremental setting.

1.3 OVERVIEW OF TECHNIQUES

Our incremental algorithm builds on the static algorithm by Agarwal & Sharathkumar (2014). A key
insight of the static algorithm is that it does not operate directly on the given metric d(·, ·). Suppose
ω is a good ‘guess’ for the offline optimal solution and 0 < δ ≤ 1 is a fixed parameter. We construct
a hierarchy of µ = O(log(1/δ)) progressively “scaled-down” metrics,M0,M1, . . . ,Mµ.

At the base levelM0, each original distance d(s, r) is rescaled by a factor of about n/(εω) (ε =
1/µ) and then rounded up to the nearest integer. In this way, a discretized metric is produced in
which all distances fall in a bounded integer range, and moreover the optimal matching becomes
O(n) in the scaled space. At higher levels (i > 0), the distances are repeatedly shrunk and rounded
further, with the shrinkage factor being roughly n3

iδ . It can be observed that the shrinkage factor
grows very quickly with i, essentially at an exponential rate.

Another key idea is to always maintain a 1-feasible partial matching at each level. Given a complete
bipartite graphG(R∪S,R×S) where each edge (r, s) ∈ R×S has a cost c(r, s), the seminal work
of Gabow and Tarjan Gabow & Tarjan (1989) introduced the idea of a 1-feasible matching, which
can be used to find an approximate minimum-cost matching.

A matching M along with a set of dual weights y(·) on the vertices is called a 1-feasible matching if
the following two condition holds

y(r) + y(s) ≤ c(r, s) + 1, (r, s) ̸∈M, (1)
y(r) + y(s) = c(r, s), (r, s) ∈M. (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Given a 1-feasible matching M, an edge (r, s) ∈ R × S is called an admissible, if either (r, s) is in
M or y(r) + y(s) = c(r, s) + 1.

At a high level, the algorithm works as follows. For any i (initialized to 0), it uses the algorithm by
Gabow and Tarjan to compute a partial 1-feasible matching Mi and corresponding duals yi(·) under
the scaled metric Mi. The algorithm essentially works in phases. Each phase uses a BFS-styled
graph search procedure over the admissible subgraph to match several requests via augmenting
paths. Duals are suitably adjusted when the search cannot proceed. A crucial twist introduced
by Agarwal & Sharathkumar (2014) is that the procedure is halted at level i once every free vertex
in R reaches a dual weight ymax

i = O(n3
iδ).

All such free requests (along with free servers) are then promoted to level i+1 and the algorithm now
operates in the scaled metric spaceMi+1. A delicate analysis shows that the number of requests and
servers promoted to any level 1 ≤ i ≤ µ is upper bounded by n1−Ω(3iδ). Hence, each graph search
phase can take only n2−Ω(3iδ) while the number of phases is upper bounded by ymax

i leading to the
desired O(n2+δ) runtime for each level. In case there are free vertices promoted to level µ, they
are matched using the standard Hungarian algorithm. However, with a suitable choice of parameter,
it can be shown that the number of such requests can be only about n2/3 and hence the Hungarian
algorithm can take at most O(n2) time.

Our Incremental Algorithm. To extend the above algorithm to the incremental setting, a natural
approach is to explicitly maintainO(log(1/δ)) ‘levels’ of 1-feasible partial matchings. For instance,
when a new request rj ∈ R arrives, we need to - (i) determine the level at which we should be
matching it and (ii) efficiently modify the existing matchings and duals at various levels to reflect
this change.

One natural strategy to handle both (i) and (ii) is to initialize the new request at level 0 and augment
the partial matchings and duals at each level, akin to Agarwal & Sharathkumar (2014), and pushing
requests to higher levels as their dual values reach ymax

i for any level 0 ≤ i ≤ µ. However, one
serious caveat of this strategy is that we may end up searching through the entire graph just to
process a single arriving request, which could lead to a prohibitive update time of θ(n2).

We overcome this major challenge by departing from an augmenting path-based approach to a push-
relabel styled framework in order to maintain the partial matchings Mi at each level 0 ≤ i ≤ µ.
Roughly speaking, a newly arrived request r starts at level 0 and simply looks for an admissible edge
in all levels of scaled metric spaces between 0 and µ. We pick such an admissible edge (r, s) ∈ R×S
arbitrarily and execute a ‘push’. Specifically, we match r to s, decrease the dual of the server by 1
to maintain 1-feasibility, and in case the server was already matched to some other request r′, we
make r′ free. In case no admissible edge is found for r, we do a ‘relabel’ - we increase the dual of
r to an extent where one edge becomes admissible. However, if the dual of r reaches ymax

0 , then r
is promoted to level 1 and the process continues. In general, this may free up a request at any level
i ≤ µ in which case we simply continue the push-relabel from this level. One crucial invariant of
our algorithm is that a server that is matched at any level 0 ≤ i ≤ µ is only available to requests that
are at level i or higher.

The above description might suggest we scan Θ(n2) edges even to push a single free request; while
that can happen in the worst case, a careful amortized analysis yields O(n1+δ). For each level i
the total number of requests ever promoted to i is ni ≤ n1−Ω(3iδ) (by the scaled metric and our
choice of ymax

i). Each failed admissible-edge search for a free request at level ≥ i causes a request
dual increment (a relabel) of at least 1, and server dual decrements can be charged to these request
increments, so the total number of such searches is O(ymax

i) before the request is either matched
or promoted. Each search inspects O(ni) matched servers at levels ≥ i (plus one free server), and
we assume a data structure that finds the nearest free server in O(1) time (we never search servers
matched at lower levels). Hence the total work for admissible-edge searches at level i over all n
arrivals is O(n2i · ymax

i) = O(n2+δ) for suitable constants. With only O(log(1/δ)) levels this
yields the stated amortized update time.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

We introduce notations and important definitions that would be required to describe our algorithm.
Given a (possibly partial) matching M ⊆ R × S, we denote the total cost of all the edges in M
by w(M). Throughout this and the next subsection, we will assume that we are given a value
ω satisfying w(M∗

j) ≤ ω ≤ 2w(M∗
j), where w(M∗

j) is the offline optimal solution of requests
r1, r2, · · · rj for any 1 ≤ j ≤ n. We will show how to remove this assumption in Section 3.2.

ω-Scaled Metrics. Given a parameter ω > 0, 0 ≤ δ ≤ 1, we define µ ≤ log3(
2
9δ − 1) different

finite metric spacesM1, . . . ,Mµ+1, where each metricMi is on the points S ∪R equipped with a
distance d̂i(·, ·) defined as follows -

d̂i(s, r) =


⌈
2d(s,r)·n

εω

⌉
if i = 0,

⌈
d̂i−1(s,r)

2(1+ε)2nφi−1

⌉
if i > 0,

(3)

where φi = 3iδ, ε = 1
log3(1/δ)

,

Define ymax
i = 30

ε n
φi ,∀i ∈ {0, . . . , µ+ 1}

We state a two key properties of these metric hierarchy in the form of the following lemma.

Lemma 1 (Agarwal & Sharathkumar (2014)) The following properties are true for the distance
functions d̂i(·, ·)

1. For i ≥ 0, di(·, ·) is a metric.

2. For i ≥ 1, there is a scaling factor σi such that (1− ε/3)σidi(s, r) ≤ d(s, r) ≤ σidi(s, r)

Our algorithm will have a notion of levels for each requests, server, matchings between them and
corresponding duals which corresponds to the hierarchical metric spaces defined above. For each
level i ∈ {0, . . . , (µ+ 1)}, Mi will denote a partial matching at level i and we define the following
w.r.t Mi. Bi

S denotes set of servers that are matched in Mi and BiS =
⋃µ+1

j=i B
i
S , that is BiS is the set

of servers matched in Mk, k ≥ i. SF is the set of all free servers at any point in the algorithm. For
any request or server in R ∪ S, we will maintain an integer level(·) which will denote the level at
which they are currently matched. Finally, let yi(·) be dual weights on R ∪ S.

We introduce two invariants maintained by our algorithm at all points of time.

(I1) At each level i, the matching M maintained by the algorithm is 1-feasible. That is, at any
level i ∈ {0, · · · , µ}

yi(s) + yi(r) ≤ d̂i(s, r) + 1 where (s, r) ̸∈Mi and s ∈ BiS
yi(s) + yi(r) = d̂i(s, r) where (s, r) ∈Mi

(I2) For any unmatched server s (that is s ∈ SF); yi(s) = 0,∀i ∈ {0, · · · , (µ + 1)}. For
any request r, if level(r) = i, then yk(r) = ymax

k ,∀0 ≤ k < i. For any server s, if
level(s) = i, then yk(s) = 0,∀0 ≤ k < i

3 INCREMENTAL PUSH-RELABEL ALGORITHM

In this section we give necessary details of our algorithm and a sketch of the analysis. The main
pseudocode and detailed proofs can be found in Appendix A.

Initialization. At the start of the algorithm, all servers are placed in the free-server set SF, while
the set Bi

S for levels i ∈ {0, . . . , µ+1} are empty (i.e., |Bi
S | = 0 for all i). level(s) = +∞,∀s ∈ S

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The initial matching is empty, denoted M0 = {∅}. For all i ∈ {0, . . . , (µ+ 1)} and for all s ∈ SF,
the dual yi(s) = 0.

We now describe our incremental push–relabel algorithm for handling an arriving request rj . The
algorithm maintains the current matching Mj−1, dual weights for requests and servers at each level,
and data structures for admissible edges.

Incremental-Push-Relabel. Upon arrival of request rj , its dual weights are initialized to zero
across all levels, and it is marked as a free request rf . We compute the ω-scaled metric distances
d̂i(rj , ·) for all 0 ≤ i ≤ µ + 1 We create a sorted list Lrf of free servers ordered by their distance
d(·, rf). Both level(r) and counter i are set to 0.

While there is a free request rf and i ≤ µ+ 1:

• Admissible edge search. We query FIND-ADMISSIBLE-EDGE(rf , i).

– If an admissible edge (rf , s) is found:

* If s is free, we insert (rf , s) into Mj , and decrease yi(s) by 1. Moreover,
· Extract s from Lrf

· Move s from SF to Bi
S

· Set: level(s)← i

* If s is already matched to some r′, we perform a push: replace edge (r′, s) with
(rf , s) in Mj , decrease yi(s) by 1, and perform the following:

· Move s from B
level(r′)
S to Bi

S

· Set: level(s)← i, rf ← r′, i← level(r′)

– If no admissible edge is found, we perform a relabel: increase yi(rf) by the mini-
mum slack needed so that at least one edge becomes admissible. The minimum slack
computation is as follows:

* Let sf be the first server in Lrf

* Then the minimum slack quantity is

min
s∈Bi

S∪{sf}

{
d̂i(s, r)− y(rf)− y(s)

}
+ 1.

• Promotion. If increment by minimum slack pushes yi(rf) up to ymax
i , then the request is

promoted to upper level by setting : level(rf)← i+ 1, i← i+ 1.

If there is free request promoted to level µ + 2, match it to a server at level µ + 2 or SF using
Hungarian Algorithm. The resulting matching is denoted Mj .

Find-Admissible-Edge. Given request r at level i, we first scan all servers currently matched at
levels ≥ i (that is, servers ∈ BiS) to check whether any edge (r, s) is admissible at level i, If such
a server exists, it is returned. Otherwise, we check the closest free server sf from sorted list Li

r for
admissibility under the same condition. If none exist, the procedure returns ∅.
We would like to re-emphasize that we significantly deviate from the algorithm and analysis of the
static approximation algorithm of Agarwal & Sharathkumar (2014) in two major aspects. Firstly,
while the static algorithms build the levels successively by pushing both unmatched requests and free
servers higher and higher, we need to maintain partial matchings at all the levels simultaneously. In
fact, in our algorithm the level of a request increases while that of a server can only decrease.
Secondly, as highlighted in Section 1.3, rather than using augmenting paths, we use a push-relabel
framework to locally match and unmatch requests. Finding an admissible edge is the bottleneck in
this operation. Crucially, we use the 1-feasibility property of the matchings and dual adjustments to
pay for this expensive step.

3.1 ANALYSIS

Cost. The costs analysis of our algorithm follows that of the static algorithm by Agarwal &
Sharathkumar (2014) while having a few crucial differences. The main distinction stems from the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

fact that in the static algorithm, while analyzing the cost of matching at any level i, the set of requests
and servers promoted to level i form a balanced bipartite subgraph of R∪S. Due to the incremental
nature of our setting, the graph we analyze at level i is skewed - it may have more servers than
requests promoted to level i. This introduces non-trivial modifications in the analysis. We provide
all the details in Appendix A.2 and prove the following central lemma.

Lemma 2 Let Mj be the matching maintained by our algorithm after the insertion of rj and let
M⋆

j be the offline optimal matching on that perfectly matches r1, r2, · · · rj with servers in S. Then
w(Mj) ≤ O(1/δα) · w(M⋆

j).

The cost bound relies on maintenance of the dual invariants (I1) and (I2) by our algorithm. While
the static algorithm creates these duals in successive iterations, maintenance of these duals simulta-
neously for all levels is a novel contribution of this work.

Update Time. We sketch the update time analysis of our algorithm which forms the technical heart
of our paper. Each update consists of three operations: Relabel, where the dual of the active request
is increased; Push, where the algorithm either matches a free server or an already matched server
from the same or higher level; and Find-Admissible-Edge, where the algorithm scans for a 1-
admissible edge. We show that the total number of such operations over n requests can be bounded
by O(n2+δ log2(1/δ)), which implies the desired amortized bound per arrival.

Relabel operations. At level i, each request r enters with dual yi(r) = 0 and increases monoton-
ically until either it reaches the maximum allowed dual value ymax

i or is matched. Thus, the total
number of relabel increments per request per level is upper bounded by ymax

i .

Push operations. Push steps are more subtle because they may involve cascading reassignments
of servers. To control this, we relate server dual decrements (triggered by pushes) to request dual
increments (triggered by relabels). The following amortization allows us to bound the number of
push operations by the number of relabel operations.

Lemma 3 For any level i, over all the insertions, the magnitude of server dual decrements is upper
bounded by the magnitude of request dual increments.

Admissible-edge searches. The most expensive operation naively is scanning for admissible
servers, which could cost Θ(n) per request per level. However, we prove two crucial lemmas that
will establish that the amortized number of operations is still bounded by O(n2+δ). The first key
ingredient is the following lemma which upper bounds the number of requests that are promoted to
level i or higher.

Lemma 4 At any point in the insertion sequence, at level i, the number of requests (and hence the
number of servers) matched at level i or higher , denoted by ni, is at most n1−Φi , where Φi =∑i−1

k=0 φk = 3i−1

2 δ.

This bound intuitively implies that search time for admissible edge reduces drastically at higher
levels. While a similar property holds for the static algorithm by Agarwal & Sharathkumar (2014),
our search for an admissible edge also need to consider free servers which can be Θ(n) in the worst
case. However, we overcome this by simply maintaining a list of servers for every request sorted
according to distance. These two properties give us the following lemma.

Lemma 5 For a fixed level i, the total time spent in admissible-edge searches across all request
insertions is O(n2+δ).

Proof. [Proof sketch] From the previous lemma, only n1−Φi requests are matched at level i or
higher at any point of execution. For each such request, we bound the total number of search for an
admissible edge by 2ymax

i before the request is promoted to level i + 1 (in case it is). To see this,
recall the for a free request at level i, the algorithm scans through all the servers that are currently
matched at level i or higher plus the set of currently unmatched servers. The number of operations
for one such search can be upper bounded using Lemma 4 by ni +1, where the additional operation
happens for extracting the nearest unmatched server. A successful search can be charged to a push
step, while an unsuccessful search is charged to a relabel step - both of which are upper bounded by

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ymax
i for any request at level i. This along with Lemma 4 proves the claim with suitable choice of

parameters. □

The above analysis does not directly hold for level µ+ 2 since we are running Hungarian algorithm
at that level. However, observe that by Lemma 4 nµ+2 < nδ . Hence, each Hungarian search cannot
take more than n1+δ) time. Details can be found in Appendix A.3.

Lemma 6 For a sequence of requests r1, r2, · · · rj , the total update time of our algorithm is upper
bounded by O(n2+δ · log2(1/δ)).

3.2 REMOVING THE ASSUMPTION ON ω

Recall that throughout the previous section, we had assumed that we are given an estimate ω such
that after the arrival of any request rj ,w(M∗

j) ≤ ω ≤ 2w(M∗
j), wherew(M∗

j) is the offline optimal
solution of requests r1, r2, · · · rj . In this section, we remove this assumption using a standard guess-
and-double trick.

When the first request r1 is inserted, the procedure begins with the initial value of ω =

mins∈S d̂0(s, r1). Suppose that after processing rj , we find that at some level 0 ≤ i ≤ (µ + 1),
the number of requests with level i or higher is greater than n1−Φi (where Φi =

3i−1
2 δ). Then we

double the value of ω and compute an offline matching by artificially re-insert the request sequence
{r1, . . . , rj} with the new value of ω using our algorithm. We are now ready to finish the proof of
Theorem 1 as follows

Let us divide the insertion sequence r1, r2, · · · rn in to ℓ phases P0,P1,Pℓ such that the value of
ω = 1 at the beginning of P0 and it was doubled at the beginning of Pk for any k ≥ 1. For
0 ≤ k ≤ ℓ, let ωk denote the value of ω at all time points in phase Pk. We show in Appendix A.2
that the cost bound holds as long as ω is at most twice the value of the optimal solution. We claim
that this property is always true for each phase. We prove this by induction on the number of phases
k. Note that this property holds at the beginning of P0 by our choice of ω0 = mins∈S d̂0(s, r1)
and will also hold at the end of this phase since optimal is monotonic. Now fix any Pk, k > 1 and
let rj be the first request in this phase. By the condition of doubling, ωk−1 < w(M⋆

j) and hence
ωk = 2ωk−1 < 2w(M⋆

j). The property holds for all request insertions in this phase by monotonicity
of optimal matching.

For the runtime bound, note that our algorithm always doubles ω when the number of we find that
at some level 0 ≤ i ≤ (µ+ 1), the number of requests with level i or higher is greater than n1−Φi .
We show in the Appendix A.3 that if this is true, the amortized runtime for a phase is upper bounded
by O(n2+δ log2(1/δ)). The only thing remaining to show is that the number of phases is upper
bounded by log(n∆). This follows from the fact that w(M⋆

n) ≤ n∆ and hence we are done.

4 EXPERIMENTS

In this section we present our experimental results. We developed two independent implementations
of our algorithm. The first one is implemented using C++ and performs all operations on the CPU.
The second leverages PyTorch, offloading the computationally intensive components of the algo-
rithm to a GPU. All the tests are performed on a machine with AMD EPYC 7763 64-Core Processor
and 514 GB of RAM using a single computational thread for CPU bounded tasks. For the GPU
bounded tasks we have used NVIDIA A100-SXM4 Graphics processor with 40GB GPU memory
belonging to the same machine.

Datasets: We evaluate our algorithm on two real-world datasets and one synthetic dataset, each
consisting of 10,000 data points. (i) MNIST. The MNIST dataset (LeCun et al.) contains about
70,000 handwritten digit images, each represented as a 28 × 28 grayscale grid (784-dimensional).
We sample two distributions, normalize each image so that pixel intensities sum to one, and measure
distances using the L1 norm. (ii) NYC-Taxi. The New York City Taxi dataset H (2021) provides
pickup and drop-off locations. We construct two distributions from trips completed during the first
week of a given month, ordering requests by pickup datetime to capture sequential arrivals.
(iii) Synthetic. We also generate 10,000 points uniformly at random in the two-dimensional domain

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Average cost per request (b) Average time per request (in seconds)

Figure 1: Plots of MNIST data

(a) Average cost per request (b) Average time per request (in seconds)

Figure 2: Plots of Taxi data

[0, 100]2. Additional results for this dataset appear in Appendix B. For last two datasets, we employ
Euclidean distances.

Adaptation to batch (Batch Incremental PR): Although Algorithm 1 is inherently sequential, it
admits parallelization by allowing new arrivals to be processed before the previous request is fully
matched. We implement a batched version, processing requests in groups of 200. For each batch,
we compute all request–server distances on the GPU and store them in a distance matrix to avoid
redundant calculations. At each level, we maintain an n× n slack matrix and process free requests
in parallel by: (i) constructing the admissible graph, (ii) applying the Israeli & Itai (1986) maximal
matching algorithm, and (iii) updating slack values for matched servers. If no admissible edge exists,
we compute and update the minimum slack for all free requests simultaneously. This parallelization
yields substantial runtime improvements without increasing cost.

Tests: For comparison, we evaluate our Batch Incremental PR algorithm against Greedy and
QuadTree-based (QT) baselines. Each dataset is sampled 10 times, and the server size is fixed
at 10,000. For varying request sizes n ∈ {1000, 2000, . . . , 10000}, we report the average matching
cost and average amortized runtime of all algorithms. In our experiments, we set δ = 0.001. In the
greedy algorithm, for any newly arrived request, the algorithm chooses the nearest free server. In
the quad-tree based algorithm(Har-Peled (2011)), we build a (randomly-shifted or deterministically-
shifted) quadtree over the point sets, process tree nodes bottom-up: at each cell, greedily match as
many red/blue points inside the same cell as possible and Unmatched points are propagated (pushed)
up to parent cells and matched there (again greedily). We have used CPU based implementation for
QT. For Greedy, we have used GPU to compute distance which gives benefits to Greedy process
high dimensional data points.

Results: In terms of runtime, Batch Incremental PR consistently outperforms Greedy on both
datasets (Figure 1(b), Figure 2(b)). In contrast, QT achieves faster runtime on the Taxi dataset
(Figure 2(b)), albeit at the expense of higher matching cost. With respect to cost, Batch Incremental
PR consistently outperforms QT on the Taxi dataset (Figure 2(a)), while performing comparably to
Greedy. On the MNIST dataset, the algorithm QT is inapplicable since distances are computed using
L1-norm. Furthermore, Batch Incremental PR surpasses Greedy with a significant margin both in
terms of cost and update time. Overall, Batch Incremental PR consistently achieves the best balance
between cost and runtime across datasets, and crucially, its performance advantage extends beyond
low-dimensional Euclidean settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Tenindra Abeywickrama, Victor Liang, and Kian-Lee Tan. Optimizing bipartite matching in real-
world applications by incremental cost computation. In Proceedings of the VLDB Endowment
(PVLDB), volume 14, pp. 1150–1158, 2021. doi: 10.14778/3450980.3450983. URL https:
//vldb.org/pvldb/vol14/p1150-abeywickrama.pdf.

Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite matching in metric
spaces. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC),
pp. 555–564, 2014.

David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. Advances
in Neural Information Processing Systems, 33:21428–21439, 2020.

Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David P. Woodruff. Efficient sketches for earth-
mover distance, with applications. In FOCS (or technical report / conference version, 2009),
2009. PDF / tech report available online.

Yogesh Balaji, Rama Chellappa, and Soheil Feizi. Robust optimal transport with
applications in generative modeling and domain adaptation. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),
Advances in Neural Information Processing Systems 33 (NeurIPS 2020). Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
robust-optimal-transport.html.

Jiezhang Cao, Langyuan Mo, Yifan Zhang, Kui Jia, Chunhua Shen, and Mingkui Tan. Multi-
marginal wasserstein gan. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 32 (NeurIPS 2019),
pp. 1774–1784. Curran Associates, Inc., 2019.

Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 63rd IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pp. 612–623. IEEE, 2022. doi: 10.
1109/FOCS54457.2022.00063.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differ-
ential equations. In Advances in Neural Information Processing Systems (NeurIPS), volume 31,
2018.

Kevin Cheng, Shuchin Aeron, Michael C Hughes, and Eric L Miller. Dynamical wasserstein
barycenters for time-series modeling. Advances in Neural Information Processing Systems, 34:
27991–28003, 2021.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big Data, 5(2):153–163, 2017.

Ran Duan and Seth Pettie. Scaling algorithms for weighted matching in general graphs. Journal of
the ACM, 63(2):1–23, 2016. doi: 10.1145/2837021.

Emily Fox. A simple deterministic near-linear time approximation scheme for transshipment with
arbitrary positive edge costs. In 32nd Annual European Symposium on Algorithms (ESA 2024),
pp. 56–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2024.

Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for network problems. SIAM
Journal on Computing, 18(5):1013–1036, 1989. doi: 10.1137/0218069.

Gramoz Goranci, Peter Kiss, Neel Patel, Martin P. Seybold, Eva Szilagyi, and Da Wei Zheng.
Fully dynamic euclidean bi-chromatic matching in sublinear update time. In Proceedings of
the 2025 International Conference on Machine Learning (ICML), May 2025. URL https:
//openreview.net/forum?id=up21Rwj5Fo¬eId=gkzo2X421B. Oral paper.

Alexandre Gramfort, Gabriel Peyré, and Marco Cuturi. Fast optimal transport averaging of neu-
roimaging data. In International Conference on Information Processing in Medical Imaging, pp.
261–272. Springer, 2015.

10

https://vldb.org/pvldb/vol14/p1150-abeywickrama.pdf
https://vldb.org/pvldb/vol14/p1150-abeywickrama.pdf
https://proceedings.neurips.cc/paper/2020/hash/robust-optimal-transport.html
https://proceedings.neurips.cc/paper/2020/hash/robust-optimal-transport.html
https://openreview.net/forum?id=up21Rwj5Fo¬eId=gkzo2X421B
https://openreview.net/forum?id=up21Rwj5Fo¬eId=gkzo2X421B

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

M Yasser H. Nyc taxi trip duration. https://www.kaggle.com/datasets/yasserh/
nyc-taxi-trip-duration, 2021. Kaggle.

Isabel Haasler and Pascal Frossard. Bures–wasserstein means of graphs. In Proceedings of the
27th International Conference on Artificial Intelligence and Statistics (AISTATS), volume 238
of Proceedings of Machine Learning Research, pp. 1873–1881. PMLR, 2024. URL https:
//proceedings.mlr.press/v238/haasler24a/haasler24a.pdf.

Sariel Har-Peled. Geometric approximation algorithms. Number 173. American Mathematical Soc.,
2011.

Amos Israeli and A. Itai. A fast and simple randomized parallel algorithm for maximal match-
ing. Information Processing Letters, 22(2):77–80, 1986. ISSN 0020-0190. doi: https://doi.org/
10.1016/0020-0190(86)90144-4. URL https://www.sciencedirect.com/science/
article/pii/0020019086901444.

Ce Ju and Cuntai Guan. Deep optimal transport for domain adaptation on spd manifolds. Artificial
Intelligence, 345:104347, 2025. doi: 10.1016/j.artint.2025.104347.

Jintao Ke, Feng (Evan) Xiao, Hai Yang, and Jieping Ye. Optimizing online matching
for ride-sourcing services with multi-agent deep reinforcement learning. arXiv preprint
arXiv:1902.06228, 2019. URL https://arxiv.org/abs/1902.06228.

Soheil Kolouri, Navid Naderializadeh, Gustavo K. Rohde, and Heiko Hoffmann. Wasserstein em-
bedding for graph learning (wegl). In Proceedings of the 9th International Conference on Learn-
ing Representations (ICLR), 2021. URL https://openreview.net/forum?id=AAes_
3W-2z.

Harold W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1–2):83–97, 1955.

Yann LeCun, Corinna Cortes, and CJ Burges. The MNIST database of handwritten digits. http:
//yann.lecun.com/exdb/mnist/. Accessed: YYYY-MM-DD.

Huidong Liu, Xianfeng Gu, and Dimitris Samaras. A two-step computation of the exact gan wasser-
stein distance. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning (ICML), volume 80 of Proceedings of Machine Learning Re-
search, pp. 3165–3174. PMLR, 2018. URL http://proceedings.mlr.press/v80/
liu18d.html.

James Munkres. Algorithms for the assignment and transportation problems. Journal of the Society
for Industrial and Applied Mathematics, 5(1):32–38, 1957.

NYC Taxi & Limousine Commission. Nyc taxi trip record data. https://www.nyc.gov/
site/tlc/about/tlc-trip-record-data.page, 2024. Accessed September, 2025.

Gabriel Peyré and Marco Cuturi. Computational Optimal Transport. Now Publishers, 2019.

Guoyang Qin, Qi Luo, Yafeng Yin, Jian Sun, and Jieping Ye. Optimizing matching time intervals
for ride-hailing services using reinforcement learning. Transportation Research Part C: Emerg-
ing Technologies, 129:103289, 2021. doi: 10.1016/j.trc.2021.103289. URL https://www.
sciencedirect.com/science/article/abs/pii/S0968090X21002527.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its applica-
tion to texture mixing. In Proceedings of the 2011 International Conference on Scale Space and
Variational Methods in Computer Vision (SSVM), pp. 435–446, 2011.

Thibault Séjourné, François-Xavier Vialard, and Gabriel Peyré. The unbalanced gromov-wasserstein
distance: Conic formulation and relaxation. In Advances in Neural Information Processing Sys-
tems (NeurIPS) 2021, 2021. URL https://proceedings.neurips.cc/paper/2021/
file/4990974d150d0de5e6e15a1454fe6b0f-Paper.pdf.

11

https://www.kaggle.com/datasets/yasserh/nyc-taxi-trip-duration
https://www.kaggle.com/datasets/yasserh/nyc-taxi-trip-duration
https://proceedings.mlr.press/v238/haasler24a/haasler24a.pdf
https://proceedings.mlr.press/v238/haasler24a/haasler24a.pdf
https://www.sciencedirect.com/science/article/pii/0020019086901444
https://www.sciencedirect.com/science/article/pii/0020019086901444
https://arxiv.org/abs/1902.06228
https://openreview.net/forum?id=AAes_3W-2z
https://openreview.net/forum?id=AAes_3W-2z
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://proceedings.mlr.press/v80/liu18d.html
http://proceedings.mlr.press/v80/liu18d.html
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.sciencedirect.com/science/article/abs/pii/S0968090X21002527
https://www.sciencedirect.com/science/article/abs/pii/S0968090X21002527
https://proceedings.neurips.cc/paper/2021/file/4990974d150d0de5e6e15a1454fe6b0f-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4990974d150d0de5e6e15a1454fe6b0f-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schölkopf. Wasserstein auto-
encoders. In 6th International Conference on Learning Representations (ICLR), May 2018. URL
https://openreview.net/forum?id=HkL7n1-0b.

Yongxin Tong, Jieying She, Bolin Ding, Lei Chen, Tianyu Wo, and Ke Xu. Online minimum
matching in real-time spatial data: Experiments and analysis. In Proceedings of the VLDB En-
dowment (PVLDB), volume 9, pp. 1053–1064, 2016. doi: 10.14778/2994509.2994515. URL
https://www.vldb.org/pvldb/vol9/p1053-tong.pdf.

Yongxin Tong, Dingyuan Shi, Yi Xu, Weifeng Lv, Zhiwei Qin, and Xiaocheng Tang. Combina-
torial optimization meets reinforcement learning: Effective taxi order dispatching at large-scale.
IEEE Transactions on Knowledge and Data Engineering, 35(10):9812–9823, 2023. doi: 10.1109/
TKDE.2021.3127077. URL https://doi.org/10.1109/TKDE.2021.3127077.

Cédric Villani. Optimal Transport: Old and New, volume 338 of Grundlehren der mathematischen
Wissenschaften. Springer, 2009.

Boming Zhao, Pan Xu, Yexuan Shi, Yongxin Tong, Zimu Zhou, and Yuxiang Zeng. Preference-
aware task assignment in on-demand taxi dispatching: An online stable matching approach. In
Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI), volume 33, pp. 2245–
2252, 2019. doi: 10.1609/aaai.v33i01.33012245. URL https://ojs.aaai.org/index.
php/AAAI/article/view/4060.

Goran Zuzic. A simple boosting framework for transshipment. In 31st Annual European Sympo-
sium on Algorithms (ESA 2023), volume 274, pp. 104–1. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2023.

APPENDIX

A DETAILS OF ALGORITHM AND ANALYSIS

A.1 ANALYSIS

Our analysis consists mainly of two parts. In section A.2, we establish the competitive ratio of
algorithm 1. Next, in section A.3, we show that the total runtime of the Algorithm 1 is Õ(n2+δ). We
state two easy but crucial observations about the algorithm INCREMENTAL-PUSH-RELABEL which
will be used at various parts in the analysis.

Observation 1 For any 1 ≤ j ≤ n, the algorithm maintains a matching Mj of the request sequence
{r1, r2, · · · rj} . Moreover, once a server is matched, it never becomes free.

The first observation follows from the simple fact that we run the main loop until there exists a free
request (recall that requests can become free and matched during the processing of a new request).
It is unclear at this point why the process should terminate. However, we prove in Section A.3 that
it indeed does.

Given a matching Mj , define Mi
j as the set of edges (s, r) ∈ Mj such that level(r) = level(s) = i

- we refer to such an edge as a matched edge at level i.

Observation 2 For any r ∈ R, level(i) is monotonically increasing while for any s ∈ S, level(s)
is monotonically decreasing over the sequence of insertions.

Both the observations follow from the fact that in FIND-ADMISSIBLE-EDGE , for any request r the
algorithm only considers edges to s that level(i) ≤ level(s).
We prove the following invariants for any matching Mi

j , 1 ≤ j ≤ n, introduced in Section 2.

12

https://openreview.net/forum?id=HkL7n1-0b
https://www.vldb.org/pvldb/vol9/p1053-tong.pdf
https://doi.org/10.1109/TKDE.2021.3127077
https://ojs.aaai.org/index.php/AAAI/article/view/4060
https://ojs.aaai.org/index.php/AAAI/article/view/4060

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 1 INCREMENTAL-PUSH-RELABEL

Input: The j-th request rj , where j ∈ {1, . . . , n}
Output: Matching Mj after macthing rj

1: Mj ←Mj−1

2: yi(rj)← 0 for all i ∈ {0, . . . , µ}
3: rf ← rj ▷ free request
4: Lrf ← CREATE-SORTED-EDGE-LIST(rf)
5: i← 0
6: while rf ̸= ∅ and i ≤ (µ+ 1) do
7: if yi(rf) = ymax

i then
8: i← i+ 1 ▷ promotion of rf
9: level(rf)← i

10: continue
11: end if
12: s← FIND-ADMISSIBLE-EDGE(rf , i)
13: if s ̸= ∅ then
14: if s ∈ SF then ▷ free server
15: Add edge (s, rf) to Mj

16: yi(s)← yi(s)− 1 ▷ Relabel : decrease server dual
17: rf ← ∅
18: level(s)← i
19: SF ← SF \ {s}
20: Remove the first element from Lrf ▷ update Lrf

21: Bi
S ← Bi

S ∪ {s}
22: else
23: Add (s, rf) to Mj ▷ Push : server s matched to r′
24: let r′ be the request matched to s
25: Remove (s, r′) from Mj

26: adjust the server dual: yi(s)← yi(s)− 1
27: rf ← r′

28: level(s)← i

29: B
level(r′)
S ← B

level(r′)
S \ {s}

30: Bi
S ← Bi

S ∪ {s}
31: i← level(r′)
32: end if
33: else
34: Let sf be the first server in Li

rf

35: slackmin ← mins∈Bi
S∪{sf}

{
d̂i(s, r)− y(rf)− y(s)

}
36: yi(r

f)← min{(yi(rf) + slackmin + 1), ymax
i } ▷ Relabel: increase request dual

37: end if
38: end while
39: if rf ̸= ∅ and level(rf) = (µ+ 2) then
40: Use Hungarian algorithm to match rf with servers in the set Bµ+2

S ∪ SF

41: end if
42: return Mj

Algorithm 2 CREATE-SORTED-EDGE-LIST(r)

Input: Request r
Output: Sorted list of free servers ∈ SF over d(·, r)

1: L ← {∅}
2: for s ∈ SF do
3: L ← L ∪ {(s, d(s, r))}
4: end for
5: SORT(L) based on d(·, r)
6: return L

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 3 FIND-ADMISSIBLE-EDGE(r, i)

Input: Request r and its current level i
Output: A server s having admissible edge with r if exists

1: for s ∈ BiS do ▷ Find an admissible non-free server
2: if yi(s) + yi(r) = d̂i(s, r) + 1 then
3: return s
4: end if
5: end for
6: Let sf be the first server in Lr ▷ Find an admissible free server
7: if yi(sf) + yi(r) = d̂i(s

f , r) + 1 then
8: return sf
9: end if

10: return ∅

(I1) At each level i, the matching Mi
j maintained by the algorithm is 1-feasible. That is, at any

level i ∈ {0, · · · , µ}

yi(s) + yi(r) ≤ d̂i(s, r) + 1 where (s, r) ̸∈Mi
j and s ∈ BiS

yi(s) + yi(r) = d̂i(s, r) where (s, r) ∈Mi
j

(I2) For any unmatched server s (that is s ∈ SF); yi(s) = 0,∀i ∈ {0, · · · , (µ + 1)}. For
any request r, if level(r) = i, then yk(r) = ymax

k ,∀0 ≤ k < i. For any server s, if
level(s) = i, then yk(s) = 0,∀0 ≤ k < i

Lemma 7 (Invariant (I2)) For any unmatched server s ∈ SF, yi(s) = 0,∀0 ≤ i ≤ µ . For any
request r, if level(r) = i, then yk(r) = ymax

k ,∀0 ≤ k < i. For any server s, if level(s) = i, then
yk(s) = 0,∀0 ≤ k < i.

Proof. The first claim follows from Observation 1 and the fact that for a server in SF, yi(s) is set
to 0 in the initialization phase.

The second claim can be proved using induction on i. For the base case (i = 0), the lemma holds
vacuously. Now consider any level i ≥ 1. Firstly, by induction hypothesis, yk(r) = ymax

k , 0 ≤ k <
i− 1. Further, since r is matched at level i, there exists some iteration when it became a free vertex
at level i. This implies yi−1(r) was set to ymax

i−1 at some iteration. Furthermore, dual increments of
r happens only at the relabel step and the only dual values that are modified in subsequent iterations
are yk(r) for k ≥ i. The third claim follows from an analogous argument for the servers. □

Lemma 8 (Invariant (I1)) The matching M maintained by Algorithm 1 is always 1-feasible.

Proof. We proceed by induction over updates to M. Suppose 1-feasibility holds after processing
rj−1. Consider any dual update during the processing of rj . Duals change only in three places: two
for servers and one for requests. We argue these two cases using contradiction.

Case 1 (request update). For contradiction, let us assume Invariant (I1) is violated for request r at
a point of time when level(r) = i. Recall that the dual variable yi(r) is increased by at least 1
if and only if there is no admissible edge from any s ∈ Bi

S ∪ Lr. We want to show, r maintains
feasibility condition with all the servers of BiS ∪ Lr. We can ignore all server s′ ∈ BkS where k < i,
since Observation 2 eliminates the possibility of (s′, r) being a matching edge in future. If r is a
matched request, its dual does not increase. Thus, r is a free request at level i with no admissible
edge. After increasing yi(r), suppose for contradiction that feasibility is violated on some (s, r),
where s ∈ BiS ∪ Lr, i.e.,

yi(s) + yi(r) ≥ di(s, r) + 2.

By induction hypothesis, just before the update we had equality yi(s) + yi(r) = di(s, r) + 1, so
(s, r) was admissible. Since r was free, the algorithm would have matched it, contradiction.

Case 2 (server update). When a request r with level(r) = i matches a server s ∈ BiS , the dual of
s is decreased by 1. By induction hypothesis (s, r) was non-matching 1-feasible edge before the
update. Hence, decreasing yi(s) cannot violate feasibility.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Thus all updates preserve 1-feasibility. □

A.2 COST ANALYSIS

After matching rj , let Mj andM∗
j be the matching by the algorithm and the optimal matching (under

d(·, ·)), respectively. w(Mj) and w(M∗
j) denote the cost of the respective matching under metric

d(·, ·). Similarly, ŵ(Mj) and ŵ(M∗
j) denote the cost of the respective matching under metric d̂(·, ·).

We shall show that w(Mj) = O(1/δα)w(M∗
j). For our analysis, we assume that we maintain the

guess w such that w(M∗
j) ≤ ω ≤ 2w(M∗

j); ∀j ∈ {1, . . . , n}.

First, let us explore a few properties of the metric space defined by the distance function d̂i(·, ·).
Let Mi

j ⊆ Mj denotes the set of matching edges at level i. Let Si
j = BiS ∪ SF. Let Ri

j be requests
such that for any r ∈ Ri

j ; level(r) ≥ i.
Lemma 9, 10, 11 follows from Agarwal & Sharathkumar (2014). However their notion of server
sets used in the lemma are different ours. Specifically, Si

j contains servers which are both free or
matched at any level i or higher. Although the methodology of our proof is more or less similar to
them, our proof departs at certain places from them due to different definition of server set. For the
sake of completeness and readability, we present the full proof of the said Lemmas.

Lemma 9 1. For any i ≥ 0, di(·, ·) is a metric.

2. For i ≥ 1, di(s, r) ≥ 6
ε for any (s, r) ∈ Si

j ×Ri
j .

3. For any i ≥ 1, there is a scaling factor σi such that

(1− ε/3)σidi(s, r) ≤ d(s, r) ≤ σidi(s, r)

Proof. Proof of part (i) Given three points a, b and c in the metric space defined by the distance
function d(·, ·), from the triangle inequality

d(a, b) + d(b, c) ≥ d(a, c)

The inequality holds even if we multiply it by some k ∈ R as follows

⌈kd(a, b)⌉+ ⌈kd(b, c)⌉ ≥ ⌈kd(a, c)⌉
Using this scaling property of the metric space, we will complete the proof of this part. The distance
function is defined by d̂i(·, ·). We use induction on i. When i = 0, we set k = n

εω , where n is
the total number of requests. We have d̂0(·, ·) satisfying the triangle inequality. Assume d̂i−1(·, ·)
satisfies the triangle inequality. Setting k = 1

2(1+ε)2nφi−1 and d(·, ·) = d̂i−1(·, ·), we have d̂i(·, ·)
satisfying the triangle inequality.

Proof of part (ii) Consider request r ∈ Ri
j is matched at level i. Then for any level 0 ≤ k < i,

yk(r) = ymax
k following Invariant (I2). Moreover Invariant (I2) ensures, for any server s ∈ Si

j ,
yk(s) = 0. Then, for any edge (s, r) ∈ Si

j ×Ri
j , the following holds,

yk(s) + yk(r) =
30

ε
nφk ≤ d̂k(s, r) + 1

This implies, d̂k(s, r) ≥ 30
ε n

φk − 1. So, ∀i > 0, we have

d̂i(s, r) ≥
d̂i−1(s, r)

2(1 + ε)2nφi−1
≥ 3

2(1 + ε)2ε
− 1 ≥ 6

ε

since ε = 1

2 log3(1
δ)
≤ 1

2

Proof of part (iii) Ignoring the ceiling operator in the scaling of distance only decrease the value of
d̂i(·, ·), so using 3 repeatedly, we obtain

1

σi
· d(s, r) ≤ d̂i(s, r)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where, σi =
ωε(2(1+ε)2)i

n1−Φi
. On the other hand,

d̂i(s, r) ≤
1

2(1 + ε)2nφi−1
d̂i−1(s, r) + 1

By expanding the recurrence and performing the necessary algebraic manipulations, we arrive at

d̂i(s, r) ≤
d(s, r)

σi
+ 2

Now using part (ii) of the lemma, we obtain

(1− ε/3)σid̂i(s, r) ≤ d(s, r) ≤ σid̂i(s, r).
□

Corollary 1 For i ≥ 1, let M and M ′ be two (possibly partial) matchings of Si
j , Ri

j .

1. If M is a perfect matching, then ŵ(M) ≥ 6
εγi, where γi is the number of requests in Ri

j .

2. (1− ε
3)

ŵ(M)
ŵ(M ′) ≤

w(M)
w(M ′) ≤

1
1− ε

3

ŵ(M)
ŵ(M ′)

For the next lemma, letMi
j denotes the optimal matching between Si

j and Ri
j under metric d(·, ·).

This impliesM0
j =M∗

j .

Lemma 10 For all i ∈ {0, · · · , (µ+ 1)}, the following holds

w(Mi
j) ≤ 2(1 + ε)w(Mi

j)

Proof. Observe that, for every edge (s, r) ∈ Mi
j ; yi(s) + yi(r) = d̂i(s, r) and for every vertex

v ∈ Si+1
j ∪Ri+1

j , yi(v) ≥ 0 (follows from Invariant (I2)). Therefore,

ŵ(Mi
j) ≤

∑
v∈Si

j∪Ri
j

yi(v)

For every edge (s, r) ∈Mi
j , yi(s)+yi(r) ≤ d̂i(s, r)+1. Every vertex of Ri

j is incident on exactly
one edge ofMi

j , so

∑
v∈Si

j∪Ri
j

yi(v) ≤
∑

(s,r)∈Mi
j

d̂i(s, r) + γi ≤ ŵ(Mi
j) + γi (4)

Consequently,

ŵ(Mi
j) ≤ ŵ(Mi

j) + γi (5)

We prove the lemma for cases i = 0 and i > 0 separately:

Case i = 0: From the equation 5, we have ŵ(M0
j) ≤ ŵ(M0

j)+ j. Since d̂0(s, r) =
⌈
2d(s,r)·n

εω

⌉
and

ω ≤ 2(M0
j), we obtain the following inequalities:

ŵ(M0
j) ≤

∑
(s,r)∈M0

j

(
2n

εω
d(s, r) + 1

)
+ j

≤ 2n

εω
w(M0

j) + 2j.

(6)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

ŵ(M0
j) ≥

2n

εω

∑
(s,r)∈M0

j

d(s, r) =
2n

εω
w(M0

j) (7)

Combining the above equation 6 and 7 and using ω ≤ 2w(M0
j),

w(M0
j) ≤ w(M0

j) + εω ≤ 2(1 + ε)w(M0
j).

Case i > 0: From 5 and Corollary 1(1) , we get

ŵ(Mi
j) ≤ ŵ(Mi

j) + γi ≤ (1 + ε/6)ŵ(Mi
j).

Finally by Corollary 1(2),

w(Mi
j) ≤

1 + ε/6

1− ε/3
w(Mi

j) ≤ (1 + ε)w(Mi
j).

□

Lemma 11 For all i ∈ {0, · · · , (µ+ 1)}, the following holds

w(Mi+1
j) ≤ 3(1 + ε)w(Mi

j)

Proof. Observe that Mi
j ⊕Mi

j results in a set of vertex disjoint alternating cycles and alternating
paths. For our purpose, we only care about the set of paths denoted by P. Each path in P connects a
some server of Si+1

j to a request in Ri+1
j i.e. |P| = γi+1. Using lemma 10,∑

P∈P

∑
(s,r)∈P

d(s, r) = w(Mi
j) + w(Mi

j) ≤ (3 + 2ε)w(Mi
j) < 3(1 + ε)w(Mi

j)

Recall that d(·, ·) satisfies the triangle inequality, so if the endpoints of a path Pk ∈ P are (sk, rk) ∈
Si+1
j ×Ri+1

j , then d(sk, rk) ≤
∑

(s,r)∈Pk
d(s, r). Hence,

w(Mi+1
j) ≤

∑
P∈P

∑
(s,r)∈P

d(s, r) ≤ 3(1 + ε)w(Mi
j)

□

Theorem 2 Let Mn be the final matching andM∗
n be the optimal matching, then

w(Mn) = O(1/δ)w(M∗
n)

Proof. Using lemma 10,

w(Mn) =

µ+1∑
i=0

w(Mi
n) ≤ 2(1 + ε)

µ+1∑
i=0

w(Mi
n) < 3(1 + ε)

µ+1∑
i=0

w(Mi
n)

By applying lemma 11 repeatedly, we obtain,

w(Mi
n) ≤ 3i(1 + ε)i

µ+1∑
i=0

w(M0
n) = 3i(1 + ε)i

µ+1∑
i=0

w(M∗
n)

Hence,

w(Mn) ≤ 3(1 + ε)w(M∗
n)

µ+1∑
i=0

3i(1 + ε)i ≤ (3(1 + ε))µ+2w(M∗
n)

Putting the values of µ and ε, we get (1 + ε)µ+2 = O(1) and 3µ+2 = O(1/δ). Hence w(Mn) =
O(1/δ)w(M∗

n) □

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.3 UPDATE TIME ANALYSIS

Now, let us focus on the run-time analysis. Recall the notations one more time. After n requests has
arrived, Mn denotes the online solution andM∗

n is the offline optimal solution. Mi
j ⊆ Mj denotes

the set of matching edges at level i. Si
j = BiS ∪ SF and Ri

j is the set requests such that for any
r ∈ Ri

j ; level(r) ≥ i. Mi
n denotes the optimal matching between Si

n and Ri
n under metric d(·, ·).

This impliesM0
n =M∗

n.

We compute the total running time of INCREMENTAL-PUSH-RELABEL over arrival of all requests.
Recall that we are assuming that our metric space has bounded aspect ratio ∆. This impacts the cost
by a factor of log(n∆).

To process j-th request, INCREMENTAL-PUSH-RELABEL performs four major operations regardless
of levels :

• Creating sorted edge list : For each newly arrived request r, the algorithm constructs the
lists Lr; using CREATE-SORTED-EDGE-LIST .

• Push operation. This step involves modifying the current matching by either adding or
removing edges. Each addition or removal of an edge is accompanied by a corresponding
decrease in the dual variable associated with the server of that edge.

• Relabel operation. In this step, the dual variable of a request is incremented.
• Finding admissible edges. For a free request r, FIND-ADMISSIBLE-EDGE either identifies

a server from the set BiS ∪Lr that forms an admissible edge with r, or reports that no such
server exists.

Now we proceed with the analysis the following way. In lemma (Lemma 15) we bound the total
runtime of the Relabel operations. Next in lemma 16 we established that total the runtime of Push
steps is upper bound by total number of Relabel operations. In lemma 18 we bound the runtime
of finding admissible edges. We also argued that if there are some requests reached at level µ + 2
and matched by Hungarian, the number of such requests are significantly small and thus the total
runtime spent at level µ + 2 is O(n2+δ) (Corollary 2). Finally in theorem 3 we prove the bound
of the runtime of INCREMENTAL-PUSH-RELABEL . We address the runtime of CREATE-SORTED-
EDGE-LIST inside INCREMENTAL-PUSH-RELABEL in theorem 3.

Lemma 12 At level i ≤ (µ+ 1), for any request r, the total number of Relabel operations is upper
bounded by ymax

i .

Proof. Consider request r enters level i. By construction, its dual variable is initialized as yr = 0
upon entering this level. A relabel operation in level i strictly increases yr. In particular, each relabel
increments yr by at least one unit. Since yr cannot exceed ymax

i , the number of relabel operations
that can be applied to r within level i is bounded by ymax

i .

Moreover, once r exits level i and progresses to a higher level, it cannot return to level i. There-
fore, no additional relabel operations for r can occur at level i. Combining these observations, we
conclude that the total number of relabel operations performed on r in level i is at most ymax

i . □

Recall that Bi
S is the set of servers matched at level i. LetRi be the set of requests such that for any

r ∈ Ri; level(r) = i.

Lemma 13 After matching j-th request, at each level i ≤ (µ+ 1), we show that∣∣∣∣∣∣
∑
s∈Bi

S

yi(s)

∣∣∣∣∣∣ ≤
∑
r∈Ri

yi(r)

Proof. We establish the lemma using an amortized analysis.

For any server s ∈ Bi
S , define its potential at level i as

ψi(s) = −yi(s).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

By Observation 1, every server with non-zero dual value must belong to the matching Mi
j . Conse-

quently, for any edge (s, r) ∈Mi
j at level i, the feasibility condition implies

yi(s) + yi(r) = di(s, r).

Since di(s, r) ≥ 0 and yi(s) ≤ 0, it follows that

di(s, r) ≤ yi(r).

Moreover, rearranging yields

di(s, r)− yi(r) = yi(s), so that ψi(s) = −yi(s) = yi(r)− di(s, r).

Because all of di(s, r), yi(r), and ψi(s) are nonnegative, we further obtain

ψi(s) ≤ yi(r).

Summing over all matched edges at level i, we get

∑
s∈Bi

S

ψi(s) ≤
∑
r∈Ri

yi(r).

Since,
∑

s∈Bi
S
ψi(s) =

∣∣∣∑s∈Bi
S
yi(s)

∣∣∣, we conclude the lemma.

□

Following Lemma 14 is followed from Agarwal & Sharathkumar (2014) and is crucial to the analysis
of runtime. For the sake of completeness we are providing the proof.

Consider Mn be the final matching executed by the algorithm. Let mi be the matching at level i or
above and ni be the number of requests at that level or above, then the following holds.

Lemma 14 At any point in the algorithm, at any level i, ni ≤ n1−Φi , where Φi =
∑i−1

k=0 φk =
3i−1
2 δ and i ∈ {0, . . . , (µ+ 2)}.

Proof. We claim that

ŵ(Mi
n) ≤

5

ε
n1−Φi (8)

Suppose this claim is true. Then ni ≤ n1−Φi because ŵ(Mi
n) ≥ 5

εni, by Corollary 1(1). Thus it
suffices to prove equation 8. we prove it by induction on i. For, i = 0, d̂0(s, r) − 1 ≤ 2n

εωd(s, r).
Since ω ≥ w(M0

n)/2 we have,

ŵ(M0
n)− n ≤

2n

εω
w(M0

n) ≤
4n

ε

This implies ŵ(M0
n) ≤ 5n

ε .

By induction hypothesis, let us assume that,

ŵ(Mi−1
n) ≤ 5

ε
n1−Φi−1

From lemma 10, lemma 11, equation 3 and corollary 1(2), we can write

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

w(Mi
n, d̂i−1) ≤

2 + ε

1− ε/3
ŵ(Mi−1

n) ≤ 2(1 + ε)
5

ε
n1−Φi−1 (9)

w(Mi
n, d̂i−1) denotes the cost of matchingMi

n under metric d̂i−1. The last inequality in equation 9
follows because ε ≤ 1

2 . On the other hand, by lemma 9(2),

(1− ε/6)d̂i(s, r) ≤ d̂i(s, r)− 1 ≤ d̂i−1(s, r)

2(1 + ε)2nφi−1

Therefore,

d̂i(s, r) ≤
d̂i−1(s, r)

2(1 + ε)2nφi−1
(10)

Combining equation 9 and equation 10, we get,

ŵ(Mi
n) ≤

5

ε
n1−Φi−1−φi−1 =

5

ε
n1−Φi

□

We bound the total runtime of Relabel operations.

Lemma 15 At level i ≤ (µ + 1), total number of relabel operations over all arrivals is upper
bounded by (ymax

i · n1−Φ1).

Proof. Lemma 12 upper bounds the total number of dual operations by any request r with
level(r) = i by ymax

i . Lemma 14 together with Observation 2 implies that at any point of time
of execution of INCREMENTAL-PUSH-RELABEL , maximum number of requests at level i does not
exceed n1−Φi . This conclude the lemma. □

Now we bound the total runtime of Push operations.

Lemma 16 At level i ≤ (µ+1), total number of push operations over all arrivals is upper bounded
by (ymax

i · n1−Φ1).

Proof. Each Push operation consists of single dual decrement of some server. Lemma 13 upper
bounds the total dual decrement of servers by total increment of requests matched at that level. How-
ever, maximum number of requests at level i does not exceed n1−Φi by Lemma 14 and Observation 2
and the dual of any request upper bounded by ymax

i . Hence the lemma. □

We proceed to bound the cost of finding admissible edges. Let us bound the time taken by a single
call to FIND-ADMISSIBLE-EDGE .

Lemma 17 At level i ≤ (µ + 1), FIND-ADMISSIBLE-EDGE takes O(n1−Φi)-time to report an
admissible edge.

Proof. The runtime of FIND-ADMISSIBLE-EDGE is dominated by the size of the set |BiS |. Indeed,
checking the admissibility of an edge incident to a free server requires onlyO(1) time, since the data
structure L is maintained explicitly. Therefore, bounding |BiS | by O(n1−Φi) suffices to establish the
lemma.

By definition, BiS is the set of servers matched at level i or higher. Note that the number of matched
servers is always equal to the number of matched requests. Now we argue the upper bound on
matched requests at level i. From Observation 2, once a request is matched at or above level i, it
can never subsequently be matched at a lower level k < i. Hence, the number of requests matched
at level i or above is monotonically non-decreasing throughout the execution of the algorithm.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Finally, Lemma 14 establishes that, over all arrivals, the total number of requests matched at or above
level i is bounded by O(n1−Φi). Consequently, the same bound applies to |BiS |, which completes
the proof. □

In the following lemma, we bound the total cost of finding admissible edges through all requests at
level i.

Lemma 18 At level i ≤ (µ+ 1), over all arrivals, total time taken by FIND-ADMISSIBLE-EDGE is
O(n

2+δ

ε).

Proof. Lemma 17 shows that any call to FIND-ADMISSIBLE-EDGE requires O(n1−Φi) time to find
an admissible edge. Each invocation of FIND-ADMISSIBLE-EDGE is immediately followed by either
a Push operation or a Relabel operation. Furthermore, Lemma 16 guarantees that the total number
of Push operations is upper bounded (ymax

i ·n1−Φ1) and Lemma 15 guarantees that the total number
of Relabel operations is upper bounded (ymax

i · n1−Φ1). Thus, total runtime of finding admissible
edges at level i becomes O(n2−2Φi · ymax

i). We have, ymax
i = O

(
nφi

ε

)
. Together, the running time

at level i becomes O(n
φi

ε · n
2−2Φi).

φi − 2Φi = 3iδ − 2
(3i − 1)

2
δ = δ (11)

Hence the runtime becomes O(n
2+δ

ε). □

Now we analysis the total cost spent by INCREMENTAL-PUSH-RELABEL at level µ + 2. By
Lemma 14, the number requests that can reach at level (µ+ 2) is at most nδ .

Processing a single request using Hungarian take O(n1+δ) time. This is due to the fact that, the
cardinality |Bµ+1

S ∪SF| ≤ n and number of total possible requests at level (µ+2) is atmost O(nδ).
We immediately get the following

Corollary 2 Over all arrivals, total time spent by INCREMENTAL-PUSH-RELABEL at level (µ+2)
is O(n2+δ).

Theorem 3 The amortized runtime of INCREMENTAL-PUSH-RELABEL is O(n1+δ log2(1δ)).

Proof. We partition the runtime analysis into two. First we compute the total runtime spent over
all levels i ∈ {0, . . . , (µ+1)} over all arrivals. The runtime of the algorithm depends on four major
operations. A single invocation to CREATE-SORTED-EDGE-LIST takes no more thanO(n ·(µ+1)).
The factor of (µ + 1) appears because computing scaled distance between a pair of points can take
O(µ+1)-time. Thus, over all, CREATE-SORTED-EDGE-LIST costsO(n2(µ+1)). Now, we examine
the runtime of each of other three operations for fixed level i. Following lemma 12, total time of
relabeling at level i is (n1−Φi · yimax). Same bound holds for total numbers of push steps following
lemma 16. Total time taken by FIND-ADMISSIBLE-EDGE is O(n2−2Φi · ymax

i) time. Following
lemma 18, this quantity is O(n

2+δ

ε). Hence, the runtime of INCREMENTAL-PUSH-RELABEL at
level i is O(n

2+δ

ε). For finding minimum slack, as its runtime is linear to |BiS |, the same analysis
of runtime of FIND-ADMISSIBLE-EDGE applies. This contributes additional O(n

2+δ

ε) time factor to
the runtime of INCREMENTAL-PUSH-RELABEL . Finally we need to update list Lr for each request
r, when ever r is matched to a free server. Each time we match a free server, updation to this data
structure costs O(1) time. Since for each request arrival, we find exactly one free server to match,
the cost of this step becomes O(n) over all arrivals.

Recall that, ε = 1
2 log3(1/δ)

. From Corollary 2 and summing over all O(log3(
1
δ)) many levels, we

get total runtime to be O(n2+δ log2(1δ)).

□

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B ADDITIONAL EXPERIMENTS

We show our tests and results on the Synthetic data set as described in Section 4.

Tests: Similar to NYC-Taxi data, we evaluate three algorithms three algorithms: Batch Incremental
PR, Greedy and QT. In this setting, the server set is fixed at 10, 000 and we set δ = 0.001.

Results: Batch Incremental PR consistently outperforms Greedy in both cost and runtime. Al-
though QT achieves the best overall runtime performance, Batch Incremental PR surpasses QT by a
significant margin in terms of matching cost (Figure3(a), Figure3(b)).

(a) Average cost per request (b) Average time per request (in seconds)

Figure 3: Plots of Synthetic data

B.1 VARIANCE PLOTS

Following we show the variance plots of Batch Incremental PR over different data sets.

(a) Variance over cost (b) Variance over runtime

Figure 4: Variance plots on MNIST data

(a) Variance over cost (b) Variance over runtime

Figure 5: Variance plots of Taxi data

C LLM-USAGE

LLM have been used to polish part of the paper.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) Variance over cost (b) Variance over runtime

Figure 6: Variance plots of Taxi data

23

	Introduction
	Our Contributions
	Related Work
	Overview of Techniques

	Preliminaries
	Incremental Push-Relabel Algorithm
	Analysis
	Removing the assumption on

	Experiments
	Details of Algorithm and Analysis
	Analysis
	Cost analysis
	Update Time Analysis

	Additional Experiments
	Variance Plots

	LLM-Usage

