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Abstract—In this paper, we introduce the High and Low Gra-
dient Masking (HLGM) approach, a groundbreaking saliency-
guided training method that effectively enhances both the accu-
racy and the quality of saliency maps in computer vision models.
This method stands apart from traditional saliency-guided train-
ing, which often compromises accuracy. HLGM employs a novel
two-phase process: initially, it involves regular training without
gradient masking, followed by an accuracy boosting phase. This
phase alternates between masking high gradient information to
encourage diverse learning pathways, and masking low gradient
information to reduce background noise and strengthen crucial
synoptical pathways. The effectiveness of HLGM is validated
through a unique metric that measures the alignment of high-
fidelity saliency feature maps with labeled objects in images.
Our comparative analysis against baseline models and current
advanced techniques demonstrates substantial improvements in
both model accuracy and saliency mapping. HLGM not only
outperforms conventional training methods in accuracy but also
advances model interpretability, positioning it as a pivotal tool
in the pursuit of explainable AI in machine learning.

Index Terms—Deep Learning, Interoperability, Saliency-
Guided Training

I. INTRODUCTION

Deep learning’s transformative effect on society is attributed
to its ability to discern complex patterns from vast datasets
[28]. The adoption of Deep Neural Networks (DNNs) has led
to marked improvements in prediction accuracy and decision-
making, as proved by empirical findings. This progress has
accelerated both social and technological advancements.
However, due to DNNs’ black-box nature, there are concerns
about their reliability. This has stimulated significant academic
interest in understanding their behavior and the criteria they
rely on for generating outputs. Being able to give clear
reasons is really important in fields like medicine, neurology,
finance, and autonomous driving [32]. These explanations
not only heighten the understanding and trust in models
but also assist in their debugging and refinement [32]. As a
result, a substantial body of research has been dedicated to
advancing interpretability techniques for DNNs [4], [8], [11],
[13]. One common approach involves finding influential input

features that play a significant role in classification outcomes,
utilizing methods like saliency maps that often employ
gradient calculations [6], [11], [13], [25]. These maps assign
importance values to features, highlighting their influence on
predictions. The presence of noise or distracting elements
can compromise the clarity of saliency maps, leading to
diminished clarity and precision. Singh et al. [4] introduced
methods that use higher-order backward gradients, enhancing
saliency map insights. Kindermans et al. [5] enhanced their
findings through multiple gradient computations. Notably, the
SmoothGrad technique addresses saliency noise by repeatedly
adding noise to inputs and then averaging the produced
saliency maps [11]. Other methods, including integrated
gradients [13], DeepLIFT [25], and Layer-wise Relevance
Propagation [8], modify backpropagation with alternate
gradient functions [3]. However, the effectiveness of these
techniques is tied to their reliability [5]. Saliency maps lose
trustworthiness if they show large shifts from minor input or
model changes, as emphasized by Ghorbani et al. [22]. Thus,
comprehensive validation is essential when developing new
interpretability methods to ensure their dependability [15].
The success of these methods can vary based on data types and
model architectures, requiring continual method refinement
[24]. Enhanced interpretability extends beyond understanding
individual predictions; it aims to interpret a model’s overall
decision-making logic [9]. For instance, to achieve this, some
researchers are exploring distillation techniques to transform
intricate neural networks into interpretable models like soft
decision trees [1]. Saliency itself does not directly influence
the accuracy of a model. However, if a saliency map indicates
that the model is concentrating on irrelevant parts of the data,
modifications can be implemented to potentially enhance its
accuracy. Saliency Guided Training (SGT) seeks to achieve
dual objectives: ensuring the model displays significant
saliency while upholding an impressive level of accuracy.
However, adopting saliency guided training could result in a
notable reduction in accuracy [12]. In this study, we present
a novel training approach denoted as High and Low Gradient
Masking (HLGM) masking, a variant of saliency guided



masking that improves the model accuracy while generating
equal or better quality saliency map solution compared to
prior art.

II. RELATED WORKS

Interpretability in machine learning seeks to make model
decisions understandable to humans, which is crucial for
ensuring that people can comprehend why models make cer-
tain decisions. Deep learning models, while highly accurate,
often lack transparency, hindering our ability to justify their
predictions logically. Interpretability aims to address this by
enhancing model transparency and functionality, enabling us to
bridge the gap between complex model processes and human
decision-making, thus ensuring the reliability of AI systems
[26]. [10] introduced ”grafting,” an approach to feature selec-
tion that seamlessly integrates into gradient descent training.
This method employs an incremental, gradient-based strategy,
iteratively selecting and adding features while optimizing
predictive models. Grafting is efficient with data points and
features, compatible with both linear and non-linear models for
classification and regression. The techniques used in grafting
complement approaches like [1]’s stochastic gradient descent-
based soft decision tree, to [27]’s human-annotated ”ratio-
nales” for model justification. Other notable methods include
saliency learning [2], input gradient modulation [9], class
differentiation in CNN training [16], cutout regularization
and additive feature significance approach [6]. [2] set out to
train the model to make accurate predictions based on sound
reasoning. They achieved this by incorporating explanation
training and ensuring that the model’s explanations aligned
with the true, valid explanations. Their primary objective was
to guide the model in directing its attention to relevant infor-
mation, thereby preventing it from being swayed by irrelevant
statistical biases in the data. Their research predominantly
emphasized positive explanations, meaning that they aimed
for explanations that highlighted information contributing pos-
itively to the label prediction. In recent years, tools like LIME
have emerged from efforts to explain black-box models, shed-
ding light on the implicit rules guiding predictions. Such tools
were valuable in discerning situations where models made
correct predictions for the wrong underlying reasons. However,
limitations became evident as these methods struggled to scale
to explain entire datasets and could not rectify the issues
they uncovered. To address these challenges, [9] introduced
a novel approach. Their method efficiently explained and
regularized differentiable models by examining and selectively
penalizing input gradients. These penalties were applied in
two ways: through expert annotation and an unsupervised
approach. The result was the creation of multiple classifiers
with distinct decision boundaries, adding depth and nuance to
model interpretation. Researchers have delved into the realm
of gradient-based attention modeling, where attention maps
have emerged as a powerful tool for deciphering convolutional
neural networks. While these methods have been successful
in effectively pinpointing specific classes of interest, they
encountered a significant problem: attention maps tended to

overlap substantially across different classes, leading to visual
confusion. To tackle this issue, [16] introduced a fresh frame-
work in their paper, making class-discriminative attention an
integral part of the learning process. Their key advancements
included the introduction of novel learning objectives aimed at
improving attention distinctiveness and consistency across net-
work layers. These innovations ultimately resulted in enhanced
attention separability and a reduction in visual ambiguity.
[6] introduced a simple framework aimed at generating local
explanation vectors suitable for various classification methods.
The main objective was to aid in understanding the prediction
outcomes for individual data points. These local explanations
were crafted to reveal the pertinent features influencing predic-
tions at specific locations within the data space. Furthermore,
this approach had the ability to uncover local idiosyncrasies
that were frequently disregarded when examining the global
perspective, often due to the influence of offsetting factors.

However, challenges persist. While gradient techniques ex-
hibit many desirable traits, their application to visual mod-
els often results in the generation of misleading or noisy
pixel attributions in regions that have no relevance to the
predicted class [23]. Such disparities in saliency maps might
be attributed to minor local derivative fluctuations [13]. [37]
elucidated the contrast between low-level features, which can
capture superfluous elements, and high-level features, which
prioritize semantic information. To emphasize essential data,
stringent criteria are necessary when extracting saliency maps
using low-level features. Integrating saliency ensures that
models emphasize pivotal data, potentially boosting perfor-
mance and fostering generalization. [34] posit that verbaliz-
ing saliency maps enhance human comprehension, providing
more digestible feature attribution explanations than tradi-
tional methods. [35] noted remarkable advancements in the
generalization ability of Soft Actor-Critic agents, surpassing
contemporary benchmarks in training efficiency, generalization
gap, and policy interpretability. [12] proposed an innovative
approach called saliency-guided training. In their work, they
introduced a novel algorithm that integrates interpretability
into the training process. This algorithm aims to improve the
accuracy of models while also considering the concept of
saliency.

Algorithm 1 delineates the SGT process, which harnesses
saliency data to bolster the training of a neural network model
represented as fθ. The model’s output, given X , is denoted as
fθi(X) whose parameters θ are updated based on the gradient
of the loss. Within this framework, the Kullback-Leibler
divergence, DKL(p|q), serves as a metric to discern variations
between two probability distributions, specifically contrasting
the original output distribution fθ(X) with its modified coun-
terpart fθ(X̃). The masking function Mk(I,X) is instrumen-
tal, omitting the least impactful k features from the input X
based on the rank I , which denotes feature significance as
per gradients. This yields the modified input X̃ , having the
less pertinent features excluded via the mask Mk(I,X). The
holistic loss function Li used in training amalgamates two
elements: the conventional loss metric L(fθ(X), y), assessing



Algorithm 1 Saliency Guided Training [12]

Inputs:
. ⊸ Training samples X ,
. ⊸ Number Masked Features k,
. ⊸ Learning Rate τ ,
. ⊸ KL-Divergence weight λ,
. ⊸ Number of epochs N
. ⊸ Initialize fθ
. ⊸ Preload or randomize for new training
for i = 1 to N do

for minibatch do
Extracting sorted index I of the gradient of output
w.r.t the input.
I = sort(∇Xfθi(X))
Masking bottom k features of the original input.
X̃ = Mk(I,X)
Computing the loss function.
Li = L(fθi(X), y) + λDKL(fθi(X)∥fθi(X̃))
Using the gradient to update network parameters
fθi+1 = fθi − τ∇θiLi

end
end

the model’s efficacy on the pristine input X against labels
y, and a regularization component rooted in the Kullback-
Leibler divergence, advocating for congruence between the
output profiles of X and X̃ .

III. METHODOLOGY

Fig. 1 shows the application of SGT (Algorithm 1) to
various images. The saliency map is superimposed on each
blurred image, highlighting input features with the highest
gradient, indicating their significance for the model’s predic-
tion. As illustrated in this saliency map, the object features
deemed significant to the learning model (as highlighted by
the saliency map) are only a subset of the features by which
the object could be classified.
This means the object is identified using only a subset of its
features. The first question is whether we can use the saliency
information to push the model to learn new features or be
able to identify the object in many distinct ways. The second
observation is that the saliency map contains many points
outside the object that are not logically related to the identified
object. This is another area for improvement to understand
if we can lower the model’s excitation to non-contributing
features.

A. Regularization and Denoising by HLGM

In this work, we propose using a saliency map as a regu-
larization parameter. The regularization approach we propose
pushes the model to identify objects in many different ways.
We propose achieving this by a form of data augmentation
that removes the high gradient input features (pixels and

.

Fig. 1: This image displays the saliency map produced by the SGT method
[12], a prior art solution, compared with a regular model. Although the SGT
has better performance, both models show that many of the top gradients do
not correspond to the main object, and many pixels of the main object are
not considered.

surrounding area) from the input image and continues the
training process to explore a different way to learn the model.
By identifying new features, the model can rely on a larger set
of features for identifying objects and improve its robustness.
As a second step, we propose using the saliency map as
a denoising mechanism and removing input features with a
low gradient from the input image. This will produce a new
set of input images. By using denoised images, the model
is boosted as it enforces the excitations of the synaptic sub-
network responsible for the classification of the target class.
We propose performing the regularized SGT and denoised
SGT sequentially, allowing the model to learn new features
and subsequently boost network performance by enforcing
newly learned weights. More specifically, we propose starting
with a conventional training process, without regularized or de-
noised SGT, and moving to the proposed iterative regularized-
denoised SGT iteration when the model performance no longer
improves. Algorithm 2 captures the details of our proposed
regularized and denoising saliency guided training solution.
Details of this algorithm are described in the following section.
In summary, we force the model to learn additional important
pixels by initially masking high-gradient pixels (regularized
SGT). After a few epochs, when the model has learned
these new important pixels, we then mask low-gradient pixels
(denoised SGT), enabling the model to learn both the new and
previously identified important pixels.

B. Detailed Explanation of Proposed Approach

Algorithm 2 takes as input the training database, the input
mode (pre-trained or randomized weights), the learning rates,
and several hyperparameters including k that indicates how
many features will be masked during regularized training, γ
that indicates the weight KL-divergence in the loss function.
The training process in this algorithm has two major steps:
conventional training and Regularize-and-Denoising SGT. As



illustrated in the equations below, the conventional training
step uses cross-entropy loss to update the weights iteratively
until the loss is flat.

After the decrease in the model loss reaches its plateau
through conventional training (checked by monitoring the rate
of change in loss), our proposed solution enters its second
training phase. The SGT training step in our solution is
composed of two stages that are iteratively and sequentially
executed: ”Regularized SGT” and ”Denoising SGT”. To start
the SGT step, as highlighted in the Alg.2, we first compute
the input gradients and then sort the inputs based on gradients.
In the following equation, I is the sorted input gradient.
After sorting the gradients, we enter either the regularized
or denoising SGT. Implementation of regularized denoising
is simply done by masking the k top pixels in the sorted list
(those with the highest gradient) and the implementation of
denoising SGT is done by masking the bottom k input features
(those with the least gradient).

In Algorithm 2, masking the top k high gradient pixels is
done by the function Mt(kU )(·), and masking the bottom
k pixels is done using the function Mb(kB)(·). Different
values of k can be used in each epoch. As the model learns
better features over time, the number of top features masked
should be reduced. This is achieved by using the parameter
α to decrease the number of top features masked. When the
masking function is applied, it generates a new input image
denoted by X̃ . Similar to the original SGT, the X̃ is then used
to compute the Kullback-Leibler (KL) divergence.

In Algorithm 2, we utilize several equations essential for the
explanation of the model’s operation. Equation 1 defines the
Kullback-Leibler (KL) divergence, which measures how one
probability distribution P diverges from a second expected
distribution Q. This metric is crucial for comparing the neural
network’s outputs on original versus perturbed inputs, helping
to refine the model by minimizing information loss:

DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(1)

Equation 2 addresses the sorting of gradients derived from
the network’s predictions to rank the importance of input
features. This ranking guides the selective masking of less
influential features, thus focusing the model’s learning on
crucial inputs:

I = sort(∇Xfθi(X)) (2)

For the loss of the model, we combine Cross-Entropy Loss
and Loss with KL Divergence. The classification loss mini-
mizes the KL divergence between fθ(X) and fθ(X̃) to ensure
that the trained model produces similar output probability
distributions over labels for both masked and unmasked inputs.
The optimization problem is formulated as follows:

n∑
i=1

[
L(fθ(Xi), yi) + λDKL(fθ(Xi)∥fθ(X̃i))

]
(3)

Algorithm 2 HLGM: High and Low Gradient Masking
Inputs:
. ⊸ Number Masked (bottom and top) Features kb, kt
. ⊸ Number of Reduced Masked Top Features α
. ⊸ Learning Rate τ
. ⊸ KL-Divergence weight λ
. ⊸ Episode-Size Se

. ⊸ Number of epochs N

. ⊸ Training samples X

. ⊸ Initial count of denoising epocks withing each SGT
episode de
. ⊸ Initialize fθ
. ⊸Preload or randomize for new training
. ⊸ Phase ← Training
for (epoch i = 1 to N) do

if (Phase==Training) then
in Traditional State
Computing the loss function.
Li = L(fθi(X), y)
Using the gradient to update network parameters.
fθi+1

= fθi − τ∇θiLi

if (loss does not improve in last 20 epochs) then
Phase← SGT
episode = 0

end
else

in SGT State
episode ++
Compute and sort the gradients into vector I
I = sort(∇Xfθi(X))
if (episode < Se − de) then

Regularization: Masking top k features.
kt = kt − α
X̃ = MKtU (I,X)

else
Denoising: Masking bottom k features.
X̃ = MKbB(I,X)
Computing the loss function.
Li = L(fθi(X), y) + λDKL(fθi(X)∥fθi(X̃))
Using the gradient to update network parameters.
fθi+1

= fθi − τ∇θiLi

increase denoising epochs in the next episode
if ((episode == Se) & (de ≤ Se) then

de++
start a new episode
episode = 0

end
end

end
end

The regularized and denoising SGT are executed episod-
ically with each episode containing Se epochs. During the
first episode, Se − de epochs are regularized-SGT, and the de
epoch is denoising. In each subsequent episode, the number
of regularized epochs reduces by one and the denoising epoch
is added by 1, keeping the episodes of Se epoch but gradually



shifting the focus from regularization to denoising, until in
the last few episodes we only run denoising episodes. In our
results section, we considered episodes of 5 epochs to generate
the results.

IV. EXPERIMENTS

In this section, we initially provide a concise overview of
the datasets employed to evaluate our research. Subsequently,
we delve into the specific learning model structures utilized
for this evaluation. We further explore the effectiveness of
our proposed approach in enhancing model accuracy across
various datasets and learning models. Lastly, we contrast the
saliency map produced by our method with the original SGT
as referenced in [12].

A. Datasets for Evaluation

CIFAR-10: The CIFAR-10 dataset [28] includes 60k low-
resolution RGB images, categorized into 10 classes.We em-
ployed 50k images to train and 10k to test.
CIFAR-100: The CIFAR-100 dataset [28] consists of 60k low-
resolution RGB images categorized into 100 classes, grouped
into 20 superclasses. We split it into 50k training and 10k test
images.
Oxford-IIIT: The Oxford-IIIT Pet Dataset [7] contains 7,349
images of cats and dogs, with 37 breed categories. We used
this dataset to assess our model’s performance in pet breed
classification.

B. Machine Learning Models Used in This Work

Shallow CNN (2-Layers): This learning model is used in
the original SGT paper [12]. Using this model allows us to
compare the performance of our solution against the original
SGT on the same model and dataset. The shallow CNN model
is a simple Convolutional Neural Network (CNN) architecture,
consisting of two CNN layers with 3x3 kernels and a stride
of 1, followed by 2 Fully-Connected (FC) layers. The model
also includes two dropout layers with dropout rates set at 0.25
and 0.5, respectively.
Deep CNN (ResNet18): Use of ResNet18 [29] allow us
to evaluate our solution on deep CNNs. In this work, we
used a pre-trained ResNet18 on the ImageNet dataset [21].
Subsequently, we integrated a 100-neuron output classifier for
the Cifar100 and a 37-neuron output classifier for the Oxford-
IIIT datasets in the model.
Tiny Transformer: Transformers, a type of deep learning
architecture, have transformed natural language processing
with self-attention mechanisms [38]. Their capacity to grasp
long-range dependencies has made them pivotal in achieving
top-notch results in various machine learning applications.
Models like BERT [18], GPT-3 [14], and GPT-4 [17] have
significantly advanced NLP, inspiring their application in com-
puter vision. Attention-based models for image recognition
[31] and object detection [39] have outperformed prior CNN
models. To assess our approach for training attention-based
models, we experimented with the compact Tiny Transformer
model [30] (configured as (L = 12, d = 192, h = 3)), known

Model LR Batch Size Opt
Shallow CNN 0.1 256 Adadelta
ResNet-18 0.01 256 SGD
DeiT-tiny 0.001 256 Adadelta

TABLE I: Summary of DNN architectures and training parameters

for its efficiency and comparable performance to deep CNNs.
We adopted this ’tiny’ configuration from the pre-trained ’deit’
model 1, initially trained on ImageNet [29]. For our datasets,
we replaced the classification head with a 10-neuron classifier
for CIFAR-10 and a 100-neuron classifier for CIFAR-100.

C. Training Details

For all architectures, the training was done on an NVIDIA
A100 GPU. Each model was trained for 100 epochs with
a batch size of 256 samples. In our training, we used the
Adadelta [33] optimization algorithm with a learning rate of
0.1. To enhance gradients, low gradient pixels were substituted
with random values within the remaining pixel spectrum
during each epoch, with gradient values computed using the
Captum library [36]. For the Tiny Transformer, the same
training details were maintained, except that the optimizer
used as Stochastic Gradient Descent(SGD) [20] with a learning
rate of 0.001. Similar to Shallow CNN (2-Layers), gradient
enhancement involved substituting low gradient pixels with
random values using the Captum library [36]. Table I presents
a summary of the training specifics for the examined models.
For the number of masked bottom features, we use 50% of
the input features:

Mb(kB)(·) = 50% of input features

For the number of masked top features, we use 20% of the
input features:

Mt(kU )(·) = 20% of input features

and apply a reduction of 2%, resulting in the number of
masked top features being reduced by 2% (α = 2%)

Fig 2 displays the accuracy progression for the Shallow
CNN model on the CIFAR10 dataset. As illustrated in this
image and expected from Alg 2, the training goes into 3
phases. The first phase, highlighted in light grey, is the
traditional training. The training stops when the test accuracy
does not improve for the past 20 epochs. The Algorithm
then enters the SGT-based training, consisting of a sequence
of regularized and denoising stages. The regularized-SGT,
highlighted in purple, removes the high saliency pixels from
the input image, feeding the model with a modified image
and forcing the model to learn to classify the output using a
different set of features. The purpose of the regularized-SGT
is to improve the robustness of the model and force the model
to learn many different features by which it can classify an
input image. The regularized-SGT is followed by a denoising-
SGT. The denoising-SGT phase is highlighted in light yellow.
In denoising-SGT the low gradient input pixels are masked,

1https://github.com/facebookresearch/deit



allowing the model to update and improve the weights on the
synaptic subnetwork responsible for image classification and
also improve its saliancy map. The denoising-SGT is similar
to the original SGT paper in [12] and it is the addition of
regularized-SGT and sequential invocation of regularized and
denoising SGT that makes our work different. The episodic
application of regularized and denoising SGT continues and
in each episode, the number of regularized-SGT epochs is
reduced by 1. This allows the model to explore and find
many different ways in the first episode to classify the input,
gradually reduce the exploration of new features, and start
improving the saliency map in the last episodes. In this image,
we have shown both the training and test accuracies. As
illustrated there is a visible deep in the training accuracy when
we start the regularized-SGT as a model can no longer use
the features it previously learned for classification of input.
However, as illustrated, the model start to recover quickly
and learn new features. Starting from the first purpose zone
(regularized-SGT), we show two test accuracies. The red line
is the test accuracy with SGT-based training, and the black
is the continuation of the traditional training. Through this
illustration, we show the improvement in test accuracy as a
result of using our proposed HLGM algorithm. In this figure,
and all subsequent figures, there are two comparisons. The
first comparison is the comparison of the max test accuracy
between our solution and conventional regardless of which
epoch it takes place. The second comparison is the accuracy
comparison between the two at the end of training (100
epochs). As illustrated in this figure, and in all subsequent
figures, you will see that the HLGM results in improving the
accuracy while simultaneously improving the saliency map.
The observed improvement in the accuracy, depending on
the learning model and data set changes and in our results
varies between 1 to 4.5% improvement in accuracy which is
considered quite substantial.

Fig. 2: Comparison of Training and Testing Accuracy on the CIFAR-10
Dataset Using CNN Model with HLGM and SGT Algorithms: After a
certain number of epochs, the accuracy stabilizes, as indicated by the black
area. Initially, the HLGM algorithm’s masking of high gradients leads to
misclassification, reducing accuracy because the model focuses on other
significant pixels, as shown in the blue area. As training progresses, the
model shifts its focus to low-gradient areas, identifying and learning from key
pixels, represented by the yellow area. This shift occurs because the model
is attempting to identify more important pixels instead of those in the black
area.

Figure 3 captures the impact of HLGM training on the
transformer model on CIFAR-10 and CIFAR-100 datasets. As
illustrated in this figure, HLGM causes a significant improve-
ment in test accuracy compared to conventional training in

both datasets.

Fig. 3: Comparison of Training and Testing Accuracy on CIFAR-10 Using
CNN with HLGM and SGT Algorithms: Accuracy doesn’t increase after
several epochs, as indicated by the black area. Initially, HLGM’s high gradient
masking (blue area) leads to increased accuracy. Subsequently, the model
adapts by focusing on other relevant pixels. Finally, by targeting low gradient
regions (yellow area), it effectively learns from key pixels.

Fig. 4: In CIFAR-100: Accuracy peaks after several epochs, highlighted by the
black. At first, the HLGM algorithm’s actions led to mistakes and decreased
accuracy, but by learning other important pixels accuracy rises (indicated in
the blue area) before the model focuses on low gradient areas (highlighted in
the yellow area).

Figure 4, captures the result of using HLGM training with
shallow CNN (2-layer) CNN and Deep CNN (ResNet-18) on
the CIFAR-100 dataset. Our solution causes a notable enhance-
ment in test accuracy. Figure 5 captures the HLGM on the
Tiny Transformer model using the CIFAR-100 dataset. To use
the pre-trained tiny transformer, we resized the input images
from 32x32 to 224x224 pixels and used them as input for both
traditional and HLGM training. As illustrated the test accuracy
of HLGM training surpasses that of traditional confirming the
applicability of this accuracy and saliancy enhancing solution
on transformers. Table II provides a comparative analysis,
indicating the superior performance of our proposed HLGM
solution across all models and datasets.

V. SALIENCY COMPARISON

HLGM training not only enhances model accuracy but also
advances our understanding of the model’s functionality by
providing improved saliency maps. These maps are crucial in
elucidating how the model processes input images. To generate
saliency maps for a given image, we adopted the approach
detailed in [12]. This visualization technique highlights the



Fig. 5: CIFAR-100 by DeiT-tiny: Accuracy reaches its peak after several
epochs, as illustrated by the black line. By using high-gradient masking,
due to the numerous pixels and the significant size of 224x224, accuracy
subsequently increases, as depicted in the blue area. Subsequently, the model
emphasizes low-gradient regions (marked in the yellow area).

Model Dataset Baseline SGT HLGM
2 Level Conv CIFAR10 74.13% 73.34% 74.72%
2 Level Conv CIFAR100 46.51% 45.36% 49.87%
ResNet-18 CIFAR100 78.30% 78.92% 79.58%
DeiT-tiny CIFAR 10 94.72% 95.98% 96.44%
DeiT-tiny CIFAR 100 75.16% 78.86% 80.10%

TABLE II: Comparison of Models Accuracy when using Baseline(Regular),
SGT, and HLGM approach for model training on CIFAR-10 and CIFAR-100
Datasets.

high-gradient points within the input image—areas deemed
more significant—thereby offering a visual interpretation of
the features the model focuses on during inference. Figure
6 presents a comparative analysis of this visualization across
selected images from the CIFAR-10 and CIFAR-100 datasets.
It demonstrates the effects of standard training, SGT, and
HLGM on saliency map creation.

Fig. 6: Performance Comparison of Saliency: HLGM Model, SGT Model, and
Regular Model on CIFAR-10 and CIFAR-100 Datasets. High gradient points
are highlighted in yellow, revealing that the HLGM method exhibits higher
gradients on the main object compared to the regular and SGT methods.

Visually, saliency maps generated by HLGM demonstrate a
more distinct correlation with image pixels that are relevant
to label information. This observation offers a qualitative per-

spective; however, to provide empirical support for our claim
that HLGM yields enhanced saliency maps, we incorporate a
quantitative analysis. To this end, we introduce a novel metric
called Saliency In the Box (SIB). SIB is particularly appli-
cable to datasets containing object bounding box information.
Essentially, the SIB(x) metric quantifies the proportion of high-
gradient points residing within the bounding box. Here, ’x’
represents a thresholding mechanism.

To calculate SIB, we begin by computing the saliency values
for each pixel. Subsequently, we rank these pixels according
to their saliency values. Let’s denote H(x) as the highest x% of
these pixels, ranked by gradient value. Assume BB represents
the bounding box of the object in the input image. Then, SIB
is the percentage of points in H(x) that are located within BB.
Formally, SIB can be defined as follows:

SIB (x) =
Number of points in H(x) inside BB

Number of points in H(x)
(4)

Figure 7 depicts the model’s emphasis on the primary object
in Oxford-IIIT Dataset [7], using the distribution of top 5%
highest gradients, SIB(5), within and outside the bounding
box.

Fig. 7: Distribution of high-gradient points within and outside the object’s
bounding box demonstrates the model’s emphasis on the primary object in
the images in the Oxford-IIIT Dataset [7]. This outcome is based on the top
5% highest gradients in the image, and the percentage results indicate the
proportion of these high gradients located within the bounding box.

Figure 8 showcases the calculated SIB(1) and SIB(5) for the
Oxford-IIIT dataset [7], utilizing the ResNet architecture [29]
as described in Section IV-B. We trained ResNet with three
different approaches: standard (baseline), SGT, and HLGM.
Each model, post-training, was employed to generate saliency
maps for all images in the test set, from which we computed
SIB(1) and SIB(5) metrics. On the left side of the figure, we
present box plots for SIB(1) and SIB(5). As anticipated, the
HLGM method exhibits a higher mean in the SIB box plot
compared to both SGT and baseline training. This suggests
that the saliency maps generated by HLGM more frequently
encompass the object within the bounding box, indicating
focused attention of the model on the object rather than the
background during inference. This also implies that classifica-
tion is predominantly based on the object’s primary features
rather than environmental artifacts, marking a step towards
enhanced explainability.



Model Baseline SGT HLGM

Median(SIB) for top 0.5% 0.58 0.62 0.65
Median(SIB) for top 1% 0.55 0.57 0.59
Median(SIB) for top 2% 0.49 0.53 0.56
Median(SIB) for top 5% 0.45 0.47 0.50
Median(SIB) for top 10% 0.41 0.43 0.46

TABLE III: Median SIB value for Baseline( Regular), SGT, and HLGM
training for a range of SIB values.

The right side of the figure offers an alternative represen-
tation of this data. Here, we computed the SIB value, and
then for 120 randomly selected images from the test set, we
sorted them based on the SIB values derived from the baseline
model. In this visual, each point on the x-axis represents an
image, and the three circles on the y-axis associated with each
x-axis point correspond to the SIB values for baseline, SGT,
and HLGM models, respectively. This clearly illustrates that,
in the vast majority of cases, HLGM generates higher SIB
values across the images (with a few exceptions, as expected).
Table III presents the median SIB values for the Oxford-IIIT
dataset, spanning a range from 0.5 to 10. This table highlights
that HLGM consistently achieves a higher median in the SIB
distribution, signifying its superior performance.

Fig. 8: (Left) Plot comparing SIB(1) and SIB(5) metrics across regular
(baseline), SGT, and HLGM training methods, showing a notably higher mean
for HLGM. (Right) Scatterplot of SIB values for 120 randomly chosen test
images, illustrating the superior performance of HLGM in achieving higher
SIB values compared to regular and SGT training methods.

VI. CONCLUSION

In our study, we present HLGM, a novel saliency-guided
training method that simultaneously boosts a model’s accuracy
and the quality of its saliency maps. This approach distin-
guishes itself from previous saliency-guided methods, which
typically sacrifice accuracy in comparison to conventional
training methods. HLGM, on the other hand, not only main-
tains but enhances model accuracy and is particularly adept
at creating more refined saliency maps. To substantiate our
assertions, we devised a unique metric to assess the capability
of models in producing high-fidelity saliency feature maps
that align precisely with the objects marked in the images.
Employing this metric, we compared HLGM with standard

baseline models and contemporary leading techniques. The
findings show marked improvements with HLGM, underscor-
ing its effectiveness. Overall, HLGM represents a significant
step forward in training methodologies. It not only strives to
outperform traditional training methods in accuracy but also
contributes to greater model transparency through enhanced
saliency mapping. This combination makes HLGM an influ-
ential asset in the field of machine learning.
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