Under review as a conference paper at ICLR 2026

EFFICIENT ALGORITHMS FOR INCREMENTAL METRIC
BIPARTITE MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

The minimum-cost bipartite matching between two sets of points R and S in a
metric space has a wide range of applications in machine learning, computer vi-
sion, and logistics. For instance, it can be used to estimate the 1-Wasserstein
distance between continuous probability distributions and for efficiently matching
requests to servers while minimizing cost. However, the computational cost of
determining the minimum-cost matching for general metrics spaces, poses a sig-
nificant challenge, particularly in dynamic settings where points arrive over time
and each update requires re-executing the algorithm. In this paper, given a fixed
set S, we describe a deterministic algorithm that maintains, after ¢ additions to
R, an O(1/6%-531)-approximate minimum-cost matching of cardinality i between

sets R and S in any metric space, with an amortized insertion time of 5(n1+5)
for adding points in R. To the best of our knowledge, this is the first algorithm for
incremental minimum-cost matching that applies to arbitrary metric spaces.

Interestingly, an important subroutine of our algorithm lends itself to efficient par-
allelization. We provide both a CPU implementation and a GPU implementation
that leverages parallelism. Extensive experiments on both synthetic and real world
datasets showcase that our algorithm either matches or outperforms all bench-
marks in terms of speed while significantly improving upon the accuracy.

1 INTRODUCTION

Large-scale online logistics systems typically consist of a fixed fleet of vehicles or robots, while
service requests appear dynamically over time. The task is to maintain a cost-effective assignment
of requests to servers. For example, the New York Taxi System processes more than 300,000 ride
requests daily with a fleet of several thousand taxis NYC Taxi & Limousine Commission| (2024).
A plethora of prior studies model this problem as the classical minimum cost bipartite matching
problem (Tong et al., 2016} Zhao et al [2019; [Ke et al.| |2019; Tong et al.l [2023; |Qin et al., 2021}
Abeywickrama et al., [2021). A non-trivial challenge in adapting minimum cost matching to a dy-
namic framework is that recomputing a matching from scratch whenever a new request arrives is
computationally prohibitive and slows down downstream decisions: if each assignment depends on
a full recomputation, the time to compute may exceed the time to dispatch a taxi, significantly in-
creasing passenger wait times. When requests arrive faster than the system can process them, queues
build up, causing cascading delays and further degrading responsiveness. This setting raises two key
challenges: (i) can we design data structures that maintain an approximate minimum-cost matching
while supporting efficient insertions, and (ii) can these structures process new arrivals concurrently
while earlier ones are still being handled? Addressing these challenges is the focus of this work.
Throughout, we assume that the cost function between locations satisfies the metric properties.

This connection to metric bipartite matching naturally extends beyond logistics. The 1-Wasserstein
distance, a widely used tool for comparing probability measures in machine learning, can be ex-
pressed as a minimum-cost matching between empirical distributions (Villani, 2009; |[Peyré & Cu-
turi, 2019). It has found broad applications in generative modeling, domain adaptation, fairness, and
distributional drift detection (Tolstikhin et al.| |2018}; [Liu et al., 2018} |Cao et al.l 2019} Balaji et al.,
2020). Formally, for two probability measures p and v on a metric space (X, d), it is defined as

Wi(p,v) = inf / d(z,y) dr(z,y),
mell(pv) Jaxxx

Under review as a conference paper at ICLR 2026

where II(u,) denotes the set of couplings of 4 and v.

In many practical scenarios, however, samples arrive in dynamic streams, so the optimal matching
may change at every step. Exact recomputation quickly becomes infeasible in high-throughput ap-
plications such as real-time monitoring (Rabin et all [2011)), adaptive learning (Chen et al., [2018),
or fairness auditing (Chouldechova, [2017)). This challenge has spurred a growing body of work
on extending Wasserstein distances to richer domains, including graphs, manifolds, and structured
biological spaces, where data naturally resides beyond Euclidean geometry (Séjourné et al., |2021}
Kolouri et al.l 2021} Haasler & Frossard, 2024} Ju & Guan, 2025). Beyond machine learning, dy-
namic geometric matching also arises in diverse real-world applications, such as quantifying similar-
ity between evolving datasets|Alvarez-Melis & Fusi| (2020), tracking longitudinal changes in patient
data (e.g., MRI scans) |(Gramfort et al.| (2015), and employing matching-based metrics, such as the
Earth Mover’s Distance, in time series analysis|Cheng et al.| (2021).

Despite its importance, research on minimum-cost matchings in dynamic settings remains limited
and primarily focused on Euclidean spaces. For instance, |Goranci et al.| (2025) recently studied
the dynamic Euclidean bipartite matching problem, where updates are allowed on both sides of the
matching. Their algorithm achieves an O(1/§)-approximation with sublinear (in n) update time,
and has applications such as monitoring distributional drift in streaming data. Also see |Andoni
et al.[(2009) for a streaming algorithm with similar approximation guarantee under insertions and
deletions. However, the framework of |Goranci et al.| (2025) crucially assumes that both sides of the
bipartite graph always contain the same number of vertices—an assumption that severely restricts its
use in logistics-style scenarios, where servers remain fixed while requests arrive incrementally and
in an unbalanced manner. In addition, the method is tailored to low-dimensional Euclidean spaces
and does not extend naturally to high-dimensional or general metric spaces.

These limitations motivate the central question of this work:

Is it possible to design a fast, constant-factor approximate bipartite matching algorithm for
insertions that works in any metric space?

This question forms the core of our study. It motivates a formal treatment of incremental match-
ings in general metric spaces and establishes a bridge between practical applications and theoretical
guarantees. We now formally define the problem.

Problem 1 (Incremental Metric Bipartite Matching) Let S be a fixed set of n servers embedded
in a metric space (X,d). Requests R = ry,7o,... arrive online, one at a time. At time t, the
algorithm has observed requests 1, . . . , T+ and must maintain a matching My C S X ry,..., 14 that
pairs each request to a distinct server in S. The cost of a matching is defined as the sum of edge
distances, and the objective is to maintain a matching whose cost is within a constant factor of the
optimal at all times.

1.1 OUR CONTRIBUTIONS

In this work, we resolve Problem [I| by presenting the first constant-factor approximation algo-
rithm for incremental metric bipartite matching that achieves sublinear update time in the num-
ber of edges. To the best of our knowledge, this is the first algorithm that applies to arbitrary metric
spaces while guaranteeing provably fast updates. Our main result is stated below.

Theorem 1 For any 0 < § < 1, there exists a deterministic algorithm that maintains an O(1/§%)-
approximate solution for the incremental metric bipartite matching problem on sets R and S em-
bedded in a metric space, with an update time of

O(n1+5) IOgZ(%) . log(nA)) ;

where oo = logs 2 and A is the aspect ratio of the metric space.

The total execution time of our incremental algorithm matches the static algorithm of Agarwal and
Sharathkumar while achieving the same approximation ratio. In this sense, our result strictly gener-
alizes their work: it provides the same guarantees in the static setting while additionally supporting
dynamic insertions.

Under review as a conference paper at ICLR 2026

In addition to its dynamic nature, our algorithm supports parallel request processing, allowing new
requests to begin execution even while earlier ones are still running. This design avoids queue build-
up and is well suited for many applications, since several core subroutines parallelize naturally. As a
result, incoming requests can be handled concurrently rather than sequentially, making the algorithm
particularly effective in batched-insertion scenarios. To complement the theoretical contribution,
we provide efficient implementations on both CPU and GPU. In extensive empirical evaluations
on synthetic and real-world datasets, we benchmark against standard baselines including a greedy
algorithm and (for low-dimensional Euclidean spaces) quadtree-based greedy approaches. Across
all settings, our implementations consistently match or outperform these baselines in running time
while maintaining competitive solution quality.

1.2 RELATED WORK

Classical algorithms for bipartite matching scale poorly in the incremental setting. The Hungar-
ian algorithm, built on a primal—dual framework [Kuhn| (1955); Munkres| (1957), computes an exact
minimum-cost matching in O(n?) time; even optimized variants under mild assumptions require
O(n“) time [Duan & Pettie| (2016). Maintaining optimality as new requests arrive is particularly
expensive: each update requires a Hungarian search step costing ©(n?) in metric graphs, so pro-
cessing n requests sequentially leads to a total runtime of O(n?). Such bounds are prohibitive
for large-scale systems. A recent breakthrough by [Chen et al.| (2022) achieves almost linear-time
algorithms for minimum-cost flow in general graphs with polynomial weights, but adapting these
techniques to the incremental setting remains highly nontrivial.

Approximation algorithms provide a way to circumvent these barriers. Agarwal and Sharathku-
mar |Agarwal & Sharathkumar| (2014} gave a deterministic offline algorithm for metric spaces that
constructs a 1/6° %3 _approximate minimum-cost matching in O(n?*?) time by combining distance
scaling with simultaneous augmenting path searches. While this result shows that near-quadratic
approximations are achievable in the offline metric setting, directly extending it to an incremen-
tal model is difficult: every new request may trigger searches over ©(n?) edges, and the distance
scaling framework depends on a constant-factor estimate of the optimum, which is hard to main-
tain dynamically. More recently, in the context of metric optimal transport, advances have yielded
(1+0)-approximation algorithms running in near-quadratic time Zuzic|(2023)); Fox| (2024, but these
results again apply only to the static case, in sharp contrast to our work, which addresses the more
general incremental setting.

1.3 OVERVIEW OF TECHNIQUES

Our incremental algorithm builds on the static algorithm by /Agarwal & Sharathkumar|(2014). A key
insight of the static algorithm is that it does not operate directly on the given metric d(-,). Suppose
w is a good ‘guess’ for the offline optimal solution and 0 < § < 1 is a fixed parameter. We construct
a hierarchy of u = O(log(1/)) progressively “scaled-down” metrics, Mg, M1,..., M.

At the base level My, each original distance d(s,r) is rescaled by a factor of about n/(sw) (¢ =
1/u) and then rounded up to the nearest integer. In this way, a discretized metric is produced in
which all distances fall in a bounded integer range, and moreover the optimal matching becomes
O(n) in the scaled space. At higher levels (i > 0), the distances are repeatedly shrunk and rounded
further, with the shrinkage factor being roughly n%'%. It can be observed that the shrinkage factor
grows very quickly with ¢, essentially at an exponential rate.

Another key idea is to always maintain a 1-feasible partial matching at each level. Given a complete
bipartite graph G(RU S, R x S) where each edge (1, s) € R x S has a cost ¢(r, s), the seminal work
of Gabow and Tarjan |(Gabow & Tarjan| (1989) introduced the idea of a 1-feasible matching, which
can be used to find an approximate minimum-cost matching.

A matching M along with a set of dual weights y(-) on the vertices is called a I-feasible matching if
the following two condition holds

(r,s), (r,s) € M.)

Under review as a conference paper at ICLR 2026

Given a 1-feasible matching M, an edge (r, s) € R x S is called an admissible, if either (r, s) is in
Mor y(r) + y(s) = ¢(r, s) + 1.

At a high level, the algorithm works as follows. For any ¢ (initialized to 0), it uses the algorithm by
Gabow and Tarjan to compute a partial 1-feasible matching M’ and corresponding duals y;(-) under
the scaled metric M;. The algorithm essentially works in phases. Each phase uses a BFS-styled
graph search procedure over the admissible subgraph to match several requests via augmenting
paths. Duals are suitably adjusted when the search cannot proceed. A crucial twist introduced
by |Agarwal & Sharathkumar|(2014)) is that the procedure is halted at level 7 once every free vertex

in R reaches a dual weight y;"** = O(n3i5).
All such free requests (along with free servers) are then promoted to level i+ 1 and the algorithm now
operates in the scaled metric space M, 1. A delicate analysis shows that the number of requests and

servers promoted to any level 1 < ¢ < p is upper bounded by n!=23'9) Hence, each graph search
phase can take only n?>~*(3'9) while the number of phases is upper bounded by y;"** leading to the
desired O(n>*?) runtime for each level. In case there are free vertices promoted to level y, they
are matched using the standard Hungarian algorithm. However, with a suitable choice of parameter,

it can be shown that the number of such requests can be only about n2/3 and hence the Hungarian
algorithm can take at most O(n?) time.

Our Incremental Algorithm. To extend the above algorithm to the incremental setting, a natural
approach is to explicitly maintain O(log(1/0)) ‘levels’ of 1-feasible partial matchings. For instance,
when a new request r; € R arrives, we need to - (i) determine the level at which we should be
matching it and (ii) efficiently modify the existing matchings and duals at various levels to reflect
this change.

One natural strategy to handle both (i) and (ii) is to initialize the new request at level 0 and augment
the partial matchings and duals at each level, akin to|Agarwal & Sharathkumar (2014), and pushing
requests to higher levels as their dual values reach y;"®* for any level 0 < ¢ < p. However, one
serious caveat of this strategy is that we may end up searching through the entire graph just to

process a single arriving request, which could lead to a prohibitive update time of 8(n?).

We overcome this major challenge by departing from an augmenting path-based approach to a push-
relabel styled framework in order to maintain the partial matchings M at each level 0 < i < p.
Roughly speaking, a newly arrived request r starts at level 0 and simply looks for an admissible edge
in all levels of scaled metric spaces between 0 and pi. We pick such an admissible edge (7, s) € Rx S
arbitrarily and execute a ‘push’. Specifically, we match 7 to s, decrease the dual of the server by 1
to maintain 1-feasibility, and in case the server was already matched to some other request /, we
make 7’ free. In case no admissible edge is found for 7, we do a ‘relabel’ - we increase the dual of
T to an extent where one edge becomes admissible. However, if the dual of r reaches y'®*, then r
is promoted to level 1 and the process continues. In general, this may free up a request at any level
1 < p in which case we simply continue the push-relabel from this level. One crucial invariant of
our algorithm is that a server that is matched at any level 0 < 7 < p is only available to requests that
are at level ¢ or higher.

The above description might suggest we scan ©(n?) edges even to push a single free request; while
that can happen in the worst case, a careful amortized analysis yields O(n'*?). For each level i
the total number of requests ever promoted to i is n; < n'~%(3'9) (by the scaled metric and our
choice of y;***). Each failed admissible-edge search for a free request at level > ¢ causes a request
dual increment (a relabel) of at least 1, and server dual decrements can be charged to these request
increments, so the total number of such searches is O(y***) before the request is either matched
or promoted. Each search inspects O(n;) matched servers at levels > ¢ (plus one free server), and
we assume a data structure that finds the nearest free server in O(1) time (we never search servers
matched at lower levels). Hence the total work for admissible-edge searches at level ¢ over all n
arrivals is O(n? - y™¥) = O(n?*?) for suitable constants. With only O(log(1/5)) levels this

yields the stated amortized update time.

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

We introduce notations and important definitions that would be required to describe our algorithm.
Given a (possibly partial) matching M C R x S, we denote the total cost of all the edges in M
by w(M). Throughout this and the next subsection, we will assume that we are given a value
w satisfying w(Mj) < w < 2w(M7), where w(Mj) is the offline optimal solution of requests
r1,72,---r; forany 1 < j < n. We will show how to remove this assumption in Section@

w-Scaled Metrics. Given a parameter w > 0, 0 < ¢ < 1, we define p < logg(g% — 1) different
finite metric spaces My, ..., M, 1, where each metric M, is on the points .S U R equipped with a
distance d; (-, -) defined as follows -

€

di(s,r) = 3)

|| ifi>o

’VQd(s,r)'n-‘ ifi=0

where p; = 3'6, € = 75,

Define y"?* = %n%,w e{0,...,u+1}

i

We state a two key properties of these metric hierarchy in the form of the following lemma.

Lemma 1 (|Agarwal & Sharathkumar|(2014)) The following properties are true for the distance
Sunctions d; (-,)

1. Fori>0,d;(-,-) is a metric.

2. Fori > 1, there is a scaling factor o; such that (1 — e/3)o;d;(s,r) < d(s,r) < o;d;(s,T)

Our algorithm will have a notion of levels for each requests, server, matchings between them and
corresponding duals which corresponds to the hierarchical metric spaces defined above. For each
level i € {0,..., (1 + 1)}, M* will denote a partial matching at level 7 and we define the following

w.r.t M. B% denotes set of servers that are matched in M and BY = U;‘;l B, that is BY is the set
of servers matched in M*, k > 4. ST is the set of all free servers at any point in the algorithm. For
any request or server in R U S, we will maintain an integer level(-) which will denote the level at

which they are currently matched. Finally, let y;(-) be dual weights on R U S.
We introduce two invariants maintained by our algorithm at all points of time.

(I1) At each level 4, the matching M maintained by the algorithm is 1-feasible. That is, at any
level i € {0,--- , u}
yi(s) + yi(r) < di(s,r) +1 where (s,7) & M’ and s € B
yi(s) + yi(r) = di(s,r

(s,7) where (s,7) € M
(I2) For any unmatched server s (that is s € S¥); y;(s) = 0,¥i € {0,---,(u+ 1)}. For

any request r, if level(r) = i, then yi(r) = yp**,¥0 < k < 4. For any server s, if
level(s) =i, then yi(s) = 0,V0 < k < i

3 INCREMENTAL PUSH-RELABEL ALGORITHM

In this section we give necessary details of our algorithm and a sketch of the analysis. The main
pseudocode and detailed proofs can be found in Appendix

Initialization. At the start of the algorithm, all servers are placed in the free-server set ST, while
the set B, for levels i € {0, ..., pu+ 1} are empty (i.e., |By| = 0 for all). level(s) = +00,Vs € S

Under review as a conference paper at ICLR 2026

The initial matching is empty, denoted My = {@}. Foralli € {0,...,(u + 1)} and for all s € S¥,
the dual y;(s) = 0.

We now describe our incremental push—relabel algorithm for handling an arriving request ;. The
algorithm maintains the current matching M; _;, dual weights for requests and servers at each level,
and data structures for admissible edges.

Incremental-Push-Relabel. Upon arrival of request r;, its dual weights are initialized to zero
across all levels, and it is marked as a free request »/. We compute the w-scaled metric distances

di(rj,-) forall 0 < i < p+ 1 We create a sorted list £, of free servers ordered by their distance
d(-,77). Both level(r) and counter i are set to 0.

While there is a free request -/ and i < p1 + 1:

+ Admissible edge search. We query FIND-ADMISSIBLE-EDGE(r/, 7).

— If an admissible edge (7, s) is found:
x If s is free, we insert (7, s) into M, and decrease y;(s) by 1. Moreover,
- Extract s from L,.;
- Move s from ST to B
- Set: level(s) « i
x If s is already matched to some 1/, we perform a push: replace edge (17, s) with
(rf, s) in M;, decrease y;(s) by 1, and perform the following:

level(r")

- Move s from By to B
- Set: level(s) i, 77 < 1', i < level(r")
— If no admissible edge is found, we perform a relabel: increase y;(r/) by the mini-
mum slack needed so that at least one edge becomes admissible. The minimum slack
computation is as follows:

Let s/ be the first server in £,.
* Then the minimum slack quantity is

min c/l;s,r— rly — S}+1.

eamin i) =))

* Promotion. If increment by minimum slack pushes y;(r/) up to y2%, then the request is
promoted to upper level by setting : level(rf) < i+ 1,4 < i + 1.

If there is free request promoted to level x + 2, match it to a server at level u + 2 or S using
Hungarian Algorithm. The resulting matching is denoted M.

Find-Admissible-Edge. Given request r at level i, we first scan all servers currently matched at
levels > 17 (that is, servers € Bfg) to check whether any edge (r, s) is admissible at level , If such
a server exists, it is returned. Otherwise, we check the closest free server s/ from sorted list Eﬁ, for
admissibility under the same condition. If none exist, the procedure returns (.

We would like to re-emphasize that we significantly deviate from the algorithm and analysis of the
static approximation algorithm of |Agarwal & Sharathkumar| (2014) in two major aspects. Firstly,
while the static algorithms build the levels successively by pushing both unmatched requests and free
servers higher and higher, we need to maintain partial matchings at all the levels simultaneously. In
fact, in our algorithm the level of a request increases while that of a server can only decrease.
Secondly, as highlighted in Section[I.3] rather than using augmenting paths, we use a push-relabel
framework to locally match and unmatch requests. Finding an admissible edge is the bottleneck in
this operation. Crucially, we use the 1-feasibility property of the matchings and dual adjustments to
pay for this expensive step.

3.1 ANALYSIS

Cost. The costs analysis of our algorithm follows that of the static algorithm by |Agarwal &
Sharathkumar| (2014) while having a few crucial differences. The main distinction stems from the

Under review as a conference paper at ICLR 2026

fact that in the static algorithm, while analyzing the cost of matching at any level ¢, the set of requests
and servers promoted to level ¢ form a balanced bipartite subgraph of RU.S. Due to the incremental
nature of our setting, the graph we analyze at level i is skewed - it may have more servers than
requests promoted to level ¢. This introduces non-trivial modifications in the analysis. We provide
all the details in Appendix and prove the following central lemma.

Lemma 2 Let M; be the matching maintained by our algorithm after the insertion of r; and let
M be the offline optimal matching on that perfectly matches r1,72, - - - r; with servers in S. Then

w(M;) < O(1/5%) - w(M?).

The cost bound relies on maintenance of the dual invariants and by our algorithm. While
the static algorithm creates these duals in successive iterations, maintenance of these duals simulta-
neously for all levels is a novel contribution of this work.

Update Time. We sketch the update time analysis of our algorithm which forms the technical heart
of our paper. Each update consists of three operations: Relabel, where the dual of the active request
is increased; Push, where the algorithm either matches a free server or an already matched server
from the same or higher level; and Find-Admissible-Edge, where the algorithm scans for a 1-
admissible edge. We show that the total number of such operations over n requests can be bounded
by O(n?*91og?(1/5)), which implies the desired amortized bound per arrival.

Relabel operations. At level 4, each request r enters with dual y;(r) = 0 and increases monoton-
ically until either it reaches the maximum allowed dual value y;"®* or is matched. Thus, the total
number of relabel increments per request per level is upper bounded by y;"**.

Push operations. Push steps are more subtle because they may involve cascading reassignments
of servers. To control this, we relate server dual decrements (triggered by pushes) to request dual
increments (triggered by relabels). The following amortization allows us to bound the number of
push operations by the number of relabel operations.

Lemma 3 For any level i, over all the insertions, the magnitude of server dual decrements is upper
bounded by the magnitude of request dual increments.

Admissible-edge searches. The most expensive operation naively is scanning for admissible
servers, which could cost ©(n) per request per level. However, we prove two crucial lemmas that
will establish that the amortized number of operations is still bounded by O(n2?*?). The first key
ingredient is the following lemma which upper bounds the number of requests that are promoted to
level ¢ or higher.

Lemma 4 At any point in the insertion sequence, at level i, the number of requests (and hence the

number of servers) matched at level i or higher , denoted by n;, is at most n*~%:, where ®; =

i—1 R
D ko Pk = 50

This bound intuitively implies that search time for admissible edge reduces drastically at higher
levels. While a similar property holds for the static algorithm by |Agarwal & Sharathkumar (2014),
our search for an admissible edge also need to consider free servers which can be ©(n) in the worst
case. However, we overcome this by simply maintaining a list of servers for every request sorted
according to distance. These two properties give us the following lemma.

Lemma 5 For a fixed level i, the total time spent in admissible-edge searches across all request
insertions is O(n**?).

Proof. [Proof sketch] From the previous lemma, only n!~%i requests are matched at level i or
higher at any point of execution. For each such request, we bound the total number of search for an
admissible edge by 2y"** before the request is promoted to level ¢ 4+ 1 (in case it is). To see this,
recall the for a free request at level ¢, the algorithm scans through all the servers that are currently
matched at level ¢ or higher plus the set of currently unmatched servers. The number of operations
for one such search can be upper bounded using Lemmad]by n; + 1, where the additional operation
happens for extracting the nearest unmatched server. A successful search can be charged to a push
step, while an unsuccessful search is charged to a relabel step - both of which are upper bounded by

Under review as a conference paper at ICLR 2026

y;"** for any request at level 7. This along with Lemma] proves the claim with suitable choice of
parameters. ([

The above analysis does not directly hold for level 1 + 2 since we are running Hungarian algorithm
at that level. However, observe that by Lemma@] Nyq2 < n?. Hence, each Hungarian search cannot

take more than n'*%) time. Details can be found in Appendix

Lemma 6 For a sequence of requests r1, 72, - - r;, the total update time of our algorithm is upper
bounded by O(n**° - log?(1/4)).

3.2 REMOVING THE ASSUMPTION ON w

Recall that throughout the previous section, we had assumed that we are given an estimate w such
that after the arrival of any request r;, w(M}) < w < 2w(M7), where w(M7) is the offline optimal
solution of requests 1, g, - - - r;. In this section, we remove this assumption using a standard guess-
and-double trick.

When the first request r; is inserted, the procedure begins with the initial value of w =
minges do(s,71). Suppose that after processing 7;, we find that at some level 0 < 7 < (u + 1),

the number of requests with level i or higher is greater than n'~%i (where ®; = 31%6). Then we
double the value of w and compute an offline matching by artificially re-insert the request sequence
{r1,...,r;} with the new value of w using our algorithm. We are now ready to finish the proof of
Theorem [1] as follows

Let us divide the insertion sequence 1,79, - -7, in to £ phases Py, Py, P, such that the value of
w = 1 at the beginning of Py and it was doubled at the beginning of P, for any £k > 1. For
0 < k < ¢, let wy, denote the value of w at all time points in phase P;. We show in Appendix [A.2]
that the cost bound holds as long as w is at most twice the value of the optimal solution. We claim
that this property is always true for each phase. We prove this by induction on the number of phases
k. Note that this property holds at the beginning of Py by our choice of wy = min,eg do(s, 1)
and will also hold at the end of this phase since optimal is monotonic. Now fix any Py, k > 1 and
let ; be the first request in this phase. By the condition of doubling, wy,_1 < w(./\/l;) and hence
Wi = 2wg—1 < 2w(M). The property holds for all request insertions in this phase by monotonicity
of optimal matching.

For the runtime bound, note that our algorithm always doubles w when the number of we find that
at some level 0 < i < (u + 1), the number of requests with level i or higher is greater than n'~®:.
We show in the Appendix [A.3|that if this is true, the amortized runtime for a phase is upper bounded
by O(n**%log?(1/5)). The only thing remaining to show is that the number of phases is upper
bounded by log(nA). This follows from the fact that w(M}) < nA and hence we are done.

4 EXPERIMENTS

In this section we present our experimental results. We developed two independent implementations
of our algorithm. The first one is implemented using C++ and performs all operations on the CPU.
The second leverages PyTorch, offloading the computationally intensive components of the algo-
rithm to a GPU. All the tests are performed on a machine with AMD EPYC 7763 64-Core Processor
and 514 GB of RAM using a single computational thread for CPU bounded tasks. For the GPU
bounded tasks we have used NVIDIA A100-SXM4 Graphics processor with 40GB GPU memory
belonging to the same machine.

Datasets: We evaluate our algorithm on two real-world datasets and one synthetic dataset, each
consisting of 10,000 data points. (i) MNIST. The MNIST dataset (|LeCun et al.) contains about
70,000 handwritten digit images, each represented as a 28 x 28 grayscale grid (784-dimensional).
We sample two distributions, normalize each image so that pixel intensities sum to one, and measure
distances using the L; norm. (ii) NYC-Taxi. The New York City Taxi dataset H! (2021)) provides
pickup and drop-off locations. We construct two distributions from trips completed during the first
week of a given month, ordering requests by pickup-datetime to capture sequential arrivals.
(iii) Synthetic. We also generate 10,000 points uniformly at random in the two-dimensional domain

Under review as a conference paper at ICLR 2026

Average Cost vs. Number of Requests (n) Average Match Time per Request vs. Number of Requests (n)

—e— Batch Incremental PR
Greedy

2
0
38

£

onds) (PR vs Greedy)

—e— Batch Incremental PR

Average Cost (PR vs Greedy)

Average Time per Request (sec:

00 —e—"
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
n (number of requests) n (number of requests)
(a) Average cost per request (b) Average time per request (in seconds)
Figure 1: Plots of MNIST data
Average Cost vs. Number of Requests (n) § Average Match Time per Request vs. Number of Requests (n)
—e— Batch Incremental PR k1
= 0008 Greedy Sos
a —+— Quad Tree 2
© H —e— Batch Incremental PR
2 / 03 Greedy
£ 0004 1 —+ Quad Tree
8 % 0.2
z — f/r,//(/ E yy
000 00
2000 2000 000 B000 10000 g 2000 000 000 000 10000
n (number of requests) Ed n (number of requests)
(a) Average cost per request (b) Average time per request (in seconds)

Figure 2: Plots of Taxi data

[0, 100]2. Additional results for this dataset appear in Appendix|B} For last two datasets, we employ
Euclidean distances.

Adaptation to batch (Batch Incremental PR): Although Algorithm [I]is inherently sequential, it
admits parallelization by allowing new arrivals to be processed before the previous request is fully
matched. We implement a batched version, processing requests in groups of 200. For each batch,
we compute all request—server distances on the GPU and store them in a distance matrix to avoid
redundant calculations. At each level, we maintain an n X n slack matrix and process free requests
in parallel by: (i) constructing the admissible graph, (ii) applying the [Israeli & Itai| (1986) maximal
matching algorithm, and (iii) updating slack values for matched servers. If no admissible edge exists,
we compute and update the minimum slack for all free requests simultaneously. This parallelization
yields substantial runtime improvements without increasing cost.

Tests: For comparison, we evaluate our Batch Incremental PR algorithm against Greedy and
QuadTree-based (QT) baselines. Each dataset is sampled 10 times, and the server size is fixed
at 10,000. For varying request sizes n € {1000, 2000, ...,10000}, we report the average matching
cost and average amortized runtime of all algorithms. In our experiments, we set § = 0.001. In the
greedy algorithm, for any newly arrived request, the algorithm chooses the nearest free server. In
the quad-tree based algorithm(|Har-Peled|(2011))), we build a (randomly-shifted or deterministically-
shifted) quadtree over the point sets, process tree nodes bottom-up: at each cell, greedily match as
many red/blue points inside the same cell as possible and Unmatched points are propagated (pushed)
up to parent cells and matched there (again greedily). We have used CPU based implementation for
QT. For Greedy, we have used GPU to compute distance which gives benefits to Greedy process
high dimensional data points.

Results: In terms of runtime, Batch Incremental PR consistently outperforms Greedy on both
datasets (Figure Ekb), Figure Ekb)). In contrast, QT achieves faster runtime on the Taxi dataset
(Figure[2b)), albeit at the expense of higher matching cost. With respect to cost, Batch Incremental
PR consistently outperforms QT on the Taxi dataset (Figure [2fa)), while performing comparably to
Greedy. On the MNIST dataset, the algorithm QT is inapplicable since distances are computed using
Li-norm. Furthermore, Batch Incremental PR surpasses Greedy with a significant margin both in
terms of cost and update time. Overall, Batch Incremental PR consistently achieves the best balance
between cost and runtime across datasets, and crucially, its performance advantage extends beyond
low-dimensional Euclidean settings.

Under review as a conference paper at ICLR 2026

REFERENCES

Tenindra Abeywickrama, Victor Liang, and Kian-Lee Tan. Optimizing bipartite matching in real-
world applications by incremental cost computation. In Proceedings of the VLDB Endowment
(PVLDB), volume 14, pp. 1150-1158, 2021. doi: 10.14778/3450980.3450983. URL https:
//v1ldb.org/pvldb/voll4d/pll50-abeywickrama.pdfl

Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite matching in metric
spaces. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC),
pp. 555-564, 2014.

David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. Advances
in Neural Information Processing Systems, 33:21428-21439, 2020.

Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David P. Woodruff. Efficient sketches for earth-
mover distance, with applications. In FOCS (or technical report / conference version, 2009),
2009. PDF / tech report available online.

Yogesh Balaji, Rama Chellappa, and Soheil Feizi. Robust optimal transport with
applications in generative modeling and domain adaptation. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),
Advances in Neural Information Processing Systems 33 (NeurIPS 2020). Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
robust-optimal-transport.htmll

Jiezhang Cao, Langyuan Mo, Yifan Zhang, Kui Jia, Chunhua Shen, and Mingkui Tan. Multi-
marginal wasserstein gan. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 32 (NeurIPS 2019),
pp. 1774—1784. Curran Associates, Inc., 2019.

Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 63rd IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pp. 612-623. IEEE, 2022. doi: 10.
1109/FOCS54457.2022.00063.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differ-
ential equations. In Advances in Neural Information Processing Systems (NeurIPS), volume 31,
2018.

Kevin Cheng, Shuchin Aeron, Michael C Hughes, and Eric L Miller. Dynamical wasserstein
barycenters for time-series modeling. Advances in Neural Information Processing Systems, 34:
27991-28003, 2021.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big Data, 5(2):153—-163, 2017.

Ran Duan and Seth Pettie. Scaling algorithms for weighted matching in general graphs. Journal of
the ACM, 63(2):1-23, 2016. doi: 10.1145/2837021.

Emily Fox. A simple deterministic near-linear time approximation scheme for transshipment with
arbitrary positive edge costs. In 32nd Annual European Symposium on Algorithms (ESA 2024),
pp. 56—1. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2024.

Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for network problems. SIAM
Journal on Computing, 18(5):1013-1036, 1989. doi: 10.1137/0218069.

Gramoz Goranci, Peter Kiss, Neel Patel, Martin P. Seybold, Eva Szilagyi, and Da Wei Zheng.
Fully dynamic euclidean bi-chromatic matching in sublinear update time. In Proceedings of
the 2025 International Conference on Machine Learning (ICML), May 2025. URL https:
//openreview.net/forum?id=up2lRwj5Fo¬eld=gkzo02X421B. Oral paper.

Alexandre Gramfort, Gabriel Peyré, and Marco Cuturi. Fast optimal transport averaging of neu-
roimaging data. In International Conference on Information Processing in Medical Imaging, pp.
261-272. Springer, 2015.

10

https://vldb.org/pvldb/vol14/p1150-abeywickrama.pdf
https://vldb.org/pvldb/vol14/p1150-abeywickrama.pdf
https://proceedings.neurips.cc/paper/2020/hash/robust-optimal-transport.html
https://proceedings.neurips.cc/paper/2020/hash/robust-optimal-transport.html
https://openreview.net/forum?id=up21Rwj5Fo¬eId=gkzo2X421B
https://openreview.net/forum?id=up21Rwj5Fo¬eId=gkzo2X421B

Under review as a conference paper at ICLR 2026

M Yasser H. Nyc taxi trip duration. https://www.kaggle.com/datasets/yasserh/
nyc-taxi-trip—-duration, 2021. Kaggle.

Isabel Haasler and Pascal Frossard. Bures—wasserstein means of graphs. In Proceedings of the
27th International Conference on Artificial Intelligence and Statistics (AISTATS), volume 238
of Proceedings of Machine Learning Research, pp. 1873—-1881. PMLR, 2024. URL https:
//proceedings.mlr.press/v238/haasler24a/haasler24a.pdf.

Sariel Har-Peled. Geometric approximation algorithms. Number 173. American Mathematical Soc.,
2011.

Amos Israeli and A. Itai. A fast and simple randomized parallel algorithm for maximal match-
ing. Information Processing Letters, 22(2):77-80, 1986. ISSN 0020-0190. doi: https://doi.org/
10.1016/0020-0190(86)90144-4. URL https://www.sciencedirect.com/science/
article/pii/0020019086901444\

Ce Ju and Cuntai Guan. Deep optimal transport for domain adaptation on spd manifolds. Artificial
Intelligence, 345:104347, 2025. doi: 10.1016/j.artint.2025.104347.

Jintao Ke, Feng (Evan) Xiao, Hai Yang, and Jieping Ye. Optimizing online matching
for ride-sourcing services with multi-agent deep reinforcement learning. arXiv preprint
arXiv:1902.06228,2019. URL https://arxiv.org/abs/1902.06228.

Soheil Kolouri, Navid Naderializadeh, Gustavo K. Rohde, and Heiko Hoffmann. Wasserstein em-
bedding for graph learning (wegl). In Proceedings of the 9th International Conference on Learn-
ing Representations (ICLR), 2021. URL https://openreview.net/forum?id=AAes_
3W-22zl

Harold W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83-97, 1955.

Yann LeCun, Corinna Cortes, and CJ Burges. The MNIST database of handwritten digits. http:
//yann.lecun.com/exdb/mnist /L Accessed: YYYY-MM-DD.

Huidong Liu, Xianfeng Gu, and Dimitris Samaras. A two-step computation of the exact gan wasser-
stein distance. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning (ICML), volume 80 of Proceedings of Machine Learning Re-
search, pp. 3165-3174. PMLR, 2018. URL http://proceedings.mlr.press/v30/
1liul8d.htmll

James Munkres. Algorithms for the assighment and transportation problems. Journal of the Society
for Industrial and Applied Mathematics, 5(1):32-38, 1957.

NYC Taxi & Limousine Commission. Nyc taxi trip record data. https://www.nyc.gov/
site/tlc/about/tlc-trip-record-data.page, 2024. Accessed September, 2025.

Gabriel Peyré and Marco Cuturi. Computational Optimal Transport. Now Publishers, 2019.

Guoyang Qin, Qi Luo, Yafeng Yin, Jian Sun, and Jieping Ye. Optimizing matching time intervals
for ride-hailing services using reinforcement learning. Transportation Research Part C: Emerg-
ing Technologies, 129:103289, 2021. doi: 10.1016/.trc.2021.103289. URL https://www.
sciencedirect.com/science/article/abs/pii/5S0968090X21002527.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its applica-
tion to texture mixing. In Proceedings of the 2011 International Conference on Scale Space and
Variational Methods in Computer Vision (SSVM), pp. 435446, 2011.

Thibault Séjourné, Frangois-Xavier Vialard, and Gabriel Peyré. The unbalanced gromov-wasserstein
distance: Conic formulation and relaxation. In Advances in Neural Information Processing Sys-
tems (NeurIPS) 2021,2021. URL|https://proceedings.neurips.cc/paper/2021/
£11e/4990974d150d0debebelbaldb4feob0f-Paper.pdfl

11

https://www.kaggle.com/datasets/yasserh/nyc-taxi-trip-duration
https://www.kaggle.com/datasets/yasserh/nyc-taxi-trip-duration
https://proceedings.mlr.press/v238/haasler24a/haasler24a.pdf
https://proceedings.mlr.press/v238/haasler24a/haasler24a.pdf
https://www.sciencedirect.com/science/article/pii/0020019086901444
https://www.sciencedirect.com/science/article/pii/0020019086901444
https://arxiv.org/abs/1902.06228
https://openreview.net/forum?id=AAes_3W-2z
https://openreview.net/forum?id=AAes_3W-2z
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://proceedings.mlr.press/v80/liu18d.html
http://proceedings.mlr.press/v80/liu18d.html
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.sciencedirect.com/science/article/abs/pii/S0968090X21002527
https://www.sciencedirect.com/science/article/abs/pii/S0968090X21002527
https://proceedings.neurips.cc/paper/2021/file/4990974d150d0de5e6e15a1454fe6b0f-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4990974d150d0de5e6e15a1454fe6b0f-Paper.pdf

Under review as a conference paper at ICLR 2026

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Scholkopf. Wasserstein auto-
encoders. In 6th International Conference on Learning Representations (ICLR), May 2018. URL
https://openreview.net/forum?id=HkL7n1-0b.

Yongxin Tong, Jieying She, Bolin Ding, Lei Chen, Tianyu Wo, and Ke Xu. Online minimum
matching in real-time spatial data: Experiments and analysis. In Proceedings of the VLDB En-
dowment (PVLDB), volume 9, pp. 1053-1064, 2016. doi: 10.14778/2994509.2994515. URL
https://www.vldb.org/pvldb/vol9/pl1053-tong.pdf.

Yongxin Tong, Dingyuan Shi, Yi Xu, Weifeng Lv, Zhiwei Qin, and Xiaocheng Tang. Combina-
torial optimization meets reinforcement learning: Effective taxi order dispatching at large-scale.
IEEE Transactions on Knowledge and Data Engineering, 35(10):9812-9823, 2023. doi: 10.1109/
TKDE.2021.3127077. URL|https://doi.org/10.1109/TKDE.2021.3127077.

Cédric Villani. Optimal Transport: Old and New, volume 338 of Grundlehren der mathematischen
Wissenschaften. Springer, 2009.

Boming Zhao, Pan Xu, Yexuan Shi, Yongxin Tong, Zimu Zhou, and Yuxiang Zeng. Preference-
aware task assignment in on-demand taxi dispatching: An online stable matching approach. In
Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI), volume 33, pp. 2245—
2252, 2019. doi: 10.1609/aaai.v33i01.33012245. URL https://ojs.aaai.org/index.
php/AAATI/article/view/4060.

Goran Zuzic. A simple boosting framework for transshipment. In 31st Annual European Sympo-
sium on Algorithms (ESA 2023), volume 274, pp. 104—1. Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, 2023.

APPENDIX

A DETAILS OF ALGORITHM AND ANALYSIS

A.1 ANALYSIS

Our analysis consists mainly of two parts. In section [A.2] we establish the competitive ratio of
algorithm Next, in section we show that the total runtime of the Algorithmis 9] (n?19). We
state two easy but crucial observations about the algorithm INCREMENTAL-PUSH-RELABEL which
will be used at various parts in the analysis.

Observation 1 Forany 1 < j < n, the algorithm maintains a matching Ml; of the request sequence
{r1,7r9, - rj} . Moreover, once a server is matched, it never becomes free.

The first observation follows from the simple fact that we run the main loop until there exists a free
request (recall that requests can become free and matched during the processing of a new request).
It is unclear at this point why the process should terminate. However, we prove in Section [A.3] that
it indeed does.

Given a matching M, define MI} as the set of edges (s,) € M; such that level(r) = level(s) = i
- we refer to such an edge as a matched edge at level i.

Observation 2 For any r € R, level(i) is monotonically increasing while for any s € S, level(s)
is monotonically decreasing over the sequence of insertions.

Both the observations follow from the fact that in FIND-ADMISSIBLE-EDGE , for any request r the
algorithm only considers edges to s that level(i) < level(s).

We prove the following invariants for any matching M;, 1 < 7 < n, introduced in Section

12

https://openreview.net/forum?id=HkL7n1-0b
https://www.vldb.org/pvldb/vol9/p1053-tong.pdf
https://doi.org/10.1109/TKDE.2021.3127077
https://ojs.aaai.org/index.php/AAAI/article/view/4060
https://ojs.aaai.org/index.php/AAAI/article/view/4060

Under review as a conference paper at ICLR 2026

Algorithm 1 INCREMENTAL-PUSH-RELABEL

Input: The j-th request r;, where j € {1,...,n}
Output: Matching M; after macthing 7;

RN R YR

R

_.
e

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34

35:

36:
37:
38:
39:
40:
41:
42:

Mj — Mj—l
yi(r;) < Oforalli € {0,..., u}
Tf Ty
L,s < CREATE-SORTED-EDGE-LIST(r/)
10
while 7/ # Q) and i < (u+ 1) do
if y;(r/) = y® then
1 1+1
level(rf) « i
continue
end if
s < FIND-ADMISSIBLE-EDGE(7/, i)
if s # () then
if s € ST then
Add edge (s,77) to M
yi(s) < vi(s) — 1
rl
level(s) + i
ST+ S\ {s}
Remove the first element from L,.f
B% + BL U {s}
else
Add (s,7f) to M
let " be the request matched to s
Remove (s, ") from M
adjust the server dual: y;(s) < y;(s) — 1
rf !
level(s) + i
Bgevel(r)<_ Bgvel(r) \ {8}
B «+ By U {s}
i < level(r")
end if
else
Let s/ be the first server in Lfn 5

slackuin + minep oy {di(s,7) =y 7) = y(s)}

yi(r?) < min{(y;(r?) + slackmin + 1), ymaxy
end if
end while
if 77 # 0 and level(r') = (u + 2) then

> free request

&> promotion of 7/

> free server

> Relabel : decrease server dual

> update L, s

> Push : server s matched to r’

> Relabel: increase request dual

Use Hungarian algorithm to match rf with servers in the set Bg“ uSF

end if
return M

Algorithm 2 CREATE-SORTED-EDGE-LIST(7)

Input: Request r
Out

AN AR S e

put: Sorted list of free servers € ST over d(-, r)
L« {0}
for s € ST do
L LU{(s,d(s,7)}
end for
SORT(L) based on d(-,)
return £

13

Under review as a conference paper at ICLR 2026

Algorithm 3 FIND-ADMISSIBLE-EDGE(7, i)

Input: Request r and its current level ¢
Output: A server s having admissible edge with r if exists
: for s € qu do > Find an admissible non-free server
if y;(s) + yi(r) = di(s,r) + 1 then
return s
end if
: end for
. Let s/ be the first server in L, > Find an admissible free server
iy (sh) +y;(r) = di(sf,7) + 1 then
return s
end if
: return ()

YR IINHERN 2

—

(I1) Ateach level ¢, the matching Mé maintained by the algorithm is 1-feasible. That is, at any
leveli € {0,---,p}

yi(s) + yi(r) < c?,;(s,r) +1 where (s,7) & M; and s € By
yi(s) +yi(r) = Ji(s,r) where (s,7) € Mé

(I2) For any unmatched server s (that is s € S¥); y;(s) = 0,¥i € {0,---,(u + 1)}. For
any request r, if level(r) = i, then yi(r) = y"**,V0 < k < i. For any server s, if
level(s) = i, then yx(s) = 0,V0 < k < @

Lemma 7 (Invariant[(I2)) For any unmatched server s € S¥, y;(s) = 0,¥0 < i < . For any
request 1, if level(r) = 14, then yp(r) = yr**,V0 < k < i. For any server s, if level(s) = i, then
ye(s) =0,V0 < k < i.

Proof. The first claim follows from Observation E] and the fact that for a server in ST, y;(s) is set
to O in the initialization phase.

The second claim can be proved using induction on ¢. For the base case (i = 0), the lemma holds
vacuously. Now consider any level ¢ > 1. Firstly, by induction hypothesis, yy (r) = y**,0 < k <
7 — 1. Further, since r is matched at level 7, there exists some iteration when it became a free vertex
at level 4. This implies y;_1(r) was set to y*** at some iteration. Furthermore, dual increments of
7 happens only at the relabel step and the only dual values that are modified in subsequent iterations
are yy(r) for k > 4. The third claim follows from an analogous argument for the servers.]

Lemma 8 (Invariant[IT)) The matching M maintained by Algorithm[l)is always 1-feasible.

Proof. We proceed by induction over updates to M. Suppose 1-feasibility holds after processing
;1. Consider any dual update during the processing of 7;. Duals change only in three places: two
for servers and one for requests. We argue these two cases using contradiction.

Case 1 (request update). For contradiction, let us assume Invariant [(IT)]is violated for request r at
a point of time when level(r) = i. Recall that the dual variable y;(r) is increased by at least 1
if and only if there is no admissible edge from any s € B% U L,. We want to show, r maintains
feasibility condition with all the servers of B4 U L,.. We can ignore all server s’ € Bg where k < 1,
since Observation [2| eliminates the possibility of (s’,) being a matching edge in future. If r is a
matched request, its dual does not increase. Thus, r is a free request at level ¢+ with no admissible
edge. After increasing y;(r), suppose for contradiction that feasibility is violated on some (s,),
where s € B4 U L., i.e.,
yils) + 9a(r) > dils,7) + 2.

By induction hypothesis, just before the update we had equality y;(s) + y;(r) = di(s,r) + 1, so
(s,7) was admissible. Since r was free, the algorithm would have matched it, contradiction.

Case 2 (server update). When a request with level(r) = i matches a server s € BY, the dual of
s is decreased by 1. By induction hypothesis (s,r) was non-matching 1-feasible edge before the
update. Hence, decreasing y;(s) cannot violate feasibility.

14

Under review as a conference paper at ICLR 2026

Thus all updates preserve 1-feasibility. (]

A.2 COST ANALYSIS

After matching rj, let M[; and M be the matching by the algorithm and the optimal matching (under
d(-,-)), respectively. w(M;) and w(M7) denote the cost of the respective matching under metric
d(-,-). Similarly, @ (M) and @ (M) denote the cost of the respective matching under metric d(-,).
We shall show that w(M;) = O(1/6%)w(M7). For our analysis, we assume that we maintain the

guess w such that w(M7) <w < 2w(M;); Vi € {1,...,n}.

First, let us explore a few properties of the metric space defined by the distance function (jl(,).

Let M, C M denotes the set of matching edges at level i. Let S} = B§ U S™. Let R’ be requests
such that for any r € R;.; level(r) > i.

Lemma [9] follows from [Agarwal & Sharathkumar (2014). However their notion of server
sets used in the lemma are different ours. Specifically, S} contains servers which are both free or
matched at any level ¢ or higher. Although the methodology of our proof is more or less similar to

them, our proof departs at certain places from them due to different definition of server set. For the
sake of completeness and readability, we present the full proof of the said Lemmas.

Lemma 9 1. Foranyi >0, d;(-,-) is a metric.
2. Fori>1,di(s,r) > ¢ forany (s,r) € S% x R

3. Forany i > 1, there is a scaling factor o; such that
(1 - 6/3)0idi(87 7”) < d(sv 7”) < Uidi(sa T)

Proof. Proof of part (i) Given three points a, b and c in the metric space defined by the distance
function d(-, -), from the triangle inequality

d(a,b) + d(b,c) > d(a,c)

The inequality holds even if we multiply it by some k& € R as follows
[kd(a,b)] + [kd(b, c)] = [kd(a, c)]

Using this scaling property of the metric space, we will complete the proof of this part. The distance
function is defined by d;(-,-). We use induction on . When ¢ = 0, we set k = 8%, where n is
the total number of requests. We have dy(-, -) satisfying the triangle inequality. Assume d;_1(-,-)
satisfies the triangle inequality. Setting k = W and d(-,-) = d;—1(+,-), we have d;(-,-)
satisfying the triangle inequality.

Proof of part (ii) Consider request r € R; is matched at level 7. Then for any level 0 < k < 4,

yi(r) = yp** following Invariant Moreover Invariant ensures, for any server s € S¢,
yk(s) = 0. Then, for any edge (s,) € S} x R}, the following holds,

30 -~
yk(s) +yr(r) = ?n“o’“ < di(s,r) +1

This implies, dy,(s,) > 32 n®* — 1. So, Vi > 0, we have

7T Lfl\i,) 3
di(87T) > 1(8 T) >

—-1>
T 2(1+¢e)?nri-r T 2(1+)% -

[ON =

. _ 1 1
since € = 7210&(%) < 5
Proof of part (iii) Ignoring the ceiling operator in the scaling of distance only decrease the value of
d; (-, -), so using |3|repeatedly, we obtain

1 ~
- d(S,’/‘) < di(S,’/’)

0;

15

Under review as a conference paper at ICLR 2026

where, 0; = % . On the other hand,
1 ~
Z‘_l(S, 7') + 1

d; <
(577") = 2(1 -‘1-6)2’[1“”*1

By expanding the recurrence and performing the necessary algebraic manipulations, we arrive at
~ d(s,r
di(s,r) < dls,r) +2
o}

Now using part (ii) of the lemma, we obtain
(1—¢/3)osd;(s,r) < d(s,r) < osds(s, 7).

Corollary 1 Fori > 1, let M and M’ be two (possibly partial) matchings of S, R;
1. If M is a perfect matching, then W(M) > S~;, where ~; is the number of requests in R;

@(M) w(M) 1 W(M)
2. (1= 3) 50 < wary < 15 a0r)
For the next lemma, let M; denotes the optimal matching between S; and R;- under metric d(-, -).

This implies MY = M.
i)

Lemma 10 Foralli € {0,---,(u + 1)}, the following holds
w(M?) < 2(1 + e)w(M

J

Proof. Observe that, for every edge (s,r) € Mg s vi(s) +yi(r) = cZ(s, r) and for every vertex
v E S;»H U R;H, yi(v) > 0 (follows from Invariant . Therefore,

aM) < Y piw)

'UGS_; UR;

For every edge (s,7) € MY, yi(s) +yi(r) < d;(s,7) + 1. Every vertex of R is incident on exactly

one edge of M? , so
Z yi(v) < Z (@(877”)-*-%3@(/\/1;)4-% @)
vESIUR] (s,r)eM;
Consequently,
W(M;) < DM3) + 7, 5)
2d(s,r)~n—‘ and

EwW

We prove the lemma for cases ¢ = 0 and ¢ > 0 separately:
Case i = 0: From the equation|5, we have @ (M%) < @(M$) + j. Since do(s,r) = [

w < Z(M?), we obtain the following inequalities:
(6)

. 2)
w(M) < Z (nd(s,r) + 1) +3
(s,T)EM?

2n
< Zw(M?) + 24
< uMG) +2j

16

Under review as a conference paper at ICLR 2026

BM) > = d(sm)=:*nw(M?> (7)

Combining the above equati0n|§| andand using w < Qw(./\/l?),
w(M]) < w(MY) +ew < 2(1 + e)w(M)).

Case i > 0: Fromand Corollaryl) , we get

@(MZ) < @(M;) +v <1+ 5/6)&3(/\/1;)
Finally by Corollary [1](2),

14+¢/6

(Ml) ~1-¢/3

w(ME) < (1+ e)w(M).

Lemma 11 Foralli € {0,--- ,(u+ 1)}, the following holds
w(MF) < 3(1+ e)w(M?)
Proof. Observe that M; & M; results in a set of vertex disjoint alternating cycles and alternating

paths. For our purpose, we only care about the set of paths denoted by IP. Each path in I’ connects a
some server of S;H to a request in R}H i.e. |P| = ~it+1. Using lemma

Z Z d(s,r) = w(M}) + w(M}) < (34 2e)w(M}) < 3(1+e)w(M})
PcP (s,r)eP

Recall that d(-, -) satisfies the triangle inequality, so if the endpoints of a path P, € P are (s, %) €
S;“ X R;-H, then d(sg, k) < > d(s,r). Hence,

(s,r)EPy
wMIFH <> N d(s,r) < 3(1+ e)w(M))
PeP (s,r)eP
O
Theorem 2 Let M, be the final matching and M, be the optimal matching, then
w(Mp) = O(1/6)w(M;,)
Proof. Using lemmal[I0}
pn+1 _ pn+1 _ pn+1 '
wM,) =Y wM) <2(1+¢) Y wM) <3(1+e) > wM)
i=0 i=0 i=0
By applying lemma|[T1|repeatedly, we obtain,
wM;) <3 (1+e)" Y wM)) =3 (1+2)" Y w(My)
i=0 i=0
Hence,
pt1
w(M,) < 3(1+e)w(M;) D 3 (1+e)" < (3(1+e)"Pw(M;)
i=0
Putting the values of 1 and &, we get (1 + ¢)**2 = O(1) and 3#*2 = O(1/4). Hence w(M,,) =
O(1/6)w(M3,) O

17

Under review as a conference paper at ICLR 2026

A.3 UPDATE TIME ANALYSIS

Now, let us focus on the run-time analysis. Recall the notations one more time. After n requests has
arrived, M, denotes the online solution and M, is the offline optimal solution. M} C M, denotes

the set of matching edges at level i. Si = B4 U S™ and R! is the set requests such that for any
r € R; level(r) > i. M, denotes the optimal matching between S}, and R}, under metric d(-, -).
This implies M? = M.

We compute the total running time of INCREMENTAL-PUSH-RELABEL over arrival of all requests.
Recall that we are assuming that our metric space has bounded aspect ratio A. This impacts the cost
by a factor of log(nA).

To process j-th request, INCREMENTAL-PUSH-RELABEL performs four major operations regardless
of levels :

* Creating sorted edge list : For each newly arrived request r, the algorithm constructs the
lists £,.; using CREATE-SORTED-EDGE-LIST .

* Push operation. This step involves modifying the current matching by either adding or
removing edges. Each addition or removal of an edge is accompanied by a corresponding
decrease in the dual variable associated with the server of that edge.

* Relabel operation. In this step, the dual variable of a request is incremented.

* Finding admissible edges. For a free request r, FIND-ADMISSIBLE-EDGE either identifies
a server from the set B U L, that forms an admissible edge with 7, or reports that no such
server exists.

Now we proceed with the analysis the following way. In lemma (Lemma we bound the total
runtime of the Relabel operations. Next in lemma [I6] we established that total the runtime of Push
steps is upper bound by total number of Relabel operations. In lemma [T8] we bound the runtime
of finding admissible edges. We also argued that if there are some requests reached at level pu + 2
and matched by Hungarian, the number of such requests are significantly small and thus the total
runtime spent at level p + 2 is O(n?%9) (Corollary . Finally in theorem [3| we prove the bound
of the runtime of INCREMENTAL-PUSH-RELABEL . We address the runtime of CREATE-SORTED-
EDGE-LIST inside INCREMENTAL-PUSH-RELABEL in theorem 3]

Lemma 12 At level i < (p+ 1), for any request r, the total number of Relabel operations is upper
bounded by y;"*.

Proof. Consider request r enters level 7. By construction, its dual variable is initialized as y,, = 0
upon entering this level. A relabel operation in level ¢ strictly increases y,.. In particular, each relabel
increments y,- by at least one unit. Since ¥, cannot exceed y;"**, the number of relabel operations
that can be applied to r within level 7 is bounded by y;"**.

Moreover, once r exits level ¢ and progresses to a higher level, it cannot return to level i. There-
fore, no additional relabel operations for can occur at level 7. Combining these observations, we

conclude that the total number of relabel operations performed on 7 in level ¢ is at most y;"**]

i .

Recall that BY is the set of servers matched at level i. Let R? be the set of requests such that for any
r € RY; level(r) = i.

Lemma 13 After matching j-th request, at each level i < (u + 1), we show that

Z yi(s)| < Z yi(r)

SEBg reRi

Proof. We establish the lemma using an amortized analysis.

For any server s € BY, define its potential at level i as
Yi(s) = —yi(s)-

18

Under review as a conference paper at ICLR 2026

By Observation |1} every server with non-zero dual value must belong to the matching Mg Conse-
quently, for any edge (s,r) € M; at level ¢, the feasibility condition implies

yi(8) + yi(r) = di(s, 7).

Since d;(s,7) > 0 and y;(s) < 0, it follows that

di(s,r) < yi(r).

Moreover, rearranging yields

di(s,7) —yi(r) = yi(s), sothat ;(s) = —y;(s) = yi(r) — di(s, 7).

Because all of d;(s,r), y;(r), and 1;(s) are nonnegative, we further obtain

Pi(s) < yi(r).

Summing over all matched edges at level 7, we get

> i(s) < D i)

seBL reR:

SIHCC 25631 wl ‘ZSGB"’ yZ)
(Il

Following Lemmais followed from|Agarwal & Sharathkumar{(2014) and is crucial to the analysis
of runtime. For the sake of completeness we are providing the proof.

Consider M, be the final matching executed by the algorithm. Let m; be the matching at level ¢ or
above and n; be the number of requests at that level or above, then the following holds.

Lemma 14 At any point in the algorithm, at any level i, n; < n'~%, where ®&; = Zk 0Pk =
S Asandi€ {0,...,(n+2)}

Proof. We claim that
5
w(M?) < n nl=%i (8)

Suppose this claim is true. Then n; < n'~® because wW(M},) > 2n;, by Corollaryl(l Thus it
suffices to prove equatlon we prove it by induction on 4. For, ¢ = 0, do(s r)—1 < 2%d(s, 7).
Since w > w(M?)/2 we have,

BM) —n < Mo < 22
EW

This implies w(M?) < 22

g

By induction hypothesis, let us assume that,
(M’L 1)§§ 1— (I>171
€
From lemma|[10] lemma [11] equation[3|and corollary[I|2), we can write

19

Under review as a conference paper at ICLR 2026

; 24¢ 5 s
w(M;,,di1) < 1_76/310(/\/1” <201 —i-fs)gnl ®ia)

w(ME, dl 1) denotes the cost of matching M?, under metric dl 1. The last inequality in equatlon@
follows because & < 1. On the other hand, by lemma @(2)

—~ ~ C/Z;,l(S,T')
(1—¢/6)di(s,7) < di(s,7) =1 < 21+ 2)2neit

Therefore,

-~ di_1(s,7)
d < ’ 10
i(s,7) 2(1 + £)2nei—1 (10)
Combining equation [9]and equation [I0} we get,
(M) < énlf‘p“l’“‘”*l = §n1’q>i
n _ e c
O

We bound the total runtime of Relabel operations.

Lemma 15 Ar level < (u + 1), total number of relabel operations over all arrivals is upper

bounded by (y™a* - nt=®1),

Proof. Lemma upper bounds the total number of dual operations by any request r with
level(r) = i by y™*. Lemma [14] together with Observation [2] implies that at any point of time
of execution of INCREMENTAL-PUSH-RELABEL , maximum number of requests at level ¢ does not

exceed n'~®:. This conclude the lemma. O

Now we bound the total runtime of Push operations.

Lemma 16 At level i < (u—+ 1), total number of push operations over all arrivals is upper bounded
by (max n1—<1>1)-

Proof. Each Push operation consists of single dual decrement of some server. Lemma [I3] upper
bounds the total dual decrement of servers by total increment of requests matched at that level. How-
ever, maximum number of requests at level i does not exceed n' ~® by Lemman 14|and Observatlonl
and the dual of any request upper bounded by y;"**. Hence the lemma.

We proceed to bound the cost of finding admissible edges. Let us bound the time taken by a single
call to FIND-ADMISSIBLE-EDGE .

Lemma 17 At level i < (u + 1), FIND-ADMISSIBLE-EDGE takes O(n!~%%)-time to report an
admissible edge.

Proof. The runtime of FIND-ADMISSIBLE-EDGE is dominated by the size of the set |B%|. Indeed,
checking the admissibility of an edge incident to a free server requires only O(1) time, since the data
structure £ is maintained explicitly. Therefore, bounding |B%| by O(n'~®:) suffices to establish the
lemma.

By definition, Bg is the set of servers matched at level 4 or higher. Note that the number of matched
servers is always equal to the number of matched requests. Now we argue the upper bound on
matched requests at level ¢. From Observation [2} once a request is matched at or above level 1, it
can never subsequently be matched at a lower level £ < i. Hence, the number of requests matched
at level ¢ or above is monotonically non-decreasing throughout the execution of the algorithm.

20

Under review as a conference paper at ICLR 2026

Finally, Lemma@] establishes that, over all arrivals, the total number of requestsvmatched at or above
level i is bounded by O(n'~®¢). Consequently, the same bound applies to |B%|, which completes
the proof.

In the following lemma, we bound the total cost of finding admissible edges through all requests at
level <.

Lemma 18 At level i < (pu+ 1), over all arrivals, total time taken by FIND-ADMISSIBLE-EDGE is
o=,

g

Proof. Lemmashows that any call to FIND-ADMISSIBLE-EDGE requires O(n'~®¢) time to find
an admissible edge. Each invocation of FIND-ADMISSIBLE-EDGE is immediately followed by either
a Push operation or a Relabel operation. Furthermore, Lemma [16] guarantees that the total number
of Push operations is upper bounded (y™2* - n!~®1) and Lemmauarantees that the total number
of Relabel operations is upper bounded (y®* - n1=®1). Thus, total runtime of finding admissible
edges at level i becomes O(n?~2%: - yMax). We have, y™** = O (™). Together, the running time

at level i becomes O("" - n272%:),

(3 —1)

= 11
5 0=10 Y

. 2468
Hence the runtime becomes O("—). O

Now we analysis the total cost spent by INCREMENTAL-PUSH-RELABEL at level u + 2. By
Lemma the number requests that can reach at level (p -+ 2) is at most n°.

Processing a single request using Hungarian take O(n'*?) time. This is due to the fact that, the

cardinality |Bg+1 U SF| < n and number of total possible requests at level (y + 2) is atmost O(n?).
We immediately get the following

Corollary 2 Over all arrivals, total time spent by INCREMENTAL-PUSH-RELABEL at level (p1+2)
is O(n?%9).

Theorem 3 The amortized runtime of INCREMENTAL-PUSH-RELABEL is O(n!'*? logQ(%)).

Proof. We partition the runtime analysis into two. First we compute the total runtime spent over
all levels ¢ € {0,..., (u+ 1)} over all arrivals. The runtime of the algorithm depends on four major
operations. A single invocation to CREATE-SORTED-EDGE-LIST takes no more than O(n - (u+1)).
The factor of (1 + 1) appears because computing scaled distance between a pair of points can take
O(p+1)-time. Thus, over all, CREATE-SORTED-EDGE-LIST costs O(n?(u+1)). Now, we examine
the runtime of each of other three operations for fixed level i. Following lemma total time of
relabeling at level i is (n'!=%¢ - y¢ . Same bound holds for total numbers of push steps following
lemma Total time taken by FIND-ADMISSIBLE-EDGE is O(n?~2%i . y4%) time. Following

. .. 245 .
18} this quantity is O(2—). Hence, the runtime of INCREMENTAL-PUSH-RELABEL at
q y =

lemma

.. 2+6 P ; .
level 7 is O(*——). For finding minimum slack, as its runtime is linear to |Bg|, the same analysis
n2+5

of runtime of FIND-ADMISSIBLE-EDGE applies. This contributes additional O() time factor to
the runtime of INCREMENTAL-PUSH-RELABEL . Finally we need to update list £,- for each request
r, when ever r is matched to a free server. Each time we match a free server, updation to this data
structure costs O(1) time. Since for each request arrival, we find exactly one free server to match,

the cost of this step becomes O(n) over all arrivals.
Recall that, ¢ = m. From Corollary [2| and summing over all O(logs(})) many levels, we

get total runtime to be O(n?*? 1og2(%)).

O

21

Under review as a conference paper at ICLR 2026

B ADDITIONAL EXPERIMENTS

We show our tests and results on the Synthetic data set as described in Section 4]

Tests: Similar to NYC-Taxi data, we evaluate three algorithms three algorithms: Batch Incremental
PR, Greedy and QT. In this setting, the server set is fixed at 10,000 and we set § = 0.001.

Results: Batch Incremental PR consistently outperforms Greedy in both cost and runtime. Al-
though QT achieves the best overall runtime performance, Batch Incremental PR surpasses QT by a
significant margin in terms of matching cost (Figurd3|a), Figure3[b)).

Average Cost vs. Number of Requests (n)

Average Match Time per Request vs. Number of Requests (n)
—e— Batch Incremental PR -

= Greedy
—+— Quad Tree

& & &

—e— Batch Incremental PR
—= Greedy
—— QuadTree

Average Cost (PR vs Greedy vs QT)

Average Time per Request (seconds) (PR vs Greedy vs QT

01 _“’_’7//
05 - 0.0
2000 4000 00 8000 10000 2000 4000 6000 8000 10000
n (number of requests) n (number of requests)
(a) Average cost per request (b) Average time per request (in seconds)

Figure 3: Plots of Synthetic data

B.1 VARIANCE PLOTS

Following we show the variance plots of Batch Incremental PR over different data sets.

Mean + 1 Std across instances

Mean + 1 Std across instances
Batch Incremental PR: Average Cost vs. Number of Requests i

Batch Incremental PR: Average Runtime vs. Number of Requests

43 — PR(mean)

3 PR (mean)
. +15td § 00175 +15td
$ 02| £0.0150
g g
E a1 ﬂéo 0125
o & 0.0100
& 10! s
b §o 0075
& £
$397 F 0.0050
2 &
38 £0.0025
g
! | | ! ! < 0.0000
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Number of requests Number of requests
(a) Variance over cost (b) Variance over runtime

Figure 4: Variance plots on MNIST data

Mean + 1 Std across instances Mean + 1 Std across instances
Batch Incremental PR: Average Cost vs. Number of Requests Batch Incremental PR: Average Runtime vs. Number of Requests
0.007{ — PR (mean) Z006 PR (mean)
. 0.006 +1Std § +1 Std
g 005
30.005 { o
& $o0a
5 0.004 | S
= &
2 0.003 5003
g F
0002 £o.02
g 0.001 { :
<™ $0.01
0.0001 g
- . - . < 0.00 5 . —
2000 4000 6000 8000 10000 2000 4000 00(8000 10000
Number of requests Number of requests
(a) Variance over cost (b) Variance over runtime

Figure 5: Variance plots of Taxi data

C LLM-USAGE

LLM have been used to polish part of the paper.

22

Under review as a conference paper at ICLR 2026

Mean + 1 Std across instances
Batch Incremental PR: Average Cost vs. Number of Requests
—— PR (mean)
+15td

Mean + 1 Std across instances
Batch Incremental PR: Average Runtime vs. Number of Requests

>

0.12{ —— PR (mean)
+15td

IS
°
s

9
o o
s o
& 8

°
©
°
o
2

°

>
o
S

Average Cost per Request
o
Average Time per Request (seconds)

°
5
8

2000 401 8000 10000 2000 400

00 601 8000 10000
Number of requests

0 00
Number of requests

(a) Variance over cost (b) Variance over runtime

Figure 6: Variance plots of Taxi data

23

	Introduction
	Our Contributions
	Related Work
	Overview of Techniques

	Preliminaries
	Incremental Push-Relabel Algorithm
	Analysis
	Removing the assumption on

	Experiments
	Details of Algorithm and Analysis
	Analysis
	Cost analysis
	Update Time Analysis

	Additional Experiments
	Variance Plots

	LLM-Usage

