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Abstract

Rhetorical Role Labeling (RRL) aims to iden-001
tify the functional role of each sentence within002
a document, a task critical for discourse un-003
derstanding in domains such as law, medicine,004
and science. While hierarchical models cap-005
ture local, intra-document dependencies effec-006
tively, they struggle to model global, corpus-007
level regularities. To bridge this gap, we pro-008
pose two methods that couple local context009
with global representations in the form of se-010
mantic prototypes. Prototype-Based Regular-011
ization (PBR) learns soft prototypes through012
a distance-based auxiliary loss to structure the013
latent space. Prototype-Conditioned Modula-014
tion (PCM) constructs a priori prototypes from015
the corpus and injects them during both training016
and inference. We also introduce SCOTUS-017
LAW, the first dataset of U.S. Supreme Court018
opinions annotated with rhetorical roles at three019
levels of granularity: category, rhetorical func-020
tion, and step. Experiments across legal, medi-021
cal, and scientific benchmarks demonstrate that022
modeling both local and global perspectives023
leads to consistent gains over strong baselines,024
particularly on low-frequency roles, achieving025
an average gain of ∼4 points in Macro-F1.026

1 Introduction027

Rhetorical Role Labeling (RRL) is the task of clas-028

sifying each sentence according to its semantic role029

within a document. Since a sentence’s meaning is030

often shaped by its surrounding context, RRL is031

particularly useful in structured texts such as le-032

gal cases. Identifying key rhetorical components033

(e.g., ANNOUNCING or ANALYSIS; see Figure 1)034

benefits downstream tasks such as information re-035

trieval (Neves et al., 2019; Safder and Hassan,036

2019) and document summarization (Kalamkar037

et al., 2022; Muhammed et al., 2024).038

Initially, RRL was treated as a sentence-level039

classification problem, ignoring contextual depen-040

dencies between sentences (Walker et al., 2019).041

This perspective later evolved into modeling the 042

task as sequence labeling (Bhattacharya et al., 043

2023a). More recently, deep learning techniques 044

have been applied across various legal systems, in- 045

cluding Japanese (Yamada et al., 2019) and Indian 046

courts (Bhattacharya et al., 2023b; Kalamkar et al., 047

2022; Nigam et al., 2025). These methods typi- 048

cally employ hierarchical architectures to capture 049

the sequential nature of long documents and model 050

intra-document dependencies, resulting in a repre- 051

sentation grounded in local context. This approach 052

has become the de facto standard in RRL. 053

However, these architectures do not account for 054

global patterns shared across documents, which 055

are especially valuable for fine-grained roles, such 056

as the RATIO OF THE DECISION, often confused 057

with semantically related roles like ANALYSIS or 058

RULING BY THE COURT. Prototype learning (Snell 059

et al., 2017) provides a principled way to address 060

this limitation by learning global representations 061

that serve as semantic anchors for each label. This 062

paradigm has shown strong performance across 063

various NLP tasks, including named entity recogni- 064

tion (Huang et al., 2023), relation classification (Yu 065

et al., 2022), and legal-specific tasks such as cita- 066

tion prediction (Luo et al., 2023). 067

Motivated by these advances, we propose to com- 068

bine local context with global representations, de- 069

fined as semantic prototypes. To the best of our 070

knowledge, no prior work has addressed this ob- 071

jective in the context of RRL, particularly within 072

hierarchical architectures. 073

Our main contributions are as follows: 074

• We introduce two semantic prototype-based 075

methods: Prototype-Based Regularization 076

(PBR), that encourages sentence embeddings 077

to align with their corresponding prototypes 078

via an auxiliary distance-based loss; and 079

Prototype-Conditioned Modulation (PCM), 080

which builds a priori prototypes from the cor- 081

pus and injects them through dedicated mod- 082
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Justice GINSBURG delivered the opinion of the Court.
Hansberry v. Lee, 311 U.S.   , 40, 61 S. Ct.    , 85 L. Ed.    (1940).

In this case, we consider for the first time whether there is a "virtual
representation" exception to the general rule against precluding nonparties.

Fairchild and the FAA conceded that Taylor had not participated in Herrick's suit.
Accordingly, the decision of the Court of Appeals is reversed and the case is
remanded with direction that judgment be entered for the United States.

Announcing Announcing
Sources of authority Quoting SCOTUS decision

Setting the scene Presenting jurisdiction Legal question(s)

Analysis Recalling An argument Present case Petitioner

Resolution Giving the holding of the Court

Figure 1: An example of a segment from a legal document in our SCOTUS-LAW corpus, annotated with
discursive categories , rhetorical functions, and attributes to compose the full hierarchical label structure (steps).

ules during both training and inference.083

• To address the lack of document-level re-084

sources for RRL, we release SCOTUS-LAW,085

a manually annotated corpus of U.S. Supreme086

Court opinions segmented into rhetorical roles087

at three levels of granularity.088

• We perform a large-scale evaluation on seven089

benchmark datasets spanning three special-090

ized domains: legal, medical, and scientific.091

To support reproducibility and further research,092

we release both our code and dataset under an open-093

source license1.094

2 Related Works095

2.1 Rhetorical Role Labeling Approaches096

Early RRL approaches relied on traditional ma-097

chine learning algorithms with hand-crafted fea-098

tures (Ruch et al., 2007; McKnight and Srinivasan,099

2003; Lin et al., 2006). A key advancement came100

with the introduction of neural architectures by Co-101

han et al. (2019), which leverage BERT (Devlin102

et al., 2019) to capture contextual dependencies.103

Recent state-of-the-art methods build on this foun-104

dation by adopting hierarchical architectures (Jin105

and Szolovits, 2018; Brack et al., 2024), which106

encode documents at multiple levels to produce107

contextualized sentence representations suited for108

rhetorical function classification. More recently,109

several studies have explored ways to enrich these110

representations through strategies such as modi-111

fied pretraining objectives (Belfathi et al., 2025),112

contrastive learning (T.y.s.s. et al., 2024), and cur-113

riculum learning (T.y.s.s et al., 2024), extending114

beyond hierarchical encoding to enhance contex-115

tual understanding.116

2.2 Rhetorical Role Labeling Corpora117

RRL has been studied across various domains using118

sentence-level annotation of functional discourse119

1https://anonymous.4open.science/r/
IJCNLP-AACL2025

roles. In the medical domain, PUBMED-20K- 120

RCT (Dernoncourt et al., 2017) provides a large- 121

scale corpus of abstracts from randomized con- 122

trolled trials, where each sentence is labeled with 123

a rhetorical role such as OBJECTIVE, METHODS, 124

or RESULTS. Similarly, CS-ABSTRACTS (Cohan 125

et al., 2019; Gonçalves et al., 2020) offers scientific 126

abstracts with a similar rhetorical structure. 127

In legal NLP, recent work has shifted from 128

abstracts to long documents. Corpora such 129

as DEEPRHOLE (Bhattacharya et al., 2023b), 130

LEGALEVAL (Kalamkar et al., 2022), and 131

LEGALSEG (Nigam et al., 2025) annotate Indian 132

case law with rhetorical roles including FACTS, AR- 133

GUMENTS, and ANALYSIS. These datasets are lim- 134

ited to the Indian legal system, reducing their appli- 135

cability to other common law jurisdictions. To our 136

knowledge, no RRL corpus covers U.S. Supreme 137

Court decisions. 138

2.3 Prototype-Based Learning 139

While hierarchical architectures in RRL capture 140

intra-document context, they often overlook rhetor- 141

ical regularities across documents that could serve 142

as inductive signals. Prototype-based learning ad- 143

dresses this by aligning instances with similar dis- 144

course roles to shared semantic representations, 145

typically encoded as vector prototypes (T.y.s.s. 146

et al., 2024). Originally introduced by Snell et al. 147

(2017), prototypical networks compute class pro- 148

totypes as the mean of support examples and clas- 149

sify new instances based on embedding proximity. 150

This approach has shown strong results in emo- 151

tion recognition (Song et al., 2022), relation extrac- 152

tion (Chen et al., 2023), and named entity recogni- 153

tion (Huang et al., 2023; Wu et al., 2023), where 154

prototypes capture class-level semantics and sup- 155

port generalization under limited supervision. 156

Despite these advances, prototype-based methods 157

remain underexplored in discourse-level classifica- 158

tion tasks like RRL. As far as we know, there are 159

no studies on how to combine local and global rep- 160

resentations within the hierarchical architectures. 161
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3 Methodology162

In this section, we first describe the task defini-163

tion of RRL in § 3.1. This is followed by a brief164

outline of the backbone hierarchical architecture165

adopted in this study (§ 3.2). Finally, we introduce166

our global semantic prototype-based methods, as167

illustrated in Figure 2, namely Prototype-Based168

Regularization (§ 3.3) and Prototype-Conditioned169

Modulation (§ 3.4).170

3.1 Task Definition171

Given a document x = {x1, x2, . . . , xm}172

with m sentences as the input, where xi =173

{xi1, xi2, . . . , xin} represents the ith sentence con-174

taining n tokens, and xjp refers to the pth token in175

the jth sentence, the task of rhetorical role label-176

ing is to predict a sequence y = {y1, y2, . . . , ym},177

where yi is the rhetorical role corresponding to sen-178

tence xi, and yi ∈ Y , which is the set of predefined179

rhetorical role labels.180

3.2 Backbone Hierarchical Architecture181

All our experiments are based on the state-of-the-182

art RRL model, the Hierarchical Sequential La-183

beling Network (Jin and Szolovits, 2018; Brack184

et al., 2024), widely adopted as a baseline in prior185

work(Kalamkar et al., 2022; T.y.s.s. et al., 2024).186

This architecture is designed to capture local con-187

text by modeling intra-document dependencies188

at multiple levels. Each sentence sij is first en-189

coded independently using a BERT (Devlin et al.,190

2019), producing a sequence of contextualized to-191

ken embeddings. These are passed through a Bi-192

LSTM (Hochreiter and Schmidhuber, 1997) and193

an attention-pooling mechanism (Yang et al., 2016)194

to obtain fixed-size sentence vectors. A second195

Bi-LSTM then contextualizes these vectors with196

surrounding sentences, yielding enriched sentence197

representations. Finally, a Conditional Random198

Field (CRF) layer predicts the optimal sequence of199

role labels (see Appx. A for more details).200

3.3 Prototype-Based Regularization201

To extend the hierarchical architecture with global202

information beyond document-local context, we203

introduce Prototype-Based Regularization (PBR).204

This method integrates trainable soft prototypes as205

representative anchors for rhetorical roles. These206

prototypes reside in the same embedding space as207

sentence vectors and are optimized globally across208

documents. Rather than altering the architecture,209

PBR adds an auxiliary constraint that encourages 210

each sentence embedding to align with its near- 211

est prototype, using a distance-based metric. This 212

guides the representation space toward corpus-level 213

rhetorical patterns. 214

Following Zhang et al. (2022); Ming et al. 215

(2019), we define a total loss combining standard 216

classification with two prototype-driven regulariza- 217

tion terms: the first enforces proximity between 218

sentences and relevant prototypes; the second en- 219

courages separation among prototypes to reduce 220

redundancy in the latent space. 221

L = Ltask︸︷︷︸
cross-entropy

+λprox Lprox︸ ︷︷ ︸
prototype proximity

−λdiv Ldiv︸︷︷︸
prototype diversity

(1) 222

223where λprox, λdiv ≥ 0 are hyperparameters control- 224

ling the contribution of each auxiliary term. 225

Task loss Ltask is the standard cross-entropy com- 226

puted between the model’s prediction ŷyij and the 227

gold label yij for each sentence sij : 228

Ltask = −
M∑
i=1

Ni∑
j=1

log ŷyij (sij). (2) 229

Prototype-proximity loss Lprox pulls every sen- 230

tence embedding hij toward its nearest prototype 231

Pk among the Q learnable prototypes: 232

Lprox =
1

T

M∑
i=1

Ni∑
j=1

min
k∈{1,...,Q}

d
(
hij , Pk

)
, (3) 233

where T =
∑M

i=1Ni is the total number of sen- 234

tences. 235

Prototype-diversity loss Ldiv encourages the pro- 236

totypes to spread out, reducing redundancy: 237

Ldiv =
2

Q(Q− 1)

∑
k,l∈{1,...,Q}

k ̸=l

d
(
Pk, Pl

)
. (4) 238

3.4 Prototype-Conditioned Modulation 239

While PBR introduces soft alignment constraints 240

without altering the architecture, Prototype- 241

Conditioned Modulation (PCM) directly integrates 242

global representations into the model’s internal en- 243

coding process. PCM precomputes a set of pro- 244

totype vectors from the training corpus and in- 245

jects them into the hierarchical architecture via 246

lightweight conditioning modules. These global 247

signals modulate sentence representations during 248

both training and inference. The approach com- 249

prises three stages: document sampling, prototype 250

extraction, and prototype injection. 251
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Prototype-Based Regularization (PBR) Prototype-Conditioned Modulation (PCM)

Hierarchical Architecture
❄️  (no internal injection)

Hierarchical Architecture
🔥  (internal injection)

📄

Si

📄

SiPull (proximity)
Push (diversity)

Soft prototypes

📄📄📄📄

Si

Domain-specific Encoder

hi

Compute Similarity

Candidate
prototype
🏆

Prototype Injection
Modulehi

d(hi,P1) = d1

d(hi,Pk) = dk

d(hi,PQ) = dQ

d(P1,P2)

d(Pk, Pl)

d(PQ-1, PQ)

L

d1

d2
dQ

Training Loss

Document
sampling

Prototype
extraction

Corpus-derived
prototypes

Predicted Role Predicted Role

Figure 2: Illustration of our methods for injecting global representations into hierarchical architectures. PBR
(left) learns soft prototypes jointly with the model to regularize the latent space. PCM (right) dynamically injects
precomputed role prototypes during encoding via modulation mechanisms.

Document sampling A key design decision is252

whether to derive prototype representations from253

the entire training corpus or from a document sub-254

set, as using all documents may introduce semantic255

noise and reduce prototype relevance. We evaluate256

three strategies: (1) Full Corpus, which includes all257

training documents; (2) Random sampling, which258

selects a uniform subset; and (3) Supervised sam-259

pling, which clusters semantically similar docu-260

ments using embeddings and derives prototypes261

per cluster2.262

Prototype extraction Given a sentence under263

consideration, we first identify a set of candidate264

documents and extract global representations for265

each rhetorical role in the form of prototype vectors.266

Each sentence sij is embedded using a domain-267

specific BERT model suitable for the evaluation268

dataset, producing a fixed-length vector hij ∈ Rd.269

For each role r ∈ Y , we compute a prototype pr270

by averaging the embeddings of all sentences Sr271

annotated with r in the selected document pool:272

pr =
1

|Sr|
∑

sij∈Sr

hij . (5)273

Prototype injection Once the global representa-274

tions for each role are computed, we inject them275

2For the supervised variant, we use OpenAI’s
text-embedding-3-small https://platform.openai.
com/docs/guides/embeddings/embedding-models,
which supports sequences up to 8, 192 tokens for full-
document representation. Each document is encoded and
grouped via K-Means clustering (Ahmed et al., 2020), with
the optimal number of clusters selected using the Silhouette
score, computed per evaluation dataset.

into the hierarchical architecture during both train- 276

ing and inference. For each sentence sij , we com- 277

pute its cosine similarity to all prototypes {pr} and 278

select the closest one. Given the sensitivity of neu- 279

ral models to external knowledge integration (Fu 280

et al., 2023), we explore five conditioning strategies 281

drawn from prior work: Linear Fusion (Bu et al., 282

2023), Conditional Layer Normalization (Lee et al., 283

2021), Gated Residual Addition (Tsur and Tulpan, 284

2023), Feature-wise Linear Modulation (Ahrens 285

et al., 2023), and Cross-Attention Fusion (Zhang 286

et al., 2024). See Appx. D for further details. 287

4 The SCOTUS-LAW Corpus 288

We introduce SCOTUS-LAW, the first pub- 289

licly available English-language dataset of U.S. 290

Supreme Court decisions annotated with rhetor- 291

ical role segmentation. This resource expands the 292

limited set of benchmarks available for the RRL. 293

4.1 Corpus Compilation 294

We collected decisions from CourtListener3, an 295

open-access legal case repository. Our sampling 296

strategy considered three key dimensions: (1) Tem- 297

poral coverage: Cases span 1945–2020 to capture 298

historical variation. (2) Author diversity: Opin- 299

ions from 38 justices reduce authorial bias and re- 300

flect diverse reasoning styles. (3) Thematic cover- 301

age: K-means clustering over a broad set of deci- 302

sions yields 18 thematic groups. 303

To balance these aspects, we selected representa- 304

3https://www.courtlistener.com/
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Corpus-level statistics

Statistic Train Dev Test

# Documents 144 18 18
Total # Sentences 21,396 2,450 2,481
Avg. # Sentences / Doc 148.58 136.11 137.83
Avg. # Tokens / Sentence 22.95 21.43 22.15

Sentence distribution by rhetorical function

Label Total (percentage)

Recalling 8,119 (30.8%)
Quoting 6,441 (24.5%)
Presenting jurisdiction 4,941 (18.8%)
Stating the Court’s reasoning 3,198 (12.1%)
Describing 955 (3.6%)
Giving the holding of the Court 760 (2.9%)
Citing 644 (2.4%)
Rejecting arguments/a reasoning 490 (1.9%)
Announcing 344 (1.3%)
Granting certiorari 182 (0.7%)
Giving instructions to competent courts 105 (0.4%)
Accepting arguments/a reasoning 103 (0.4%)
Evaluating the impact of the decision 45 (0.2%)

Table 1: Descriptive statistics for the SCOTUS-LAW
dataset at the rhetorical function level.

tive cases from the most prolific justices in each305

theme, resulting in 180 annotated decisions.306

4.2 Annotation Scheme307

Our annotation scheme builds on Lavissière and308

Bonnard (2024), which focuses on rhetorical309

structures in U.S. legal decisions. As in prior310

work (Kalamkar et al., 2022; Nigam et al., 2025),311

annotations are applied at the sentence level. Each312

sentence receives a step label, denoting its function313

in legal reasoning and its role within the broader314

argumentative structure. We follow Lavissière and315

Bonnard (2024) in applying the annotation at three316

levels of granularity (Figure 7 in Appendix).317

Step = Discursive Category + Rhetorical Function
+ Optional Attributes

318

Discursive categories. These reflect the overall319

structure of SCOTUS opinions and include five320

main categories:321

• Setting the scene: background information322

and procedural history;323

• Analysis: reasoning and justification of the324

Court’s decision;325

• Resolution: the outcome or final ruling;326

• Sources of authority: references to legal327

sources such as precedent or statutes;328

• Announcing: textual elements marking struc-329

tural transitions.330

Rhetorical functions. These specify the commu-331

nicative role played by each segment within its dis-332

cursive category. They include argumentative roles333

such as justification, evaluation, comparison, or 334

appeal to authority. 335

Attributes. To refine the rhetorical annotation, 336

three optional attributes can be specified: 337

• Type: the nature of the content (e.g., cited 338

authority, recalled facts); 339

• Author: the speaker or source of the argument 340

(e.g., the Court, a dissenting justice); 341

• Target: whether the information pertains to 342

the current case or another referenced case. 343

Table 1 reports statistics for rhetorical functions; 344

See Appx. E for annotation details. 345

4.3 Inter-Annotator Agreement 346

Two legal experts independently annotated a sub- 347

set of 18 Supreme Court opinions, covering 2, 529 348

overlapping sentence-level segments. Cohen’s 349

kappa (Rau and Shih, 2021) yielded a score of 0.67, 350

indicating substantial agreement. Disagreements 351

were resolved through discussion, and consensus la- 352

bels were assigned. The adjudicated version serves 353

as the reference for evaluation and quality control. 354

5 Experimental Setup 355

5.1 Datasets 356

We evaluate our methods across three domains. 357

In the legal domain, we use our SCOTUSLAW 358

dataset at three levels of rhetorical structure: SCO- 359

TUSCategory, SCOTUSRF, and SCOTUSSteps. We also 360

include two Indian case law datasets: DEEPR- 361

HOLE (Bhattacharya et al., 2023b) and LEGAL- 362

EVAL (Kalamkar et al., 2022). For the medical do- 363

main, we use PUBMED (Dernoncourt et al., 2017), 364

a corpus of structured abstracts from randomized 365

controlled trials. In the scientific domain, we eval- 366

uate on CS-ABSTRACTS (Gonçalves et al., 2020), 367

which contains computer science research abstracts 368

annotated for rhetorical structure (see Appx. C for 369

statistics details). 370

5.2 PBR Hyperparameters 371

Following Chen et al. (2019), we use cosine sim- 372

ilarity to compute distances d between sentence 373

embeddings and prototypes. To control the granu- 374

larity of the soft prototype space, we vary Q ∈ 375

{2, 4, 8, 16, 32, 64} , as in Yang et al. (2018); 376

Sourati et al. (2023). The auxiliary loss weights 377

λprox and λdiv are tested over {0, 0.9, 10}, where 378
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Legal Medical Scientific

SCOTUSCategory SCOTUSRF SCOTUSSteps LEGALEVAL DEEPRHOLE PUBMED CS-ABSTRACTS

mF1 wF1 mF1 wF1 mF1 wF1 mF1 wF1 mF1 wF1 mF1 wF1 mF1 wF1

▷ Baseline 82.22 88.35 61.36 78.81 46.70 63.21 78.82 90.94 44.24 50.51 87.01 91.09 68.55 75.08
▶ PBR 83.69 89.75 65.75 80.31 50.48 65.73 82.50 93.17 44.96 51.11 88.86 92.91 71.10 78.09

⋆ PCM (Full Corpus) 83.96 89.80 67.53 80.64 54.03 67.54 81.41 91.21 47.13 55.54 87.19 91.89 69.84 76.66
⋆ PCM (Random Sampling) 83.93 89.70 67.24 80.66 54.62 67.55 81.83 91.57 47.30 53.90 87.24 91.94 69.12 76.30
⋆ PCM (Supervised Sampling) 84.13 89.75 67.45 80.92 54.40 67.79 80.77 91.00 45.92 53.86 87.42 92.06 68.69 75.46

3 Upper Bound (Oracle) 85.20 90.02 68.86 81.11 56.20 69.86 91.71 99.57 47.90 56.02 100.0 100.0 99.66 99.84

Table 2: Macro-F1 and Weighted-F1 scores across domains for the baseline, PBR, and PCM (with various sampling
strategies). An upper-bound oracle is also included, selecting the optimal prototype post-hoc for each sentence.
Results are averaged over three runs, ensuring statistical significance over the baseline at p = 0.05 and p = 0.01.

λ = 0 disables the constraint, 0.9 is a balanced set-379

ting from Das et al. (2022), and 10 enforces strong380

regularization.381

5.3 PCM Hyperparameters382

In supervised sampling, documents are clus-383

tered by semantic similarity. The num-384

ber of clusters is tuned on the development385

set using the silhouette score over the range386

[1, 10]. For prototype extraction, we use387

Legal-BERT-uncased (Chalkidis et al., 2020) for388

legal data, and SciBERT-uncased (Beltagy et al.,389

2019) for medical and scientific domains.390

6 Results and Discussion391

6.1 Overall Performance392

Results for the baseline and our methods combining393

local and global context via semantic prototypes394

are reported in Table 2.395

Prototype-Based Regularization (PBR) consis-396

tently improves performance across all five legal397

datasets, with m-F1 gains from +1.5 on SCO-398

TUSCategory to +4.4 pts on SCOTUSRF. While399

modest in absolute terms, these gains are statisti-400

cally significant (σ ≤ 0.3 over three runs), confirm-401

ing the impact of the prototype mechanism beyond402

random variation. Why does performance im-403

prove with finer annotations? As labels become404

more fine-grained (SCOTUSSteps), class bound-405

aries blur—e.g., distinguishing subtypes within406

ANALYSIS. In such cases, prototypes act as se-407

mantic anchors that help disambiguate sentence408

meaning. The +3.8 gain suggests that the model409

increasingly relies on global cues when local con-410

text is not sufficient. What about minority roles?411

In SCOTUSRF, the role STATING THE COURT’S412

REASONING represents under 5% of training data.413

PBR improves its F1 score from 63.2% to 69.5%414

(+6.3 pts), showing that gains extend beyond ma-415

jority classes. This long-tail benefit echoes findings416

in multilingual NER (Huang et al., 2023), where 417

prototype regularization narrows the gap between 418

frequent and rare labels. 419

On the LEGALEVAL dataset, which is char- 420

acterized by annotation ambiguity and challeng- 421

ing rhetorical distinctions (Kalamkar et al., 2022), 422

PBR still improves performance, reaching 82.5%. 423

Most gains come from reducing confusion between 424

semantically overlapping roles, particularly legal 425

analysis and factual issue descriptions, which to- 426

gether account for over 40% of baseline errors. 427

Prototype-Conditioned Modulation (PCM) 428

which injects global representations from the 429

training corpus, achieves the highest m-F1 430

across all settings. The largest gain appears on 431

SCOTUSSteps, where performance increases from 432

46.70% to 54.03%, This suggests that conditioning 433

hidden layers with global prototypes helps guide 434

the encoder toward more discriminative regions of 435

the embedding space. 436

Among the sampling strategies, supervised 437

sampling yields the best results only on SCO- 438

TUSCategory, where labels are broad and rhetorical 439

usage relatively consistent across documents. Here, 440

clustering similar documents builds informative 441

prototypes. However, this benefit fades on datasets 442

like LEGALEVAL and DEEPRHOLE, where all 443

strategies perform similarly. We attribute this 444

to two factors: (i) retrieval is at document level, 445

ignoring sentence-level rhetorical similarity and 446

often producing mismatched prototypes; (ii) legal 447

texts follow stable rhetorical patterns, making even 448

randomly sampled documents useful despite noise. 449

To estimate the upper bound of prototype injec- 450

tion, we simulate an oracle that selects, for each 451

test sentence, the prototype yielding the best pre- 452

diction. This yields 91.71% m-F1 on LEGALEVAL, 453

confirming the potential of prototypes for semantic 454

alignment. More importantly, the gap with actual 455

performance shows that retrieval quality is now 456
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Figure 3: t-SNE projection of sentence embeddings
under baseline, PBR, and PCM.

the main bottleneck. This highlights the need457

for retrieval-aware or trainable prototype selection,458

ideally guided by rhetorical similarity or discourse459

structure rather than surface-level features.460

Generalization across domains Our approach461

generalizes beyond legal texts. PBR improves per-462

formance on both PUBMED and CS-ABSTRACTS,463

showing that structural regularization remains ef-464

fective in domains with rhetorical structure, even465

in shorter texts. In contrast, PCM yields limited466

gains. Medical and scientific abstracts are shorter467

and less structurally varied, making prototype av-468

eraging less informative. Yet, oracle results—up469

to 99.66% m-F1 on CS-ABSTRACTS, confirm that470

PCM is effective when relevant prototypes are in-471

jected, emphasizing the role of retrieval quality.472

6.2 Qualitative Analysis473

To understand how semantic prototypes shape sen-474

tence representations, we visualize the latent space475

using t-SNE (Figure 3). In the baseline, clusters476

overlap heavily, especially between DESCRIBING477

and STATING THE COURT’S REASONING, which478

often co-occur due to semantic proximity. With479

PBR, these roles become more distinct, suggesting480

that regularization encourages a structure aligned481

with rhetorical roles. PCM exhibits even clearer,482

tighter clusters across roles, indicating that condi-483

tioning with retrieved prototypes yields more role-484

specific and discriminative embeddings. These vi-485

sualizations support the idea that both methods im-486

prove role separability, and that prototype quality487

plays a central role in shaping the latent space.488

6.3 Fine-grained Analysis489

Table 3 shows that injecting global semantic proto-490

types substantially improves m-F1 overall (+5.40),491

though the effect varies by rhetorical functions.492

The largest gains are seen for ACCEPTING ARGU-493

MENTS/A REASONING (+41.75) and GIVING THE494

HOLDING OF THE COURT (+6.98)—two roles that495

Rhetorical Function Baseline +PCM ∆ (Gain)

Accepting arguments/a reasoning 15.40 57.15 + 41.75
Announcing 68.98 76.93 + 7.95
Citing 85.99 89.92 + 3.93
Describing 61.04 61.41 + 0.37
Evaluating the impact of the decision 0.00 0.00 0.00
Giving instructions to competent courts 52.18 56.01 + 3.83
Giving the holding of the Court 74.63 81.61 + 6.98
Granting certiorari 97.30 100.0 + 2.70
Presenting jurisdiction 86.64 88.65 + 2.01
Quoting 97.79 98.13 + 0.34
Recalling 77.38 79.04 + 1.66
Rejecting arguments/a reasoning 40.52 35.91 – 4.61
Stating the Court’s reasoning 57.00 60.35 + 3.35

Macro-F1 62.69 68.09 + 5.40

Table 3: Role-wise F1 comparison: Baseline (only local)
vs. PCM (local + global) on SCOTUSRF.

Method SCOTUSRF LEGALEVAL PUBMED

Linear Fusion 80.89 91.62 91.91
Conditional Layer Norm 78.11 87.49 92.74
Cross-Attention Fusion 79.30 87.74 92.20
Feature-wise Linear Mod. 74.71 76.74 92.74
Gated Residual Addition 79.58 89.06 92.79

Table 4: W-F1 scores for prototype injection strategies.
All variants share the same hierarchical encoder with
PCM integration.

depend on discourse-level context. Sentences like 496

“The argument raised by the defendant is valid” or 497

“The Court therefore holds. . . ” require understand- 498

ing their position in the reasoning chain. In such 499

cases, prototypes bring in relevant cues from simi- 500

lar decisions, guiding the model toward the correct 501

label. By contrast, performance drops for REJECT- 502

ING ARGUMENTS/A REASONING, a role often ex- 503

pressed through contrastive or negative phrasing 504

(e.g., “However, this claim must be dismissed”). 505

These subtle cues may be lost when prototype vec- 506

tors average too many diverse examples, diluting 507

critical signals and reducing precision. Finally, 508

EVALUATING THE IMPACT OF THE DECISION re- 509

mains unlearned, suggesting that the class is too 510

rare for any method to model effectively. 511

6.4 Sensitivity to Prototype Injection 512

Table 4 shows that the impact of injection strate- 513

gies varies by domain. In legal datasets such as 514

SCOTUSRF and LEGALEVAL, Linear Fusion per- 515

forms best, with a +2.63 m-F1 gain over FiLM on 516

LEGALEVAL. Directly concatenating the prototype 517

with the sentence embedding appears well suited 518

to the structured nature of legal texts, where rhetor- 519

ical roles follow predictable patterns. Conversely, 520

flexible strategies like FiLM or CLN, which modu- 521

late representations dimension-wise, may interfere 522

with latent spaces already aligned to legal structure, 523

resulting in performance drops. 524
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On PUBMED, all methods perform similarly525

(F1 > 92), suggesting that prototype injection526

is less impactful. Here, Gated Residual Addition527

slightly outperforms others, likely because it pre-528

serves strong local signals while controlling the529

influence of the prototype. These findings confirm530

that no injection strategy is universally optimal.531

The best choice depends on the rhetorical structure532

of the text, the informativeness of prototypes, and533

how the model integrates external context.534

6.5 Sensitivity to PBR Hyperparameters535

We evaluate PBR sensitivity on SCOTUSRF, fo-536

cusing on three components: (1) the number of537

soft prototypes, (2) the proximity loss weight λprox,538

and (3) the diversity loss weight λdiv, as shown in539

Figure 4.540

Prototype count. Performance is stable across541

values, with a slight improvement up to 16 pro-542

totypes. Beyond that, gains plateau, suggesting543

that few prototypes suffice to capture key rhetor-544

ical patterns, while higher counts may introduce545

redundancy.546

Proximity loss λprox. A moderate value (λprox =547

0.9) yields the best results, supporting the idea that548

proximity improves role consistency. Higher pres-549

sure (λprox = 10.0) degrades performance, likely550

due to overcompression of the embedding space.551

Diversity loss λdiv. An intermediate value λdiv =552

0.9 also performs best. It encourages separation553

among prototypes, improving class discriminabil-554

ity. Stronger regularization (λdiv = 10.0) slightly555

hurts performance, possibly by pushing prototypes556

too far from the data manifold.557

6.6 Discussion558

Prior work has primarily focused on modeling intra-559

document dependencies, what we refer to as local560

context through hierarchical architectures (Brack561

et al., 2024; T.y.s.s et al., 2024). Despite their562

success, these methods struggle with fine-grained 563

rhetorical roles, likely due to the absence of corpus- 564

level semantic grounding. This study aims to ad- 565

dress that limitation by coupling local context with 566

a global perspective, captured through semantic 567

prototypes. To this end, we proposed two meth- 568

ods—PBR and PCM—that inject global signals 569

into hierarchical encoders in distinct ways. 570

We chose to keep these methods separate to bet- 571

ter assess their trade-offs. PBR is a lightweight 572

regularization mechanism. In our experiments, it 573

used ∼ 30–40% less GPU memory and trained 574

∼ 20–25% faster than PCM, making it attrac- 575

tive in resource-constrained settings. PCM, al- 576

though more costly due to precomputed proto- 577

types and conditioning modules, consistently deliv- 578

ered stronger gains, especially for underrepresented 579

roles. It is better suited for scenarios where perfor- 580

mance outweighs efficiency, such as legal domains 581

or complex rhetorical hierarchies, as exemplified 582

by our SCOTUS-LAW corpus. 583

7 Conclusion 584

This work shows that combining local context with 585

global semantic prototypes significantly improves 586

RRL, particularly for underrepresented roles. By 587

introducing two methods—Prototype-Based Regu- 588

larization (PBR) and Prototype-Conditioned Mod- 589

ulation (PCM)—we show that global signals can 590

be effectively injected into hierarchical architec- 591

tures to provide more semantically coherent repre- 592

sentations. Beyond model performance, we con- 593

tribute SCOTUS-LAW, the first U.S. Supreme 594

Court dataset annotated at three rhetorical levels. 595

This resource enables more granular evaluation and 596

promotes research on legal NLP field. Future work 597

should give priority to (1) to extend semantic proto- 598

typing to multilingual or cross-domain RRL, where 599

generalization becomes even more challenging; (2) 600

refining prototypes adaptively during inference to 601

better align with evolving discourse structures. 602
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8 Limitations603

Although the proposed methods improve RRL per-604

formance, several limitations should be acknowl-605

edged to guide future improvements:606

• The current task formulation assigns a single607

rhetorical label to each sentence. While this608

simplifies annotation and modeling, it may not609

account for the semantic complexity of long610

or compound sentences that express multiple611

rhetorical functions. Reformulating the task as612

multi-label classification could better reflect613

such cases.614

• The approach operates at the sentence level.615

Segmenting at the phrase or clause level, and616

modeling rhetorical dependencies between617

segments, could lead to more fine-grained618

analysis.619

• The study focuses exclusively on English cor-620

pora. Extending semantic prototyping to mul-621

tilingual RRL raises challenges related to622

alignment, label transfer, and prototype shar-623

ing across languages with different rhetorical624

conventions.625

9 Ethical considerations626

This work proposes new methods and experiments627

aimed at advancing research in rhetorical role628

labeling, a foundational task in legal document629

processing. All experiments were conducted on630

publicly available datasets, including our intro-631

duced datasets. While these documents are not632

anonymized and may contain real names of in-633

volved parties, they are official court records re-634

leased for public access. We do not anticipate any635

harm arising from our use of these datasets. Our636

research is intended to support the development of637

transparent and responsible AI tools for legal pro-638

fessionals. By improving the automation of rhetor-639

ical role labeling, we aim to facilitate legal text640

analysis and contribute positively to the broader641

goals of legal NLP.642
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A Hierarchical Architecture Details942

Figure 5: The hierarchical architecture.

All of our experiments are built on the state-943

of-the-art hierarchical architecture (Brack et al.,944

2024). Initially, each sentence sij is encoded inde-945

pendently with a BERT model (Devlin et al., 2019),946

producing a sequence of contextual token embed-947

dings hij = {hij1,hij2, . . . ,hijTij}. These vec-948

tors are passed through a Bi-LSTM layer (Hochre-949

iter and Schmidhuber, 1997), followed by an950

attention-pooling layer (Yang et al., 2016), to yield951

sentence representations vij .952

uijt = tanh
(
Wwhijt + bw

)
(6)953

αijt =
exp

(
u⊤
ijtuw

)∑
t′ exp

(
u⊤
ijt′uw

) & vij =

Tij∑
t=1

αijt hijt

(7)954

Here, Ww, bw, and uw are trainable parame-955

ters. The sentence representations vij are then956

passed through a second Bi-LSTM to obtain contex-957

tualised embeddings cij that capture information958

from neighbouring sentences. Finally, the contex-959

tual vectors cij are fed to a Conditional Random960

Field layer, which predicts the optimal sequence of961

labels.962

B Implementation Details963

We follow the hyperparameters for the baseline964

as described in Brack et al. (2024). We use the965

BERT-base model to obtain the token encodings.966

We employ a dropout of 0.5, a maximum sequence967

length of 128, an LSTM dimension of 768, and an 968

attention context dimension of 200. We perform a 969

grid search over learning rates {1e-5, 3e-5, 5e-5, 1e- 970

4, 3e-4} for 40 epochs, using the Adam optimizer 971

(Kingma and Ba, 2014). 972

C Evaluation Datasets 973

In addition to evaluating our models on the pro- 974

posed SCOTUS-LAW corpus, we conduct exper- 975

iments on several established RRL benchmarks 976

across the legal, medical, and scientific domains. 977

LegalEval (Kalamkar et al., 2022) consists of judg- 978

ments from the Indian Supreme Court, High Court, 979

and District Courts. It provides public training and 980

validation splits with 184 and 30 documents, re- 981

spectively, totaling 31,865 sentences (average of 982

115 per document), annotated with 13 rhetorical 983

role labels. Due to the absence of a public test set, 984

we train on the official training split and evaluate 985

on the provided validation set. 986

DeepRhole (Bhattacharya et al., 2023b) includes 987

50 judgments from the Indian Supreme Court 988

across five legal domains, annotated with 7 rhetori- 989

cal roles. It comprises 9,380 sentences (average of 990

188 per document). We follow an 80/10/10 split at 991

the document level for train/validation/test. 992

PubMed (Dernoncourt and Lee, 2017) contains 993

20,000 structured medical abstracts from random- 994

ized controlled trials. Sentences are automatically 995

labeled by authors into five rhetorical roles: Back- 996

ground, Objective, Methods, Results, and Conclu- 997

sions. 998

CS-Abstracts (Gonçalves et al., 2020) includes 999

654 abstracts from computer science literature, an- 1000

notated via crowdsourcing into the same five rhetor- 1001

ical roles as PubMed. It is currently the most recent 1002

dataset for scientific rhetorical structure classifica- 1003

tion. 1004

D Prototype Injection Strategies 1005

We experiment with several strategies to inject 1006

global prototype representations into sentence en- 1007

coders. Each method varies in the degree of control, 1008

parametrization, and how the prototype signal is 1009

merged with the original sentence representation. 1010

We describe below the five main approaches stud- 1011

ied in our work. 1012

Linear Fusion (Bu et al., 2023) This method 1013

concatenates the sentence and its corresponding 1014
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Dataset Source Domain Language # Docs # Sents Labels

SCOTUSCategory Ours Legal (U.S.) English 180 26,327 5
SCOTUSRF Ours Legal (U.S.) English 180 26,327 13
SCOTUSSteps Ours Legal (U.S.) English 180 26,327 35
LEGALEVAL Kalamkar et al. (2022) Legal (India) English 214 31,865 13
DEEPRHOLE Bhattacharya et al. (2023b) Legal (India) English 50 9,380 7
PubMed Dernoncourt and Lee (2017) Medical English 20,000 227,000 5
CS-ABSTRACTS Gonçalves et al. (2020) Scientific English 654 7,385 5

Table 5: Evaluation datasets used in our experiments. SCOTUS is annotated at three hierarchical levels: category,
rhetorical function, and steps.

Category %(↓) Rhetorical Function % (↓) Type Target Author %(→)

Announcing 344 1.30 Announcing 344 1.30 1.30

Setting the scene 5.123 19.45 Granting certiorari 182 0.69 0.69
Presenting jurisdiction 4.941 18.76 Adjudicated facts 2.283 8.67

Lower court decision 1.192 4.52
Context 467 1.77
Other procedural events 412 1.56
Parties’ legal claims
and arguments 363 1.37

Legal question(s) 224 0.85

Sources of authority 8.041 30.54 Citing 6.442 2.44 SCOTUS decision 2.764 0.89
Primary source of law 2.203 0.91
Secondary source of law 1.474 0.63

Describing 955 3.62 Primary source of law 771 2.92
Secondary source of law 159 0.60
Established practices or
cultural norms

25 0.09

Quoting 644 24.46 SCOTUS decision 235 10.49
Primary source of law 241 8.36
Secondary source of law 168 5.59

Analysis 11.910 45.23 Stating the Court’s reasoning 3.198 12.14 12.14
Rejecting arguments/a reasoning 490 1.86 1.86
Accepting arguments/a reasoning 103 0.39 0.39
Recalling 8.119 30.83 A SCOTUS opinion 2.160 8.20

A primary source 1.781 6.76
A secondary source 359 1.36
An established practice
or cultural norm

1.199 4.55

An adjudicated fact or
procedural event

1.447 Present case 1.152 4.37

Another case 295 1.12
Legal question(s) 182 Present case 147 0.55

Another case 35 0.13
An argument 991 Present case 967 Petitioner 413 1.64

Respondent 513 1.94
Dissenting justice(s) 22 0.08

Another case 24 0.09

Resolution 910 3.45 Giving the holding of the Court 760 2.88 2.88
Giving instructions to competent courts 105 0.39 0.39
Evaluating the impact of the decision 45 0.17 0.17

Total 26.328

Table 6: Final Annotation Scheme: Comprising 5 Categories, 13 Rhetorical Functions, and 24 Attributes (Types,
Targets, and Authors). Counts of Text Segments are Provided, with Distributions Displayed at the Category Level
(↓), Rhetorical Function Level (↓), and Step Level (→).

prototype vector, followed by a linear projection1015

layer to recover the original embedding dimension.1016

While simple and fully parametric, this technique1017

may dilute the prototype signal due to compression.1018

Conditional Layer Normalization (CLN) (Lee1019

et al., 2021) The sentence is first normalized (zero1020

mean, unit variance), and the prototype generates1021

two vectors γ (gain) and β (bias) that re-scale and1022

shift each dimension of the sentence embedding.1023

This conditioning allows for fine-grained recalibra-1024

tion informed by prototype semantics.1025

Gated Residual Addition (Tsur and Tulpan,1026

2023) The original sentence embedding is pre-1027

served, and a prototype-based residual is added1028

with a learned gate vector g ∈ [0, 1]d that controls1029

per-dimension contribution. If g closes, the model 1030

reverts to the baseline representation; if it opens, 1031

the prototype is effectively injected. 1032

Feature-wise Linear Modulation (FiLM) 1033

(Ahrens et al., 2023) FiLM extends CLN by 1034

directly applying the prototype-derived γ and 1035

β vectors to modulate the sentence features 1036

(γ ⊙ x+ β), without requiring prior normalization. 1037

This method is more flexible but less controlled 1038

than CLN, enabling adaptive influence of the 1039

prototype on the sentence. 1040

Cross-Attention Fusion (Zhang et al., 2024) 1041

Here, the sentence acts as a query vector, attending 1042

to the prototype treated as key/value. Attention 1043

weights select relevant components from the pro- 1044
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totype to be added to the sentence. This dynamic1045

fusion allows for sentence-specific contextualiza-1046

tion, adapting the contribution of the prototype to1047

the input.1048

Each mechanism provides a different trade-off1049

between interpretability, efficiency, and contextual1050

adaptation. Our experiments show that no method1051

is universally optimal, and the effectiveness often1052

depends on the nature of the data and task.1053

E Annotation Scheme1054

E.1 Discursive Categories1055

The first level of our annotation schema defines five1056

high-level rhetorical categories that segment each1057

decision into major structural blocks. Below, we1058

provide a brief description of each one:1059

Setting the scene. This category includes intro-1060

ductory paragraphs that present the case to the1061

reader. Typical content includes information about1062

the nature of the parties involved, their claims, the1063

material facts of the case, the legal issue under ex-1064

amination, and the procedural history that brought1065

the case before the Supreme Court.1066

Analysis. This category corresponds to the argu-1067

mentative core of the decision. It usually follows1068

the introductory section and precedes the final rul-1069

ing. The content is primarily argumentative and1070

captures the Court’s reasoning in response to the1071

parties’ claims, justifying the interpretation and1072

application of legal principles.1073

Resolution. This section contains the resolution1074

of the legal issue, typically expressed through the1075

final ruling issued by the majority opinion. While1076

the announcement of the judgment is obligatory, it1077

may also include instructions for lower courts or1078

comments on the societal impact of the decision.1079

Sources of authority. This category gathers all1080

explicit mentions of legal sources, whether writ-1081

ten (e.g., case law, statutes, constitutional texts) or1082

unwritten (e.g., doctrines or principles). Although1083

such references appear throughout the decision,1084

some judges explicitly dedicate specific portions of1085

their opinion to outlining the sources that will later1086

support their legal reasoning. Note: when a source1087

is invoked directly within the reasoning process, it1088

is annotated under the Analyse category rather than1089

Sources d’autorité.1090

Announcing. This category includes structurally 1091

functional sentences that serve as rhetorical tran- 1092

sitions. These statements do not carry substantive 1093

content themselves but signal the upcoming devel- 1094

opment of a new rhetorical step from one of the 1095

four other categories. 1096

E.2 Rhetorical Functions 1097

At the second level of annotation, we define thir- 1098

teen rhetorical functions that capture the specific 1099

communicative intent of each sentence in the deci- 1100

sion. 1101

Granting certiorari. Assigned to sentences 1102

where the Court explicitly signals that it has agreed 1103

to review the case. These statements typically ap- 1104

pear near the end of the factual and procedural 1105

summary, often preceding the articulation of the 1106

legal questions. Example: “We granted certiorari.” 1107

Presenting jurisdiction. Covers sentences that 1108

neutrally present elements of the case background. 1109

This function includes an attribute Type with 1110

five possible values: Legal Issue, Facts of the 1111

Case, Other Procedural Elements, Arguments and 1112

Claims, or Broader Context. 1113

Quoting. Used for references to legal sources. 1114

The annotation includes a Type indicating the na- 1115

ture of the source: Court Decision, Primary Source, 1116

or Secondary Source. 1117

Describing. Applied to paraphrases of legal 1118

sources, whether primary, secondary, or unwritten. 1119

The associated Type indicates the source category: 1120

Primary Source, Secondary Source, or Unwritten 1121

Source of Authority. 1122

Citing. Used for direct quotations that include 1123

complete sentences or longer excerpts from legal 1124

sources. Types are the same as for Quoting. 1125

Recalling. Captures sentences that refer back to 1126

previously mentioned legal sources, or that intro- 1127

duce sources in a way that supports the Court’s 1128

reasoning. These recalls often include an inter- 1129

pretive dimension, contributing to argumentative 1130

development. 1131

Accepting arguments/a reasoning. Marks 1132

agreement with a previously stated argument or 1133

reasoning, either from a party or another court. 1134
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Rejecting arguments/a reasoning. Indicates dis-1135

agreement or refutation of a prior argument or line1136

of reasoning, particularly when opposing the view1137

of another court.1138

Stating the Court’s reasoning. Assigned to all1139

reasoning sentences that do not fall under more spe-1140

cific categories. This includes hypothetical reason-1141

ing, such as evaluating consequences of alternative1142

outcomes.1143

Giving instructions to competent courts. Cov-1144

ers sentences in which the Court instructs lower1145

courts or other legal bodies to act in accordance1146

with the decision or to reconsider aspects of the1147

case.1148

Giving the holding of the Court. Applies to1149

sentences stating the legal conclusion reached by1150

the Court (the holding), based on the material facts,1151

including the final judgment.1152

Evaluating the impact of the decision. Used1153

when the Court explicitly reflects on the conse-1154

quences of its decision, either institutionally or1155

societally.1156

Announcing. Marks structurally functional sen-1157

tences that introduce an upcoming element of the1158

decision or name the judge who authored the opin-1159

ion.1160

E.3 Attributes1161

To enrich the rhetorical annotation while keeping1162

the core label space concise, we introduce a small1163

set of optional attributes. These attributes are de-1164

signed to add interpretive nuance without changing1165

the primary function assigned to a sentence. They1166

are used selectively with certain rhetorical func-1167

tions, such as Recalling, Describing, or Presenting1168

jurisdiction.1169

• Type — indicates the nature of the content1170

referenced or discussed (e.g., legal source, fac-1171

tual detail, procedural element);1172

• Author — specifies who is the originator of1173

the argument or point of view (e.g., the Court,1174

a party, or a dissenting opinion);1175

• Target — identifies whether the information1176

concerns the case under review or refers to1177

another precedent.1178

These attributes are optional but help clarify 1179

rhetorical intent, especially in ambiguous or multi- 1180

voiced legal discourse. 1181
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Figure 6: Topical, Temporal, and Authorial Diversity in
our annotated corpus.
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Figure 7: The final coding scheme is composed of 5 categories (ovals with orange background), 13 rhetorical
functions (green rectangles) and 24 attributes (types in blue rectangles, target in the yellow rectangle, and author in
the purple rectangle. The scheme reads from top to bottom: A step label is constructed by first choosing a category,
then a rhetorical function, then if required, by combining attributes to complete the discursive information provided
by the rhetorical function.
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