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ABSTRACT

Recent advances in efficient sequence modeling have led to attention-free lay-
ers, such as Mamba, RWKV, and various gated RNNs, all featuring sub-quadratic
complexity in sequence length and excellent scaling properties, enabling the con-
struction of a new type of foundation models. In this paper, we present a unified
view of these models, formulating such layers as implicit causal self-attention lay-
ers. The formulation includes most of their sub-components and is not limited to
a specific part of the architecture. The framework compares the underlying mech-
anisms on similar grounds for different layers and provides a direct means for ap-
plying explainability methods. Our experiments show that our attention matrices
and attribution method outperform an alternative and a more limited formulation
that was recently proposed for Mamba. For the other architectures for which our
method is the first to provide such a view, our method is effective and compet-
itive in the relevant metrics compared to the results obtained by state-of-the-art
Transformer explainability methods. Our code is attached as a supplement.

1 INTRODUCTION

The very recent State Space Model (SSM) named Mamba by Gu & Dao (2023) has attracted con-
siderable attention since its recent debut (Lieber et al., 2024; Liu et al., 2024; Zhu et al., 2024; Xu
et al., 2024), further establishing it as an efficient and accurate general-purpose model. Like other
SSM models (Gu et al., 2021a;b), Mamba is autoregressive during inference and trains efficiently in
parallel. Recently, Ali et al. (2024) have highlighted a third aspect of the Mamba model; namely,
that it is also an attention model, since it implicitly computes attention.

Attention models can be defined as models that linearly combine the values associated with different
elements to create the next set of such associated values. When discussing sequences of tokens, an
attention operator considers the values obtained for each token separately, as a hidden representation,
and mixes these to obtain a new set of values for each token. The mixing coefficients are also a
function of the hidden representations.

Let X be the matrix whose columns are the hidden values associated with each token, and let α
be the matrix of mixing coefficients. The set of values of the next layer is initially obtained as
Y = αX and it can then undergo other forms of processing, such as nonlinear activations and per-
token processing. Given a neural architecture, one can always linearize the mixing operators and
write them in the form Y = αX via their first-order approximation. However, to be considered
an attention model it is required that α be a function of X , which means that the linear operator
is data-dependent. This property is shown by Ali et al. (2024) to hold only for the recent selective
SSM (S6) , but not for most earlier SSMs. Specifically, for standard state-space layers, it has been
demonstrated that they can be linearized into a constant operator, represented by a constant matrix
α, which is solely controlled by the layer’s parameters. However, in the S6 layers, α is influenced
by both the input and the layer’s parameters.

The implicit attention matrix of Ali et al. (2024) considers the S6 mechanism and ignores the in-
fluence of other critical mixer components, such as Conv1D, gate branch, linear layers, and SiLU
activations. The formulation we propose in this work incorporates these additional elements and, as
we show empirically, leads to improved interpretability results in both computer vision and NLP.
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Furthermore, using a similar holistic formulation, we show that S6 is not the only sequence model
that implicitly computes attention and that an implicit attention representation can also describe
other recent layers, such as RWKV (Peng et al., 2023), Griffin (De et al., 2024) ,HGRN (Qin et al.,
2024b) and more, as illustrated in Figure 1.

To achieve a more accurate representation that better reflects the model’s behavior, we employ a
composition of multiple components. The concept of composing non-attention layers and represent-
ing them as data-controlled linear operators was initially introduced in Hyena (Poli et al., 2023),
which attempts to replicate attention capabilities through a composition of two sub-quadratic opera-
tors (long convolutions and multiplicative gating). Our formulation differs from this approach in two
main ways. First, instead of focusing on replicating attention capabilities, we take the reverse step
by demonstrating that, through a sequence of algebraic manipulations, several existing modern gated
linear RNNs can be viewed as single implicit attention layers. Second, our goal is to find the most
accurate implicit attention representation possible, as it crucial for applications like interpretabil-
ity. This leads to a significant extension over Hyena’s work. For example, while Hyena’s matrices
are constructed from the two components mentioned above, our implicit attention representation in-
corporates additional layers, including non-linear operators such as linear layers, activations, short
convolutions, and normalization layers. For instance, our formulation for Mamba-2 is built upon
six different layers, some of which appear multiple times, resulting in a much more complex out-
come. Additionally, while other works explore the relations between non-attention layers and linear
attention (Arora et al., 2023), we not aware to any work extending the concept of composition of
components similar to us, or apply it to existing modern RNN such as Griffin, Mamba, or link in to
interpretability or similar domains.

Our main contributions are as follows: (i) We introduce the implicit self-attention representation,
unifying Transformers with non-Transformer layers, such as Griffin, RWKV, ReNet, and others. (ii)
We refine the approach of Ali et al. (2024) to produce more accurate attention matrices. The previous
work focused exclusively on the S6 layer, without considering the gating and Conv1D sub-layers in
Mamba, while our representation incorporates all these factors (and additional peripherals in other
models) (iii) While “Attention is not Explanation” (Jain & Wallace, 2019), Transformer explainabil-
ity relies heavily on attention matrices. We demonstrate that our implicit attention representation of
non-Transformer models can be used to develop new explainability and interpretability techniques
for non-Transformer models, enhancing the community’s ability to understand, explore, and manage
aspects of robustness, bias, fairness, and safety. As a sample downstream application, we demon-
strate excellent out-of-the-box results for attribution-based performance-enhancing techniques. (iv)
Finally, our framework facilitates comparisons between Transformers and other recent architectures,
by providing a unified attention view and setting the stage for further improvements and insights.

2 RELATED WORK

This section describes the scientific context and provides the necessary terminology and symbols for
discussing self-attention and selective SSM layers.

Self-Attention. Self-attention, a cornerstone of Transformer architectures (Vaswani, 2017), has
profoundly influenced recent developments in NLP and computer vision. This mechanism leverages
pairwise token interactions to dynamically allocate focus across different parts of the input sequence,
assessing the relevance of each token in relation to others. The computational formula is given by:

Self −Attention(Q,K, V ) = αV, α = softmax
(
QKT

√
dk

)
(1)

Here, Q,K, and V denote the queries, keys, and values respectively, with dl representing the key
dimension. Transformers enhance this mechanism by incorporating H parallel attention heads, thus
capturing a wider range of dependencies.

Applications of Attention Matrices. Attention matrices play a crucial role in Transformers, as
multiplying these matrices with value vectors is the core operation that captures interactions be-
tween tokens. Beyond this essential role in computing self-attention, they are also used for various
purposes: (i) Explainability and Interpretability: Although attention itself is not inherently ex-
plainable (Jain & Wallace, 2019), many methods in these domains rely on attention matrices to
understand and analyze model behavior (Abnar & Zuidema, 2020; Chefer et al., 2021b;a; Ali et al.,
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2024) . (ii) Multi-modal Learning: Numerous multi-modal learning schemes are based on varia-
tions of cross-attention, enabling dependencies to be learned between any pair of tokens of different
modalities (Lu et al., 2019; Tan & Bansal, 2019). (iii) Weakly Supervised Tasks: Attention ma-
trices can provide a valuable source of supervision, highlighting relevant regions or relationships
within the data to guide model learning. These techniques are popular in semantic segmentation (Ru
et al., 2022; Wang et al., 2020; Ru et al., 2023), and robustness enhancement (Chefer et al., 2022).
Finally, (iv) Inductive Bias and Regularization Methods: Since attention matrices represent inter-
actions between tokens, they inherently carry semantic meaning. Therefore, they can be manipulated
to incorporate domain knowledge or regulate the model effectively (Li et al., 2018; Attanasio et al.,
2022; Bonaldi et al., 2023; Zimerman & Wolf, 2023).

S6 Layers and Mamba. The recently presented selective SSM (Gu & Dao, 2023) (S6) outper-
forms the previous SSMs and various other architectures in NLP (Anthony et al., 2024; Wang et al.,
2024b), vision (Liu et al., 2024; Zhu et al., 2024), graph classification (Wang et al., 2024a; Behrouz
& Hashemi, 2024), and more. S6 incorporates a dynamic input-dependent form of the discrete
matrices Ā, B̄, and C, such that for every time-step the SSM employs a different recurrent rule.
This technique differs from the previous state-space layers, which use the same set of matrices and
recurrent rules for each time step.

Denoting the input sequence by x̂ := (x̂1, · · · , x̂L) ∈ RL×D where x̂i ∈ RD, the discrete matrices
for time step i, namely Āi, B̄i, and Ci are defined as:

Bi = SB(x̂i), Ci = SC(x̂i), ∆i = Softplus(S∆(x̂i)), Āi = exp(∆iA), B̄i = ∆iBi,
(2)

where SB , SC , S∆ are linear projection layers, and Softplus is asmooth approximation of ReLU.

The usage of input-dependent time-variant layers adds to the expressivity of the layer, allowing
it to adapt to the input, and potentially captures more complex dependencies. While other input-
dependent time-variant mechanisms have been proposed in previous works through gated RNNs,
the S5 layer (Smith et al., 2022), or adaptive filtering via input-dependent IIR filters (Lutati et al.,
2023), S6 also presents an efficient IO-aware implementation, which is parallelized on GPUs via
work-efficient parallel scanners (Blelloch, 1990; Martin & Cundy, 2017).

The Mamba block combines the S6 layer, Conv1D and other elementwise operators. It borrows
elements from Gated MLP, and given an input x := (x1, · · ·xL), it is computed by:

x̂ = SiLU( Conv1D( Linear(x) ) ), ẑ = SiLU( Linear(x) ), ŷ′ = Linear(Selective SSM(x̂)⊗ẑ),
(3)

where ⊗ denotes elementwise multiplication.

The entire Mamba model contains Λ stacked Mamba blocks with D channels per block. Below, the
tensors of the j-th channel in the i-th block are denoted by superscript indices of the form i, j.

The vision Mamba architectures (Liu et al., 2024; Zhu et al., 2024) (ViM) follow the vision Trans-
former (ViT) (Dosovitskiy et al., 2020) but replace the Transformer’s self-attention mechanism by
two bidirectional Mamba layers, These vision models outperform the standard ViT in terms of ac-
curacy and efficiency, for models of similar parameter counts.

Gated-Linear RNNs. RNNs, along with their advanced versions, such as GRU (Chung et al.,
2014) and LSTM (Hochreiter & Schmidhuber, 1997), play a fundamental role in deep sequence
modeling. Their auto-regressive design decouples sequence length from computational complexity
per step, making them highly efficient at decoding. However, they don’t scale as effectively as
Transformers and often face challenges, such as slow training and vanishing gradients. Recently,
linear RNNs have shown improved abilities in capturing long-range dependencies (Gu et al., 2021a;
Orvieto et al., 2023) and enhanced scalability (Peng et al., 2024; De et al., 2024). Furthermore, gated
linear RNNs deliver surprisingly strong language modeling performance (Mehta et al., 2022; Wang
et al., 2022; Peng et al., 2023; Qin et al., 2024b). The most advanced gated linear RNNs include
the following variants: (i) RWKV-6 (Peng et al., 2023), which draws inspiration from attention-free
Transformers (AFT) (Zhai et al., 2021), (ii) Mamba (Gu & Dao, 2023), which employs selective
SSM, (iii) HGRN2 (Qin et al., 2024a), which utilizes state expansion, and (iv) Hawk (De et al.,
2024), which is built upon an enhanced variant of the LRU (Orvieto et al., 2023). Other notable
examples include GLA (Yang et al., 2023), GateLoop (Katsch, 2023), and RenNet (Sun et al., 2023).
These layers achieve results comparable to Transformers on larger scales, matching well-known
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models, such as Pythia (Biderman et al., 2023) and LLaMA 2 (Touvron et al., 2023). Moreover,
several studies show that hybrid models combining attention mechanisms with gated linear RNNs
can be complementary (De et al., 2024; Lieber et al., 2024; Poli et al., 2024; Ma et al., 2022; Baron
et al., 2023; Fu et al., 2022), enhancing both approaches. Despite these successes, interpretability
and explainability techniques for these models remain relatively unexplored.

3 METHOD

In this section, we present a general and holistic data-control linear operator representation that can
be applied to (at least) many of the recent non-Transformer architectures and which incorporates all
components of the architecture. Our objective is to describe each layer in the form of y = α̃x such
that x and y is the input and output respectively, and α̃ = f(x; Θarch) is an attention matrix controlled
by the parameters of the model and the input. Sec. 3.1 formulates the entire Mamba and Mamba-
2 Dao & Gu (2024) architectures as a data-control linear operator, incorporating subcomponents
such as Conv1D, gate branches, normalizations and activations. Subsequently, Sections. 3.2 and 3.3
extend our approach to other architectures, such as Griffin (De et al., 2024) and RWKV (Peng et al.,
2023). Additionally, in Appendix A, we present how to extract holistic data-controlled attention
matrices for RetNet (Sun et al., 2023) and HGRN (Qin et al., 2024b).

Figure 1: Unified and Interpretable Formulation of Attention-Free Architectures via Attention Ma-
trices: (Left) Schematic overview of the architectures of Mamba, Griffin, and RWKV. (Right) A
new view of those layers that rely on implicit attention. Our perspective enables the generation of
attention maps, offering valuable applications in areas such as Explainable AI.

3.1 FORMULATION OF MAMBA VIA ATTENTION MATRICES

Mamba can be formulated in a way that separates the components that mix channels from those that
mix tokens:

Mamba(x) = Linear3
(

SILU(Linear2(Linear1(x)))⊗ S6(SILU(Conv1D(Linear1(x))))
)

(4)

Since Linear1 and Linear3 do not mix tokens, they are less relevant to our representation (similar to
the MLP layers in Transformers), and we consider the following simplified expression:

Mamba(x) =
(

SILU(Linear2(x))
)
⊗
(

S6(SILU(Conv1D(x)))
)

(5)

Replacing the element-wise gating multiplication with matrix multiplication leads to:

Mamba(x) = diag
(

SILU(Linear2(x))
)(

S6(SILU(Conv1D(x)))
)

(6)

The S6 layer can be formalized as a data-control linear operator (see Eq. 12 in (Ali et al., 2024)):

S6(x) = α̂x, α̂i,j = Ci

(
Πi

k=j+1Āk

)
B̄j (7)

By plugging Eq. 7 into Eq. 6 and since SILU(x) = Sigmoid(x) · x:

4
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Mamba(x) = diag
(

SILU(Linear2(x))
)

︸ ︷︷ ︸
W ′

x∈RL×L, (gate)

α̂ diag
(

Sigmoid(Conv1D(x))
)

︸ ︷︷ ︸
Zx′∈RL×L, (Conv & Act)

(Conv1D(x)) (8)

Recall that causal Conv1D layer with filter f = (f1, · · · , fL̂) can be converted into a matrix form
by arranging shifted copies of the filter into rows, forming a convolution matrix M . This matrix is
then multiplied by the input sequence to produce an output, where each element represents the dot
product of the filter and a corresponding segment of the input.

By plugging the convolution matrix M and the gate matrix W ′
x into Eq. 8, we get:

Mamba(x) = W ′
xα̂Zx′Mx = Hx, H = W ′

xα̂Zx′M (9)

Therefore, the entire Mamba layer can be viewed as a data-control linear operator, which implicitly
parameterizes the per-channel implicit attention matrices through the parameters of the S6 layer, the
Conv1D filter, the linear layer in the gate branch, and is controlled by the input x

Mamba-2 This architecture builds upon Mamba by introducing two key enhancements relevant to
our formulation: (i) incorporating the concept of multiple heads via a multi-input SSM, and (ii)
applying additional normalization (GroupRMSNorm) after the multiplicative gating.

The first modification can be handled by broadcasting parts of the equations across different attention
heads. For the second modification, we first compute the per-head statistics necessary for Group
Normalization and pack them into a diagonal matrix.

µh =
1

d

d∑
i=1

xh[i], σh = ϵ+

√√√√1

d

d∑
i=1

(xh[i]− µh)
2
, N = diag

(
1

σ1
, · · · , 1

σh
, · · · , 1

σH

)
(10)

where xh[i] denotes the i-th feature of head h ∈ [H], d is the dimensionality of each head, and ϵ is
a small constant added for numerical stability in GroupRMSNorm.

The matrix N allows us to represent the GroupRMSNorm operator via matrix multiplication such
that Nx = GroupRMSNorm(x) (where N is augmented across groups). Thus, we plug these mod-
ifications into our formulation of Mamba (Equation 9), obtaining the following implicit-attention
formulation for Mamba-2:

Mamba-2(x) = NW ′
xα̂Zx′Mx = Hx (11)

3.2 FORMULATION OF GRIFFIN VIA ATTENTION MATRICES

The component that captures interactions between tokens in Hawk and Griffin (regardless of self-
attention) is the temporal mixing block, which is built on top of a Real-Gated Linear Recurrent Unit
(RG-LRU), Conv1D, and gating. It can be formalized as follows:

y = Linear3
((

GeLU(Linear1(x′))
)
⊗
(

RG-LRU(Conv1D(Linear2(x′))
))

(12)

We first rearrange the linear layers and replace elementwise gating with matrix multiplication:

x = Linear2(x′), y = Linear3
(

diag
(

GeLU(Linear′1(x))
)(

RG-LRU(Conv1D(x))
))

(13)

Note that Linear′1 := Linear1Linear2 and Linear3 do not mix tokens and can therefore be omitted.
By substituting Conv1D with matrix multiplication using a causal convolution matrix M , we derive:

y = diag
(

GeLU(Linear′1(x)
)(

RG-LRU(Mx)
)

(14)

RG-LRU is defined by the following recurrent rule:

rt = σ(Waxt+ ba), it = σ(Wxxt+ bx), at = acrt , ht = at⊗ht−1+
√

1− at2⊗ (it⊗xt)
(15)
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This linear recurrent rule can be converted to a matrix form as follows:

h = α̃x,


h1

h2

...
hL

 =


√
1− a1

2 ⊗ i1 0 · · · 0
a2

√
1− a1

2 ⊗ i1
√
1− a2

2 ⊗ i2 · · · 0
...

...
. . . 0

ΠL
k=2ak

√
1− a1

2 ⊗ i1 ΠL
k=3ak

√
1− a2

2 ⊗ i2 · · ·
√
1− aL

2 ⊗ iL



x1

x2

...
xL


(16)

By plugging Eq.16 into Eq.14, we see that the entire temporal mixing block can be formalized as a
data-control linear operator:

y = diag
(

GeLU(Linear′1(x))
)
α̃Mx = Hx, H = diag

(
GeLU(Linear′1(x))

)
α̃M (17)

3.3 FORMULATION OF RWKV VIA ATTENTION MATRICES

The time-mixing block of RWKV includes three components: the WKV operator , a gate branch,
and a token shift. For simplicity, we will ignore the token shift operation over the values. The
simplified RWKV, which maps the input xt to the output ot , can be formulated as follows:
rt = Wr · (ur ⊗xt+(1−ur)⊗xt−1), kt = Wk · (uk ⊗xt+(1−uk)⊗xt−1), vt = xt (18)

wkvt =

∑t−1
i=1 e

−(t−1−i)w+ki ⊗ vi + eu+kt ⊗ vt∑t−1
i=1 e

−(t−1−i)w+ki + eu+kt

, ot = Woσ(rt)⊗ wkvt (19)

where Wr,Wk,Wo are linear projections, and u,w, ur, uk are learnable parameters.

Now, we will reformulate the wkvt operator into a form of causal self-attention:

α̂i,j =


eu+ki∑i−1

m=1 e−(t−1−m)w+ki+eu+kt
if j = i holds,

e−(i−1−j)w+kt∑i−1
m=1 e−(t−1−m)w+ki+eu+kt

if j < i holds,

0 otherwise.

α̂x = wkv (20)

Note that Wo does not mix tokens and can therefore be omitted. By plugging Eq. 20 into Eq. 18,
and replacing element-wise gating with matrix multiplication, we obtain:

o = diag(σ(r))α̂x (21)

3.4 SHARED PROPERTIES

The proposed formulation for Griffin, Mamba, and RWKV is based on the similarities in the struc-
ture of the architecture. Our formulation focuses on three main components: (i) the core of the
linear attention mechanism (S6 for Mamba, RG-LRU for Griffin, or the WKV operator for RWKV),
(ii) a short filter operation implemented via Conv1D in Griffin and Mamba and token shift in RWKV,
and (iii) the gate branch, as illustrated in Fig. 1. Additionally, our formulation builds on the follow-
ing key components: (1) rearranging linear layers and omitting operators that do not influence the
mixer components, (2) representing the gate branch, activations, and normalization layers as a data
control linear operator via diagonal matrices, (3) unrolling the linear recurrent layer to obtain a
token-to-token map, and (4) fusing several cascaded linear operators and ignore biases.

In Appendix E, we elaborate on several insights derived from our formulation of gated-linear RNNs,
including the inner dynamics of their parameterization, their expressivity, and the categorization of
attention models.

4 EXPERIMENTS

To assess the effectiveness of our implicit attention formulation, we perform a comprehensive set
of experiments. In Sec. 4.1, we begin by visualizing the implicit attention matrices and the cor-
responding explainability maps built upon them. In Sec 4.2, we demonstrate that integrating our
improved attention matrices into existing attribution methods results in SoTA interperablity tech-
niques. We further conduct ablations to analyze the contribution of each architectural component to
the overall representation. Finally, in Sec. 4.3, we show how our formulation enables the transfer of
performance-enhancing techniques, originally designed for other architectures, to gated RNNs.

6
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4.1 VISUALIZATIONS
Transformer Mamba Griffin RWKV

Figure 2: Hidden Attention Matrices: Attention
matrices of LLMs. Each row represents a different
layer within the models, showcasing the evolution
of the attention matrices at 25% (top), 50%, and
75% (bottom) of the layer depth.

In Figure 2, we present a comparative visual-
ization of the attention matrices from Mamba,
RWKV, Griffin, and Transformer models. To
enhance clarity, we applied the Softmax func-
tion to each row of the attention matrices from
the Transformers and conducted min-max nor-
malization on the absolute values of the matri-
ces from the non-Transformer models. In ev-
ery instance, we used a uniform prompt of size
32. For each model, we examined the attention
matrices derived from the standard pre-trained
models available in the Hugging Face, includ-
ing the Recurrent Gemma-2B, RWKV-430M
trained on the Pile, and a Mamba-based LLM
with 2.8B parameters also trained on the Pile.

As illustrated, the implicit attention matrices
of Mamba, Griffin, and RWKV exhibit simi-
larities to those derived from traditional Trans-
formers. Echoing findings from (Ali et al.,
2024), we note that dependencies between dis-
tant tokens become more apparent in the deeper
layers, as shown in the lower rows. Additionally, the matrices from RWKV are characterized by dis-
tinct horizontal tiles, whereas those from Mamba display a more continuous structure.

Visualization of Explainability Maps. Sample explainability maps built on top of our implicit at-
tention formulation are resented in Figure 3. This visualization focuses on the rows of the attention
maps that are associated with the [CLS] token, as is traditionally done for interpretability purposes.
We explore the attention matrices with three explanation methods: raw attention, attention roll-
out (Abnar & Zuidema, 2020), and attribution following Ali et al. (2024), along with a comparison
to the ViT counterparts. Evidently, the explanation methods that are based on our attention formu-
lation (columns e, f, and g) depict much more accurate and sharp maps compared to those of (Ali
et al., 2024) and the ViT counterparts. In Fig. 4 we show similar visualizations in the NLP domain.
More qualitative results for the NLP domain can be found in Appendix. D.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 3: Qualitative results for the different explanation methods for the ViT and ViM, both
of small size. (a) The original image, (b) Raw-Attention over ViM, (c) Attention-Rollout over
ViM, (d) Mamba-Attribution over ViM, (e) Raw-Attention with our proposed attention over ViM,
(f) Attention-Rollout with our proposed attention over ViM, (g) Mamba-Attribution with our pro-
posed attention over ViM, (h) Raw-Attention of ViT, (i) Attention-Rollout for ViT, (j) Transformer-
Attribution for ViT. Results for columns (b), (c), and (d) are based on the method of (Ali et al.,
2024), and the ViT results on (i), (j) and (k) rely on Chefer et al. (2021b).
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(a) (b) (c)

Figure 4: Qualitative results for NLP, samples are taken from IMDB movie sentiment classification.
In (a), we show the results for the previously proposed Mamba’s attention (Ali et al., 2024), (b) our
proposed Mamba’s attention, and in (c) we show our proposed method over RWKV. In the upper
row, we show a negative sentiment, and in the lower row, we show a positive sentiment.

4.2 IMPLICIT ATTENTION-BASED ATTRIBUTION

Although empirical evaluation of attribution methods is challenging, this section demonstrates that
off-the-shelf techniques, when built on top of our implicit attention formulation, produce SoTA
explainability tools. We provide empirical analysis via perturbation and segmentation tests.

Perturbation Tests. To assess the faithfulness of explanations, we adopted an input perturbation
scheme similar to (Chefer et al., 2021b;a). This method involves systematically masking image
pixels based on their predicted relevance from the explanation method. We conducted experiments
with both positive and negative perturbations on both NLP and Vision domains. For positive pertur-
bation, a good explanation prioritizes relevant pixels. We expect the model’s accuracy (specifically,
top-1 accuracy) to gradually decrease as we mask pixels in descending order of relevance (most
relevant first). As for negative Perturbation, a robust explanation should maintain model accuracy
even when irrelevant pixels are masked. Here, we mask pixels in ascending order of relevance (least
relevant first). In both scenarios, we evaluate the explanation quality using the Area-Under-Curve
(AUC) metric. AUC considers the model’s accuracy as a function of the percentage of masked pixels
(ranging from 10% to 90%).

The perturbations results for vision models are summarized in Table 1 for various explanation meth-
ods under both positive and negative perturbation scenarios on the ImageNet validation set. In the
positive perturbation scenario, where lower AUC values indicate better performance, our proposed
Mamba’s attention method consistently outperforms the other methods. Specifically, our method
achieves the lowest AUC values across all explanation methods, with an AUC of 13.264 for Raw-
Attention, 12.830 for Attn-Rollout, and a notably low 11.350 for Attribution. In the negative per-
turbation scenario, where higher AUC values are better, our method shows the best performance,
with AUC values of 47.705 for Raw-Attention, 50.035 for Attn-Rollout, and 51.310 for Attribution,
outperforming both the method of (Ali et al., 2024) and the counterpart XAI methods for ViT.

Table 1: Perturbation Tests for Vision. We present the AUC results (percentages) for the predicted
class on the ImageNet validation set. For positive perturbation lower is better, and for negative
perturbation higher is better. Previous results by (Ali et al., 2024) denoted by ⋄.

Positive Perturbation ↓ Negative Perturbation ↑
Mamba ⋄ Mamba Ours Transformer Mamba ⋄ Mamba Ours Transformer

Raw-Attention 17.268 13.264 20.687 34.025 47.705 40.766
Attn-Rollout 18.806 12.830 20.594 41.864 50.035 43.525
Attribution 16.619 11.350 15.351 39.632 51.310 48.089

In the NLP domain, we conducted perturbation tests in both the zero-shot and fine-tuned settings.
In the zero-shot setting, we utilized pre-trained Mamba-based LLMs with sizes of 1.3B and 2.8B
on the ARC-E dataset (Clark et al., 2018), which evaluates the reasoning abilities of LLMs. Results
are presented in Table 2 and contain activation and pruning perturbations, as described by Ali et al.
(2022). It is shown that our explainability method improves upon the baseline of Ali et al. (2024)
for both model sizes. Specifically, in the activation scenario, our method improves results by at least
2.2%, and by over 10% in the pruning settings. Similar trends are also evident in the fine-tuned
scenario, see Appendix C for these results for both Mamba and RWKV. Taken together, these results
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demonstrate that our attention formulation is much more precise and better reflects the model’s
behavior compared to the formulation proposed by Ali et al. (2024). The same phenomenon occurs
with the RWKV model, consistently showing that our formulation can lead to SoTA attribution
methods for an entire family of models.

Table 2: Perturbation Tests for NLP. For activation perturbation lower is better, and for pruning
perturbation higher is better. Previous results by (Ali et al., 2024) denoted by ⋄.

Activation Perturbation (AUAC) ↑ Pruning Perturbation (AU-MSE) ↓
Mamba 1.3B Mamba 1.3B Mamba 2.8B Mamba 2.8B Ours

Attribution of (Ali et al., 2024) 0.915 0.918 1.765 1.239
Our Attribution 0.934 0.939 1.588 1.082

Segmentation Tests. We evaluated our proposed Mamba’s implicit attention mechanism by com-
paring its generated foreground segmentation maps against ground truth from the ImageNet-
Segmentation dataset (Guillaumin et al., 2014). We employed established metrics (pixel accuracy,
mean Intersection-over-Union (mIoU), and mean Average Precision (mAP)) aligning with prior
works (Chefer et al., 2021b; Nam et al., 2020; Gur et al., 2021). We compared our method against
techniques specifically designed for ViM, including the attention-based approach of Ali et al. (2024)
and the recent LRP-based method introduced by Jafari et al. (2024). Additionally, as a reference
point, we present the results of standard methods applied to ViT.

Results presented in Table 3 demonstrate that our proposed Mamba’s implicit attention outperforms
both the ViT and the previous method designed for Mamba across all metrics for the three different
XAI methods. This superior performance suggests the potential of these maps for downstreaming
tasks such as weakly supervised semantic segmentation, and mitigating background bias in classi-
fiers (Chefer et al., 2022).

Table 3: Segmentation results on the ImageNet-Segmentation dataset (percent). Higher is better.
Model Method Pixel accuracy ↑ mAP ↑ mIoU ↑
DeiT S Raw-Attention 59.69 77.25 36.94
ViM-S Raw-Attention (Ali et al., 2024) 67.64 74.88 45.09
ViM-S Raw-Attention Ours 67.66 80.00 47.28

DeiT-S Attn-Rollout (Abnar & Zuidema, 2020) 66.84 80.34 47.85
ViM-S Attn-Rollout (Ali et al., 2024) 71.01 80.78 51.51
ViM-S Attn-Rollout Ours 76.40 83.90 58.48

DeiT-S Transformer-Attr (Chefer et al., 2021b) 79.26 84.85 60.63
ViM-S Mamba-Attr (LRP) (Jafari et al., 2024) 71.19 77.04 49.98
ViM-S Mamba-Attr (Ali et al., 2024) 74.72 81.70 54.24
ViM-S Mamba-Attr Ours 79.60 86.40 62.51

M. M. w/o Conv M. w/o Gate S6

Figure 5: Comparative visualization of ablated
hidden matrices. ’M’ for Mamba.

Table 4: Ablation. ViM-small for Ima-
geNet Segmentation. Higher is better.
Method Pixel Acc. mAP mIoU

Full Model 79.60 86.40 62.51
w/o SilU 79.32 86.22 62.41
w/o Conv1D 70.01 78.87 50.64
w/o Gate 75.11 80.12 55.78
w/o S6 42.99 64.13 26.01
Only S6 72.39 80.09 53.19

Ablation study. The architectures we explored implicitly parametrize attention matrices through
a composition of several different sub-layers, see Eq.9, 21, and 17. Examples of these sub-layers
include linear recurrent layers, gate mechanisms, activations, normalization and other components,
such as token-shift or depth-wise convolutions. To better understand the contribution of each of
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these components, we conduct a sequence of ablation studies. Initially, in Fig. 5, we visualize the
implicit attention of Mamba, ablating the Conv1D or the gate branch, or focusing solely on the S6
layer. As expected, it seems that the Conv1D causes a smoothing effect, and the Mamba matrices
are significantly sharper, with more pixels having non-negligible values compared to those of S6.

In Table 4, we compare several ablation variants of our method. As can be seen, our method, which
utilizes all the components of Mamba, achieves a much better score than the ablated versions, illus-
trating the importance of all components. This experiment reveals that including the S6, Conv1D
and gating mechanism is crucial for high performance and reliable representation. However, the
activation has a relatively low impact on these aspects. A similar ablation study was conducted for
RWKV and presented in Appendix C, demonstrating similar trends.

4.3 ATTRIBUTION-BASED PERFORMANCE-ENHANCING TECHNIQUES

To further demonstrate the practical impact of our representation, we show it can enhances model
performance. While various attention-based and explainability-based techniques was previously
proposed for improving model performance, our focus is on in-context learning (ICL) and weakly
supervised semantic segmentation tasks.

To improve ICL, we adopt the AMPLIFY method of Krishna et al. (2024), a prompt engineering
technique designed for few-shot ICL, which leverages post-hoc explanation methods. In our exper-
iments, we use the Mamba-790m model as a proxy, following the same evaluation protocol as AM-
PLIFY, but with an attribution method that relies on attention matrices. We report the vanilla model
performance, and the performance with AMPLIFY with our attribution method and the attribution
method of Ali et al. (2024). The results are depicted in Tab. 5, show that our method outperforms
the baseline across all tested scenarios except one, with an average margin of 1.2 accuracy points
over the amplify baseline, and 9.8% over the vanilla baseline.

Detailed results and experimental settings for weakly supervised semantic segmentation are pre-
sented in Appendix B.

Table 5: Performance of various Mamba-based LLMs on Snarks, CommonsenseQA, and Formal
Fallacies datasts. We compare the vanilla model performance, and models employ the Amplified
method, with our attribution method or the attribution method of Ali et al. (2024) (denoted by ⋄).

Model size Snarks (%) CommonsenseQA (%) Formal Fallacies (%)

1.3B 44.54 52.15 40.13
1.3B + AMPLIFY ⋄ 53.11 53.55 44.28
1.3B + AMPLIFY (Ours) 56.15 54.72 45.22

2.8B 48.75 53.11 44.67
2.8B + AMPLIFY ⋄ 58.10 56.10 47.80
2.8B + AMPLIFY (Ours) 60.02 56.08 47.86

5 CONCLUSIONS

In this study, we have extended the use of self-attention from its traditional role as the core mech-
anism of Transformers to a representation of neural sequence layers. Our unified framework facil-
itates the exploration of similarities and differences among non-attention layers, such as Mamba,
RWKV, and Griffin, and their interconnections with Transformer architectures. Additionally, it en-
ables the development of innovative explainability techniques for the latest attention-free architec-
tures. Our contributions provide the research community with new tools for analyzing the perfor-
mance, fairness, and robustness of gated-linear RNN variants, while also identifying their potential
vulnerabilities. These advancements set the stage for future improvements and support the imple-
mentation of weakly supervised downstream tasks.

Looking ahead, we aim to incorporate additional layers, such as Hyena (Poli et al., 2023), and
HGRN2 (Qin et al., 2024a) into our framework, including their vision-specific variants (Duan et al.,
2024; Fan et al., 2023; Zimerman & Wolf, 2024; Spravil et al., 2024). Furthermore, we plan to ex-
amine how differences in these architectures are reflected in their self-attention matrices and explore
whether such insights can reveal more about the inductive bias inherent in each architecture.
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6 REPRODUCIBILITY STATEMENT

All of our experiments are conducted using the PyTorch framework on public datasets. Addition-
ally, our code for some of the experiments is included as supplementary, along with a user-friendly
interface and notebook demos. Therefore, we consider our empirical results to be reproducible.
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Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
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A REPRESENTING ADDITIONAL ARCHITECTURES VIA IMPLICIT ATTENTION

In sec. 3 we present the formulation of Griffin, RWKV, and Mamba via attention matrices. In this
section, we extend our method to other layers, such as RetNet (Sun et al., 2023) and HGRN (Qin
et al., 2024b).

RetNet The Retention Network is composed of two primary blocks: (i) the Multi-Scale Retention
(MSR) layer and the (ii) FFN layer, which operates independently across tokens. The MSR layer,
responsible for token mixing, is built on top of the retention sub-layer and is defined as follows:

headi = Retention(X, γi), γi = 1−2−5−i, Y = GroupNormh(Concat(head1, · · · ,headh))
(22)

Furthermore, the outputs are scaled using a data-control gate branch, parameterized by a matrix
WG ∈ RD×D:

MSR(X) = (swish(XWG)⊗ Y ) (23)

To refine this formulation, we can represent the element-wise multiplication as a matrix multipli-
cation using a diagonal matrix G = diag(swish(XWG)). Additionally, per-head statistics can be
integrated into G. Given that the parallel representation of Retention can be depicted via an attention
matrix R (see Eq. 5 in (Sun et al., 2023)), the entire MSR block simplifies to:

Retention(x) = GRx (24)

HGRN The Hierarchically Gated RNN (HGRN) is first defined with the following recurrent rule:

ft = Sigmoid (xtWf + bf ) ∈ R1×d, it = Sigmoid (xtWi + bi) ∈ R1×d (25)

ct = SiLU (xtWt + bz) ∈ R1×d, ht = ft ⊗ ht−1 + it ⊗ ct ∈ R1×d (26)

where the output of the recurrent ht is multiplied by gt = SiLU(Linear(x)) to produce the output:

ot = gt ⊗ ht (27)

Note that the recurrent rule of the HGRN layer can be computed via an implicit attention represented
by a matrix αr (see Eq. 5 in (Qin et al., 2024b)), as follows:

H := (h1, · · · , hL), C = (c1, · · · , cL), H = αrc (28)
Hence, by define G = diag(SiLU(Linar(x))), Gact = diag(sigmoid(x)).

Furthermore, we can rearrange the linear layer such that Wt and bz will be omitted, and obtain:

GACT = diag(Sigmoid(x)), o = GαrGACTx (29)

which is a linear operator characterized by an input-dependent matrix, defined as G =
diag(Sigmoid(x)). The output o is given by o = Gαr.

ft = Sigmoid (xtWf + bf ) ∈ R1×d, it = Sigmoid (xtWi + bi) ∈ R1×d (30)

ct = SiLU (xtWt + bz) ∈ R1×d, ht = ft ⊗ ht−1 + it ⊗ ct ∈ R1×d (31)

where the output of the recurrent ht is multiplied by gt = SiLU(Linar(x)) to produce the output:

ot = gt ⊗ ht (32)

Note that the recurrent rule of the HRGU layer can be computed via an implicit attention represented
by a matrix αr (see Eq. 5 in (Qin et al., 2024b)), as follows:

H := (h1, · · · , hL), C = (c1, · · · , cL), H = αrc (33)
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Table 6: Evaluation and comparison of the pseudo-labels for the different classes in Pascal-voc
2012 (Everingham et al., 2010). Results are in mIoU
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Deit-S + Toco 86.00 56.49 37.27 76.80 45.73 58.31 82.56 71.95 76.75 30.66 79.13 71.04 81.31 71.41 59.51 44.87 80.85 41.81 60.73 29.72 61.10
Deit-S 49.12 17.53 25.01 14.49 19.43 55.55 49.33 37.92 61.32 15.85 34.90 55.27 32.36 29.83 64.82 33.24 23.84 32.53 32.76 36.40 35.99
Mamba-Attr 81.81 77.33 37.23 70.88 56.45 43.83 72.30 54.11 48.25 30.20 40.25 20.76 53.10 55.95 64.94 54.46 50.35 56.57 49.22 38.58 52.11

Hence, by define G = diag(SiLU(Linar(x))), Gact = diag(sigmoid(x)).

Furthermore, we can rearrange the linear layer such the Wt,bz will be omitted, and obtain:

GACT = diag(Sigmoid(x)), o = GαrGACTx (34)

as requested.

B WEAKLY SUPERVISED SEMANTIC SEGMENTATION

In weakly supervised semantic segmentation (WSSS), a common approach involves first training a
classifier on image-level labels and then extracting Class Activation Maps (CAMs) for individual
images, which highlight regions that the classifier deems relevant to specific classes. The SoTA
methods then employ these CAMs as pseudo-masks to train a segmentation decoder.

In this context, we adopt our proposed Mamba-Attr XAI method for vision-Mamba models. We
assess its competitiveness against the well-established CAMs in generating pseudo-labels for Trans-
formers. To ensure a fair comparison, we fine-tune both DeiT-Small and ViM-Small models under
identical conditions over the Pascal-voc 2012 (Everingham et al., 2010) dataset, excluding multi-
scale training, inference, or any other modifications. This controlled setting isolates the influence of
our Mamba-Attr method on the quality of the generated pseudo-labels.

The results are presented in Table 6. Evidently, Mamba-Attr XAI method achieves competitive
results surpassing the baseline approach of Class Activation Maps (CAMs) without any additional
modifications. This is evident in the mean Intersection-over-Union (mIoU) score, where Mamba-
Attr (52.11%) outperforms the CAM of DeiT-Small (35.99%) by a sizable gap. While Mamba-Attr
does not reach the state-of-the-art performance of Toco (Ru et al., 2023) (61.10%), it achieves, out
of the box, a substantial improvement over CAM and comes surprisingly close to this much more
elaborate multi-phase learning method which utilizes multiple loss terms specifically designed to
enhance the quality of the initial CAM map. These results suggest that Mamba-Attr XAI offers a
powerful and efficient solution for WSSS tasks with vision-Mamba models.

C PERTURBATION EXPERIMENTS FOR NLP

In this section, we present results for the perturbation test in the NLP domain with fine-tuned classi-
fiers. In this setting, we fine-tune the last layers of various LLMs and append the [CLS] token to all
samples to generate explanation maps, similar to the methods used in vision models.

In Figure 6, we present perturbation results for both positive and negative settings. We utilize
Mamba1, RWKV2 and BERT3 models as the models of interest and fine-tune them on the IMDB sen-
timent classification dataset, employing the [CLS] token for all samples. Subsequently, we evaluate
the explanation quality using a similar procedure as proposed in (Ali et al., 2024) for the perturbation
experiment.

The results reveal that Mamba-attr, based on our new attention formulation, achieves superior AUC
for both negative and positive perturbations compared to the previous attention formulation by (Ali

1https://huggingface.co/trinhxuankhai/mamba_text_classification
2https://huggingface.co/BlinkDL/rwkv-2-pile-430m
3https://github.com/hila-chefer/Transformer-Explainability
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et al., 2024). Additionally, our unified attention formulation is effective for RWKV models, yielding
comparable results to those of Mamba and BERT.

Moreover, as an ablation, the first column of Figure 6 demonstrates that including the gate branch,
as presented in our full method, consistently improves performance.
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Figure 6: Evaluation of explanations using input perturbations. Results for IMDB activation task
(top row) in which the most relevant words are added first, and for IMDB pruning task (lower row)
in which the words of least relevance are removed first. Results are shown for 3 different models:
RWKV, Mamba, and BERT, respectively.

D ADDITIONAL QUALITATIVE RESULTS FOR NLP

Additional NLP results obtained on IMDB dataset are presented in Figure 7. In panel (a), we show
the results for the previously proposed Mamba’s attention (Ali et al., 2024). Panel (b) shows our
proposed Mamba’s attention. Lastly, panel(c) presents our proposed method over RWKV. In red, we
show a negative sentiment, and in blue, we show a positive sentiment.

As can be seen from these qualitative results, the explanation maps generated by our new attention
formulation exhibit sparser and more accurate heatmaps of relevant words than those of Ali et al.
(2024), aligning with the desired properties of XAI methods. Similarly, the results for RWKV
models show comparable success to those of Mamba.
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E UNDERSTANDING THE INNER DYNAMICS OF GATED-LINEAR RNNS

Our unified formulation, presented in Equations 9, 11, 17, 21, 24, 34, reveals that several modern
gated-linear RNNs can be viewed as data-controlled linear operators. Specifically, these models can
be expressed in the form Y = AX where A is an implicit attention matrix dynamically controlled by
the input data. This matrix A is parameterized through various sub-layers, including linear recurrent
layers, Conv1D, linear layers, gating mechanisms, activations, and normalization layers.

Beyond the applications discussed in Section 2, this formulation sheds light on the inner dynam-
ics and design choices inherent in the parameterization of these layers. It suggests that the entire
mixing block in these models, including several sub-layers, implicitly parameterizes complex and
expressive attention matrices. This implies that these components collectively enable the model to
efficiently and implicitly express thousands of data-dependent (where transformers of the same size
typically have around a few dozen), complex attention heads.

Given the distinct behaviors of these sub-layers, we propose that they incorporate specific induc-
tive bias into the model. In particular, the Conv1D layers promote the inductive bias for attention
matrices to be relatively local and smooth. Similarly, the gating mechanisms, linear layers, and
activations allow the model to capture sparse and complex (non-linear) features that depend on the
input data. Finally, the LayerNorm can be reinterpreted as a per-row data-dependent scaling of the
attention matrix, analogous to the role of the softmax function in Transformers.

Our unified view also enables us to categorize attention models into three distinct types based on
their expressivity and efficiency: (i) Explicit Attention Models: Models like the Transformer com-
pute the attention matrix A explicitly during the forward pass, resulting in quadratic space complex-
ity with respect to sequence length. The attention weights are directly calculated from the input data,
allowing straightforward interpretability of how each element attends to others. (ii) Implicit Atten-
tion Models: Models such as RWKV, Mamba, and Griffin fall into this category. Although they do
not compute the attention matrix explicitly during the forward path, our formulation demonstrates
that their operations can be interpreted as implicit attention mechanisms. This implicit computation
allows for greater efficiency with sub-quadratic complexity. To further enhance the expressivity and
inductive bias of these implicit attention matrices, several sub-layers can be utilized. (iii) Attention
Tensor Models: In these models, the operation cannot be represented simply as Y = AX with
being a matrix. Instead, A is a higher-order tensor, capturing more complex interactions beyond
pairwise relationships. The S5 model serves as an example, where the data-control linear operator
does not mix tokens for each channel independently.

This categorization highlights the trade-offs and design considerations in different architectures.
In particular, explicit attention models are relatively more expressive but may suffer from higher
computational costs. In contrast to implicit attention models that balance between efficiency and
expressivity. Lastly, the attention tensor based models provide the capacity to model more complex
interactions at the expense of increased computational complexity and less interpretable representa-
tion.

This perspective not only enhances our theoretical understanding but also has practical implications.
It suggests that critical design choices in these models, such as the inclusion of Conv1D layers, gat-
ing mechanisms, and normalization techniques are critical for shaping the implicit attention patterns.
Future work can leverage this insight to optimize architectures further, potentially leading to more
efficient and expressive sequence models.
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