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ABSTRACT

High-resolution gaming demands significant computational resources, with chal-
lenges further amplified by bandwidth and latency constraints in cloud gaming.
Existing upscalers, such as NVIDIA DLSS and AMD FSR, reduce rendering
costs but require engine integration, making them unavailable for most titles, espe-
cially those released before the introduction of upscalers. We present GameSR, a
lightweight, engine-independent super-resolution model that operates directly on
encoded game frames. The architecture of GameSR combines reparameterized
convolutional blocks, PixelUnshuffle, and a lightweight ConvLSTM to deliver
real-time upscaling with high perceptual quality. Extensive objective and sub-
jective evaluations on popular games, such as Counter-Strike 2, Overwatch 2, and
Team Fortress 2, show that GameSR reduces cloud gaming bandwidth usage by
30–60% while meeting target perceptual qualities, achieves real-time performance
of up to 240 FPS, substantially outperforms existing super-resolution models in
the literature, and reaches near-parity with DLSS and FSR without accessing ren-
dering engine data structures or modifying game source code, making GameSR a
practical solution for upscaling both modern and legacy games with no additional
development effort.

1 INTRODUCTION

Gaming is the world’s largest entertainment industry, surpassing film and music with revenues of
over $200 billion in 2024 and projected to reach nearly $290 billion by 2030 (CAGR 8.7%) (Statista,
2025; Newzoo, 2024). High-resolution, high-frame-rate gaming is highly immersive but computa-
tionally demanding. As resolution and frame-rate requirements increase (e.g., 2K and 4K at 60–
120 fps), the processing cost rises sharply. For example, high-end GPUs such as the RTX 3080 Ti
have power ratings of ∼350 W, and measurements of games like Horizon Zero Dawn confirm
draws of ∼346 W under full load (Igor’s Lab, 2021; Tom’s Hardware, 2021). System-level tests
further show that demanding modern titles can push full gaming PCs to 325–380 W at ultra
4K settings (Mezha, 2024). Combined with analyses estimating that gaming rigs can consume
∼1,400 kWh/year under heavy use (Mills & Mills, 2015), these figures highlight the substantial
hardware and operational costs required to sustain premium gaming performance.

An emerging alternative to this hardware-intensive model is cloud gaming, where games are ren-
dered on remote servers and streamed to lightweight clients. While this shifts the computa-
tional burden away from players, it introduces substantial bandwidth and latency challenges. Un-
like video streaming services such as Netflix, which stream 1080p content at around 5 Mbps
(3 GB/hr) (Netflix, 2020; 2022), platforms like Nvidia Gforce Now demand at least 28 Mbps for
1080p (12.6 GB/hr) (NVIDIA, 2025), due to fast motion, complex animations, and latency-sensitive
compression profiles (e.g., small GOPs and no B-frames). Moreover, gaming is highly interactive,
requiring round-trip response within milliseconds to preserve player performance and Quality of
Experience (QoE). Prior studies show first-person shooter games tolerate up to 80 ms end-to-end la-
tency (Amiri et al., 2020), while every additional 100 ms can reduce third-person game performance
by 25% (Claypool & Finkel, 2014). Latency arises from client input, server rendering/encoding, and
network delay; the latter alone can consume up to 80% of the total budget (Choy et al., 2012).

A common way to reduce rendering costs is to lower spatial resolution and then upscale; however,
naive upscaling degrades visual quality. Hardware vendors have therefore introduced content-aware
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solutions such as NVIDIA DLSS (NVIDIA, 2019), AMD FSR (AMD, 2025), and Intel XeSS (Intel,
2024). While effective, these upscalers require game engine integration and access to depth maps,
motion vectors, and other internal data structures, with additional vendor restrictions (e.g., DLSS on
NVIDIA hardware only). Research models like RenderSR (Dong et al., 2022), ExtraSS (Wu et al.,
2023b), Mob-FGSR (Yang et al., 2024), and Neural Supersampling (Xiao et al., 2020b) follow the
same tightly coupled approach. As a result, support remains limited to a small subset of modern
titles, leaving legacy engines and forward-rendered pipelines unable to adopt these upscalers.

In contrast, a large body of work on super-resolution for general images and videos (e.g., (Lim et al.,
2017; Lai et al., 2017; Hui et al., 2019; Luo et al., 2020; Liang et al., 2021)) can operate directly
on rendered frames without requiring game-engine integration. While these models achieve good
upscaling quality, they are typically too slow for interactive use, with inference times far exceeding
real-time budgets, as confirmed by our experiments in §4. As such, these models remain unsuitable
as a general-purpose upscaling solution for gaming.

The goal of this paper is to introduce a video game upscaler that reduces computing cost while
preserving high visual fidelity, and that operates independently of the game engine without requiring
source code. Achieving this is challenging: strict latency constraints leave little tolerance for extra
processing, most industrial upscalers rely on engine-level data (e.g., motion vectors, depth), and
any solution must be lightweight enough to coexist with rendering, encoding, and networking in
real time. Even minor overheads risk stutter or added input-to-display delay, as modern pipelines
already push frame budgets to the limit, often disabling effects like motion blur or ambient occlusion
at higher frame rates. Thus, an effective upscaler must be engine-agnostic, efficient, and carefully
integrated to deliver perceptual gains without breaking interactivity. We present evaluations in §4,
with additional results and implementation details provided in Appendix A due to space constraints.

The main contributions of this paper are as follows.

• We propose GameSR (§3.2), a lightweight neural super-resolution model that operates di-
rectly on rendered frames without requiring access to game source code or game engine
data structures, making it readily deployable in cloud gaming for recent and legacy games.

• We demonstrate that GameSR achieves near-parity with industrial upscalers on no-
reference perceptual metrics, despite using no motion vectors or depth buffers (§4.2).

• GameSR matches SOTA quality while running 30–60× faster than CNN baselines and
nearly 500× faster than SwinIR, with up to an order-of-magnitude smaller size and
memory (§4.2).

• We demonstrate that streaming at lower resolutions and upscaling with GameSR yields
30–60% bandwidth savings while meeting various perceptual quality targets. (§4.3).

2 BACKGROUND AND RELATED WORK

Stand-alone Gaming and Upscalers. Most games run locally on PCs or consoles, where detailed
textures, fast motion, and complex effects like ray tracing demand powerful GPUs. To reduce load,
super-resolution (SR) methods render at lower resolutions or frame rates and then upscale the frames,
a process that is far cheaper than full-resolution rendering.

Industry solutions include DLSS (NVIDIA, 2022), FSR (AMD, 2022), and XeSS (Intel, 2022).
DLSS uses autoencoder and transformer-based models, FSR applies adaptive interpolation with
post-processing passes, and XeSS employs deep learning. While effective, all require integration
into the game source code to access engine data such as motion vectors, depth, and color, which
complicates deployment and limits applicability.

Academic work has also advanced real-time upsampling. Neural Supersampling (Xiao et al., 2020a)
leverages depth and motion vectors but suffers from ghosting in dynamic scenes; Li et al. (Li et al.,
2024) separate lighting and material components for better temporal stability; and ExtraSS (Wu
et al., 2023a) combines spatial supersampling with frame extrapolation via G-buffer–guided warp-
ing. Like industrial solutions, these approaches also rely heavily on the game engine data structures.

Limitations of Engine-Integrated Upscalers. The reliance on engine data structures limits the
applicability of existing upscalers to a narrow set of modern titles. Legacy games, many of which
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still have active communities, are particularly excluded. For instance, Team Fortress 2, released
in 2007 on Valve’s original Source engine, has not been ported to the modern Source 2 pipeline
and therefore cannot expose the motion vectors, depth buffers, or temporal anti-aliasing required by
DLSS 2/3 and FSR 2/3 (AMD GPUOpen, 2025; NVIDIA, 2025). Similar restrictions apply to other
forward-rendered games, such as Counter-Strike 2, where the rendering pipeline lacks temporal
data that upscalers depend on. As a result, despite the large catalog of PC games, DLSS, FSR, and
XeSS are only supported in a limited subset of titles for which developers have explicitly integrated
them (NVIDIA, 2025; AMD, 2025). In fact, while Steam alone hosts over 86,000 games (SQ Mag-
azine, 2025), only about 650 titles support DLSS (NVIDIA, 2025) and roughly 350–400 support
FSR (AMD, 2025), i.e., well under 1% of the catalog. Furthermore, Steam itself does not repre-
sent the entire ecosystem; other major platforms such as the Epic Games Store, PlayStation Store,
and Xbox Marketplace host thousands of additional titles, making the relative coverage of current
upscalers even smaller in the broader gaming landscape.

Suitability of Existing Image/Video Upscalers for Gaming. Prior work has proposed numer-
ous image and video SR models, including EDSR (Lim et al., 2017), LapSRN (Lai et al., 2017),
IMDN (Hui et al., 2019), LatticeNet (Luo et al., 2020), and SwinIR (Liang et al., 2021). More
recently, research has focused on real-time SR, exploring architectural refinements (Andrey Igna-
tov et al., 2021), model compression, and novel training methods to balance quality with reduced
computation, parameters, and memory (Ignatov et al., 2022; Li et al., 2022; Conde et al., 2023).

Lightweight SR models improve efficiency through various strategies: IMDN uses information dis-
tillation, RFDN replaces it with feature distillation connections, and FMEN emphasizes inference
optimization with tuned convolutions and re-parameterization. LapSRN employs a Laplacian pyra-
mid for coarse-to-fine upsampling, while LatticeNet integrates residual and attention mechanisms to
halve parameters without quality loss. However, these designs target general efficiency rather than
the millisecond-level latency demands of cloud gaming, which remain unmet (details in §A.1).

To quantify this gap, we evaluate existing SR models on gaming content in §4.2. Our results show
that even IMDN (Hui et al., 2019), the most efficient among them, takes over 120 ms to upscale a
single frame by 2× on a high-end GPU, far exceeding real-time limits. By contrast, GameSR takes
4.1 ms on the same hardware.

Additional Challenges of Cloud Gaming. In cloud gaming, rendering is done on the cloud, and
the resulting frames are streamed to clients. Since clients receive only compressed video streams,
industrial upscalers, as well as rendering-coupled research models (Dong et al., 2022; Wu et al.,
2023b; Yang et al., 2024; Xiao et al., 2020b), cannot be applied: they depend on motion vectors,
depth, and other engine-level data unavailable at the client side. Moreover, even if executed in the
cloud, such methods would not reduce streaming bitrate, since frames must still be transmitted at
display resolution.

Finally, while no SR approaches have been specifically designed for cloud gaming, video-on-
demand (VOD) streaming has explored SR integration (Yeo et al., 2018; Baek et al., 2021; Yeo
et al., 2020). These frameworks pre-train lightweight “micro” models for each video segment and
transmit them alongside the stream. However, this is infeasible in interactive cloud gaming systems,
where frames are generated in real time based on player inputs.

Feasibility of Running Upscalers on Client Devices. Most client devices used for gaming sessions
possess underutilized compute resources capable of running upscalers. For example, smartphones
such as iPhone 16 Pro (Apple A18 Pro, 35 TOPS) and MediaTek Dimensity 9400 (50 TOPS) include
powerful NPUs, while consoles like the PS5 and Xbox Series X offer over 10 TFLOPS of GPU
compute (Apple Inc., 2024; MediaTek Inc., 2024; Sony Interactive Entertainment, 2024; Microsoft,
2024). Leveraging these available compute resources for lightweight SR provides a practical path to
reduce bandwidth while preserving quality.

3 PROPOSED SOLUTION

3.1 OVERVIEW AND OPERATION

We design GameSR as an engine-independent, lightweight super-resolution (SR) model that can be
utilized in both traditional (stand-alone) and cloud gaming systems. In traditional gaming, GameSR
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Game 
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Video
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Decoder GameSR

Figure 1: GameSR in cloud gaming: low-resolution streams are rendered at server-side and upscaled
at client-side in real time.

can be applied as a post-processing step after frames are rendered by the game engine, enhancing
the frames before they are displayed.

In contrast, in cloud gaming, the game engine renders frames on the server, which are then com-
pressed by the video encoder and transmitted over the network. This is illustrated in Figure 1. On the
client side, the decoder reconstructs compressed frames, which are normally displayed directly to
the player. To upscale frames in real time, GameSR is inserted between the decoder and the display,
transparently improving the quality of the frames as they arrive.

In addition to improving perceived quality for players, GameSR offers three advantages for cloud
gaming: (i) it reduces server rendering and encoding load by allowing operation at lower resolutions,
(ii) it lowers transmission bitrate since fewer pixels are streamed, and (iii) it requires no integration
with the game engine or decoder internals, making it readily deployable for recent and legacy games.

The key challenge of designing GameSR is meeting the strict deadline in highly interactive gaming
environments. We illustrate the high-level design of GameSR in Figure 2. As our evaluation in §4
demonstrates, GameSR improves perceived quality while meeting real-time latency requirements of
gaming. We present the details of various components of GameSR in the following.

3.2 GAMESR DETAILS

We design GameSR as a lightweight SR model for latency-sensitive gaming content, with neural
layers and components specifically designed for efficiency and effectiveness. GameSR, and SR
models in general, reconstructs high-resolution (HR) frames from low-resolution (LR) inputs by
optimizing a parameterized function F as follows:

θ∗ = argmin
θ

∑
L
(
F (yLR; θ), yHR) . (1)

Fundamentally, the function F performs three main tasks in super-resolution problems: Feature
Representation, Feature Learning, and Mapping LR frames to HR ones. In our design, we extend
this formulation by introducing a fourth stage—Temporal Learning—which leverages information
from adjacent frames before the final mapping stage. We summarize each of these tasks in the
following. More details can be found in §A.2.

While the formulation in Eq.1 is general and GameSR could in principle be applied to other video
domains, our design is motivated by the unique characteristics of gaming content. As opposed to
traditional multimedia, gaming video is synthetic and exhibits recurring objects, structured environ-
ments, and repetitive motion patterns (Zadtootaghaj et al., 2018). These properties enable per-game,
data-centric training and make it possible to realize an extremely lightweight SR model that still
achieves high perceptual quality.

Feature Representation for Upscaling. The feature representation stage employs a single 3 × 3
convolution and PixelUnshuffle (space-to-depth) (Shi et al., 2016), reducing spatial dimensions by
a factor of s and expanding channels by s2. Unlike conventional SR methods (Hui et al., 2019;
Liu et al., 2020; Du et al., 2022), this down-and-up scheme significantly reduces computational
cost while capturing richer channel-wise feature relationships. A detailed inference time analysis is
presented in §4.5. The formulation is:

F1(y
LR)

f1×
H
s ×W

s
= max

(
0, W1 ∗ PixelUnshuffle(yLR) +B1

)
, (2)
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Figure 2: Overview of GameSR: (a) architecture where frames are downsampled with PixelUnshuf-
fle, processed by Feature Extraction Blocks, and passed through a lightweight ConvLSTM before
upsampling via PixelShuffle with residual connection; (b) internal structure of FEB.

where W1 and B1 are convolution weights and biases. PixelUnshuffle with scale factor s rearranges
the input from c × H × W into c · s2 × H

s × W
s , increasing the channel dimension by s2 while

reducing spatial dimensions. These features are then passed into Feature Learning blocks.

Feature Learning. The feature learning stage captures non-linear mappings between LR and HR
features using our Feature Extraction Block (FEB), which is shown in Figure 2b. During training,
each FEB applies a 1× 1 → 3× 3 → 1× 1 convolution sequence, expanding and then compressing
feature dimensions. At inference, we merge these into a single convolution via reparameteriza-
tion (Deng et al., 2023), greatly reducing computational load without accuracy loss.

Each FEB incorporates GeLU activations and LayerNorm (Ba et al., 2016) for stable and efficient
training. Residual connections preserve spatial detail and facilitate gradient flow. After sequential
FEBs, we employ multi-level feature aggregation through additive fusion, defined as:

RBfinal =

N∑
i=0

RB(i), (3)

where each FEB output is combined additively, enhancing gradient propagation, feature reuse, and
memory efficiency. The aggregated features are then fed into a lightweight ConvLSTM to capture
temporal information

Temporal Learning. Video super-resolution (VSR) leverages temporal information across frames
to enhance quality, making it especially relevant for gaming sequences in cloud gaming. Unlike
single-image SR, VSR exploits motion continuity through either explicit (e.g., optical flow (Doso-
vitskiy et al., 2015)) or implicit alignment (e.g., 3D/deformable convolutions (Ying et al., 2020; Shi
et al., 2022)). However, most VSR models are too computationally heavy for real-time deployment.

To balance temporal modeling and efficiency, we adopt a lightweight variant of ConvLSTM (Shi
et al., 2015) after feature extraction. ConvLSTM replaces matrix multiplications in standard LSTMs
with convolutions, preserving spatial resolution while capturing long-range dependencies. Our de-
sign uses a single-layer structure with decoupled gates (input, forget, output, and cell), each imple-
mented with independent 2D convolutions. This modular design enables better parallelization on
modern GPUs while minimizing sequential overhead.

During inference, frames are processed sequentially using hidden states from prior frames, enabling
effective motion-aware upsampling. The ConvLSTM operates over spatial features with dimensions
(C,H/s,W/s) and uses standard gate updates:

it = σ(Wi ∗ [xt, ht−1] + bi), ft = σ(Wf ∗ [xt, ht−1] + bf ), (4)
ot = σ(Wo ∗ [xt, ht−1] + bo), c̃t = tanh(Wg ∗ [xt, ht−1] + bg), (5)
ct = ft ⊙ ct−1 + it ⊙ c̃t, ht = ot ⊙ tanh(ct). (6)
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Figure 3: Performance of GameSR on upscaling game sessions from CS2 and OW2 by factor of 2X.

Here, ∗ denotes 2D convolution and [·, ·] is channel-wise concatenation. As shown in §4.5, this
temporal module significantly improves perceptual quality under motion. Finally, the temporally
enhanced features are upsampled back to display resolution.

Mapping from Low to High Resolutions. Our upsampling stage utilizes Pixel-shuffling for spatial
resolution enhancement, avoiding checkerboard artifacts common in deconvolution methods (Odena
et al., 2016; Long et al., 2015). This approach reshapes feature channels into spatial dimensions
efficiently. We incorporate a residual connection by combining upsampled ConvLSTM output with
the original input, preserving fine details and textures. Formally, the operation is expressed as:

ŷSR
c×H×W = Conv(PixelShuffle(max(0, Wup ∗ (RB)f1×H×W +Bup))) . (7)

4 EVALUATION

4.1 SETUP AND PERFORMANCE METRICS

Games. We evaluate on three distinct games: Counter-Strike 2 (CS2), Overwatch 2 (OW2), and
Team Fortress 2 (TF2). CS2 and OW2 represent modern, high-demand titles, while TF2 serves as
a legacy case. Using VirtualDub (Lee, 2024), we captured uncompressed 1080p gameplay at 30/60
FPS across diverse maps, motions, and lighting. Five players of varying skill levels recorded five
sessions per game (25 sessions total), yielding 40k frames for CS2, 54k for OW2, and 30k for TF2.
We used 10 sessions per game for training and 15 unseen sessions for testing.

Performance Metrics. We evaluate quality using commonly used metrics: PSNR, SSIM,
VMAF (Netflix, 2018), and LPIPS (Ghazanfari et al., 2023). PSNR/SSIM are pixel-based, while
VMAF/LPIPS better capture perceptual quality. In gaming, reference frames are often unavail-
able due to engine non-determinism, floating-point variability, multithreaded scheduling, and event-
driven randomness, which prevent frame-level consistency (Chance et al., 2022). Thus, we also
employ two no-reference models: NDNetGaming (Utke et al., 2022), tailored to gaming with MOS-
like scores, and VSFA (Li et al., 2019), a ResNet-50+GRU model. These are primarily used for
DLSS/FSR comparisons. In addition, we measure bandwidth, and GPU usage.

Training. We trained GameSR in PyTorch 2.0.1 on an NVIDIA RTX A4000 with an Intel
Xeon Gold 5220 CPU and 32 GB RAM. Training used AdamW (Loshchilov & Hutter, 2019)
(β1=0.9, β2=0.999), learning rate 10−3 halved every 2×105 iterations, minibatch size 16, and
Charbonnier loss. Data was split 80/20 for training/validation. For deployment, we compiled the
model with Torch-TensorRT using kernel fusion and mixed precision (FP32 inputs, FP16 kernels)
to improve throughput and memory efficiency. Further details are in §A.3.

4.2 PERFORMANCE ANALYSIS OF GAMESR

GameSR Performance. To evaluate GameSR’s performance, we utilized it to upscale diverse game-
play sessions across different maps, users, and character configurations, ensuring a wide range of
visual variability. We present sample results in Figure 3 for upscaling sessions from the CS2 and
OW2 games by a factor of 2X. As shown in the figure, GameSR consistently achieves high-quality
results: PSNR ranges from 36–40 dB, SSIM exceeds 0.998, and VMAF scores fall within the 90–95
range—indicating excellent quality (Qin et al., 2019; Elecard, 2023).
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Table 1: Comparing GameSR against DLSS and FSR, which require engine-level data. In contrast,
GameSR upscales encoded streams. Results shown for 2× scaling on CS2, OW2, and TF2.

Model Counter-Strike 2 Overwatch 2 Team Fortress 2
NDNetGaming ↑ VSFA ↑ NDNetGaming ↑ VSFA ↑ NDNetGaming ↑ VSFA ↑

DLSS - - 4.93 0.88 - -
FSR 5.00 0.89 4.81 0.81 - -
GameSR 4.90 0.83 4.76 0.81 4.79 0.78

GameSR vs. Commercial DLSS and FSR Upscalers. We compare GameSR against industry-
standard upscalers such as FSR and DLSS. FSR and DLSS were applied using in-game settings,
whereas we rendered frames natively at 540p and upscaled them directly using GameSR. This ap-
proach was designed to provide a realistic reference point; however, it is essential to note that this
setup is not entirely fair to GameSR. While DLSS and FSR have access to additional renderer data
(e.g., motion vectors, depth buffers), GameSR relies solely on the input frames for upscaling.

We summarize the comparison results in Table 1. Sample frames produced by the considered up-
scalers are presented in the §A.4 (figure 6) for visual comparisons. We compared GameSR to FSR
(1.0/2.2) and DLSS (3.5) using the same gameplay sequences, maps, and camera paths to ensure a
fair comparison. In CS2, we tested GameSR against FSR 1.0 in “Performance” mode (2× upsam-
pling), matching GameSR’s scaling factor.

GameSR scored 4.9 (NDNetGaming) and 0.83 (VSFA), closely trailing FSR’s 5.0 and 0.89. For
OW2, which supports both FSR 2.2 and DLSS 3.5, we also used 2× upscaling factor. GameSR
achieved scores of 4.76 and 0.81, nearly matching FSR (4.81, 0.81) and DLSS (4.93, 0.88).

GameSR achieves near-parity with FSR and DLSS in perceptual quality, with differences of only
0.1 (NDNetGaming) and 0.06 (VSFA) in CS2, and within 0.05 (FSR) and 0.17 (DLSS) for ND-
NetGaming in OW2. The engine-independent nature makes it more deployable across platforms.
For instance, CS2 employs forward rendering and currently does not support temporal elements re-
quired by DLSS 2+ or FSR 2+, meaning those modern upscalers cannot be adopted without changes
to the rendering pipeline (Valve, 2024).

Team Fortress 2 serves as a representative legacy title in our evaluation. Like many older games, it
has not been updated to modern engines such as Source 2, which restricts compatibility with con-
temporary upscalers like DLSS and FSR that rely on motion vectors, depth buffers, and temporal
anti-aliasing. As a result, TF2 and similar legacy titles cannot natively benefit from these industrial
solutions. In contrast, GameSR operates directly on rendered frames without engine-level modi-
fications, delivering high-fidelity upscaling comparable to modern titles and extending the visual
longevity of older games while maintaining broad deployability.

Beyond quality, we measured GPU load against native rendering, summarized in Figure 4c. Without
upscalers (Native), rendering at 1080p saturates the GPU (∼100% utilization). In contrast, render-
ing at 540p and upscaling to 1080p using GameSR lowers utilization to ∼82%, reflecting reduced
shading cost and lightweight inference. However, with DLSS (3.5) and FSR (2.2), GPU utilization
remained near 99% because they are designed to boost framerate rather than reduce computation.

In summary, GameSR not only saves bandwidth, but it also reduces the computational power needed
to render games. This is achieved while providing near-DLSS/FSR quality without accessing the
rendering engine’s data structures or modifying the game source code.

GameSR vs. State-of-the-Art Upscalers in the Literature. To assess the performance and ef-
ficiency of our lightweight model, GameSR, we conducted a comparative analysis against several
state-of-the-art (SOTA) SR models, including EDSR (Lim et al., 2017), LapSRN (Lai et al., 2017),
IMDN (Hui et al., 2019), LatticeNet (Luo et al., 2020), and SwinIR (Liang et al., 2021). In our eval-
uation, a scaling factor of 2 corresponds to upsampling from 540p→1080p, while a scaling factor
of 3 corresponds to 360p→1080p (see § A.5).

Table 2 shows that GameSR matches the quality of state-of-the-art models like SwinIR in PSNR,
SSIM, and LPIPS while running orders of magnitude faster. GameSR reaches ∼240+ fps (∼4.1
ms/frame), compared to < 10 fps for EDSR/LatticeNet and < 1 fps for SwinIR, making it practical
for real-time cloud gaming. Although SwinIR achieves the highest quality through Transformer-
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Table 2: Quantitative comparison between state-of-the-art super-resolution models and GameSR at
2× scaling on three popular games. Evaluated on a workstation with an NVIDIA RTX A4000 GPU.

Model Inference
(ms)

Counter-Strike 2 Overwatch 2 Team Fortress 2
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

EDSR 160.0 35.30 0.998 0.091 40.16 0.999 0.018 39.41 0.999 0.050
LapSRN 239.7 33.63 0.998 0.107 38.09 0.999 0.030 36.77 0.998 0.144
IMDN 121.2 35.38 0.998 0.089 40.33 0.999 0.018 39.36 0.999 0.050
LatticeNet 154.4 35.46 0.998 0.088 40.29 0.999 0.017 39.36 0.999 0.050
SwinIR 1971.7 35.92 0.998 0.084 40.74 0.999 0.016 40.10 0.999 0.046
GameSR 4.12 37.99 0.999 0.095 40.36 0.999 0.021 40.88 0.999 0.051
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Figure 4: Efficiency of GameSR in comparison to state-of-the-art. Results for ×2 scaling.

based designs, its heavy cost prevents deployment in latency-sensitive settings. To ensure a fair
comparison, we retrained IMDN on our CS2 dataset. As shown in Table 4, GameSR achieves
comparable quality with only a 0.18 dB PSNR gap, while being 5× smaller in parameters and 4.5×
in memory. We also present model generalization across different games in §A.7

GameSR’s efficiency comes from three design choices: ConvLSTM captures temporal dependen-
cies, reparameterization enables wide training but lightweight inference, and PixelUnshuffle reduces
spatial cost. Together, these yield real-time performance with high visual fidelity.

Beyond accuracy and runtime, we compared parameter counts and GPU memory across models. As
shown in Figure 4(a,b), GameSR uses only 138K parameters and 604 MiB memory, compared to
1.37M/11.9 GiB for EDSR and 910K/3.9 GiB for SwinIR. IMDN and LatticeNet also require 5–6×
more memory. At ×2 scale (and similarly at ×3), GameSR achieves order-of-magnitude savings in
size and memory over SOTA upscalers.

4.3 RATE DISTORTION (RD) ANALYSIS

To capture the rate–distortion (RD) curve, we simulated a typical cloud gaming codec behavior.
Specifically, raw gaming sequences were first downsampled and encoded. The encoded streams
were then decoded, mirroring the client behavior after receiving LR bitstreams. These LR sequences
were subsequently upscaled using GameSR. We evaluated GameSR across multiple game sessions
under varying network conditions (2–25 Mbps) and resolutions (360p, 540p, 1080p). The baseline
set for comparison is the native 1080p game streams (No Upscaling). We upscaled low-resolution
(360p and 540p) streams to 1080p using GameSR with scaling factors of 2× and 3×, respectively.
We also include Bicubic upscaling as a baseline, since it is a common classical interpolation.

To contextualize perceptual quality, we adopt widely used VMAF thresholds: fair/watchable at
VMAF ≥ 70 (Blog, 2018), good at VMAF ≥ 80, and excellent at VMAF ≥ 90+(Qin et al.,
2019)(Elecard, 2023). As demonstrated in Figure 5, GameSR requires substantially less bitrate
to achieve target quality levels. For CS2, good quality is reached at only 8 Mbps with GameSR,
compared to 13 Mbps with Bicubic upscaling and 17 Mbps with No Upscaling, yielding bandwidth
savings of 38–53%. In OW2, excellent quality is attained at 13 Mbps with GameSR, while Bicubic
never reaches this quality and No Upscaling requires 23 Mbps, resulting in over 40% savings. In
summary, our RD analysis with two different games shows that GameSR effectively shifts the RD
curve leftward, providing substantial (30–60%) bandwidth savings.
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Figure 5: Performance of GameSR across bitrates and scaling factors.

Table 3: User study results (MOS) for GameSR
across participant groups. Exp.=Experienced,
Occ.=Occasional, No.=Non-gamers.

Game MOS Exp. Occ. No.
CS2 4.73 4.62 4.75 4.84
OW2 4.70 4.68 4.75 4.68

Table 4: Comparison of GameSR against IMDN
and IMDN-G trained on CS2.

Model PSNR SSIM LPIPS
IMDN 35.37 0.9988 0.0898
IMDN-G 38.17 0.9990 0.0835
GameSR 37.99 0.9990 0.0954

4.4 USER STUDY

To further assess perceptual quality, we conducted a user study using recorded gameplay sessions
upscaled by GameSR. A total of 15 participants took part, each watching 8 session recordings
across both CS2 and OW2. Among the participants, 36% were experienced gamers (Exp.), 36%
were occasional gamers (Occ.), and 27% had little or no prior gaming experience (Not-gamer).
After each viewing, participants rated the visual quality on a 5-point Mean Opinion Score (MOS)
scale. The results (Table 3) demonstrate consistently high perceptual quality. GameSR achieved an
average MOS of 4.73/5 for CS2 and 4.70/5 for OW2. Importantly, scores were consistent across
all participant groups. These findings validate GameSR’s ability to deliver high-quality perceptual
results across diverse audiences, complementing our objective evaluation metrics.

4.5 ABLATION STUDY

To assess each component of GameSR, we ablated ConvLSTM, PixelUnshuffle, and Reparameteri-
zation, comparing inference time, memory, parameters, and quality (PSNR, SSIM, LPIPS). Results
are shown in Table 6 (§A.6), which is moved to the appendix due to space constraints.. Remov-
ing ConvLSTM reduced parameters to 65K and inference to 3.05 ms, but quality dropped by ∼5
dB PSNR (37.99→32.99), showing the necessity of temporal modeling. Without PixelUnshuffle,
PSNR peaked at 38.65 dB, but inference slowed to 13.13 ms and memory nearly doubled (1174
MiB), confirming its role in balancing fidelity and efficiency. Disabling reparameterization raised
parameters by 54% (138K→298K) and inference to 6.29 ms with no quality gain. Overall, tem-
poral modeling, feature restructuring, and reparameterization are all crucial for achieving real-time,
high-quality performance under resource constraints.

5 CONCLUSION

We introduced GameSR, a fast and engine-agnostic super-resolution model for gaming. Unlike cur-
rent upscalers, such as DLSS/FSR, GameSR requires no renderer data, enabling deployment in both
modern and legacy games. Through efficient feature extraction, reparameterization, and lightweight
temporal modeling, it achieves ∼4 ms inference time while preserving high quality. Objective and
subjective experiments demonstrate that GameSR can save up to 60% of the bandwidth, and it
consistently produces high perceived quality. Overall, GameSR offers a deployable path toward
high-quality, low-cost, and real-time cloud gaming.
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A APPENDIX

This appendix supplements the main paper with extended descriptions of baseline super-resolution
models, additional details of the GameSR architecture and training, and expanded evaluation results
on quality and computational performance.

A.1 DESCRIPTION OF IMAGE/VIDEO SR MODELS

Image and video SR has seen dramatic advancements in the last several years. The pursuit of real-
time super-resolution has emerged as a significant research focus, with numerous approaches aimed
at optimizing neural architectures for speed while maintaining quality (Ignatov et al., 2022; Li et al.,
2022; Conde et al., 2023). Recent efforts have explored various optimization strategies, including
network architecture refinement (Andrey Ignatov et al., 2021), model compression techniques, and
innovative training approaches to reduce computational complexity, parameter count, and memory
consumption.

Several notable architectures have made significant contributions toward real-time SR:

Information Multi-Distillation Network (IMDN) (Hui et al., 2019) introduces a lightweight archi-
tecture that efficiently extracts hierarchical features through cascaded blocks. The network’s key
innovation lies in its information distillation mechanism (IDM). Which progressively extracts and
distills features at different scales. This approach enables the network to maintain high-quality out-
puts while significantly reducing computational overhead.

Laplacian Pyramid Super-Resolution Network (LapSRN) (Lai et al., 2017) implements a progres-
sive upsampling strategy through a deep Laplacian pyramid structure. By stacking multiple up-
sampling layers, LapSRN achieves efficient resolution enhancement while maintaining control over
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computational complexity. The pyramid structure allows the network to reconstruct high-resolution
images in a coarse-to-fine manner.

LatticeNet (Luo et al., 2020) introduces an innovative approach to parameter efficiency through
its lattice block (LB) design. Inspired by lattice filter banks, the architecture combines residual
blocks using a butterfly structure with attention mechanisms. This novel configuration achieves a
remarkable 50% reduction in parameter count compared to traditional residual block-based models
while maintaining comparable super-resolution quality.

SwinIR (Liang et al., 2021) introduces Transformer-based modeling to real-time super-resolution.
Built on the Swin Transformer, it combines local self-attention with shifted windows to capture both
short- and long-range dependencies efficiently. Its architecture integrates shallow convolutional
features with deep features extracted via residual Swin Transformer blocks (RSTBs), enabling high-
quality reconstruction with fewer parameters. SwinIR achieves state-of-the-art performance across
multiple benchmarks.

However, despite these advances in lightweight architectures, meeting the stringent latency require-
ments of cloud gaming remains challenging. While these models successfully reduce computational
complexity and memory usage, their architectures are primarily optimized for general efficiency
rather than the specific speed requirements of real-time gaming applications.

Video Super-Resolution (VSR) extends these single-image approaches by incorporating temporal
information from frame sequences. While single-image SR models focus purely on spatial en-
hancement, VSR processes either previous frames only (uni-directional) or both previous and future
frames (bi-directional) to improve reconstruction quality (Fan et al., 2019; Li et al., 2020). However,
several key limitations make existing VSR approaches unsuitable for real-time cloud gaming:

1. Computational Overhead: VSR models typically employ complex alignment modules, either ex-
plicit through optical flow (Dosovitskiy et al., 2015) or implicit via deformable convolutions (Shi
et al., 2024). These alignment operations introduce significant computational costs, especially prob-
lematic for real-time processing.

2. Latency Requirements: Many VSR architectures process multiple frames simultaneously or re-
quire future frames, making them incompatible with cloud gaming’s strict per-frame latency require-
ments.

3. Memory Constraints: State-of-the-art VSR models like SwinIR (Liang et al., 2021) use sophisti-
cated architectures with multiple residual Swin Transformer blocks and self-attention mechanisms,
requiring substantial memory to store temporal features.

A.2 EXTENDED GAMESR ARCHITECTURE DETAILS

Extended details of the GameSR model design, omitted from the main paper, are provided here.

Feature Extraction Block. The feature learning stage is responsible for learning complex non-
linear mappings between LR and HR representations. Our Feature Extraction Block (FEB) em-
ploys a multi-stage convolution sequence optimized for both training and inference phases. During
training, each FEB processes features through three sequential operations, formally expressed as
Fout = F compress

1×1 (F3×3(F
expand
1×1 (Fin))), where an initial 1×1 convolution expands features from

C to 2C channels, followed by a core 3×3 convolution operating in this expanded feature space, and
finally, a 1×1 convolution reduces the features back to C channels.

To optimize inference performance, we leverage the reparameterization technique (Deng et al., 2023)
to collapse these three convolutions into a single equivalent operation: Fout = F reparam

3×3 (Fin). This
transformation preserves the learned mapping while significantly reducing computational overhead
during real-time processing. The reparameterization process combines the weights of all three con-
volutions as W reparam

3×3 = W compress
1×1 ∗ W3×3 ∗ W expand

1×1 , enabling efficient inference without
compromising the model’s learned capabilities.

The block’s architecture is further refined through careful selection of activation and normalization
components. We incorporate GeLU non-linearity, defined as GeLU(x) = x · Φ(x) where Φ(x) is
the cumulative distribution function of the standard normal distribution, providing smooth gradient
flow during training. For normalization, we employ LayerNorm (Ba et al., 2016), expressed as
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LayerNorm(x) = γ · x−µ√
σ2+ϵ

+ β, where γ and β are learnable parameters, ensuring stable training
behavior.

RB1(F1)f1×r×H
s ×W

s
= max (0,WRB1 · (F1)f1×H

s ×W
s

+BRB1)
(8)

Here, WRB1 is a 1×1 convolution applied to the output of the feature expansion stage or the previous
residual block. This layer expands the feature width from f1 to f1 · E (Lin et al., 2013), enabling
richer representations. A non-linear activation follows to learn complex mappings before the next
layer applies dimensionality reduction. The second layer of the block can be defined as:

RB2(RB1)f1/r×H×W = max (0,

WRB2 ∗ (RB1)f1∗E×H×W

+BRB2)

(9)

Here, the 1× 1 convolutional layer is applied to reduce the expanded features by a ratio of r. Once
the channels are reduced, the final layer of the block can be defined as:

RB3(RB2)f1×H
s
×W

s
=LayerNorm

(
Activation

(
max

(
0,WRB3

· (RB2)f1×r×H
s
×W

s
+BRB2

))
+ F1

) (10)

A final 3 × 3 convolution refines spatial features and restores the feature shape to f1 × H × W .
A residual connection adds the original input F1 back to the output, preserving local details and
maintaining consistent dimensions for the next residual block or ConvLSTM.

After extracting features through multiple FEBs, we employ a multi-level feature aggregation strat-
egy to capture and combine representations at different abstraction levels. Unlike simple sequential
processing, this approach allows the network to maintain and utilize both low-level details and high-
level semantic information. Each successive FEB captures increasingly abstract features, with earlier
blocks focusing on local patterns and textures, while deeper blocks capture more complex structural
information.

To effectively combine these multi-scale representations, we employ an additive fusion strategy:

RBfinal =

N∑
i=0

RB(i) (11)

where N represents the number of FEBs and RB(i) denotes the output features from the i-th FEB.
This additive combination offers several advantages:

1. Gradient Flow: The direct additive connections create shorter paths for gradient propagation
during training, helping mitigate the vanishing gradient problem

2. Feature Reuse: Each subsequent layer can access and build upon features extracted at all previous
levels, enabling more efficient feature utilization

4. Memory Efficiency: Unlike concatenation-based approaches that increase feature dimensionality,
addition maintains a constant feature dimension while still preserving multi-level information

The empirical choice of N FEBs balances model capacity with computational efficiency - too few
blocks limit feature extraction capability, while too many increase computational overhead without
proportional quality gains.

A.3 ADDITIONAL TRAINING DETAILS

Beyond architectural considerations, the choice of loss and activation functions significantly impacts
network performance and accuracy. For super-resolution tasks, three primary objective functions are
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(a) DLSS (b) FSR (c) GameSR

Figure 6: Visualization of upsampling methods on Overwatch 2 frames: each row corresponds to a
different map (Row 1: Junktown, Row 2: Esperança, Row 3: Nepal). Columns show DLSS, FSR,
and GameSR, respectively.

commonly considered: Mean Squared Error (MSE), Mean Absolute Error (MAE), and Charbonnier
loss. While MSE computes pixel-wise squared differences between generated and ground truth
images, and MAE calculates absolute differences, we adopt the Charbonnier loss (Barron, 2017),
which can be expressed as:

Charbonnier Loss = Ez,y∼Pdata(z,y) [ρ(y −G(z))] (12)

where P (x) =
√
x2 + ϵ2. The Charbonnier loss functions as an adaptive combination of L1 and L2

losses, with its behavior governed by the parameter ϵ. When the error exceeds ϵ, it approximates
L1 regularization; otherwise, it behaves more like L2 loss. Though L2 loss minimization typically
maximizes PSNR, our empirical investigations revealed superior convergence characteristics with
Charbonnier loss, leading to its adoption in our final implementation.

A.4 VISUAL COMPARISON BETWEEN GAMESR, DLSS, AND FSR

Figure 6 shows side-by-side comparisons of upscaled frames from DLSS, FSR, and GameSR on
Overwatch 2 sequences. The first, second, and third rows correspond to the Junktown, Esperança,
and Nepal maps, respectively. We include OW2 here since it natively supports both DLSS and FSR,
allowing direct visual comparison against GameSR.

A.5 GAMESR VS. SOTA UPSCALERS IN LITERATURE

In the main text (Section 4.2), we reported detailed comparisons for 2× scaling (540p→1080p).
For completeness, Table 5 presents results for 3× scaling (360p→1080p). The trends mirror those
observed at 2×: GameSR delivers quality on par with state-of-the-art SR models while being orders
of magnitude faster.

A.6 ABLATION STUDY

To validate the contributions of each major component of GameSR, we performed an ablation study
to evaluate the impact of ConvLSTM, PixelUnshuffle, and Reparameterization. Table 6 presents
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Table 5: Quantitative comparison between state-of-the-art super-resolution models and GameSR at
3× scaling on CS2, OW2, and TF2. Evaluated on an NVIDIA RTX A4000.

Model Inference
(ms)

Counter-Strike 2 Overwatch 2 Team Fortress 2
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

EDSR 76.6 32.26 0.996 0.188 36.32 0.9986 0.059 35.82 0.998 0.113
IMDN 55.2 32.29 0.996 0.186 36.40 0.9987 0.055 35.85 0.998 0.110

LatticeNet 70.5 32.25 0.996 0.189 36.42 0.9987 0.056 35.81 0.998 0.113
SwinIR 881.2 32.53 0.996 0.178 36.79 0.998 0.052 36.38 0.998 0.106

GameSR 4.09 35.46 0.996 0.180 36.99 0.998 0.059 38.10 0.998 0.111

Table 6: Ablation study of GameSR on CS2, showing the impact of ConvLSTM, PixelUnshuffle,
and Reparameterization on efficiency and quality.

Model #Params
(K)

Memory
(MiB)

Inference
(ms)

CS2
PSNR SSIM LPIPS

GameSR (No ConvLSTM) 65 436 3.05 32.99 0.998 0.116
GameSR (No PixelUnshuffle) 125 1174 13.13 38.65 0.999 0.087

GameSR (No Reparam.) 298 608 6.29 37.99 0.998 0.095
GameSR (Final Model) 138 604 4.12 37.99 0.998 0.095

a comparison between different versions of GameSR, with each variant having one component
removed. The comparison was based on inference time, memory usage, parameters, and quality
metrics like PSNR, SSIM, and LPIPS.

The introduction of ConvLSTM enables temporal processing by utilizing information across mul-
tiple frames. The impact is significant: without ConvLSTM, the model’s PSNR drops by approxi-
mately 5 dB (from 37.99 dB to 32.99 dB on CS2), with similar degradations in SSIM and LPIPS.
While removing ConvLSTM reduces the parameter count to 65K and speeds up inference to 3.05 ms,
the substantial quality loss demonstrates the critical importance of temporal information processing
in our lightweight model.

PixelUnshuffle proves essential for balancing quality and performance. Interestingly, the model
without PixelUnshuffle achieves the highest quality metrics (PSNR: 38.65 dB on CS2), but at a se-
vere efficiency cost. Inference time more than triples to 13.13 ms, and memory consumption nearly
doubles to 1174 MiB, making it impractical for real-time applications. This trade-off highlights
PixelUnshuffle’s crucial role in preserving efficiency while maintaining strong quality.

The Reparameterization technique significantly improves model efficiency without compromising
quality. Compared to the version without Reparameterization, our final model reduces parameters
by 54% (298K → 138K) and improves inference time from 6.29 ms to 4.12 ms, while maintaining
identical quality metrics. This demonstrates the effectiveness of reparameterization in optimizing
deployment for resource-constrained environments.

A.7 MODEL GENERALIZATION

To assess generalization, we evaluated models trained on CS2, OW2, and their combination across
both games (Table 7). Models perform best in-domain (e.g., CS2-trained on CS2: PSNR 37.80,
SSIM 0.999; OW2-trained on OW2: PSNR 38.82, SSIM 0.9996), but cross-game evaluations still

Table 7: Cross-game generalization of GameSR. Models trained on CS2, OW2, and a combined
dataset are evaluated on both games.

Test Sequence
Game data used for training

CS2 OW2 CS2+OW2
PSNR SSIM PSNR SSIM PSNR SSIM

CS2 37.80 0.999 34.63 0.999 37.53 0.999
OW2 37.17 0.999 38.81 0.999 38.74 0.999
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yield competitive results, showing effective transfer. The combined CS2+OW2 model performs
strongly on both, suggesting that shared motion and visual structures within the shooter genre im-
prove robustness. These results demonstrate that GameSR adapts well across titles and benefits from
multi-game training.
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