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Abstract

To reduce annotation costs, it is common in crowdsourcing to collect only a few
noisy labels from different crowd workers for each instance. However, the limited
noisy labels restrict the performance of label integration algorithms in inferring
the unknown true label for the instance. Recent works have shown that leveraging
neighbor instances can help alleviate this problem. Yet, these works all assume
that each instance has the same neighborhood size, which defies common sense.
To address this gap, we propose a novel label integration algorithm called K-free
nearest neighbor (KFNN). In KFNN, the neighborhood size of each instance is
automatically determined based on its attributes and noisy labels. Specifically,
KFNN initially estimates a Mahalanobis distance distribution from the attribute
space to model the relationship between each instance and all classes. This distance
distribution is then utilized to enhance the multiple noisy label distribution of
each instance. Subsequently, a Kalman filter is designed to mitigate the impact
of noise incurred by neighbor instances. Finally, KFNN determines the optimal
neighborhood size by the max-margin learning. Extensive experimental results
demonstrate that KFNN significantly outperforms all the other state-of-the-art
algorithms and exhibits greater robustness in various crowdsourcing scenarios. Our
codes and datasets are available at https://github.com/jiangliangxiao/KFNN.

1 Introduction

Crowdsourcing provides a more cost-effective way to obtain annotated instances than traditional
expert annotation [1]. Through crowdsourcing platforms such as Figure Eight and Clickworker,
instances can be annotated by crowd workers at a low cost [2, 3]. While more affordable, these
workers possess less expertise than domain experts and are more prone to assigning noisy labels to
instances [4]. To address this issue, the concept of repeated annotation is introduced and becomes
popular in crowdsourcing [5]. With repeated annotation, each instance is annotated by several
workers, thereby obtaining multiple noisy labels. To train supervised models using multiple noisy
labels, two main categories of methods have been developed: one-stage methods and two-stage
methods. One-stage methods [6, 7, 8] train models directly using multiple noisy labels. Two-stage
methods [1, 9] first infer the unknown true label for each instance from its multiple noisy labels via
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label integration (also known as answer aggregation or ground truth inference) [10] and then train
models on integrated labels. One-stage methods, although end-to-end, can only be used to train
specifically designed models. As a result, label integration, which is required for the more common
two-stage methods, has received a great deal of attention from researchers.

It has been theoretically demonstrated that, when worker annotation is more accurate than random
annotation, the more noisy labels an instance receives, the easier it becomes to infer its unknown
true label [11]. However, to reduce annotation costs, only a few noisy labels can be collected for
each instance in crowdsourcing. The limited noisy labels restrict the performance of label integration
algorithms in inferring the unknown true label for the instance. Furthermore, some common strategies
in crowdsourcing, such as worker modelling, worker elimination and task assignment [12], fail to
mitigate the effects of limited labels in label integration. To alleviate this problem, recent works have
begun to focus on leveraging neighbor instances [13, 14, 1]. These works successfully improve the
performance of label integration by leveraging the information from neighbor instances obtained
by the K-nearest neighbor (KNN) algorithm. However, due to the use of KNN, these algorithms
all assume that each instance has the same neighborhood size. This assumption is difficult to hold
because it defies common sense, e.g. instances close to the center of classes should have more
neighbors than instances close to the boundary of classes.

To address this gap, we propose a novel label integration algorithm called K-free nearest neighbor
(KFNN). In KFNN, the optimal neighborhood size of each instance is automatically determined based
on its attributes and noisy labels. Notably, KFNN is different from some supervised works [15, 16]
that determine the optimal K-value for KNN. Unlike in supervised learning, the true label of each
instance in crowdsourcing is unknown and only its multiple noisy labels can be used, which makes it
difficult to model the relationship between the instance and all classes. To do this, KFNN initially
estimates a Mahalanobis distance distribution from the attribute space to model the relationship
between each instance and all classes. This distance distribution is then utilized to enhance the label
distribution for each instance. Subsequently, a Kalman filter is designed to mitigate the impact of
noise incurred by neighbor instances. Finally, KFNN determines the optimal neighborhood size by
the max-margin learning. In general, the contributions of this paper can be summarized as follows:

• We reveal the limitations caused by fixing the neighborhood size in existing label integration
algorithms and propose a novel algorithm called KFNN. In KFNN, the neighborhood size
of each instance is automatically determined based on its attributes and noisy labels.

• We estimate a Mahalanobis distance distribution from the attribute space to model the
relationship between each instance and all classes. This distance distribution enhances the
multiple noisy label distribution of each instance.

• We design a Kalman filter to mitigate the impact of noise incurred by neighbor instances and
then determine the optimal neighborhood size by the max-margin learning, which provides
strong theoretical support for our algorithm.

• Extensive experimental results demonstrate that KFNN significantly outperforms all the other
state-of-the-art label integration algorithms and exhibits greater robustness than existing
algorithms in various crowdsourcing scenarios.

2 Related work

Depending on whether neighbor instances are leveraged or not, existing label integration algorithms
can be divided into two categories. The first category of algorithms does not leverage neighbor
instances, which considers only the information of the instance itself or the information of all
instances globally in label integration. For example, [17] models the ability of each worker with a
confusion matrix. In this matrix, each element reflects the probability that this worker annotates an
instance with the class corresponding to the row as the class corresponding to the column. [18, 19]
are Bayesian versions of [17], which can be used for binary tasks and multi-class tasks, respectively.
Further, [20, 21] improve [19] by introducing the correlation between workers. [11, 22, 23] are
classical algorithms based on majority voting and they tend to use the label with the highest number
of votes as the integrated label. [24, 25, 26] synchronously model the ability of workers and the
difficulty of tasks from different perspectives. [27, 28] use clustering algorithms to divide instances
into different clusters from different views, and then map these clusters to different classes. Recently,
[29] augments the multiple noisy label distributions of instances as new attributes to the original
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attribute space and then learns a classifier on the augmented attribute space to predict the integrated
labels of instances. [9] constructs graphs for workers and uses a graph neural network to aggregate
multi-order information in label integration.

The second category of algorithms performs label integration by leveraging the information from
neighbor instances obtained by the KNN algorithm. For example, [13] proposes to use the labels
assigned to the neighbor instances of an instance to augment this instance’s multiple noisy labels and
use the augmented multiple noisy labels to infer the integrated label of this instance. [14] considers
both nearest and farthest neighbors in weighted voting to address class-imbalanced tasks. Further,
inspired by label distribution learning [30, 31], given an instance, [1] iteratively absorbs the label
distributions of its neighbor instances into its label distribution through label distribution propagation.

While simpler and more efficient, the first category of algorithms are limited in effectiveness because
each instance can only obtain few noisy labels. Both experimental results and theoretical analysis
demonstrate the effectiveness of the second category of algorithms in leveraging the information
from neighbor instances. However, these algorithms all assume a fixed neighborhood size for each
instance, which is often unrealistic and thus limits their performance. To further ensure that each
instance has a free neighborhood size, this paper proposes a novel label integration algorithm called
KFNN. KFNN automatically determines the optimal neighborhood size for each instance based on
its attributes and noisy labels, which improves the performance and robustness of label integration.

3 Algorithm

In this section, we respond to how to automatically determine the optimal neighborhood size for
each instance. First, we present some basic notations in crowdsourcing and then define the problem
settings. Subsequently, we introduce our KFNN for label integration.

3.1 Preliminary

Let D = {(xi,Li)}Ni=1 denote a crowdsourced dataset, where N is the number of instances, and
xi denotes the i-th instance in D. xi can be represented as {xim}Mm=1. Here, M is the dimension
of attributes, and xim denotes the attribute value of xi on the m-th attribute Am. Li denotes
multiple noisy labels of xi, which can be expressed as {lir}Rr=1. R is the number of workers
and lir denotes the label of xi annotated by the r-th worker ur. lir takes a value from a fixed
set {−1, c1, . . . , cq, . . . , cQ}, where Q is the number of classes, cq denotes the q-th class and −1
indicates that ur has not annotated xi. Label integration aims to infer an integrated label ŷi for xi

and minimize the error between ŷi and the unknown true label yi.

Recent works [1, 13] have shown that leveraging neighbor instances N i = {xk
i }Kk=1 of xi can

mitigate the restriction of limited noisy labels on the performance of label integration. Here, xk
i

denotes the k-th nearest neighbor of xi and K is the neighborhood size. However, in these works,
the value of K is fixed for each instance within the same dataset, which does not make sense. On
the one hand, instances closer to the center of a class benefit from a larger K, as it enables them to
collect more labels from similar instances. Conversely, for instances close to the boundary of classes,
a larger K plays a negative role in label integration. On the other hand, using a fixed K can bias
algorithms towards the majority class in class-imbalanced datasets, as instances from the majority
class are more likely to dominate the neighborhood of instances from minority classes. Therefore, we
define the Problem 1 to be addressed in this paper as follows:

Problem 1. Given a crowdsourced dataset D, how to automatically determine the optimal neighbor-
hood size K∗

i for each instance xi with {xim}Mm=1 and {lir}Rr=1 but without yi.

Problem 1 cannot be treated simply as learning an optimal neighborhood size for the KNN algorithm
in supervised learning [15, 16]. This is because the true labels of instances in crowdsourcing are
unknown. As a result, K can not be evaluated accurately by supervised metrics such as classification
accuracy. Moreover, label integration does not divide the crowdsourced dataset into training, vali-
dation and test sets, which means that KFNN has to determine K∗

i immediately when inferring ŷi,
rather than with a validation phase.
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3.2 K-free nearest neighbor algorithm

In this subsection, we propose our KFNN to address Problem 1. We argue that K∗
i should be related

to the information from both the attribute space and the multiple noisy label space. Based on this,
KFNN divides Problem 1 into two parts: 1) How to fuse the information from the attribute space and
the multiple noisy label space? 2) How to determine an optimal K∗

i for xi? Correspondingly, KFNN
consists of two components, namely label distribution enhancement and K-free optimization, which
are used to address the two parts of Problem 1.

3.2.1 Label distribution enhancement

For each instance xi, {xim}Mm=1 reflects all the information of it in the attribute space and {lir}Rr=1
reflects all the information of it in the multiple noisy label space. Inspired by label enhancement (LE)
[32, 33], we design a label distribution enhancement (LDE) component for KFNN. LDE recovers a
potential label distribution using {xim}Mm=1, and then enhances the multiple noisy label distribution
calculated from {lir}Rr=1 by this potential label distribution. Specifically, KFNN first uses majority
voting to initialize the integrated label ŷi for xi as follows:

ŷi = argmax
c∈{c1,c2,...,cQ}

p(cq|Li), (1)

where p(cq|Li) can be calculated as follows:

p(cq|Li) =

∑R
r=1 δ(lir, cq)∑Q

q=1

∑R
r=1 δ(lir, cq)

, (2)

Here, p(cq|Li) reflects the proportion of labels in Li that take the value cq . The function δ(·) outputs
1 if its two parameters are identical, and 0 otherwise. Subsequently, according to ŷi, the crowdsourced
dataset D can be divided into Q subsets {Dq}Qq=1. The subset Dq contains all instances with initial
integrated labels of cq , i.e., Dq = {xi|ŷi = cq}Ni=1. Then, KFNN calculates a Mahalanobis distance
distribution {d(xi, Dq)}Qq=1 as follows:

d(xi, Dq) =
√
(xi − µq)

TC−1
q (xi − µq), (3)

where µq denotes the centroid of Dq and C−1
q denotes the inverse matrix of the covariance matrix of

Dq . d(xi, Dq) is the Mahalanobis distance from xi to Dq calculated in the attribute space. A larger
d(xi, Dq) means that xi is less likely to belong to cq , conversely a smaller d(xi, Dq) means that xi

tends to belong to cq . Therefore, {d(xi, Dq)}Qq=1 can be used to model the relationship between each
instance and all classes. Based on this, {d(xi, Dq)}Qq=1 can be transformed into a potential label
distribution {p(cq|xi, Dq)}Qq=1 as follows:

p(cq|xi, Dq) =
max({d(xi, Dq)}Qq=1)− d(xi, Dq)

max({d(xi, Dq)}Qq=1)−min({d(xi, Dq)}Qq=1)
, (4)

where max(·) and min(·) denote the maximum and minimum values of the set, respectively.

In addition to the potential label distribution, a multiple noisy label distribution {p(cq|Li)}Qq=1 can
also be directly transformed from Li. Different from {p(cq|xi, Dq)}Qq=1, which learns the potential
relationship between instances and classes from the attribute space, {p(cq|Li)}Qq=1 learns the label
distribution reflected by noisy labels from the multiple noisy label space. Finally, KFNN fuses them
into an enhanced label distribution Pi = {piq}Qq=1 by averaging as follows:

piq =
p(cq|xi, Dq) + p(cq|Li)∑Q

q=1[p(cq|xi, Dq) + p(cq|Li)]
. (5)

In this way, the enhanced label distribution Pi can fuse the information from the attribute space and
the multiple noisy label space. Therefore, the first part of Problem 1 has been addressed.
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3.2.2 K-free optimization

After obtaining Pi by label distribution enhancement, KFNN proceeds to determine the optimal
neighborhood size K∗

i for xi. First, KFNN calculates the distance between each pair of instances x1

and x2 by:

d(x1,x2) =

Q∑
q=1

d(x1,x2|Dq), (6)

where d(x1,x2|Dq) can be calculated as follows:

d(x1,x2|Dq) =
√
(x1 − x2)TC−1

q (x1 − x2), (7)

Compared to the Euclidean distance, Eq. (6) introduces the label information by calculating the
distance between x1 and x2 on each subset Dq. According to Eq. (6), we can calculate distances
between xi and all instances in D. By sorting these distances we can obtain a neighbor sequence
< x1

i , . . . ,x
k
i , . . . ,x

N
i > for xi. Here, xk

i is the k-th neighbor instance of xi satisfying d(xi,x
k
i ) ≥

d(xi,x
k−1
i ) when k greater than 1. Then, we calculate the weight wik for xk

i as follows:

wik =

∑R
r=1 δ(lir, likr)∑R

r=1[1− δ(lir,−1)] ∗ [1− δ(likr,−1)]
, (8)

where likr denotes the label of xk
i annotated by the r-th worker ur. wik reflects the proportion of

workers assigned the same label for xi and xk
i . Subsequently, xi is allowed to absorb the enhanced

label distributions of neighbor instances in the neighbor sequence one by one. Let P k
i = {pkiq}

Q
q=1

denote the label distribution of xi after absorbing xk
i , which can be updated as follows:

pkiq =
pk−1
iq + wik ∗ pikq∑Q

q=1[p
k−1
iq + wik ∗ pikq]

, k ≥ 2, (9)

where pikq denotes the probability value corresponding to cq in the enhanced label distribution of xk
i .

Since the first neighbor instance of xi is itself, P k
i = Pi when k is equal to 1.

According to P k
i , KFNN calculates a class margin as follows:

M̃k = max(P k
i )− sec(P k

i ), (10)

where sec(·) denotes the second-largest value of the set. Since the true labels are unknown, Eqs.
(5) (7) (8) are all designed based on multiple noisy labels, which lead to that M̃k contains a degree
of noise incurred by neighbor instances. Therefore, KFNN designs a Kalman filter to mitigate the
impact of noise in M̃k as follows:

M̂−
k = M̂k−1

P−
k = Pk−1 + α

Kk =
P−
k

P−
k + β

M̂k = M̂−
k +Kk ∗ (M̃k − M̂−

k )

Pk = (1−Kk) ∗ P−
k

, (11)

where M̂k denotes the filtered margin, determined by both the estimated margin M̂−
k and the

calculated margin M̃k. The designed Kalman filter can be divided into an estimation phase and an
update phase. In the estimation phase, the filter estimates M̂−

k and the estimated error P−
k based on

the filtered margin M̂k−1 and error Pk−1 of the previous time index. In the update phase, the filter
first updates the Kalman gain Kk of the k-th time index and then updates M̂k and error Pk of the
k-th time index according to Kk. α and β are the process error and the measurement error in the
Kalman filter. When k is equal to 0, M̂k takes the value of 0 and Pk takes the value of 1.
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To address the second part of Problem 1, KFNN determines the optimal neighborhood size K∗
i for xi

by the max-margin learning as follows:

K∗
i = argmax

k∈{1,2,··· ,N}
M̂k. (12)

Ultimately, according to K∗
i , KFNN updates the integrated label ŷi for xi as follows:

ŷi = argmax
c∈{c1,c2,··· ,cQ}

P
K∗

i
i . (13)

The whole learning process of KFNN is shown in Algorithm 1. In Algorithm 1, lines 1-3 initialize
the integrated label and multiple noisy label distribution for each instance and their time complexity
is O(NQR). Line 4 divides the crowdsourced dataset D into Q subsets and its time complexity is
O(NQ). Lines 5-9 perform label distribution enhancement and their time complexity is O(NM2Q).
Line 11 calculates the distances from xi to other instances and sorts these distances, its time
complexity is O(NM2Q+N log(N)). Lines 12-16 calculate the margins {M̃k}Nk=1 and their time
complexity is O(NR+NQ). Line 17 filters the margins {M̃k}Nk=1 and its time complexity is O(N).
Line 18 determines the optimal neighborhood size and its time complexity is O(N). Line 19 infers
the integrated label for each instance and its time complexity is O(Q). Therefore, the time complexity
of lines 10-20 is O(N2(M2Q+ log(N) +R)). If only the highest order terms are taken, the time
complexity of KFNN is O(N(NM2Q+N log(N) +NR+QR)).

Algorithm 1 The learning process of KFNN

Require: D = {(xi,Li)}Ni=1 - a crowdsourced dataset; α, β - the predefined parameters
Ensure: {ŷi}Ni=1 - the integrated labels

1: for i = 1 to N do
2: Initialize ŷi and {p(cq|Li)}Qq=1 for xi by Eqs. (1) (2)
3: end for
4: Divide D into {Dq}Qq=1 based on ŷi
5: for i = 1 to N do
6: Calculate {d(xi, Dq)}Qq=1 for xi by Eq. (3)
7: Transform {d(xi, Dq)}Qq=1 into {p(cq|xi, Dq)}Qq=1 by Eq. (4)
8: Fuse {p(cq|xi, Dq)}Qq=1 and {p(cq|Li)}Qq=1 into Pi = {piq}Qq=1 by Eq. (5)
9: end for

10: for i = 1 to N do
11: Calculate < x1

i , . . . ,x
k
i , . . . ,x

N
i > for xi by Eqs. (6) (7)

12: for k = 1 to N do
13: Calculate the weight wik for xk

i by Eq. (8)
14: Update the label distribution P k

i by Eq. (9)
15: Calculate the M̃k by Eq. (10)
16: end for
17: Filter {M̃k}Nk=1 using the designed Kalman filter by Eq. (11)
18: Determine the optimal neighborhood size K∗

i for xi by Eq. (12)
19: Infer the integrated label ŷi for xi by Eq. (13)
20: end for
21: return {ŷi}Ni=1

4 Theoretical analysis

In this section, we provide some detailed theoretical analysis for KFNN. First, in Eq. (6), KFNN
defines the distance d(x1,x2) between x1 and x2 based on the Mahalanobis distance d(x1,x2|Dq)
rather than the traditional Euclidean distance dE(x1,x2). According to Eqs. (3) (7), the Mahalanobis
distance works based on a basic assumption, which can be described as follows:
Assumption 1. Given the subset Dq , its covariance matrix Cq is a nonsingular matrix.

The Assumption 1 holds based on the condition that |Cq| is non-zero, which is usually satisfied. Even
if this condition is not satisfied, we can ensure that the Assumption 1 holds by adding a small value
to each element of the principal diagonal on Cq until |Cq| is non-zero.
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Theorem 1. If Assumption 1 holds, there will be an orthogonal matrix P satisfying that P−1CqP =

PTCqP = Λ, where Λ is a diagonal matrix with all M eigenvalues of Cq as its elements of the
principal diagonal.

Due to the limited pages, the proof of Theorem 1 is provided in Appendix A. Based on Theorem 1,
we can obtain some interesting corollaries about Eqs. (3) (6) (7).

Corollary 1. Compared to dE(x1,x2), d(x1,x2) in Eq. (6) does not suffer from the correlation and
magnitude of attributes.

Proof. According to Theorem 1, d(x1,x2|Dq) can be transformed as follows:

d(x1,x2|Dq) =
√
(x1 − x2)TC−1

q (x1 − x2)

=

√
(x1 − x2)T ((PT )−1ΛP−1)−1(x1 − x2)

=

√
(PT (x1 − x2))TΛ−1(PT (x1 − x2))

. (14)

When Λ−1 is not considered, the derivation of Eq. (14) implies that d(x1,x2|Dq) is the Euclidean
distance of instances after orthogonal transformation using PT . After orthogonal transformation,
the attributes are independent of each other, so d(x1,x2) does not suffer from the correlation of
attributes. Λ−1 is equivalent to diag( 1

λ1
, 1
λ2
, . . . , 1

λM
), where λM is the M -th eigenvalue of Cq and is

equal to the variance on the direction of the corresponding eigenvectors. Briefly, Λ−1 ensures that the
calculated result on each dimension is normalized by the corresponding variance when calculating the
distance by Eq. (7). Therefore, d(x1,x2) does not also suffer from the magnitude of attributes.

Corollary 2. Compared to dE(x1,x2), d(x1,x2) in Eq. (6) provides a smaller distance for x1 and
x2 coming from the same class.

Proof. PT causes the original attribute space to be rotated according to the direction of the eigenvec-
tors of Cq, and Λ−1 causes the rotated attribute space to be scaled according to the eigenvalues Cq.
Referring to the principle of principal component analysis [34], the eigenvectors of Cq reflect the
principal component directions of Dq . This means that d(x1,x2) will provide a smaller distance for
instances coming from the same class compared to dE(x1,x2).

Assumption 2. When we estimate M̂−
k based on M̂k−1, the estimated error satisfies N(0, P−

k ).
When we measure M̃k by Eq. (10), the measurement error satisfies N(0, β).

The Kalman filter we designed as Eq. (11) works based on Assumption 2, which usually holds
because the noise in practice usually satisfies a normal distribution. Since M̂k−1 changes in each
time index, the variance of the estimated error P−

k changes with the time index. Since Eq. (10)
remains constant, the variance of the measurement error β is constant. According to Assumption 2,
the following theorem can be proved:

Theorem 2. When the Kalman gain Kk takes the value P−
k

P−
k +β

, the error between the filtered margin

M̂k and the true margin Mk is minimized.

Proof. When Assumption 2 holds, due to M̂k = M̂−
k +Kk ∗ (M̃k − M̂−

k ), it can be proved that
minimizing the error between M̂k and Mk is equivalent to minimizing the variance of M̂k. Since
M̂−

k and M̃k are independent of each other, the following equation can be derived:

V ar(M̂k) = V ar(M̂−
k +Kk ∗ (M̃k − M̂−

k ))

= (1−Kk)
2 ∗ V ar(M̂−

k ) +K2
k ∗ V ar(M̃k)

, (15)

where V ar(·) denotes the variance of the variable. According to Assumption 2, V ar(M̂−
k ) equals to

P−
k and V ar(M̃k) equals to β. To minimize the error between the filtered margin M̂k and the true
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margin Mk, we can calculate the partial derivative ∂V ar(M̂k)
∂Kk

as follows:

∂V ar(M̂k)

∂Kk
= −2 ∗ (1−Kk) ∗ P−

k + 2 ∗ Kk ∗ β. (16)

Ultimately, it can be proved that Kk is equal to P−
k

P−
k +β

by setting ∂V ar(M̂k)
∂Kk

to 0.

Theorem 3. The larger M̂k is, the better the corresponding neighborhood size k is.

Theorem 3 ensures the effectiveness of KFNN in determining the optimal neighborhood size by the
max-margin learning, and its proof is provided in Appendix B due to the limited pages.

5 Experiments

5.1 Experimental setup

To evaluate the effectiveness of KFNN, we construct extensive experiments on the whole 34 simulated
and two real-world crowdsourced datasets published on the Crowd Environment and its Knowledge
Analysis (CEKA) [35] platform. For simulated datasets, we first use the unsupervised attribute
filter ReplaceMissingValues in the Waikato Environment and Knowledge Analysis (WEKA) [36]
platform to replace all missing values. Subsequently, with the CEKA platform, we hide true labels of
simulated datasets and simulate five workers whose label qualities are randomly generated from a
normal distribution with N(0.65, 0.052) to annotate these datasets. The real-world datasets, Income
and Leaves, which were both collected from the online platform Amazon Mechanical Turk (AMT),
can be used directly without any processing since they do not contain missing values.

We compare our KFNN with six state-of-the-art label integration algorithms. Among them, MV
(majority voting) [11] is the simplest label integration algorithm and is used as a baseline for all
algorithms. IWMV (iterative weighted majority voting) [22], AALI (attribute augmentation-based
label integration) [29], and LAGNN (label aggregation with graph neural networks) [9] are three
state-of-the-art label integration algorithms that do not leverage neighbor instances. LAWMV
(label augmented and weighted majority voting) [13] and MNLDP (multiple noisy label distribution
propagation) [1] are two state-of-the-art label integration algorithms that leverage neighbor instances.
For MV, we use the existing implementation of the CEKA platform. For IWMV, AALI, LAGNN,
LAWMV, and MNLDP, we use the implementations provided by their authors. All parameters of the
comparison algorithms are set to the recommended values in the corresponding published papers. In
addition, since true labels are unknown in our experiments, we use the lazy version of LAGNN. In
our KFNN, α and β are set to 0.1 and 1 by default.

The performance of each algorithm is evaluated using the Macro-F1 score, which highlights the
performance of algorithms on different classes and better reveals algorithmic limitations compared
to traditional integration accuracy. Due to the limited pages, more detailed descriptions of the
experimental datasets and metrics are provided in Appendix C. All experiments are independently
repeated ten times on a Windows 10 machine with an AMD Athlon(tm) X4 860K Quad Core
Processor @ 3.70 GHz and 16 GB of RAM, and we report the average results of ten experiments.

5.2 Results and discussions

Simulation experiment results. Table 1 shows the detailed Macro-F1 score (%) comparisons of
each label integration algorithm on each simulated dataset, respectively. Based on these results, we
perform the Wilcoxon signed-rank test [37] to further compare each pair of algorithms. Table 3
summarizes the Wilcoxon test results. In Table 3, the symbol • indicates that the algorithm in the row
significantly outperforms the algorithm in the corresponding column, the symbol ◦ indicates the exact
opposite of that indicated by the symbol •, and the missing item indicates no significant difference
between the algorithm in the row and the algorithm in the column. The significance levels of the lower
and upper diagonals are α = 0.05 and α = 0.1, respectively. Based on these experimental results,
we can summarize the following highlights: 1) The average Macro-F1 score of KFNN on all datasets
is 79.64%, which is much higher than those of MV (72.46%), IWMV (72.71%), AALI (72.95%),
LAGNN (73.71%), LAWMV (73.44%) and MNLDP (76.68%). KFNN achieves the highest Macro-F1

8



Table 1: The Macro-F1 score (%) comparisons
for KFNN versus its comparison algorithms on
34 simulated datasets.

Dataset MV IWMV AALI LAGNN LAWMV MNLDP KFNN

anneal 77.61 78.42 79.30 78.41 49.89 83.69 75.00
audiology 56.44 56.52 34.30 72.19 52.73 45.17 57.29
autos 81.27 81.45 73.80 81.25 77.02 77.46 78.86
balance-scale 80.55 81.94 81.36 81.87 62.13 78.41 88.68
biodeg 66.20 66.20 70.33 69.25 77.00 73.80 75.81
breast-cancer 65.73 65.73 64.92 66.79 55.29 59.63 57.24
breast-w 68.92 68.92 79.92 69.91 93.58 87.45 84.90
car 80.22 81.42 81.83 82.56 51.85 70.84 94.25
credit-a 72.88 72.88 76.19 74.32 87.36 78.38 81.72
credit-g 65.42 65.42 65.23 66.81 54.92 58.10 61.91
diabetes 69.11 69.11 69.54 68.11 64.42 68.56 66.08
heart-c 74.39 74.39 74.45 74.70 85.80 79.33 75.55
heart-h 78.50 78.50 78.58 72.07 85.58 82.98 78.80
heart-statlog 72.81 72.81 75.43 74.42 81.88 78.25 78.10
hepatitis 54.34 54.38 57.08 55.74 60.08 66.01 61.77
horse-colic 67.89 67.89 70.35 72.18 78.24 71.52 73.34
hypothyroid 58.04 58.59 42.90 60.70 24.00 62.16 63.56
ionospheref 70.61 70.71 76.38 67.16 63.69 76.91 82.31
iris 81.12 81.84 87.82 81.55 98.27 97.14 97.13
kr-vs-kp 75.49 75.49 77.21 76.29 84.42 86.93 93.72
labor 67.93 66.42 75.48 68.01 80.84 72.16 76.84
letter 93.77 94.19 95.84 94.75 98.57 99.61 99.49
lymph 69.49 68.69 56.85 71.52 64.56 59.88 70.62
mushroom 76.06 76.06 81.97 76.19 92.69 95.63 97.98
segment 89.35 90.70 92.10 90.77 96.53 98.16 98.80
sick 29.60 29.60 31.23 28.77 4.85 46.92 45.46
sonar 74.75 74.75 77.94 74.15 77.49 82.04 80.74
spambase 73.11 73.11 76.80 72.95 78.92 81.80 87.48
tic-tac-toe 66.84 66.84 67.37 71.75 62.60 40.70 64.50
vehicle 86.38 87.23 87.29 88.02 88.85 90.00 96.43
vote 68.69 68.69 67.18 71.02 90.83 83.07 91.29
vowel 92.48 93.07 94.23 92.35 95.23 99.81 99.05
waveform 82.13 83.70 83.04 84.52 94.88 91.88 92.49
zoo 75.50 76.34 76.02 75.08 81.93 82.64 80.60

Average 72.46 72.71 72.95 73.71 73.44 76.68 79.64

Table 2: The integration accuracy (%) compar-
isons for KFNN versus its comparison algorithms
on 34 simulated datasets.

Dataset MV IWMV AALI LAGNN LAWMV MNLDP KFNN

anneal 84.96 85.88 86.22 85.50 85.11 91.38 89.79
audiology 78.36 78.45 78.54 78.45 79.20 78.10 81.77
autos 85.07 85.46 85.02 85.85 88.63 85.07 85.85
balance-scale 79.25 80.32 80.35 80.29 88.82 87.86 93.49
biodeg 74.32 74.32 79.06 76.82 84.59 80.99 83.91
breast-cancer 76.08 76.08 75.94 77.24 80.10 77.17 69.23
breast-w 76.15 76.15 87.00 77.14 95.71 90.84 87.55
car 81.46 82.31 82.92 83.28 83.23 85.90 94.34
credit-a 75.17 75.17 77.13 76.42 88.91 81.20 83.33
credit-g 75.81 75.81 76.00 77.05 79.78 75.70 69.62
diabetes 76.37 76.37 76.64 75.40 80.43 78.55 67.33
heart-c 74.49 74.49 74.55 74.82 85.94 79.50 75.71
heart-h 79.56 79.56 79.63 73.23 86.97 84.25 80.17
heart-statlog 75.00 75.00 78.63 76.44 84.41 81.26 79.30
hepatitis 74.65 74.58 74.26 75.68 87.10 86.19 79.23
horse-colic 73.94 73.94 74.51 77.74 84.51 77.47 79.92
hypothyroid 80.32 81.53 79.28 83.24 92.29 93.27 92.40
ionospheref 77.09 77.15 79.86 73.96 80.74 85.01 85.53
iris 81.13 81.87 87.80 81.53 98.27 97.13 97.13
kr-vs-kp 76.30 76.30 78.47 77.13 85.70 88.18 93.87
labor 75.61 74.39 78.60 75.79 87.54 82.63 83.16
letter 93.76 94.19 95.84 94.75 98.57 99.62 99.49
lymph 77.97 77.70 78.24 78.31 84.66 82.97 80.41
mushroom 76.71 76.71 84.21 76.85 93.29 95.78 98.09
segment 89.35 90.70 92.10 90.77 96.55 98.16 98.80
sick 76.87 76.87 78.34 76.28 93.98 89.81 88.78
sonar 75.91 75.91 77.02 75.19 80.00 83.41 81.78
spambase 77.49 77.49 82.01 77.33 85.50 85.78 90.15
tic-tac-toe 74.43 74.43 75.10 78.51 78.54 71.99 74.09
vehicle 86.39 87.23 87.29 88.03 88.97 90.09 96.43
vote 74.11 74.11 77.98 75.77 92.64 86.34 93.20
vowel 92.38 92.99 94.21 92.25 94.98 99.81 99.05
waveform 82.13 83.70 82.96 84.52 94.89 91.89 92.49
zoo 80.40 81.29 87.13 81.68 91.78 91.78 86.63

Average 79.09 79.37 81.26 79.80 87.72 86.33 86.24

Table 3: The Macro-F1 score (%) comparisons
using Wilcoxon tests for KFNN versus its com-
parison algorithms.

MV IWMV AALI LAGNN LAWMV MNLDP KFNN

MV - ◦ ◦ ◦ ◦ ◦
IWMV • - ◦ ◦ ◦ ◦
AALI • • - ◦ ◦
LAGNN • • - ◦ ◦
LAWMV - ◦
MNLDP • • • • - ◦
KFNN • • • • • • -

Table 4: The integration accuracy (%) compar-
isons using Wilcoxon tests for KFNN versus its
comparison algorithms.

MV IWMV AALI LAGNN LAWMV MNLDP KFNN

MV - ◦ ◦ ◦ ◦ ◦ ◦
IWMV • - ◦ ◦ ◦ ◦ ◦
AALI • • - • ◦ ◦ ◦
LAGNN • • ◦ - ◦ ◦ ◦
LAWMV • • • • - •
MNLDP • • • • ◦ -
KFNN • • • • -

score, which indicates that KFNN is more effective and robust than these comparison algorithms in
various crowdsourcing scenarios. 2) Among all comparison algorithms of KFNN, MNLDP performs
better than IWMV, AALI and LAGNN, which demonstrates the advantages of leveraging neighbor
instances. 3) Based on the Wilcoxon test results, KFNN significantly outperforms all comparison
algorithms, which strongly validates the effectiveness and robustness of KFNN. Besides, we also
observe the experimental results in terms of the integration accuracy, which are shown in Tables 2
and 4. According to Tables 2 and 4, we can see that KFNN can also achieve better or comparable
integration accuracy compared with these state-of-the-art label integration algorithms. These results
again validate the effectiveness and robustness of KFNN.

Real-world experiment results. Compared to simulated crowdsourced datasets, real-world crowd-
sourced datasets may include some special factors that influence label integration to work effectively,
such as sparsity and bias. Therefore, we further observe the performance of KFNN and its comparison
algorithms on two real-world datasets, Income and Leaves. Figure 1 shows the detailed Macro-F1
score (%) and integration accuracy (%) comparisons of each label integration algorithm on Income
and Leaves, respectively. As can be seen from Figure 1, compared to these state-of-the-art label
integration algorithms, our KFNN achieves the highest integration accuracies and Macro-F1 scores
on both Income and Leaves. These results strongly support the effectiveness of our KFNN.

Parameter sensitivity analysis. There are two parameters α and β that can be adjusted in the
Kalman filter designed by KFNN. To observe the effect of these two parameters on the performance
of KFNN, we perform the parameter sensitivity analysis for KFNN on Income and Leaves. We
change both α and β from 0.1 to 1 and then observe the Macro-F1 score of KFNN on two datasets.
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Figure 1: The Macro-F1 scores (%) and integration accuracies (%) of KFNN and its comparison
algorithms on the Income and Leaves datasets.

Figure 2a and Figure 2b show the Macro-F1 score of KFNN on Income and Leaves when α and β
vary. Based on these results, we can find that KFNN is more sensitive to β compared to α. As β
tends to 1, KFNN tends to achieve optimal performance. Therefore, the default value of β in this
paper is set to 1. α hardly affects the performance of KFNN, which is set to 0.1 by default.
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Figure 2: The Macro-F1 score (%) of KFNN on
the Income and Leaves datasets when α and β
vary from 0.1 to 1.
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Figure 3: The Macro-F1 score (%) and class
margin (%) of KFNN or its components on the
Income dataset.

Ablation experiment. There are two components in KFNN, namely label distribution enhancement
(LDE) and K-free optimization (KF). To validate their effectiveness, we observe the Macro-F1 score
of KFNN after taking away each component on the Income dataset. For simplicity, we use "KFNN-
KF" to denote the variant of KFNN after taking away the component KF. Similarly, we create its
another two variants "KFNN-LDE" and "KFNN-KF-LDE". Based on the results shown in Figure 3a,
it can be seen that the performance becomes worse when any component is taken away. These results
validate the effectiveness of LDE and KF. Figure 3b shows the change of the class margin before and
after using our designed Kalman filter (observed on the first instance of Income). As can be seen from
Figure 3b, compared to the margin before filter (M̃k), the filtered margin (M̂k) changes smoother.
These results validate the effectiveness of our designed Kalman filter, which successfully mitigates
the impact of noise incurred by neighbor instances.

6 Conclusion and future work

To ensure that each instance in crowdsourced datasets has a free neighborhood size, we propose a
novel algorithm called KFNN. KFNN consists of two key components, namely label distribution
enhancement and K-free optimization. Label distribution enhancement fuses the information from the
attribute space and the multiple noisy label space. K-free optimization automatically determines the
optimal neighborhood size for each instance by the max-margin learning. Both theoretical analysis
and experimental results validate the effectiveness and robustness of KFNN.

Nevertheless, there are still some limitations in KFNN that can be improved in the future. For
example, the parameters α and β in the Kalman filter designed by KFNN can not automatically
adapt to the dataset, which restricts the robustness of KFNN. In addition, in Eq. (4), transforming
the distance distribution into the potential label distribution using max-min normalization is rough.
Considering that the distance metric is not effective across all datasets (e.g., autos and breast-cancer
in Table 1), this transformation may also lead to KFNN performing poorly. In the future, we will
design more sophisticated parameters and transformations to improve KFNN.
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Appendix A The proof of Theorem 1

Proof. The covariance matrix Cq is a symmetric matrix. Therefore, if Assumption 1 holds, i.e., the
covariance matrix Cq is a nonsingular matrix, Cq must be also a M -order symmetric matrix. This
means that we can obtain M different eigenvalues and M mutually orthogonal normed eigenvectors
when Cq is given. These orthogonal normed eigenvectors can form an orthogonal matrix P , and thus
P satisfies P−1CqP = PTCqP = Λ. Here, Λ is a diagonal matrix with all M eigenvalues of Cq

as its elements of the principal diagonal. Moreover, the order of eigenvalues in Λ should correspond
to the order of eigenvectors in P .

Appendix B The proof of Theorem 3

Proof. Theorem 3 holds when the distance metric can work effectively given a crowdsourced dataset.
The distance metric works effectively, which means that the smaller the d(x1,x2), the more similar
x1 and x2 are to each other and the more likely they are to belong to the same class. Therefore, in
the neighbor sequence < x1

i , . . . ,x
k
i , . . . ,x

N
i > of xi, xk

i and xi are more likely to belong to the
same class when k is small. At this point, when P k

i is updated, the probability corresponding to the
unknown true label yi of xi will increase. When k gradually increases and exceeds a certain threshold,
xi and xk

i begin to belong to different classes, at which point the probability corresponding to yi will
decrease. In other words, as k increases from 0, the probability corresponding to yi increases first.
As k exceeds a certain threshold (the optimal neighborhood size), the probability corresponding to
yi begins to decrease. Therefore, max(P k

i ) tends to be the probability corresponding to yi when k

increases from 0, and k tends to be K∗
i when M̂k achieves the highest value.

Appendix C More descriptions of the experimental datasets and metrics

Simulated datasets. The descriptions of the whole 34 simulated datasets are listed in Table 5.
Here, “#Instances” denotes the number of instances, “#Attributes” denotes the number of attributes,
“#Classes” denotes the number of classes, “Missing” denotes whether the dataset contains missing
values and “Attribute type” denotes the type of attributes the dataset contains. These datasets are
collected from different application scenarios and represent different crowdsourcing requirements.

Real-world datasets. The Income dataset is annotated by 67 workers through the online platform
Amazon Mechanical Turk (AMT), and each instance is annotated by 10 different workers. The
Income dataset is a binary crowdsourced dataset, which contains 600 instances, 6000 labels, 10
attributes (nominal attributes) and 0 missing values. The Leaves dataset is annotated by 83 workers
through AMT, and each instance is annotated by 10 different workers. The Leaves dataset is a
multi-class crowdsourced dataset, which contains 384 instances, 3840 labels, 64 attributes (numeric
attributes) and 0 missing values.

Experimental metrics. The integration accuracy is calculated as follows:

Accuracy =

∑N
i=1 δ(ŷi, yi)

N
. (17)

The Macro-F1 score is calculated as follows:

F1 =

∑Q
q=1

2∗Precisionq∗Recallq
Precisionq+Recallq

Q
, (18)

where Precisionq and Recallq can be calculated as follows:

Precisionq =

∑N
i=1 δ(ŷi, cq) ∗ δ(yi, cq)

δ(ŷi, cq)
. (19)

Recallq =

∑N
i=1 δ(ŷi, cq) ∗ δ(yi, cq)

δ(yi, cq)
. (20)
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Table 5: The descriptions of 34 simulated datasets.
Dataset #Instances #Attributes #Classes Missing Attribute type

anneal 898 38 6 yes hybrid
audiology 226 69 24 yes nominal
autos 205 25 7 yes hybrid
balance-scale 625 4 3 no numeric
biodeg 1055 41 2 no numeric
breast-cancer 286 9 2 yes nominal
breast-w 699 9 2 yes numeric
car 1728 6 4 no nominal
credit-a 690 15 2 yes hybrid
credit-g 1000 20 2 no hybrid
diabetes 768 8 2 no numeric
heart-c 303 13 5 yes hybrid
heart-h 294 13 5 yes hybrid
heart-statlog 270 13 2 no numeric
hepatitis 155 19 2 yes hybrid
horse-colic 368 22 2 yes hybrid
hypothyroid 3772 29 4 yes hybrid
ionosphere 351 34 2 no numeric
iris 150 4 3 no numeric
kr-vs-kp 3196 36 2 no nominal
labor 57 16 2 yes hybrid
letter 20000 16 26 no numeric
lymph 148 18 4 no hybrid
mushroom 8124 22 2 yes nominal
segment 2310 19 7 no numeric
sick 3772 29 2 yes hybrid
sonar 208 60 2 no numeric
spambase 4601 57 2 no numeric
tic-tac-toe 958 9 2 no nominal
vehicle 846 18 4 no numeric
vote 435 16 2 yes nominal
vowel 990 13 11 no hybrid
waveform 5000 40 3 no numeric
zoo 101 17 7 no hybrid
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• Providing as much information as possible in supplemental material (appended to the
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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Question: For each experiment, does the paper provide sufficient information on the com-
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Answer: [Yes]
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this paper.
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• The answer NA means that the paper does not include experiments.
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didn’t make it into the paper).
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Answer: [Yes]

Justification: The research conducted in this paper conforms with the NeurIPS Code of
Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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societal impacts of the work performed?

Answer: [Yes]

Justification: The new algorithm proposed in this paper helps to improve the effectiveness
and robustness of label integration. There are no negative societal impacts.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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11. Safeguards
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• Released models that have a high risk for misuse or dual-use should be released with
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the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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provided alongside the assets?
Answer: [Yes]
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• The answer NA means that the paper does not release new assets.
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asset is used.
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14. Crowdsourcing and Research with Human Subjects
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• We recognize that the procedures for this may vary significantly between institutions
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guidelines for their institution.
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