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Abstract

We propose a novel causal discovery, Causal Scissor, which captures the causal
flows in graphs through the lens of the mechanism of edges to elucidate root causes.
Causal discovery from observed data provides interpretable relationships between
the variables, with latent causal structures playing a pivotal role in explaining
practical downstream tasks such as finance, industry, climate, society, and genomics.
Recently generative models are studied for causal representation learning toward
disentanglement and identifiability on latent causal structures to uncover the hidden
information like causal discovery via perturbation conditions on biological cells.
However the interdependency of causal flows in conjunction with intervention is
less explored. This paper presents the identifiability of root causes through Causal
Edge Cut (CEC) from causal graphs. The key to identifying root causes lies in
the Barycenter Subtrees (BS) via permutations and Cholesky decomposition. To
measure the causal edge cut, we utilize BS and Gromov-Wasserstein distance as
a support to ensure high expressiveness on local Ollivier-Ricci curvature. Causal
Scissor, the causal walk or flow in a strongly perturbed subtree with its knock-on
edges and a root cause, clarifies how the causal structures by perturbation have
knock-on effect due to the root cause on biological datasets such as flow cytometry
and fMRI9.

1 Introduction

The status quo of scientific discovery comes with causal discovery nourished by deep neural networks.
The front line of causality is the causal representation learning which uncovers the causal structures
with observed data to disentangle the underlying factors to solve downstream tasks in the perspective
of intervention, interaction, and treatment outcomes [20, 1, 37, 17]. In genomics, it is foremost to
figure out the biological principles of interventional effects or find the root causes and treatment
targets influenced by perturbation. For example, Perturb-seq [7] for bone marrow-derived dendritic
cells, cell line K562, and cell line RPE1 would be considered valuable in the causal discovery of
cellular biology because of their diverse interventions, data points, and features [3, 2, 29].

The causal flow of latent information matters to explain the intrinsic mechanisms in causal graphs.
As a way of causal flow, curvature-based optimal transport is suggested that observed data is mapped
onto geometric space to disentangle the underlying variables against such as the bottleneck problem
via Ollivier-Ricci curvature (ORC) or Forman-Ricci curvature (FRC) [35, 9, 11, 10].

Our simple but interesting and meaningful finding on causal structures related to anomalies or
intervention is that contextual anomalies can be detected through message passing even when it only
leverages 1-hop structural information between the perturbed and non-perturbed causal graphs. Such
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Figure 1: Embracing three spaces on biological data in the center of causal graphs, Causal Scissor
discovers the strongly disturbed subtrees containing root causes and knock-on edges in graphs as
shown in the lower part of topological space. do(·), cut(·) stand for perturbation and causal edge
cut respectively.

signatures show changes in the pattern of edges being removed around particular nodes or sequences.
Based on the point, we speculate if the root-cause nodes do not affect other child nodes any more, the
edges between root causes and child nodes may be strongly cut due to the perturbation in that the
underlying variables have different topological and geometric characteristics on causal graphs.

To this end, we formalize an expressive causal flow to measure root causes and strongly affected
edges that quantifying edge cuts in causal graphs via Wasserstein metrics serves us the interpretability
among causal variables. Causal Scissor is the framework of causal discovery and causal edge cut, the
measure of Causal Scissor, calculates the conditional probability of causally removed edges for a
given perturbation with Barycenter subtrees and Gromov-Wasserstein supports.

Our main questions and contributions to bridge perturbation and causal structures in science are as
follows:

• What are the causal structures under perturbation on real-world scientific data? The
structure of Causal Scissor, a causal walk of strongly perturbed subtrees, is relatively any of
negatively curved simplex. We discover that Causal Scissor with the knock-on edges and
root causes resides in the local minima of Fréchet energy under perturbation as edge cuts by
perturbation break down the subtree-wise messages known as knock-on effect. Root causes
take the subtrees with the top barycenters based on Gromov-Wasserstein support.

• How to measure the mechanism of causal structures? Simultaneously capturing the local and
global information by using Ollivier-Ricci curvature and Gromov-Wasserstein distance, the
perturbed underlying causal structure is measured. To map observed data onto topological
and geometric spaces, we use a causal discovery model to infer causal graphs and calculate
the perturbed causal structures via the probability of Causal Edge Cut.

2 Causal Scissor

To tackle the two questions in Introduction, our primary interest proceeds from the assumption that
perturbations can change the number of connected edges on a causal graph with a certain pattern.
Given biological data, we train a Bayesian optimization model (e.g. DrBO) in DAG-structured causal
graphs. Starting from the root node, depth-first search (DFS) [32] to partition the graph into subtrees,
one for each child of the root, is performed. Based on the subtree-wise degree of perturbation in
the center of root causes, we propose Causal Scissor explaining how the perturbation works toward
particular edges on manifold space. The main operation of Causal Scissor is that, in a causal graph G,
the adjacency matrix A is mapped onto manifold in curvature metrics, after which strongly perturbed
subtrees are detected to jointly provide root causes and knock-on edges. To measure the Causal
Scissor on geometric space, we combine the Wasserstein-1 distance W1 in Ollivier–Ricci curvature
(ORC), the Gromov–Wasserstein (GW) distance, and the Wasserstein-2 barycenter W 2

2 . By the
mapping functions, we obtain Causal Edge Cut (CEC) measures per subtree in the causal graph, from
which Causal Scissor, consisting of the top-perturbed subtree, root causes, and knock-on edges, is
determined.
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Causal Edge Cut (CEC) To measure informative causal flow, curvature-based methods are proposed
which are robust to the oversquashing problem in graphs. From an opposite viewpoint of [12] that
curvature-based rewiring mitigates the oversquashing effect based on discrete Ricci curvature, we
take curvature-based cutting that helps approach the knock-on effect based on Ollivier-Ricci curvature.
We assume that perturbations change the edge states of neighboring nodes with four types described
in Appendix, altering the optimal transport and the resulting curvature. Accordingly, we compute the
curvature difference between the non-perturbed and perturbed conditions ∆κ = κnon − κdo, where
κnon and κdo denote the curvature under the non-perturbation and perturbation respectively. Edges
with a large negative ∆κ are considered as strongly affected edges, i.e. knock-on edges.

The Gromov–Wasserstein distance between two metric–measure spaces is defined via a coupling that
minimizes the distortion between their internal distance structures. Given two metric–measure spaces
(X, dX , µX) and (Y, dY , µY ), the (p, q)-Gromov-Wasserstein distance between X and Y is [21]

GWp(µX , µY ) := inf
π∈Π(µX ,µY )

(∫ ∫
X×Y

∆p
qdπ ⊗ π

) 1
p

, (1)

where Π(µX , µY ) denotes the set of couplings between µX and µY . As the GW distance aligns
internal distance structures rather than absolute coordinates or features, it is suited to quantifying
structural discrepancies when non-perturbed and perturbed causal graphs are considered as manifold
curvatures. Depending on the GW distance computed for each perturbation, we set the mean as a
threshold and select perturbations whose distances exceed this threshold as exhibiting the substantial
change of the causal structure. The criteria via GW distance is regarded as the support for each latent
variable, and the set of selected perturbations is subsequently used as a first-stage filter for identifying
knock-on edges.

CEC integrates ORC, GW, and root causes to estimate the probability of cut edges, especially
knock-on edges, p(cut(·) | do(·)), thus capturing how much the perturbation flows along the edges.
First, we measure the global structural distortion induced by perturbation via the GW distance;
using the mean GW distance over perturbations as a threshold, we select only perturbations above
this threshold. Subsequently, for each selected perturbation, we measure the non-perturbed and
perturbed ORCs to identify the knock-on edges. Finally, over all selected perturbations, we aggregate
and normalize the occurrence counts of knock-on edges within subtrees containing a root cause to
compute p(cut(·) | do(·)); the higher CEC probabilities indicate the more strongly influenced edges
by the perturbation.

Top-perturbed Subtree To obtain a more fine-grained causal flow for pertur-
bation effects, we compute the subtree Wasserstein-2 barycenter. Let ∆p ={
λ = (λ1, ..., λp) ∈ Rd : λi ≥ 0,

∑p
i=1 λi = 1

}
. For marginals {µi}pi=1 ⊂ T , ac(Rd) and

weights λ ∈ ∆p, the subtree Wasserstein-2 barycenter is

νλ = argmin
µ∈T ,ac(Rd)

1

2

T∑
i=1

λiW
2
2 (ν, µi), (2)

where T is the subtree set of edge marginals. Since we let an equal λi, barycenter is denoted by ν.
Barycenter is interpreted as the mean of a set of empirical probability under optimal transport in the
space of measures, which is also known as Wasserstein barycenter and is the measure that minimizes
the sum of its Wasserstein distance to each element in the set. W2 Wasserstein barycenter is also
interpreted as minimizing the Fréchet energy [27]. For a subtree-barycenter representation, we reflect
it into negative Fréchet energy, −EF (ν). In other words, the negative Fréchet energy is minimized
by computing, for each subtree barycenter, its ground subtree barycenter containing Causal Scissor.

To infer root causes in a causal graph, we employ a combination of permutations and the Cholesky
decomposition proposed in [19]. A root cause is the node or the set of graph features that responds
to a perturbation by producing a significant change in the post-graph distribution. The subtrees of
root causes contain a greater number of knock-on edges than other subtrees so that demonstrate
higher barycenter and lower Fréchet energy. Thus, we regard the root causes as the local minima of
the Fréchet energy evaluated with respect to the Wasserstein-2 barycenter, as illustrated in Figure 3
schematically exhibiting an energy well. As shown in Figure 2 (a), the barycenter subtrees containing
relatively more root causes are observed to be in the highest as the top-perturbed subtrees.
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Causal Scissor is a tuple-like set of three elements on a given dataset, (data)= {BS,RC,KOE},
where BS is the top-perturbed subtree selected on the basis of the barycenter and the root causes. RC
represents the root cause caused by the perturbation that maximizes the GW distance before versus
after perturbation, while KOE means the knock-on edges ranked highest by CEC probability for
that perturbation. In summary, Causal Scissor combines ORC, GW, the barycenter, and root causes
to jointly determine the most perturbation-sensitive subtree along with its internal root cause and
knock-on edges. As an example of our causal discovery, the Causal Scissor of fMRI9 is given by

(fMRI9)= { , LIFG, (5, 1)}. In Appendix B, the background theories of Causal Scissor and
CEC are addressed in more detail.

3 Experiment

3.1 Datasets

To validate the results of Causal Scissor, we experimented on five simulated data and three real-world
data on biological and social science.

Synthetic dataset [18] provides a synthetic data that are generated by different dataset types according
to four dimensions and two graph sampling schemes: Erdős-Rényi (ER) and scale-free (SF). In this
experiment, following the nonlinear Gaussian ANM process, we set the number of nodes 10, the
number of edges 40, the number of data samples 1,000, and Erdős-Rényi (ER) type.

fMRI9 dataset The dataset reselected from 9 individuals, originally collected from 13, is used to
examine how the brain responds to temporal compression of speech and to determine whether the
same regions such as Broca’s and Wernicke’s areas are engaged in phonological processes [24].

Sachs dataset This dataset is widely used for causal discovery about protein signaling pathways,
consisting of 11 proteins using knockouts and spikings [25].

3.2 Model

[8] offers a sample-efficient score-based causal discovery via Bayesian optimization to recover an
accurate DAG with minimal trials. Using DrBO (DAG recovery via Bayesian Optimization), causal
graphs are generated and perturbations are done on the target variables. The perturbation is a hard
intervention which directly sets a variable to a fixed value with the original dependencies removed.
From the causal graphs of non-perturbation and perturbation, Ollivier-Ricci curvature, barycenter,
and Gromov-Wasserstein distance are calculated. As a root cause discovery model, [19] shows
a convincing method via permutations and Cholesky decomposition. Permutation invariance and
Cholesky decomposition result in identifiability that may be non-identifiable under the causal ordering
and the DAGs of n i.i.d. observational samples.

3.3 Results

Result of synthetic data (Synthetic data 0) As shown in Figure 9, the knock-on edges of Causal
Scissor are (5, 7) and (6, 5) with the probability of CEC about 0.21 as in (f) of the figure. Plus, the
root-cause nodes of Causal Scissor are {0, 2, 2, 9, 3, 3, 3, 3, 3, 3} for each perturbation in consecutive
order. Different from the naive facet that the number of cut edges in the graph under perturbation, as
in (b), may be proportional to strongly perturbed subtrees, GW support indicates that perturbations 5
and 7 are above the mean of the total GW metrics like (c), representing the more negatively curved
subtrees on manifold (as in the ν+ of Figure 4). Causal Scissor of the synthetic data 0 is (synthetic
data 0)= { , 3, ((5, 7), (6, 5))}. To sum up the result of the synthetic data, principally the two
knock-on edges and the root cause of node variable 3, the elements of Causal Scissor measured by
CEC, are the causal by-product of do(SyntheticData0).

Result of fMRI9 data In Figure 2, we have an interesting discovery that the causal variable, LIFG, is
the top-GW root cause in Causal Scissor as in (c) of the figure. LIFG is left inferior frontal gyrus which
is a critical brain region involved in various cognitive functions, particularly language processing and
action. With a high CEC probability of about 0.24, the knock-on edge is (5, 1) of the nodes RACC
and LACC as in Figure 2. The Causal Scissor is, therefore, (fMRI9)= { , LIFG, (5, 1)}. This
describes that a knock-on effect takes place on Barycenter Subtree 4 (blue causal flow) around the
edge (5, 1). With the Causal Scissor, note that perturbation 2 has the maximum of GW metrics.
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Figure 2: Causal Scissor result on the fMRI9 dataset: (a) Barycenter Subtrees per perturbation, (b)
The number of BS-wise edge cuts per perturbation, (c) GW metric per perturbation with support
baseline, (d) Heatmap of the difference of ORC ∆κ, (e) CEC probability for knock-on edges above
than GW, (f) Top-node’s CEC probability of knock-on edges. The red markers, in (a), represent root
causes in the subtrees.

Result of Sachs data Causal Scissor on Sachs data of a flow cytometry is (Sachs)=
{ , p44/42, (0, 1)} as shown in Figure 7. p44/42 MAPK (Erk1/2) signaling pathway can be
activated in response to a diverse range of extracellular stimuli, including mitogens, growth factors,
and cytokines, which is considered as an important target in the treatment of cancer.

4 Conclusion

As a framework of subtree-wise causal discovery, we show that the causal structure under perturbation
on manifold is relatively any of negatively curved simplex and CEC measures the perturbed curvature
to discover the strongly perturbed knock-on edges and root causes via Barycenter subtree and GW
support. Following that real-world causality is to be uncovered with the help of advanced causal
representation learning, this interpretable mechanism on causal interdependency can serve to pinpoint
the treatment or perturbation effects. Causal Scissor and CEC would be a step further toward the next
glimpse in scientific causal discovery.
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A Appendix

We categorize edge states in conjunction with perturbation or intervention into four types, of which
combination constitutes the building block of perturbed causal structures.

• Type 1 (Edge cutting): Interventions yield the causal graphs to be cut that a causal variable
A does not affect a causal variable B any more, as an extrinsic edge change.

• Type 2 (Edge mutant): Interventions have different effects without cutting that a causal
variable A affects a causal variable B maintaining the causal connectivity, as an intrinsic
state change.

• Type 3 (Edge inversion): As a result of interventions, the change of causal direction
appears that the prior edge from A to B are inverted into B to A after perturbation.

• Type 4 (Edge reassembly): Besides the types 1 to 3, the edges would be reassembled to
other nodes that the posterior causal states are different from the prior.

In the above perturbed edge types, this work deals with the edge cutting (Type 1).

B Preliminaries

As a causal flow framework, we set three mapping spaces: observational, underlying causal, and
geometric spaces; each variable as xi, zj , κk and i ∈ Rd, j ∈ Rd×d, k ∈ M where each is in the
form of scalar, matrix, and curvature respectively. Without loss of generality, variables in the paper
are represented on manifold. First, existing directed acyclic graph (DAG) models are employed for
causal graphs. More concretely, from given biological data causal graphs or DAGs are generated
by a Bayesian optimization model (e.g. DrBO), then the graphs are converted into manifold space
for measuring the effects of intervention. Our goal is to represent the mechanism of perturbational
causal flow in the graphs by using CEC that measures the influence of removed or cut edges through
subtree-wise causal flows via optimal transport.

Our primary interest to tackle the two questions in Introduction starts from an assumption that
perturbation may cause the change in the number of connected edges on a causal graph with a
structural pattern. Motivated by [33] that the bottleneck on a graph via curvature gives a clue to
understand the oversquashing problem for the interaction of distant nodes, we focus on the interaction
of cut edges with root causes via curvature.

Considering the existing studies on the perturbed change for edges, edge edits mean to insert or
remove edges in a causal graph for node prediction and classification [15]. Edge removal would
incur a knock-on effect to break down all message passing on a graph [4]. [22] proposes a DAG
learning with few root causes while root causes and their influenced edges on a manifold can provide
more interpretable scientific discovery such as on Sachs dataset because underlying causal factors are
entangled in dependency, whereas curvature reveals the flows in a schematic manner like a transport
map to find the best coupling.

Definition B.1 (Root cause). Given a perturbed variable x ∈ X̂−, the root cause of x is a set of graph
features that response to the perturbation leading to a significant change in the post graph distribution,
e.g. knock-on edges [14].
Definition B.2 (knock-on edges). Root causes yield knock-on effects so that the child edges would
cut or removed by the impact on the perturbation and root causes. Those cut edges are termed as
knock-on edges which are an element of Causal Scissor, measured by CEC with local Ollivier-Ricci
curvature and subtree-wise barycenter.

B.1 Causal Scissor

Seeing through the lens of curvature structural encoding, root causes and knock-on edges which
belong to Causal Scissor are able to be unlocked with expressive power to explain the inherent
mechanism of causal variables. Causal Scissor represents strongly perturbed subtrees having knock-
on edges and root causes. CEC, the mixture of Wasserstein metrics, provides the measure to discover
Causal Scissor.
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Figure 3: A subtree barycenter located at the local minimum of the Fréchet energy belongs to
top-perturbed subtree.

Let a causal graph be G = (V,E), a set of nodes V and neighboring edges (u, v) ∈ E. We denote
the adjacency matrix by A. µi(z) =

1
deg(i) is the uniform marginal measure where z is a neighbor

of i ∈ {u, v} . We adopt Ollivier-Ricci curvature, which calculates the edge-wise distributional
difference of the adjacency matrix in a given causal graph.

Figure 4: (top) A non-perturbed curvature, (down)
A perturbed curvature. Strongly perturbed subtrees
are located in the causal flows on a relatively more
negative curvature. In the lower part of the figure,
the barycenter ν+ with Causal Scissor can take a
larger support than ν− with a weak causal flow
where the barycenter bowl represents the level of
support as the upward and downward arrows. A
Causal Scissor flows along on a negative curvature
with a larger barycenter and GW support.

For nodes i, j ∈ V and their probability dis-
tributions µi, µj , the optimal transport distance
can be computed as in [9]

W1(µi, µj) = inf
µ∈Γ(µi,µj)

∫
dM(x, y)µ(x, y)dxdy,

where dM(x, y) represents the geodesic dis-
tance, and Γ(µi, µj) the set of measures with
marginals µi, µj . From the Wasserstein-1 dis-
tance, the Ollivier-Ricci Curvature is given by

κM(x, y) = 1− W1(µ
M
x ,µM

y )

dM(x,y) .

CEC measures p(cut(·)), the probability of
strongly influenced cut edges, via ORC given
how much the perturbation or do(·) flows to the
edges. To facilitate the causal flow toward inter-
vened child nodes or root causes, we classify the
causal graphs into subtrees by using depth-first
search [32]. Based on the subtrees, we compute
barycenters averaged in Wasserstein-2 distance
where Causal Scissor, the set of ν+ subtrees, be-
longs to the local minima of the Fréchet energy
[6] (Refer to Figure 4).

Throughout this paper, denotes Causal Scissor
which is a set of strongly perturbed subtree with
the elements of a root cause and knock-on edges,
defined as follows.
Definition B.3 (Causal Scissor). Causal Scissor is a tuple-like set of three elements on a given data
such that

(data)={
(BS, RC, KOE) | BS is the most strongly perturbed subtree, RC root causes, and KOE knock-on edges

}
.

From the following theorems, Causal Scissor is of the strongly barycentrically convex on local and
global curvature, and in the local minima in Fréchet energy.
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On root cause, barycenter and Gromov-Wasserstein support

[19] suggests that the combination of permutation and the Cholesky decomposition leads to search
for an invariant property related to the root causes. We regard the root causes as the local minima
in Fréchet energy measured by barycenter in that the most strong knock-on edges are located near
the subtrees of root causes. As the barycenters of subtrees encode the salient features in data, we
measure the subtree-wise barycenters by perturbation on biological data to show that root causes
correspond to the largest values of barycenters.

Assume that µα is a causal edge mass, the amount of mass moved with distance α in optimal transport.
In case of α ≤ 3, the Ollivier-Ricci curvature is expressed as a causal edge mass by κ = µ0−µ2−µ3.
Optimal transport generally finds the best coupling between two distributions, which leads to the
barycenter that is a metric averaging in Wasserstein distance. The barycenters per subtree are the
centroid of perturbed graphs; the larger the barycenter, the more curved the manifold, and the stronger
the perturbation.

Theorem 1. The strongly influenced flow is more curved than the weakly influenced flow.

Proof. Let dM(x, y) = 1 in a causal graph. Since the mass of strongly influenced edges µ+
α is

relatively equal or small in that they are less optimal-transport by causal cuts compared to the mass of
weakly influenced edges µ−

α with the same µ0, in case of α ≤ 3, the curvature difference of strongly
and weakly influenced edges is

κ+ − κ− = (µ0 − µ+
2 − µ+

3 )− (µ0 − µ−
2 − µ−

3 )

= (µ−
2 − µ+

2 ) + (µ−
3 − µ+

3 )

≥ 0. (3)

Theorem 2. Let a root-cause node urc, a non- or weakly perturbed edge e−(u, v) and a knock-on
or strongly influenced edge e+(u, v). Accordingly the subtree with high barycenter has more e+

than the one with low barycenter. Assuming that W1 in ORC and W2 in barycenter have similar
tendencies, the inequality for weakly perturbed and strongly perturbed barycenters per subtree in
terms of curvature is hold

ν−(κ) ≤ ν+(κ)

as the curvature of non- or weakly perturbed edges is less than or equal to the curvature of strongly
perturbed ones from their edge marginals µi.

Proof. Since the barycenter ν is argmin of W 2
2 from Eq. 2, and κ+ ≥ κ− from Eq. 3, and κ ≈ 1−W ,

thus ν+ ≥ ν−.

In other words, root causes have more strongly influenced (knock-on) edges around their neighbors.
The criteria between weakly and strongly influenced edges are based on GW distance. We set the
criteria according to the mean value of GW distance for the causal structure whether a given subtree
belongs to weakly influenced edges or a strongly influenced edges. The criteria via GW distance are
treated as support, a value that each latent can possibly take. For example, when two latents z1, z2,
a parent and a child, that have no dependency or are in the state with causal cuts are independent
support [1].

GW support Gromov-Wasserstein (GW) support is a global-hyperbolicity support on measure space
(Rd, B, ν), i.e. what values each latent can possibly take and the set where the probability density is
non-zero such that for a random variable X , the support X =

{
x ∈ Rd, dPX > 0

}
where dPX is

the Radon-Nikodym derivative of P with respect to barycenter measure over completion of Borel
sets on Rd. For a random variable Z, Z is the support of Z in the observational data and Z(i) is the
support of Z when Zi, a component of Z, is perturbed.

Theorem 3. There exists a lower bound of mean barycenter to determine a support.
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Proof. Let (X, d) be a barycenter space. Given K ∈ R, a function F : X → R∪ {+∞} is called to
be weakly or strongly K-barycentrically convex if for any µ ∈ P(X) with finite variance, there is a
barycenter x of µ, as in [13], such that

F (x) ≤
∫

F (x)dµ(x)− K

2
V ar(µ). (4)

By the Jensen’s inequality of Wasserstein barycenter and V ar(µ) = E(µ2)− µ2, Eq. 4 is

F (x) ≤
∫

F (x)dµ(x)− K

2

[
E(µ2)− µ2

]
.

Therefore,

E(µ2) +
2

K

[
F (x)−

∫
F (x)dµ(x)

]
≤ µ2,

where the square root of the left-hand side is a lower bound of the mean barycenter.

On relatively negative curvature Let ∆κ be the difference of non-perturbed and perturbed curvatures,
i.e. κnon − κdo. A transport map from a parent node µ to its child node ν is T : Rd → Rd from µ to
ν. We assume that two causal flows, for example, may take totally different transport maps between
µ and ν since optimal transport or Wasserstein metric explores to find the best coupling or flow T ∗

where the curvature of the causal walks or flows obviously differ as in Figure 4; in case of a strong
perturbation, ∆κ tends to be negative as shown in (d) of Figure 2, likewise the gap curvatures of
other data.

B.2 Related works

Causal discovery for science Causal discovery for climate change would be a demanding challenge
for real-world solutions. [36] provides a causal representation learning to dynamical systems by
applying the model to real-world climate change data. Causal discovery under intervention is another
significant problem to tackle in various scientific fields. [26] focuses on the targeted causal discovery
to learn causal structures from interventional data under the scenarios that only part of the causal
graph is available. In addition, [5] proposes a stochastic intervention model to minimize the number
of intervention. Particularly [16, 23] propose the methods of causal discovery on fMRI where the
latter infers non-linear relationships between passively observed variables with an alternative measure
of causal direction.

Root causes In biological research, identifying root causes would have momentum because of
the availability of perturbation data and causal representation learning [31, 28, 19]. For example,
Perturb-seq, high throughput 13 perturbations with single cell RNA-seq readout, is used to learn the
causal order between the genes, and the Heteroscedastic Noise Model on PBC (Mayo Clinic Primary
Biliary Cholagitis) and Framingham Heart Study (FHS) dataset is able to identify patient-specific
root causes [30, 29].

Curvature and barycenter Rewiring has been attracted increasing attention because of its ability to
improve the performance of graph neural networks by mitigating oversmoothing and oversquashing
[12]. As a way to rewiring to distant nodes, curvature captures structural information over a node’s
two-hop neighborhood, in contrast to the one-hop ways of general message passing.

To address the graph bottleneck and alleviate the oversquashing, [34] proposes Stochastic Discrete
Ricci Flow in that the negatively curved edges cause the oversquashing problem. This problem, on
the contrary, gives us a hint that non-perturbed and perturbed curvatures, on a relative manifold, may
be negatively curved or have bottlenecks around knock-on edges due to perturbation. Consequently
strongly negatively curved edges under perturbation cause the overcutting problem as we propose in
this literature.
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C Additional results

C.1 Sachs dataset

Sachs dataset is the general benchmark dataset for the causal discovery of protein signaling networks
which is based on multiparameter single-cell flow cytometry. The dataset is designed to explore
well-known pathways such as Raf–MEK–ERK cascade, PI3K–Akt pathway, and PKC signaling, and
is specialized for the single-cell measurement of thousands of human CD4+ Th cells. In this paper,
we experimented on 11 variables and 853 samples.

When it comes to the causal flows of Sachs data, as shown in (b) of Figure 6, under perturbation to
node 5 (p44/42 or ERK), the edge between praf and pmek is knocked on. praf is a variable of Raf
phosphorylation of which signal is connected to the parent nodes of Raf–MEK–ERK paths. pmek is a
variable of Ser217/Ser221 phosphorylation for MEK1/2.

C.2 Teacher Burnout dataset

This dataset in social science is primarily intended to investigate the importance of particular back-
ground variables on three factors of burnout (emotional exhaustion, depersonalization, reduced
personal accomplishment) for elementary, intermediate, secondary, and university teachers. Based on
the repository of [3], perturbations are done on 9 items (RA1, RA2, RC1, RC2, WO1, WO2, CC1,
CC2, CC3) out of 32 items to measure CEC and discover Causal Scissor.

As shown in Figure 8, Causal Scissor is (TeacherBurnout)= { , RA2, ((5, 24), (5, 25), (27, 5))} .
Also the knock-on edges, with CEC probability 0.33, are (5, 24), (5, 25), and (27, 5) where node 5 is
WO2. RA2 (role ambiguity 2) is the root cause that has knock-on edges like (c) of Figure 6. It means
that DP1 (depersonalization 1) strongly causes WO2 (work overload 2) which then affects EE1, EE2
(emotional exhaustion), all initiated from RA2 (role ambiguity 2).

C.3 Synthetic data 1

As a result of synthetic data 1, the root causes are {4, 1, 4, 4, 1, 1, 6, 1, 4, 9} for each perturbation.
Like Figure 10, Causal Scissor is (synthetic data 1))= { , (1, 4), ((3, 4))} with CEC probability
0.23.

C.4 Synthetic data 2

As a result of synthetic data 2, the root causes are {4, 1, 0, 5, 4, 4, 5, 5, 8, 0} for each perturbation.
Like Figure 11, Causal Scissor is (synthetic data 2)= { , 5, ((3, 4), (3, 5), (3, 8))} with CEC
probability 0.33.

C.5 Synthetic data 3

As a result of synthetic data 3, the root causes are {2, 2, 5, 2, 8, 5, 6, 2, 4, 9} for each perturbation.
Like Figure 12, Causal Scissor is (synthetic data 3)= { , 2, ((0, 1), (0, 7))} with CEC probability
0.23.

C.6 Synthetic data 4

As a result of synthetic data 4, the root causes are {7, 7, 7, 7, 4, 7, 6, 3, 6, 7} for each perturbation.
Like Figure 13, Causal Scissor is (synthetic data 4)= { , 7, ((7, 2), (7, 3), (7, 9))} with CEC
probability about 0.18.
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(a) (b)

(c) (d)

(e)

Figure 5: Causal graphs on experiment synthetic datasets. The red edges represent knock-on edges.
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(a) (b)

(c)

Figure 6: Causal graphs on experiment real datasets. The red edges represent knock-on edges.
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(a) (b)

(c)

(e)

(d)

(f)

Figure 7: Causal Scissor result on Sachs dataset
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(a) (b)

(c) (d)

(f)(e)

Figure 8: Causal Scissor result on Teacher Burnout dataset
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 9: Causal Scissor result on the synthetic dataset 0
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 10: Causal Scissor result on the synthetic dataset 1
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(a)

(c)

(b)

(d)

(e) (f)

Figure 11: Causal Scissor result on the synthetic dataset 2
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(a)

(c)

(b)

(d)

(e) (f)

Figure 12: Causal Scissor result on the synthetic dataset 3
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(a)

(c)

(b)

(d)

(e) (f)

Figure 13: Causal Scissor result on the synthetic dataset 4
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