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ABSTRACT

The remarkable success of diffusion and flow-matching models has ignited a
surge of works on adapting them at test time for controlled generation tasks.
Examples range from image editing to restoration, compression and personalization.
However, due to the iterative nature of the sampling process in those models, it is
computationally impractical to use gradient-based optimization to directly control
the image generated at the end of the process. As a result, existing methods typically
resort to manipulating each timestep separately. Here we introduce FlowOpt – a
zero-order (gradient-free) optimization framework that treats the entire flow process
as a black box, enabling optimization through the whole sampling path without
backpropagation through the model. Our method is both highly efficient and
allows users to monitor the intermediate optimization results and perform early
stopping if desired. We prove a sufficient condition on FlowOpt’s step-size, under
which convergence to the global optimum is guaranteed. We further show how
to empirically estimate this upper bound so as to choose an appropriate step-size.
We demonstrate the effectiveness of FlowOpt in the context of image editing,
showcasing two use cases: (i) inversion (determining the initial noise that generates
a given image), and (ii) directly steering the edited image to be similar to the source
image while conforming to the target text prompt. In both settings, our method
achieves state-of-the-art results while using roughly the same number of neural
function evaluations (NFEs) as existing methods.

1 INTRODUCTION

Diffusion and flow matching models have emerged as powerful generative frameworks, achieving
state-of-the-art (SotA) results on image, video, and audio generation (Ho et al., 2020; Song et al.,
2021a; Rombach et al., 2022; Lipman et al., 2023; Liu et al., 2023; Albergo & Vanden-Eijnden,
2023). However, as opposed to their generative adversarial network (GAN) predecessors, flow models
generate samples through an iterative process that often involves dozens of neural function evaluations
(NFEs). This makes it challenging to adapt them at inference time for solving controlled generation
tasks. Indeed, while GANs naturally lend themselves to gradient-based optimization for directly
minimizing losses on the generator’s output (Menon et al., 2020), in flow models this approach is
computationally impractical. As a result, methods that use pre-trained flow models for controlled
generation typically intervene in each step of the sampling process separately, without employing any
direct supervision on the final result. This strategy is used e.g., for image restoration, image editing
(using inversion techniques), and image compression (Kawar et al., 2022; Tumanyan et al., 2023; Pan
et al., 2023; Qi et al., 2023; Huberman-Spiegelglas et al., 2024; Hong et al., 2024; Cohen et al., 2024;
Garibi et al., 2024; Manor & Michaeli, 2024; Elata et al., 2025; Wang et al., 2025; Martin et al., 2025;
Deng et al., 2025; Ohayon et al., 2025; Samuel et al., 2025).

Recently, Ben-Hamu et al. (2024) demonstrated the great potential of employing optimization through
the whole flow process in the context of solving inverse problems with pre-trained flow models. Unlike
other methods, this approach directly controls the generated image, and thus avoids accumulation of
approximation errors that can build up throughout the flow path. However, performing gradient-based
optimization is not scalable to reasonably sized models and image dimensions. In fact, even with a
small flow-matching model, small images (128× 128), and memory-saving techniques like gradient
checkpointing, this approach takes approximately 15 minutes to run on a single input.
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Figure 1: FlowOpt. We propose a zero-order (gradient-free) framework for optimization through
an unrolled flow sampling process. FlowOpt can efficiently optimize losses on the target image,
even when working with large models and high resolution images. We leverage our framework for
text-based image editing, demonstrating state-of-the-art results on both FLUX (first and third rows)
and Stable Diffusion 3 (second row). Fine details are visible upon zooming in.

In this work, we introduce FlowOpt – a zero-order (gradient-free) optimization framework for
directly minimizing loss functions on the target image without backpropagating through the model.
Specifically, unrolling the sampling process, a flow model can be viewed as a chain of neural
networks, which we refer to as “denoisers”. Our approach treats this entire chain of denoisers as a
black box, and enables optimization with respect to arbitrary loss functions. Here we specifically
focus on image-editing objectives. The avoidance of backpropagation enables working with large
flow models and treating large images. Furthermore, it allows using a small number of flow timesteps,
which is in contrast with inversion-based techniques that often require many timesteps to avoid error
accumulation. Taken together, these features enable FlowOpt to achieve SotA results at a number of
NFEs comparable to existing methods. Additionally, FlowOpt allows monitoring the intermediate
optimization results. Thus, at the same budget of NFEs as existing methods, FlowOpt in fact provides
multiple candidate edited images (one per optimization step) from which the user can choose.

Zero-order optimization has been previously used in several computer vision contexts (Tao et al.,
2017; Milanfar, 2018; Chen et al., 2019; Tu et al., 2019). FlowOpt is a generalization of the method
of Tao et al. (2017), with the difference that the update in each optimization step is multiplied by
a step-size η (the method of Tao et al. (2017) corresponds to FlowOpt with η = 1). As we show,
this modification is of dramatic importance. Specifically, we prove a sufficient condition on η under
which convergence to the global minimum is guaranteed, and show that for popular flow models this
bound is orders of magnitude smaller than 1. We demonstrate that FlowOpt indeed converges when η
is chosen smaller than the bound, and fails to converge when it significantly exceeds the bound.

We demonstrate the effectiveness of FlowOpt for both image reconstruction (inversion) and direct
image editing (Fig. 1), using the FLUX-1.dev (Black Forest Labs, 2024) and Stable Diffusion 3 (SD3)
(Esser et al., 2024) text-to-image (T2I) models. We show that FlowOpt provides an efficient solution
to these tasks, delivering SotA performance at running times comparable to existing methods.

2 RELATED WORK

T2I diffusion and flow-based models (Saharia et al., 2022; Ramesh et al., 2022) generate images by
steering a diffusion or flow process according to a text prompt provided by the user. Latent diffusion
and flow-based variants (Rombach et al., 2022; Vahdat et al., 2021; Dao et al., 2023) follow the same
principle but operate in a lower-dimensional latent space, improving computational efficiency while
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preserving visual fidelity. Many methods utilize these T2I foundation models for downstream tasks
like image editing in a zero-shot manner.

A common approach for performing image editing with pre-trained diffusion/flow models is to start
with an inversion stage (Song et al., 2021a) (often referred to as DDIM or ODE inversion), whose
goal is to extract the initial noise that would generate the input image if used in a regular sampling
process. Once this initial noise is obtained, it is used for sampling a new image, by using a text
prompt that describes the desired edit. However, inversion methods introduce approximation errors
that accumulate across the flow timesteps, and lead to significant reconstruction inaccuracies (Mokady
et al., 2023; Huberman-Spiegelglas et al., 2024).

One line of work focuses on improving the precision of ODE-inversion. Wang et al. (2025) employ a
high-order Taylor expansion to more accurately approximate the nonlinear components of the flow.
Deng et al. (2025) propose a solver that reuses intermediate velocity vector approximations. Yet,
despite improving numerical accuracy, such methods still operate on each timestep separately and do
not promote direct alignment with the given image during the inversion. Therefore, they still suffer
from accumulation of errors that can degrade overall performance.

A different approach is to optimize each denoising timestep independently (Mokady et al., 2023;
Pan et al., 2023; Hong et al., 2024; Garibi et al., 2024; Miyake et al., 2025; Samuel et al., 2025).
For instance, Mokady et al. (2023) optimize the unconditional null prompt embedding used in
classifier-free guidance (CFG) (Ho & Salimans, 2021) during the reverse process, aligning latent
variables obtained through DDIM inversion. While effective, this approach requires storing all latent
variables and optimized embeddings in memory, which becomes prohibitive for a large number
of timesteps. Furthermore, repeated backward passes through each timestep render such methods
impractical for interactive editing with large-scale models. Hong et al. (2024) propose a gradient-based
inversion scheme applied independently at each timestep, however their method is computationally
expensive and time-intensive, particularly for modern large-scale T2I models. Pan et al. (2023) and
Garibi et al. (2024) mitigate this by introducing fixed-point iteration strategies that iteratively refine
approximations of predicted states along the diffusion trajectory. However, all these methods rely on
optimizing each timestep independently, ignoring the input image in each optimization step. This
leads to accumulation of local approximation errors that degrade overall performance.

There exist several optimization-based methods that may superficially seem similar to FlowOpt, as
they neglect the Jacobian of the denoiser and thus avoid backpropagation through the model. These
include Score Distillation Sampling (SDS) (Poole et al., 2023), Delta Denoising Score (DDS) (Hertz
et al., 2023), Posterior Distillation Sampling (PDS) (Koo et al., 2024), and inverse Rectified Flow
Distillation Sampling (iRFDS) (Yang et al., 2025). However, these methods still optimize each
timestep separately by randomly sampling a timestep in each optimization step and performing an
update based on that timestep alone. This is in contrast with FlowOpt, which performs optimization
through the whole chain of denoisers simultaneously.

Recently, Patel et al. (2025) proposed FlowChef, a method that initializes the sampling process
from white Gaussian noise, and then performs zero-order optimization at each denoising timestep
separately. Unlike FlowOpt, this method does not treat the entire flow process as a black box. A
detailed comparison between the two methods is provided in App. K.

Finally, Ben-Hamu et al. (2024) proposed D-Flow, a method that like FlowOpt, optimizes across
the entire generative process. However, their framework relies on gradient-based optimization and
requires repeated backpropagation through the entire chain of denoisers. This makes the method
computationally intensive and impractical for high-resolution, real-world applications – precisely the
setting we aim to address with FlowOpt.

3 PRELIMINARIES AND NOTATION

Probability flow ODE (Song et al., 2021b) and flow-matching models (Lipman et al., 2023; Liu et al.,
2023; Albergo & Vanden-Eijnden, 2023) generate images by numerically solving an ODE over a
time parameter t. Focusing for simplicity on the flow-matching formalism, the ODE takes the form

dzt = vt(zt, c) dt, t ∈ [0, 1]. (1)

This ODE is designed such that when initialized at t = 1 with a sample from some source distribution
(usually taken to be an isotropic Gaussian), z1 ∼ π1, and run backwards in time until t = 0, it yields
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Black Box

Figure 2: A whole flow process as a black box. We encapsulate the flow process as a black box
function f , which receives an initial noise z1 and text conditioning c, and outputs a clean sample z0.
Each internal step within the black box is given by ψt(zt, c) = zt + vt(zt, c)∆t, where vt is the
text-conditioned velocity predicting network.

a sample from a desired target distribution (e.g. the distribution of natural images), z0 ∼ π0. The
function vt(·, ·) is a time dependent vector field that optionally accepts a condition c (e.g., a text
prompt) in its second argument. In practice, this velocity field is implemented by a neural network,
which we refer to as “denoiser”, and the ODE is discretized and solved numerically as

zt+∆t = zt + vt(zt, c)∆t, (2)

where ∆t is the (negative) discretization step.

Unrolling Eq. (2), the sample z0 generated at the end of the flow process can be written as a function
of the initial noise z1, namely z0 = f(z1, c). This function is given by

f(z1, c) = z1 +
∑
i

vti(zti , c)∆t, (3)

where ti = 1 + i∆t (see Fig. 2). For notational simplicity, we henceforth omit the condition c
whenever it is clear from the context. Furthermore, we sometimes use f(·) to denote the mapping
from some intermediate timestep t < 1 to timestep t = 0. Our method treats the function f(·) as a
black box in the sense that it can be evaluated but its Jacobian cannot be computed.

Commonly, the flow process is defined in the latent space of an encoder E(·), so that the final image
is obtained by passing the generated sample z0 through the corresponding decoder D(·).

4 METHOD

Given a source image y, a text prompt csrc describing it, and a target text prompt ctar describing a
desired edit, our goal is to generate an edited image yedit that conforms to ctar while being as similar
as possible to y. Like previous approaches, we rely on a pre-trained flow model. However, in contrast
to existing methods we propose to achieve this by directly optimizing over the vector zt at some
timestep t (usually taken to be 1), such that the image z0 at the end of the flow process is close to y.

Formalizing this mathematically, we are interested in z∗t = argminzt
L(f(zt, c),y), where L is

some dissimilarity measure. Let us focus on the L2 loss (see App. E for other losses). In this case,

z∗t = argmin
zt

1

2
∥f(zt, c)− y∥2. (4)

This optimization problem can be used in two distinct ways. (i) Inversion: setting c = csrc in Eq. (4)
leads to a z∗t that reconstructs the input image with the source prompt. (ii) Direct editing: setting
c = ctar in Eq. (4) leads to a z∗t that directly approximates the input image with the target prompt. In
both cases, once z∗t is obtained, it can be used to generate the edited image by performing sampling
with the target prompt, yedit = f(z∗t , ctar).

Using gradient descent to solve Eq. (4) would lead to the iterations

z
(i+1)
t ← z

(i)
t − η J(z

(i)
t )⊤

(
f(z

(i)
t )− y

)
, (5)

where η is the step size and J(z(i)t ) is the Jacobian of f(·) with respect to z(i)t . However, as
mentioned above, backpropagation through whole flow processes is computationally impractical.
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Figure 3: Image inversion with FlowOpt. Intermediate samples z(i)0 = f(z
(i)
t , c) attained during

our zero-order optimization through a chain of 10 denoising steps (FLUX) for the task of reconstruc-
tion (inversion), i.e., with c = csrc. Notice the missing details in the early steps, such as the bicycle
and the horizon. As the iterations progress, the reconstruction converges to the ground truth image.

German shepherd Wooden sculpture

Figure 4: Direct image editing with FlowOpt. Intermediate samples z(i)0 = f(z
(i)
t , c) attained

during our zero-order optimization through a chain of 15 denoising steps (FLUX) for direct image
editing, i.e., with c = ctar. Notice the misalignment in the dog’s body structure in the first iterations.

Therefore, as an alternative, here we propose to simply ignore the Jacobian. This leads to the
zero-order (gradient-free) iterations

z
(i+1)
t ← z

(i)
t − η

(
f(z

(i)
t )− y

)
. (6)

Figure 3 demonstrates the progression of those iterates when used for inversion (with the source
prompt). Figure 4 demonstrates the progression of the iterates when used for direct editing (with the
target prompt). Algorithm 1 summarizes the proposed method.

Before providing a theoretical convergence guarantee, two comments are in place. First, when η = 1,
Eq. (6) degenerates to the method of Tao et al. (2017). However, as we show below, η is of crucial
importance, as the maximal step size allowing convergence is much smaller than 1 for modern
flow-matching models. Second, it is insightful to note that for flow-matching models, Eq. (6) is
equivalent to using gradient descent with step-size η while applying the stop-grad operator on the
output of the velocity prediction network. Similarly, for probability flow ODE models (Song et al.,
2021b), (a.k.a. DDIM (Song et al., 2021a)), Eq. (6) is equivalent to using gradient descent with step
size
√
αT η while applying stop-grad on the noise prediction network (following the notation of

Song et al. (2021a)). The derivations of those observations are provided in App. G.

The iterations of Eq. (6) can be written as z(i+1)
t = g(z

(i)
t ), where g(u) ≜ u − η(f(u) − y). By

the Banach fixed-point theorem, if g(·) is a contractive mapping1 then there exists a unique point
satisfying z∗t = g(z∗t ), and thus f(z∗t ) = y. Furthermore, in this case the iterations converge to this
unique solution. This fact can be used to obtain a sufficient condition on the step size η under which
the iterations are guaranteed to converge to the global minimum (see proof in App. F).

Theorem 1. Assume that inf
u1 ̸=u2

⟨u1−u2,f(u1)−f(u2)⟩
∥u1−u2∥∥f(u1)−f(u2)∥ > 0 and sup

u1,u2

⟨u1−u2,f(u1)−f(u2)⟩
∥f(u1)−f(u2)∥2 < ∞.

If the step size η satisfies

0 < η < 2 inf
u1,u2

⟨u1 − u2, f(u1)− f(u2)⟩
∥f(u1)− f(u2)∥2

(7)

then there is a unique z∗t satisfying f(z∗t ) = y and the iterations of Eq. (6) converge to this z∗t .

1g(·) is a contractive mapping if it satisfies ∥g(u1)−g(u2)∥ ≤ γ∥u1−u2∥ for some γ < 1 and all u1,u2.
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Algorithm 1: Flow Zero-Order Optimization (FlowOpt)
Require: step size η, number of iterations N , condition c, input image y
Initialization: z(0)t ∈ Rd

for i← 0, . . . , N − 1 do
z
(i)
0 = f(z

(i)
t , c)

z
(i+1)
t ← z

(i)
t − η(z

(i)
0 − y)

z
(N)
0 = f(z

(N)
t , c)

Return {z(i)0 }Ni=0

Table 1: Step sizes guaranteeing convergence. Column 2 shows the estimated sufficient condition
of Eq. (7) and column 3 reports the step size we chose for each model (see App. F for details).

Model Sufficient condition (Eq. (7)) Our chosen step size

FLUX η < 2.70 · 10−3 η = 2.5 · 10−3

SD3 η < 1.67 · 10−2 η = 1.0 · 10−2

0 5 10 15 20 25 30
i

20

40

60

80

←
R

M
S

E

D(E(x))

η = 10−2

η = 4 · 10−2

η = 5 · 10−2

Figure 5: Convergence analysis. The plot shows
RMSE in pixel space vs. number of iterations for
the task of inversion, averaged over a dataset. The
step size we use (red) satisfies the sufficient condi-
tion of Eq. (7) and thus leads to convergence. Step
sizes that are 4× and 5× larger (yellow and black)
do not satisfy the condition and do not lead to con-
vergence. The dashed orange line is the minimal
RMSE achievable in this setting. It corresponds to
passing images through the encoder and decoder.

The bound in Eq. (7) depends only on the flow
model f(·). It can thus be computed once for
each model in order to choose the step size. In
App. F we approximate this upper bound for the
FLUX and SD3 models by drawing many pairs
of samples u1,u2. As we show, the right-hand
side of Eq. (7) is smallest when ∥u1 − u2∥ is
small. Tab. 1 shows the bounds estimated for
the two models, and the step sizes we chose for
our experiments.

As can be seen, the bounds in Tab. 1 are sig-
nificantly smaller than 1, suggesting that the
method of Tao et al. (2017) is inapplicable in
our setting. Indeed, Fig. 5 shows the reconstruc-
tion error along the iterations for several choices
of η when used for inversion with SD3 (results
for FLUX are presented in App. F). When set-
ting η = 10−2, which is below the bound of
1.67 · 10−2, the iterations converge. However,
when using larger step sizes, like 4 · 10−2 or
5 · 10−2, the iterations fail to converge. The
setting of this experiment is as in Sec. 5.1. For
additional convergence results with other image
dimensions, please see App. J.

5 EXPERIMENTS

We compare FlowOpt against competing methods on two tasks: image reconstruction (inversion)
and text-based image editing. We show results with FLUX-1.dev in the main text and with SD3 in
App. D. We use the step sizes reported in Tab. 1 and initialize our algorithm with the UniInv (Jiao
et al., 2025) inversion method (see App. C for details). All images are of dimensions 1024× 1024.

5.1 IMAGE RECONSTRUCTION (INVERSION)

For inversion, we use c = csrc in Eq. (4), setting it to a text prompt describing the source image. We set
the number of flow steps in FLUX (number of denoisers) to T = 10 and evaluate the reconstruction
error for various numbers of NFEs by varying the number of FlowOpt iterations N . Specifically, we

6
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Figure 6: Reconstruction accuracy vs. NFEs for inversion. The plots depict pixel-space RMSE,
LPIPS, SSIM, and PSNR as a function of the number of NFEs for several inversion methods. The
dashed bound corresponds to passing the images through the encoder and decoder. FlowOpt achieves
favorable reconstruction quality under 240 NFEs, which is the regime of practical interest.

have NFE = T (N + 2), as T NFEs are used for the initialization, NT NFEs for the optimization
process, and T NFEs for the final sampling process.

We randomly choose 100 real images from the DIV2K dataset (Agustsson & Timofte, 2017), and
resize and center-crop them to dimension 1024 × 1024. For the source prompts, we caption each
image with BLIP (Li et al., 2022) and then manually refine the prompt.

We compare FlowOpt to several inversion methods: naive ODE Inversion, RF-Solver (Wang et al.,
2025), FireFlow (Deng et al., 2025), UniInv (Jiao et al., 2025), and ReNoise (Garibi et al., 2024). We
use the official implementations of all methods except for ODE Inversion and ReNoise (that lacks an
implementation for flow models), which we implemented by ourselves. To ensure a fair comparison,
we set the number of timesteps for each method such that the total NFE count is the same for all
methods. Specifically, for FireFlow and UniInv, which use a single forward pass per timestep, we
set T = NFE

2 . For RF-Solver, which uses two forward passes per timestep for inversion and two for
sampling, we set T = NFE

4 . For ReNoise, we used T = 50 and set the number of ReNoise steps so as
to achieve the desired NFE count. We note that we evaluated ReNoise with various hyperparameter
settings and chose the one that achieved the best results.

Figure 6 shows the reconstruction accuracy achieved by all methods as a function of the NFEs. The
figure reports pixel-space RMSE, PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018).
As can be seen, FlowOpt achieves the best reconstruction results over a wide range of NFE counts.
In App. B we show that the same trend is obtained with empty text prompts, both with the CFG
parameter of FLUX set to 0 and with it set to 1 (these options differ as FLUX is a distilled model).

5.2 IMAGE EDITING

Accurate inversion does not necessarily lead to good editing results. Indeed, even for synthetic
images, for which the initial noise map is known, plain editing-by-inversion leads to unsatisfactory
results (Kulikov et al., 2025; Huberman-Spiegelglas et al., 2024) (see App. I for further discussion).
Accordingly, for the task of editing we employ our direct optimization approach, where the target
text prompt c = ctar is used in Eq. (4). In this case, we do not necessarily want a large number
of iterations, to avoid getting too close to the original image. We therefore use N ∈ {2, 3, 4, 5}.
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Figure 7: Editing quantitative comparisons. Semantic preservation of different editing methods
evaluated using CLIP-Image, DINOv3 and DreamSim as functions of text adherence, measured by
CLIP-Text. Connected markers represent different set of hyperparameters (see App. B). Our method
achieves the most favorable balance between semantic preservation and text adherence.

Cow … made of Flowers

Man Robot

Golden retriever … made of CrochetMan … in Anime style

Penguins … made of Lego … in Disney styleCat

Dog … in Pixar style Vanilla cake Matcha cake Cocount Cup

Figure 8: FlowOpt editing results. Our method successfully preserves the object’s semantics and
structure, as well as the background details, all the while loyally adhering to the target text prompt.
Fine details are visible upon zooming in.

We set the number of flow steps to T = 15 and perform the optimization on the latent vector at
timestep nmax ∈ {14, 13, 12} (corresponding to t in Eq. (4)). The total number of NFEs is given by
NFE = nmax(N + 2). We use the default CFG of 3.5. All visual results in the paper were obtained
with nmax = 13, except for Fig. 1, whose hyperparameters are provided in App. H.

We evaluate all methods on the dataset of Kulikov et al. (2025), which we enriched with additional
images and editing prompts. In total, our dataset consists of 90 real images of dimensions 1024×1024
from the DIV2K dataset and from royalty free online sources (Pexels, 2025; PxHere, 2025). Each
image was captioned by LLaVA-1.5 (Liu et al., 2024) and manually refined. For each image, we
manually created target editing prompts. Overall, this led to about 400 text-image pairs.

We compare our method against all aforementioned methods, in addition to FlowEdit (Kulikov et al.,
2025), FlowChef (Patel et al., 2025) and RF-Inversion (Rout et al., 2025). These three methods
were excluded from the inversion experiments of Sec. 5.1 as they do not use inversion in the regular
sense (FlowEdit is inversion-free and RF-Inversion and FlowChef explicitly incorporate the source
image into the denoising process). For ODE Inversion, we apply the same number of NFEs as our
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method. For other methods, we use the hyperparameters reported in the papers or in the official
implementations. We performed a hyperparameter search for all methods that provided more than
a single set of hyperparameters. Additional details and the final hyperparameters chosen for each
method are provided in App. B. In addition to this set of zero-shot methods, we further compare to
FLUX Kontext (Black Forest Labs et al., 2025), a trained text-based editing model.

Figures 1, 8 and S1 showcase the diverse editing capabilities of our method, including object
replacement, style changes, and texture editing. FlowOpt achieves high quality, text adherent edits
that also remain loyal to the source image semantics. Figure 10 presents qualitative comparisons
between FlowOpt and other methods. As can be observed, our edits maintain superior alignment with
the source image’s structure while simultaneously adhering to the target text. For example, when
turning the horse into a zebra (first row), FlowOpt successfully preserves the leg positions. Note that
FLUX Kontext is a trained model; therefore, its capacity for changing the color palette of the source
image is larger. For additional comparisons, see App. B.

Figure 7 presents a numerical evaluation of the results obtained for various hyperparameters. We use
cosine similarity on CLIP image and text embeddings (Radford et al., 2021) to measure adherence
to the original image and to the target text prompt, respectively. For image adherence, we also use
cosine similarity between DINOv3 embeddings (Caron et al., 2021; Siméoni et al., 2025), as well
as DreamSim (Fu et al., 2023). As can be seen, our method achieves the best tradeoff between text
adherence and structure preservation.

FireFlow FlowEdit RF Solver

Ours Ours Ours

66
.2

56
.3

58
.8

62
.0

50
.8

56
.3

73
.2

57
.5

65
.3

Image fidelity Prompt alignment Overall

Figure 9: Human perceptual study. The bar
plots report the percentages of users that preferred
our method over competing methods in (i) image
fidelity, (ii) text alignment, and (iii) overall. Error
bars show 95% confidence intervals.

Additionally, we evaluate our method via a user
study, in which each participant was shown the
reference image, an edit instruction, and two
editing results – one from our method and an-
other from a competing method. The order of
the two editing results was random. We com-
pared our method to FireFlow, FlowEdit and
RF Solver, which achieve the most compara-
ble results to FlowOpt in terms of CLIP-Text
and CLIP-Image measures. Users were asked 3
two-alternative forced questions to select their
preferred editing result: (i) visual fidelity be-
tween the reference image and the edited result,
(ii) text alignment between the edited instruc-
tion and the edited result, and (iii) overall. We
collect 60 user responses, covering a sample size
of 600 for each question asked for each method.
The results are reported in Fig. 9, where the er-
ror bars correspond to 95% confidence intervals,
computed using the Wilson method (Wilson,
1927). These results support the quantitative
results in Fig. 7. Additional details on the user study are provided in App. B.2.3.

6 CONCLUSIONS

We presented a zero-order (gradient-free) framework that allows efficient optimization over the initial
noise in a flow process while minimizing a loss over the sample generated at the end of the process.
We demonstrated the effectiveness of our approach for performing image editing using pre-trained
flow models. In particular, extensive comparisons showed that our FlowOpt method achieves SotA
performance on both image reconstruction and editing. We note that, similarly to other training-free
editing methods, our approach still encounters difficulties in certain settings, like modifying large
regions of the image (see App. L). However, taking a broader perspective, we believe that our
zero-order framework opens the door for exploiting pre-trained flow-models in diverse applications
(e.g., restoration, compression, and personalization) and for diverse modalities (e.g., image, video,
and audio). We leave those extensions for future work.
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A white horse running through a grassy field → A zebra running throguh a grassy field

A river flowing throguh a valley, surrounded by a forest → A comics pane of a river flowing through a valley, surrounded by a forest

A large brown bear walking through a stream of water → A large brown bear in Studio Ghibli style walking through a stream of water

Figure 10: Qualitative comparisons. FlowOpt is the only method to consistently adhere both to
target text prompt, and to the original image. Fine details are visible upon zooming in. For instance,
the back legs of the zebra in the first row, the posture of the bear in the second row, and the structure
of the scene in the last row.

ETHICS STATEMENT

This work builds upon pre-trained generative models, and thus inherits the broader ethical consid-
erations associated with their use. Such models may reflect or amplify societal biases present in
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the training data, and their outputs could be misinterpreted or misused in sensitive applications. In
addition, our approach involves large-scale flow matching models, which carry the potential risk
of being repurposed for harmful or malicious purposes. We emphasize that our contributions are
intended solely for advancing research in generative modeling.

REPRODUCIBILITY STATEMENT

We refer to our code repository at https://anonymous.4open.science/r/FlowOpt/.
The repository includes the required scripts for running the proposed approach both for image
inversion and image editing, for FLUX and SD3.
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