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ABSTRACT

Large vision-language models (LVLMs) achieve strong performance on multi-
modal tasks, yet they often default to their language prior (LP)—memorized tex-
tual patterns from pre-training while under-utilizing visual evidence. Prior analy-
ses of LP mostly rely on input—output probing, which fails to reveal the internal
mechanisms governing when and how vision influences model behavior. To ad-
dress this gap, we present the first systematic analysis of language prior through
the lens of chain-of-embedding, which examines the layer-wise representation dy-
namics within LVLMs. Our analysis reveals a universal phenomenon: each model
exhibits a Visual Integration Point (VIP), a critical layer at which visual informa-
tion begins to meaningfully reshape hidden representations and influence decod-
ing for multimodal reasoning. Building on this observation, we introduce the Total
Visual Integration (TVI) estimator, which aggregates representational discrepancy
beyond the VIP to quantify how strongly visual query influences response gener-
ation. Across 60 model—dataset combinations spanning 10 contemporary LVLMs
and 6 benchmarks, we demonstrate that VIP consistently emerges, and that TVI
reliably predicts the strength of language prior. This offers a principled toolkit for
diagnosing and understanding language prior in LVLMs. Code: ©

1 INTRODUCTION

Modern large vision-language models (LVLMs) (OpenAl, 2025; Comanici et al., 2025; Bai et al.,
2025; Zhu et al., 2025) have extended the boundaries of Al applications at an unprecedented rate.
Their remarkable capability in solving highly complex vision-language tasks originated from the
internalized rich unimodal knowledge during the pre-training (Radford et al., 2021; Oquab et al.,
2024; Brown et al., 2020) and also from the strong multimodal alignment (Liu et al., 2023; Dai et al.,
2023; Zhu et al., 2024). Despite their successes, a central challenge remains: LVLMs are prone to
over-relying on their language prior (LP)—the statistical patterns memorized during large-scale
language model pretraining—while under-utilizing the actual visual evidence (Fu et al., 2024; Lee
etal., 2025; Luo et al., 2025). This imbalance often results in hallucinations, shortcut reasoning, and
brittle generalization when tasks truly demand visual grounding. For example, when asked “What
color is the banana?”’, an LVLM may confidently answer “yellow” even if the banana in the image
is green, demonstrating that the model defaults to its LP. Recent studies (Yin et al., 2024; Liu et al.,
2024d; Lee et al., 2025) further show that such LP reliance persists across diverse tasks.

Understanding and quantifying LP in LVLMs is thus critical, both for diagnosing their limitations
and for guiding the design of more reliable multimodal systems. However, current approaches to
analyzing LP primarily rely on input—output probing. For instance, Lee et al. (2025) and Luo et al.
(2025) constructed datasets with counterfactual visual input to measure models’ performance under
challenging visual grounding scenarios, while Deng et al. (2025) evaluate models on modality-
conflicting queries to assess modality preference. While useful, such coarse input-output analyses
have fundamental limitation to investigate LP of LVLMs in-depth, because: (1) they ignore the rich
latent representations inside the model, which may inform how textual and visual signals are inte-
grated, and (2) they cannot disentangle where in the model the LP begins to interfere with effective
visual integration, leaving per-sample mechanistic interpretation (Bereska & Gavves, 2024) elusive.

Motivated by this, we propose a new framework for understanding and quantifying language prior,
which leverages the chain-of-embedding—the sequence of hidden representations across LVLM
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Figure 1: Framework Overview. For data from two distributions Py (vision-dependent) and P,
(vision-independent), we extract chain-of-embedding for two queries w/ and w/o visual input, and
use the expected representation distance to spot visual integration point I*. Then, estimating fotal
visual integration based on [* allows us to quantify LP of an LVLM per sample.

layers. Making use of these latent representations is essential, because they provide direct insight
into the inner mechanisms of LP, beyond surface-level outputs. Specifically, our framework contrasts
embeddings from vision-text inputs (Z';,) with those from vision-removed inputs (Z};;,), at each
layer [. Based on the contrastive chain-of-embedding, we reveal a striking phenomenon: LVLMs
exhibit a Visual Integration Point (VIP), a layer at which visual information begins to meaningfully
influence the LVLM’s decoding process. At and beyond VIP, the distance between Z. and Z};; ,
increases substantially for vision-dependent tasks, signaling that the model has begun to actively
integrate visual evidence to solve the task. In contrast, vision-independent tasks show a smaller such
shift. Thus, VIP captures a critical point where visual input begins to exert meaningful influence on
inference, revealing the extent to which the model relies on vision or falls back on language priors.

Inspired by observations from VIP, we propose quantifying LP through Total Visual Integration
(TVI), which measures the effective amount of visual integration that affects the answer decoding of
LVLM. Specifically, TVI aggregates distance between contrastive embeddings Z',; and Z|;,, across
all post-VIP layers to measure the cumulative strength of visual integration. Intuitively, TVI is
inversely related to the magnitude of LP: models with strong reliance on language priors exhibit low
TVI, while those that leverage vision more deeply exhibit high TVI. Through extensive experiments
covering 10 contemporary LVLMs and 6 datasets (60 settings combined), we show the universality
of the existence of VIP, and that TVI can be a reliable indicator of LP. Moreover, we demonstrate that
TVI strongly correlates with performance on benchmarks requiring visual reasoning, outperforming
other proxies such as visual attention weights or output divergence. Then, we provide a theoretical
interpretation of our measure as well as analytic bounds of it for broader use in practice. We illustrate
the overall framework in Figure 1, and summarize our contribution as follows:

1. We present a novel framework that contrasts the chain-of-embedding of an LVLM for fine-
grained analysis of the visual integration and language prior of LVLMs.

2. Based on this framework, we show that there is a specific layer, VIP, where an LVLM’s
behavior undergoes a dramatic change, and observe that post-VIP layers’ representations
play a key role in quantifying the amount of language prior of an LVLM.

3. Across 10 representative LVLMs and 6 datasets, we consistently demonstrate the existence
of VIP, show how we can use it to predict the strength of language prior of an LVLM on a
certain sample through TVI, and further present theoretical analyses on our framework.

2 PROBLEM STATEMENT

Basic notations. Let D = {(z,,z;);})V, denote a dataset of N image-text queries (,,, 7;), sam-
pled from a population distribution P. Each tuple (z,,, z;) consists of a visual input x,,, and a natural
language query z, expressed in a prompt form. We distinguish X, from z,, to denote a random vari-
able and its observation (similarly for X;). Then, we define the data structure as follows.
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Definition 2.1. We define Pyr as the vision-dependent distribution, consisting of examples where
resolving the textual query requires access to the associated visual input. In contrast, Pr is the
vision-independent distribution, containing examples where the textual query can be answered cor-
rectly without visual information (i.e., the text alone suffices). A sample dataset D is constructed
with Dyr and Dy, each containing at least one element from populations Pyr and Pr, respectively:

D = {DVT U DT . min(|DVT|, |DT|) Z 1}, (1)

where | - | denotes the cardinality of a set. See examples of Dyr and Dy in Figure 1.

Meanwhile, we have an LVLM, Fy = f, o fr o fr_1 0---0 f1 o fy, parameterized with 6. Here,
fo denotes the composition of the visual encoder, modality connector, and text embedding layer;
(f1,--., fr) corresponds to the L stacked decoder layers of the LLM; and f}, is an output head. The
LVLM maps the multimodal input query (x,,, x;) to a |V|—dimension probability distribution over
the vocabulary space V, from which the most likely answer ) is obtained via the argmax operator.

Language prior (LP). An LVLM has a vast amount of knowledge in its parameters obtained
during unimodal pretraining and visual instruction tuning of entire model components. Since the
pre-training of LLM backbone is far more extensive in quantity and diversity of data, and total com-
puting budget, LVLMs are prone to over-reliance on memorized statistical textual patterns without
integrating visual information during inference. Given an input z and an LVLM Fj, we define
the model’s reliance on statistical textual patterns as the language prior, LP(z, Fp). Note that LP
is more like a latent property that lacks a gold-standard measurement. Therefore, previous work
typically approximates how robust an LVLM is against LP through its performance on carefully
curated datasets. In contrast, we propose a novel approach that (1) does not require any annotations
or careful data curation, (2) tries to quantify LP in a more direct manner, which enables flexible and
fine-grained, sample-wise diagnosis for LP of LVLMs. Refer to Appendix A for additional context.

Our position. Although there have been recent attempts to analyze LP in LVLMs, they primarily
focus on evaluating model predictions on curated datasets (Lee et al., 2025; Luo et al., 2025; Vo
etal., 2025), without offering a well-defined or generalizable formulation. We argue that such coarse
input-output analysis is insufficient: it cannot reveal how LP manifests within the model nor how
it can be rigorously quantified. In particular, prior approaches overlook the rich latent information
encoded inside LVLM—intermediate representations that inform how visual and textual signals are
integrated and how biases emerge. Making use of these latent representations is essential because
they provide direct insight into the inner mechanisms of LP, beyond surface-level outputs. With
this motivation, we pose the following research question: Can we derive a formal framework to
understand and quantify the language prior of LVLMs through the lens of their internal states?

3 METHODOLOGY

3.1 CHAIN-OF-EMBEDDING AND REPRESENTATION DISTANCE

In contrast to previous approaches that focus on LVLM output (Rahmanzadehgervi et al., 2024; Vo
etal., 2025; Lee et al., 2025; Luo et al., 2025), we leverage the chain-of-embedding for fine-grained
analysis of LVLM, which is defined as a sequence of hidden states across layers, i.e., (Z',--- , ZF),
where Z! = f;(X,, X;) € R%! denotes the last-token embedding at [ € {1,..., L} as a contextual
summary vector’. Notably, we contrast embeddings from two different input constructions as below.
Zvlis = fi(Xv, X¢) (embedding from both visual and textual inputs)

Zytina = fi (9, Xt) (embedding from textual input only)

Now, given a distance metric d, we analyze the difference between these two embeddings per layer
by defining an expected representation distance and its finite-sample estimator,

1 il
Di(Ps, Fo) = Ex,,x,)~P, [d(Z\l/is, Ztlylind)]y Di(D,, Fp) := W Z d(le/;s’zll)iind)’ @
*(@y,ze)i €Dy

where D, is Dy or Dr, and P, is Py or Pr.

'Although Z' = fi(... fo(f1(Xu, X+))) is more precise, we slightly abuse the notation for clarity.
2Such last-token embeddings integrate information from all preceding tokens and are widely used to inves-
tigate model’s behavior when generating the next token (Jiang et al., 2024; Tian et al., 2024; Li et al., 2025b).
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We adopt the cosine distance by default, though other distance functions, including non-metric dis-
tances (Deza & Deza, 2()()9), can also be valid. An ablation study with alternative metrics is provided
in Section 4. Intuitively, Z , should encode distinctive visual semantics that cannot be inferred from
text alone, whereas Z;, prlmarlly reflects the model’s default linguistic expectations. However,
the degree of this discrimination can depend on how visual information contributes differently to
different data, and across different layers [ of the model. We elaborate on this in the next section.

3.2 VISUAL INTEGRATION POINT HYPOTHESIS

Deep neural networks are known to develop hierarchical representations across layers (Chen et al.,
2023; Fan et al., 2024; Jin et al., 2025), where each layer has different types and resolutions of
information (Joseph & Nanda, 2024; Skean et al., 2025; Artzy & Schwartz, 2024; Jiang et al., 2025).
In this paper, we hypothesize that an LVLM has a Visual Integration Point (VIP) I*, a critical layer
where the model begins to actively leverage visual information to perform task-specific reasoning.
Prior to this point, the model primarily engages in general-purpose processing of visual and textual
inputs—visual features may be “seen,” but not yet “used” to guide inference, and the interactions
between modalities remain shallow. This behavioral shift can be reflected in the representation
distances: at and beyond VIP, the distance between Z. and Z},; , increases markedly for vision-
dependent tasks (Prv), signaling that the model has started to utilize visual information to solve the
task, while vision-independent tasks (Pr) show smaller such shift. Thus, the notion of VIP captures
a key behavior transition inside LVLMs. If such a specific point [* exists, identifying it allows us to
localize where the differences between language-prior-dominated and visually grounded inference
start to manifest within the model’s internal processing. We formalize this hypothesis below.

Hypothesis 3.1 (Existence of the visual integration point). Given a distance metric d(-,-) : Z X
Z — R, distributions Pry and Pr (Eq. 1), and an LVLM Fy with L layers which produces a chain-

of-embedding (Z*, ..., Z) given input, let D; be an expected representation distance defined as Eq.
2. Then, there exists a visual integration point l* that discerns D; between Pyr and Pr, that is,

Dz('PVT, Fg) — Dz(pr, Fe) >7, VI>I"

el L—1) st , 3
€{Ll bos {DZ(PVT,FQ)DZ(PT,FQ)%(), Vi<l® )

where 7 € RY denote a model-dependent constant threshold for each data distribution’.
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Figure 2: Visual Integration Point. We consistently observe that there is a specific layer [* that
clearly distinguish the distance between Z'_ and Z!;, , across two groups Dyt and Dr.

In Figure 2, we plot the representation distance estimated for two groups: Dyt (vision-dependent)
in red and Dy (vision-independent) in blue, across all layers in Qwen?2 . 5-VL-7B (Bai et al., 2025)
and Gemma-3-4B (Team et al., 2025). We evaluate on three representative datasets: MME (Yin
etal., 2024), MMBench (Liu et al., 2024d), and VLind-Bench (Lee et al., 2025). Since these datasets
do not explicitly annotate the degree of visual dependency for each instance (Pyt vs. Pr), we par-
tition each dataset D into two auxiliary groups: Dyt = {(2y,2t) € D : Fp(xy, ) # Fp(D,2¢)}
and Dr = {(zy,2t) € D : Fp(zy,z:) = Fp(2,x)}. This split leverages the prediction agree-
ment between multimodal and text-only inputs as a proxy for task type: if two predictions differ, the
sample must have demanded visual information to the model, suggesting membership in Pyr likely.

3We manually select the 7 and VIP for each model over the observed distances D; for analysis convenience
(see Appendix B and C for details on this manual selection and an automatic selection method as well).
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From Figure 2, we make four key observations: (1) Existence of VIP. Representation divergence
between Dy 1 and Dr does not show from the beginning. Instead, for both models, we observe a
clear visual integration point (I*), where the representation distance for the Dyt group rises more
sharply compared to Dy group, marking the onset of genuine multimodal integration; (2) Behavioral
shift across VIP. We observe a notable increase in the standard deviation of representation distances
across VIP. Specifically, before VIP, the model exhibits relatively uniform representation distances
across samples, suggesting general-purpose information processing. After VIP, the model’s usage of
visual information becomes more diverse and instance-dependent to solve a specified task for each
query; (3) VIP is dataset-agnostic. Within each model, the location of the VIP is relatively con-
sistent across all datasets. For Qwen2 . 5-VL-7B, the transition consistently occurs around layers
18-20, and for Gemma—3-4B, the transition is around layers 20-22. This stability suggests that the
VIP is primarily the LVLM’s intrinsic property, not one driven by dataset-specific biases; and (4)
Model-specific patterns. Despite the shared existence of the VIP, the shape of distance across lay-
ers differs across models. In Qwen2 . 5-VL~7B, representation distance grows relatively smoothly
before peaking near the middle-to-late layers and then declines. In contrast, Gemma—3-4B exhibits
flat trajectories for many early layers, followed by a steep and monotonic rise after VIP. This sug-
gests that each model has a distinctive hierarchical representation derived from its unique designs.

Overall, these findings highlight not only the universality of the VIP existence, which distinguishes
vision-centric decoding (post-{*) from general information-gathering behavior (pre-l*), but also the
variability in how different LVLMs distinctively integrate visual information across depth.

3.3 QUANTIFYING LANGUAGE PRIOR OF LVLMS THROUGH TOTAL VISUAL INTEGRATION

Although the visual integration point detects the birth of LP(z, F), we are also (or even more)
interested in how strong LP(x, Fy) is. To quantify this, we define a total visual integration (TVI)
estimator in Def. 3.2, which measures the total amount of visual integration that effectively affects
the answer decoding of LVLM, and thus is inversely related to LP in nature.

Definition 3.2 (Total visual integration estimator). For an observed input © = (x,,x), define
Zyis 1= (Ty, @) and Tpjing := (D, x¢). Given an LVLM Fy with L decoder layers which produces
two sets of chain-of-embedding (2L, ..., 2E) and (2};,4 - 2ina)> We define the empirical estimator
for the per-sample total visual integration as follows,
1 L
% 1o
TVI(I*; 2, Fp) = I +1 l;: [d(24iss Zhiina) ] 4)

where 2L, = fi(@vis), 24 = fi(Toiina), and d(-, -) denotes a distance metric.

Here [* marks the VIP layer, where visual information begins to meaningfully influence the model’s
internal states for visually-grounded decoding. The TVI score then measures the cumulative con-
tribution of visual information by averaging representation distances across all subsequent layers
(I > I*). The idea behind TVI is that once the model passes the VIP, its internal representations
increasingly reflect effective visual grounding, rather than shallow alignment or language-driven
statistical patterns. A higher TVI indicates that visual information is more effectively utilized dur-
ing the response decoding phase, while a lower TVI suggests that the model is more likely to remain
text-dominated even after [*. In this sense, TVI provides a holistic measure of how much the model
truly uses vision for actual problem solving: a strong LP corresponds to weak or shallow visual
integration (low TVI), while effective multimodal reasoning corresponds to high TVI.

To investigate the distinction between pre-I* and post- 1able 1: Spearman’s rank correlation
[* phases in visual integration, we analyze Spearman’s between prediction correctness and TVI
rank correlation between them and answer correctness aggregated from different layers.

on VLind-Bench (Lee et al., 2025), which requires vi- ol pre-1* post-1*
sua}l reasoning. The resul.ts in Table 1 show that corre- 0.1459 Sl
lations are weak and statistically less-significant when ~— @wen2.5-VL=7B . _ g 402y  (p < 0.001)
TVI is computed over pre-I* layers. In contrast, the  opmaz_sas 04659 0.7174
post-I* aggregation yields remarkable correlations with (p<0.001) (< 0.00)
the prediction correctness, indicating that only after the VIP, the representation distance becomes
strongly associated with task performance, thereby serving as a reliable indicator of effective visual
integration. In this paper, we stick with post-I* aggregation in Definition 3.2.
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Figure 3: VIPs of different models observed across different datasets. Our novel framework,
fueled by contrasting chain-of-embedding, allows us to consistently observe VIP across multiple
models and datasets, and further enables us to estimate TVI to measure language prior.

Taken together, results from Figure 2 and Table 1 highlight two key insights: (1) the existence of the
visual integration point [*, where effective representational shifts starts to happen by integrating vi-
sual information, and (2) the strong relationship between post-I* TVI and downstream performance
on vision-dependent tasks. These findings demonstrate that VIP and TVI provide a principled toolkit
for analyzing visual integration and language prior in LVLMs. We summarize our findings below.

Summary of preliminary findings

1. The layer-wise expected representation distance between Dyt and Dr, i.e., D;(Dyr, Fp) —
Dy (Dr, Fy), shows a sudden bump up after a specific layer {*, while marginal before *.

2. The aggregated distance ﬁ*ﬂ ZlL:l* [d(2i, 2jina))] Over post-I* layers serves as a reli-
able indicator of language prior, particularly for datasets requiring visual reasoning.

4 EXTENDED EXPERIMENTS

Building on the visual integration measurement introduced in the previous section, we conduct ad-
ditional experiments to assess its empirical validity. Furthermore, we designed a set of in-depth
analyses to explore the relationship between visual integration and the language priors in LVLMs.

VIP consistently emerges across different datasets and models. We extend the experi-
mental setups described in Section 3 to a broader range of 6 datasets and 10 LVLMs,
including Qwen2.5-VL-7B (Bai et al, 2025), InternVL3-8B (Zhu et al, 2025),
Gemma-3-4B (Team et al., 2025), LLaVA-v1.5-7B (Liu et al., 2024a), Eagle2.5-8B (Chen
et al, 2025a), Llama-3. 2-11B-Vision®, LLaVA-NeXT-Vicuna-7B (Liu et al,
2024b), LLaVA-0OV-Qwen2-7B (Li et al., 2025a) SmolVLM (Marafioti et al., 2025), and
InstructBLIP-Vicuna-7B (Dai et al,, 2023). For the datasets, we consider general VQA
benchmarks including MME (Chaoyou et al., 2023), MMBench (Liu et al., 2024d), MMStar (Chen
et al., 2024), and MMMU (Yue et al., 2024). We also incorporate two benchmarks specifically de-
signed for language prior evaluation, which are VLind-Bench (Lee et al., 2025) and ViLP (Luo et al.,

*nttps://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
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2025). This results in a combination of 60 experimental settings. Implementation details, including
data statistics, generation configuration, strategy for VIP selection, etc., are provided in Appendix C.
As illustrated in Figure 3, the emergence of VIP is remarkably consistent across all settings: for each
model, there exits a clear transition layer I* where the distance between embeddings Z',_ and Z};. ,
increases more significantly for vision-dependent group (Drv), compared to the vision-independent
group (D). These results highlight the universality of the VIP existence. Due to the space limit, we

defer the complete experimental results to Appendix D.

Qwen2.5-VL-7B on MMBench&ViLP LLaVA-v1.5-7B on MMBench&ViLP
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Figure 4: TVI under language priors of different strengths. We see that TVI effectively discerns
the differences in strength of LP, thereby standing for a reliable measure for LP.

TVI reliably differentiates strong vs. weak language prior. To examine whether TVI (c.f. Defi-
nition 3.2) reliably reflects the strength of the language prior, we contrast results on two complemen-
tary datasets: ViILP and MMBench. ViLP is intentionally constructed to induce a strong LP on the
data side by designing queries where plausible answers can often be inferred from textual patterns
or statistical correlations without the need for visual grounding. In contrast, MMBench represents
a weak LP setting, with less misleading questions that encourage stronger visual grounding for task
success. As shown in Figure 4, our analysis reveals that datasets with stronger language priors (e.g.,
ViLP) yield lower TVI values, indicating weaker visual integration in the model, whereas less biased
datasets (e.g., MMBench) produce higher TVI values, reflecting stronger use of visual information.
This confirms that TVI serves as a reliable quantitative indicator of LP.

Interventional validation for TVI. To further ver- Table 2: Downstream performance and
ify whether TVI robustly quantifies LP under differ- TVI before and after intervention.

ent inferenqe setups, we cor}duct a smau interventi(?nal Accuracy (%)  TVI
study. Specifically, we applied an attention-correction- - -

based hallucination mitigation method PAI (Liu et al., Before intervention 50.00 0.038
2024¢) to Qwen2 . 5-VL—7B as an inference-time in- After intervention 52.33 0.144

tervention, which promotes the model to pay more at-

tention to visual features, implicitly increasing visual integration. As shown from the results in
Table 2, the intervention not only improves task performance but also yields a substantial increase
in TVI. This observation demonstrates that TVI faithfully reflects changes in the model’s degree of
visual integration, thereby providing robust evidence that it is a reliable metric for quantifying LP.

Comparison to existing proxy for lan- Table 3: Spearman’s rank correlation between dif-
guage prior. There are alternative ap- ferent metrics and answer prediction correctness.

proaches to explain LP proposed in previ- Owen2 .5-VL-7B TnternVL—3-8B
ous works, which rely on output-based or  \1oic VLind ViLP VLind ViLP
attention-based heuristics by assuming (1) 07155 06335 06727 05709
LP manifests as high similarity between TVI (p <0.001) (p<0.001) (p<0.001) (p< 0.001)
output tokens generated with and with- g 0.0871 -0.0364 0.4967 0.0746
out visual input (Chen et al., 2025b; Xie  Attention  (p=0.075) (p=0.530) (p<0.001) (p=0.197)
et al., 2024), or (2) LP arises due to insuf-  Output 0.2978 0.5084 0.1627 0.5615

ficient attention being allocated to visual Divergence (p <0.001) (p<0.001) (p<0.001) (p<0.001)
tokens (Liu et al., 2025). In Table 3, we
compare our TVI with two existing approaches (see Appendix C for detailed formulation), average
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visual attention and output divergence, by conducting the Spearman’s rank correlation analysis be-
tween these measures and the correctness of model predictions on two datasets, which all require
integrating visual information to produce correct answers. Our TVI consistently exhibits a stronger
correlation with output correctness across all datasets and models, suggesting that TVI stands for a
reliable indicator of effective visual integration of LVLMs. In contrast, the other approaches show
weak and inconsistent correlations in different scenarios.

We argue that both existing approaches fail to directly capture the true impact of visual integration
on the model’s generation. In the case of visual attention, the model may assign high weights to ir-
relevant regions of the image rather than the areas required for correct reasoning, and ultimately fall
back on its language prior to generate the answer—resulting in inflated attention scores but weak
correlation with language prior. Meanwhile, solely measuring output-level discrepancy does not
fully capture fine-grained behavior exhibited in internal representation dynamics—differences that
are more fundamental in nature than what can be observed from final outputs. It shows the signifi-
cance of procedural aggregation in TVI. We provide additional visualization analysis in Appendix E.

Ablations on distance metrics. To investigate how different

choices of distance metric d affect our ability to capture model Table 4: Spearman’s rank cor-
behavior, we conduct ablation studies with alternative formu- relation between correctness and
lations of TVI. As shown in Table 4, TVI remains a strong TVI under different distance
indicator of model correctness when computed using the L2 metrics. Results are based on eval-
distance between latent embeddings. However, when we ap- uations using Qwen2.5-VL-7B.
ply the logit-lens technique (nostalgebraist, 2020)—projecting ~ All p-values are < 0.001.

hidden states at each layer into the output token space and
computing divergence between the resulting distributions—the
effectiveness of TVI drops significantly. This degradation sug-  Embedding-based

gests that such a projection distorts or suppresses the interme- Cosine Distance  0.7155  0.6335
diate behavioral differences that occur during decoding. The L2 Distance 0.7123  0.6578
output space, shaped by the language modeling head, inher- Output-based (w/ logit-lens)

ently filters latent representations through a decoding-biased KL Divergence  -0.1693  0.2901
lens, which may obscure subtle but meaningful cross-modal JS Divergence -0.2261  0.2942
integration patterns. These observations reinforce our central
contribution: to faithfully capture the behavioral dynamics of vision-language models, it is essen-
tial to examine the internal processing trajectory within the latent representation space, rather than
relying on surface-level discrete outputs or their immediate projections. Additional visualization
analysis is provided in Appendix E.

Metric VLind ViLP

Varying model scales. We fur-
ther examine whether our find-
ings generalize across models of
different scales. = As shown in
Figure 5, the VIP consistently
emerges across models of varying
sizes (4B, 12B, and 27B), under-
scoring the robustness and gener- T T ‘
ahty Of our proposed behavioral . Gemma-3-48 on VLind-Bench  cemma- 3-12B on VLind-Bench  cemma- 3-278 on VLind-Bench

Gemma-3-4B on MME Gemma-3-128 on MME Gemma-3-278 on MME

<= Dy (Avg Normalized TVI=1.022) -+ Dy (Avg Normalized TVI=1.510) ~+= Dy (Avg Normalized TVI=2.206)

vi Tvi
e~ Dyr (Avg Normalized TVI=1.494) ~4= Dyr (Avg Normalized TVI=2.071) ~4= Dyr (Avg Normalized TVI=2.687)
T ] T ] T

 x Vdim
Vdim

analysis framework. Interestingly, T ot e eeh L oot T30 L e et o a0

we also find that the VIP tends to

appear at a similar relative depth, 5™ :
which is approximately 60% of the = N Al
total number of layers, regardless S

of model size. In addition, after . Ir—
normalizing by the dimensionality e
of hidden states, we observe that
the average normalized TVI is con-
sistently higher in larger models on
both Dyt and Dr. This suggests
that larger models are more effective at leveraging visual information in a uniform manner across
diverse input types, thereby exhibiting greater robustness to misleading language priors. These

, x Vdim

Figure 5: Varying model scales. VIP and the dimension-
normalized TVI analysis results for three variants of
Gemma-—3 model family.
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observations collectively reinforce the broader applicability of our framework in analyzing visual
integration behavior across model scales.

Practical utility. We also investigate the practical applicability of TVI here by providing a con-
crete example to make use of our findings to actually improve LVLMs. Specifically, we leverage
TVI as an additional regularization term along with the vanilla cross-entropy loss for next-token
prediction during instruction tuning. That is, given the input © = (x,, ;) and instruction y, we
adjusted the original LLaVA training objective (Liu et al., 2023) to:

L(z,y;0) = —log Fy(ylx) — A - TVI(I*; z, Fy), (5)
where the strength of the regularization is controlled by A (we set as 0.03). Due to resource limi-

tations, we trained the model on a 60k randomly sampled subset of 11ava_v1_5mix665k. All
other hyperparameters used for visual instruction tuning remain the default of Liu et al. (2023).

The result is shown in Table 5, where the Table 5: Effect of TVI regularization on down-
performance improvement indicates that ex- stream performance, MME dataset (Chaoyou
plicitly encouraging stronger visual integra- et al., 2023) with LLaVA-v1.5-7B.

tion (via TVI) leads to better downstream
task performance. This highlights TVI’s po-

Perception Reasoning

tential as a helpful training regularizer for =~ LLaVA-v1.5 1369.75 298.21
improving the visual perception and reason- ~ LLaVA-v1.5 w/ TVI 1400.44 321.43
ing of LVLMs in practice.

Additional empirical analyses. In addition, we deepen our understanding of the proposed frame-
work by providing additional analysis in Appendix E, including different aggregation strategies for
TVI calculation, instruction-level perturbation, image-text vs. image-only chain comparison, VIP
and TVI evolution across training stages, and case studies on TVI failure cases.

5 THEORETICAL ANALYSIS

Next, we introduce a new interpretation for our measure, D;(Pyt, Fy) — D(Pr, Fp), that locates
VIP (Theorem 5.1) and discuss how we can practically employ the expected representation distance
(Theorem 5.2) through theoretical analyses. All the proofs and an additional theorem that justifies
the use of our empirical representation distance (Lemma F.1) are given in Appendix F.

Information-theoretic interpretation on representation divergence. By recasting the represen-
tation distance measurement as a density estimation problem, i.e., d(Z , Z}. ;) oc —logpr(Z?)
(please see Lemma F.2), we show that the difference in expected representation distances,
D;(Pyr, Fy) — D,(Pr, Fy), which we call representation divergence here, can be interpreted as
a relative distributional discrepancy that measures how far the density estimator pr(Z'), defined by

d(ZL., ZL.4), from a population distribution pyt(Z') compared to pr(Z!) in Theorem 5.1.

vis?

Theorem 5.1. Let X = (X, Xy) € X be a random variable from Pyr or Pr, and f; : X — Z
be a layer stackfrom an LVLM Fy. For Pr, define a density estimator pr(Z') := N (Z'; f,(X;), 1),
and denote pyr(Z') (resp. pr(Z')) as the population distribution on Z' = f;(X) derived from Pyr
(resp. Pr). Then, given d(Zy, Zy) = %||Z; — Z2||2, the difference in the expected representation
distances between Pyr and Pr, i.e., Dl(2 Pyr, Fy) — Di(Pr, Fy), can be expressed as follows,

KL(pvr(2')[pr(2")) = KL(pr(2)lpr(2")) + H, (©)
where H is a constant H (pyr(Z')) — H (pr(Z')), and KL(:||-) denotes the KL divergence.

Implication. Theorem 5.1 tells us that Dl('P\m Fy) — D;(Pr, Fy) can be interpreted as a
relative proximity of the density estimate pr to each distributions pyt and pr with an additive
constant H. Intuitively, the first term, KL(pvyr||pr), can be understood how pr (estimate of
pr) far from the true representation distribution on Pyt while the second term, KL(pr||pT),
is a quality of the density estimation with pr to approximate py. This expression converts
the expected representational distance of the LVLM Fjy over pyt and pr into an information-
theoretic divergence, the amount of surprise if we approximate the distribution over pyt via a
blind-representation-centered Gaussian estimator pr(Z') = N (+; Zq, 1)-
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Analytic bounds on representation divergence for practical use. We have assumed a fixed
model Fy so far. If one is willing to adapt the model to improve its effective visual integration,
the analytic bounds in Theorem 5.2 described with H-divergence (see Def. F.4) can be useful.

Theorem 5.2. Let X = (X,, X;) € X be a random variable of a multimodal input query. Given a
stack of LVLM layers f, : X — Z and a distance metric d : Z x Z — [0, 1], define a hypothesis
h = d(fi(Xy, Xt), fi(Xy)) :+ X — [0,1] and a set of these hypotheses H that has a pseudo-
dimension c. Then, for Di(Py, Fy) := Exp, [h(X)] with any Pyr, Pr, and Py = w, and
the empirical distributions Dyr ~ Pyr and Dr ~ Pr of N samples for each, we have the following
bounds w.p. at least 1 — 6§ for 0 < § < 1,

. 1 -

i) 1 —Dy(Dr, Fp) — §d7-_[(DVT7 Dr) — Os < Dy(Pvr, F), (7
1 1 ~ 1 1 -

i) R Ed;q(Dvn Dr) — Os < Dy(Py, Fy) < 2 + quq(DVT, Dr) + Os (8)

where H = Iy (x)|>t - ho B € H,0 <t < 1} and Oy = O(\/%(log% + clog %))

Implication. The first inequality (Ineq. 7) reveals a relationship between two expected rep-
resentation distances across Pyt and Dy ~ Pr with dg (Dyr, Dr) as a bridge. This tells us
that if we want to increase visual integration for an unknown data distribution that require vi-
sual reasoning (Pyr), we can pursue a greater lower bound of it by decreasing D;(Dr, Fy) and
d 7 (Dyr, Dr) with empirical samples we have. Meanwhile, in a case where we encountered an
unknown mixture distribution Py, the second inequality (Ineq. 8) tells us we can broaden the
effective range of D; on Py by pursuing greater value of dg (Dyr, Dr).

6 CONCLUSION

In this work, we present a formal framework for understanding and quantifying the language prior
in LVLMs by contrasting the chain-of-embedding between visual and blind contexts. Through this
framework, we identify the consistent existence of the Visual Integration Point (VIP), a specific
layer at which the model begins to meaningfully incorporate visual context for task-solving beyond
the shallow information gathering. Building on this observation, we propose a new metric named
Total Visual Integration (TVI), which estimates the degree of effective visual integration and there-
fore language prior. We conduct comprehensive experiments across 9 LVLMs and 6 datasets, and the
results demonstrate that our framework robustly works across models and tasks, providing consistent
and interpretable signals about the presence and strength of language prior. Finally, we present some
theorems for better understanding and utilization of our framework. We hope that this work sheds
light on the internal mechanisms of multimodal models and provides a foundation for diagnosing
the language prior, ultimately guiding the development of reliable and responsible LVLMs.

Limitations. We set the language prior to LVLMs as our sole target of analysis here, and devel-
oped our method based on the representation dynamics of LVLMs. However, there are many other
potential biases and vulnerabilities originating from query distribution shifts in the wild, which may
induce remarkable changes in the representation space and thus degradation of downstream perfor-
mance (Verma et al., 2024; Oh et al., 2025a;b; Kim et al., 2025). Reliability of TVI-based language
prior estimation should be further validated under realistic distribution shifts.

Besides, our method requires white-box access to the model’s internal hidden states and attention
patterns. This restricts its applicability to open-weight models and excludes commercial APIs or
closed-source systems. However, our framework is primarily designed for model analysis and inter-
pretability research of white-box models, rather than serving as a versatile tool, aiming to shed light
on how and when visual information is integrated during inference.
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Figure 6: Complete experimental results. (Part 1) LLaVA-v1.5-7B, LLaVA-NeXT-Vicuna-7B,
and LLaVA-OV-Qwen2-7B on six datasets.
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Figure 7: Complete experimental results. (Part 2) Gemma-3-4B, SmolVLM, and Llama-3.2-11B-
Vision on six datasets.
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A RELATED WORK

Visual perception in LVLMs. Most mainstream LVLMs (Liu et al., 2023; 2024a;b; Bai et al.,
2025; Dai et al., 2023) adopt a late-fusion architecture comprising three key components: a vision
backbone, a language model that processes both image and text tokens, and a modality adapter that
aligns visual representations with the language space. The visual understanding capabilities of these
models largely depend on the perception quality of pre-trained vision encoders (e.g., CLIP (Radford
etal., 2021), SigLIP (Zhai et al., 2023)) and the reasoning ability of large-scale language models.

Despite promising results on some multimodal benchmarks, this paradigm has been recently chal-
lenged due to its poor performance on vision-centric tasks, suggesting that these models often fail to
truly see the image (Tong et al., 2024b;a; Vo et al., 2025). A growing body of work has sought to un-
cover how visual perception operates internally within LVLMs. For example, Bi et al. (2025); Jiang
et al. (2025); Neo et al. (2025) examine the layer-wise attention patterns and identify distinct phases
of visual integration, typically emerging in the mid-to-late layers. Venhoff et al. (2025) utilize pre-
trained sparse autoencoders (SAEs) as analytical tools to show that visual representations gradually
align with language representations over depth, converging in the later layers. Complementarily, Fu
et al. (2025) apply probing techniques and argue that language decoders in existing LVLMs struggle
to effectively leverage the visual features produced by their vision backbones. Their findings suggest
that the bottleneck lies not in the availability of visual information but in feature misalignment.

Language prior in LVLMs. One of the most prominent limitations of current LVLMs is their
tendency to overly rely on language priors, often generating plausible outputs without grounding in
the visual context. This behavior—commonly referred to as the language prior problem—has drawn
increasing attention. Recent studies attempt to evaluate this phenomenon by designing datasets
that stress-test visual grounding. For example, Lee et al. (2025) and Luo et al. (2025) construct
datasets with counterfactual visual inputs to assess whether models can disentangle visual signals
from misleading linguistic cues. Similarly, Deng et al. (2025) test modality conflict scenarios to
evaluate the model’s preference between text and image inputs.

While these works help reveal the presence of language priors, they offer limited insight into the
underlying causes. Most current understandings of language prior are based on two widely adopted
assumptions: (1) it manifests as high similarity between outputs with and without visual input (Chen
et al., 2025b; Xie et al., 2024), and (2) it arises due to insufficient attention allocated to visual to-
kens (Liu et al., 2025). Building on these assumptions, several works propose methods to miti-
gate language priors—such as contrastive decoding (Favero et al., 2024) or inference-time attention
reallocation (Liu et al., 2024¢). Others, like Chen et al. (2025b) and Xie et al. (2024), explore
training-time interventions that penalize outputs overly aligned with the model’s default language
predictions.

B DISCUSSION ON VISUAL INTEGRATION POINT

B.1 NOTE ON VIP DETERMINATION

In Eq. 3, we defined the VIP [* based on the pre-l* and post-I* representation divergences
D;(Pyr, Fy) — Di(Pr, Fy) where the pre-I* chain-of-embeddings shows nearly zero representation
divergence whereas the post-I* chain-of-embeddings exhibits an effectively large representation di-
vergence defined by positive 7. In practice, we can not access the population distribution Pyt and
Pr, therefore we can not compute the truth expected representation distance D;(Py, Fy). What we
do in practice is estimate that expected representation distance with finite samples Dyt and Dy, and
see the evolution of representation distance gap to manually pick the VIP [*. We observed that this
empirical estimator of representation distance (Eq. 2) works well as a measure for determining VIP
in general, yet there can be some cases where the fitness of the estimator is bad, e.g., Figure 10.
However, even in that case, the point [*, where the empirical representation divergence exceeds a
positive constant for all subsequent layers, consistently emerges, and the TVI (Eq. 11) is calculated
based on that [* becomes a strong indicator of LP.
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Table 6: Comparison of VIP detection methods and their effectiveness (Spearman correlations
between the resulting TVI and downstream correctness).

Model (Layer #) VIP Detection MMBench - VIP (p) ViLP - VIP (p)

18 18

Qwen2.5-VL-7B (28) Manual (0.6335) (0.6335)
. 18 19

Qwen2.5-VL-7B (28) Variance-based (0.6335) (0.6336)
20 20

Gemma-3-4B (30) Manual (0.7970) (0.7970)
. 16 16

Gemma-3-4B (30) Variance-based (0.7973) (0.7973)
InternvL3-8B (32) Manual o o

ntern anua (0.5709) (0.5709)
_ 17 20

InternVL3-8B (32)  Variance-based (0.5749) (0.5949)

B.2 ALGORITHMIC ESTIMATION ON VISUAL INTEGRATION POINT

As discussed in §3.2, identifying the VIP provides valuable insights into when visual information
begins to influence answer decoding. In most cases, we rely on empirical observation of the repre-
sentation distance curves to manually determine [*, which proves to be straightforward and inter-
pretable across a wide range of models. However, in situations where manual inspection is imprac-
tical — e.g., for large-scale model comparisons or automated pipelines — it may be desirable to
estimate the VIP in a data-driven, automatic way. To this end, we introduce an algorithmic rule that
can automatically estimate the VIP given a model and a dataset. While not required for our core
analysis, this estimation method serves as a practical tool in settings where manual identification of
[* is infeasible.

Below is an estimation strategy based on the test statistic we discussed in Eq 12 of Lemma F.1 by
specifying arbitrary significance levels that a user prefers. To be specific, given a pooled sample

2 2
standard deviation & = % + GZD'VVTTI , we can define the estimated VIP as follows,

R D;(Dvyr, Fy) — D;(Dr, F; Dy (Dyt, Fy) — D (D, Fy
VIP(D, Fy) — arg min 1(Dyr, e)A 1(Dr, Fy) > B Z &(Dvr, Fp) x(Dr, Fy)
leL\L 1) (-1

©))
1 1 2
2 ZZEDT (d(2yis>Zpiing) —D1(Dr, Fo))” . . 2 L.
where o} = =T is a sample variance on Dr and o; y is similarly de-

fined. Intuitively, the quantity on the left-hand side denotes a deviation-normalized representation
distance in the layer [, whereas the right-hand side means the historical average of those distances
with a weighting coefficient 3, which was set to 2.0 in our case. The above algorithm can be applied
to any given dataset, and we conduct comprehensive experiments to show its robust performance
across different models and datasets in Table 6 and Figure 9.

From Table 6 and Figure 9, we can see that VIP estimated by the proposed algorithm are quite close
to the result of the manually selected one and clearly mark where the two curves start to diverge
(based on the divergence plots), and the Spearman correlations between TVIs computed by those
estimated VIPs and the downstream prediction correctness are robust across different datasets.

C IMPLEMENTATION DETAILS

Models. We evaluate our framework on 10 publicly available LVLMs, covering a diverse range
of architectures and training paradigms. For all models, we use the official instruction-tuned check-
points available on Hugging Face’. To ensure consistent comparison across models, we set the
generation temperature to 0.

5https ://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
https://huggingface.co/llava-hf/llava-1.5-7b-hf
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Figure 9: Comparison between the manually selected VIPs and automatically selected VIPs.

Datasets. Our evaluation spans 6 benchmark datasets, each consisting of either binary (‘Yes/No’)
or multiple-choice questions. This design ensures that the hidden state of the final token—used for
representation distance calculations—is closely tied to the model’s reasoning process. For MMMU,
we use the validation set and filter out samples that involve more than one image or open-ended
output to ensure consistency in the evaluation setting. Also, when constructing the prompt, we do
not use the provided explanations for fair comparison. For ViLP, we consistently select image 3 and
answer3 to curate our (counterfactual) VQA pair. For VLind-Bench, we convert each annotated
counterfactual statement into a binary “Yes/No’ question. To perform this transformation, we use
the advanced language model GPT-40 with the following prompt:

Generate a question based on the counterfactual information in the given statement. The
question should be answered by yes.

Here are some examples:

Statement: The Statue of Liberty is holding a sword instead of a torch. Question: Is the
Statue of Liberty holding a sword?

Statement: The Sydney Opera House is illustrated as an underwater aquarium, with fish
swimming around its structures. Question: Is the Sydney Opera House underwater?
Statement: The Leaning Tower of Pisa is perfectly vertical in the image, without any tilt.
Question: Is the Leaning Tower of Pisa perfectly vertical?

Now generate a question for the following statement: {statement}

\. J

The models are instructed to directly generate the answer under a zero-shot setting, without involving
any reasoning steps. Additional statistics of each dataset and corresponding splits are provided in
Table 7.

To further validate the reliability of the agreement-based separation introduced in §3.2, and to
demonstrate that our analysis can generalize to scenarios with known visual dependencies, we con-
struct a controlled baseline dataset. Specifically, we take questions from CommonsenseQA (Talmor
et al.,, 2018), which are inherently language-only, and pair each question with a randomly selected,
irrelevant image from COCO 2017-val (Lin et al., 2014), forming a synthetic VQA setting that
does not require visual input. We treat this as our vision-independent group Dp. For the vision-

https://huggingface.co/llava-hf/llava-vl.6-vicuna-7b—hf
https://huggingface.co/llava-hf/llava-onevision-qwen2—-7b-ov-hf
https://huggingface.co/OpenGVLab/InternVL3-8B-hf
https://huggingface.co/nvidia/Eagle2.5-8B
https://huggingface.co/google/gemma-3-4b-1it
https://huggingface.co/google/gemma-3-12b-it
https://huggingface.co/google/gemma-3-27b—-1it
https://huggingface.co/meta-1llama/Llama-3.2-11B-Vision-Instruct
https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct
https://huggingface.co/Salesforce/instructblip-vicuna-7b
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Figure 10: Experimental results under controlled settings. We use a synthetic baseline con-
structed from CommonsenseQA questions paired with irrelevant images as Dr (vision-independent),
while standard VQA benchmarks (MME, MMBench, and VLind-Bench) are used as Dyt (vision-
dependent).

dependent group Dy, we use samples from standard VQA benchmarks such as MME, MMBench,
and VLind-Bench, which typically require more grounding in visual content. As shown in Figure 10,
the average TVI is significantly lower for the baseline Dy compared to the general VQA datasets,
confirming that the model does not extract meaningful information from irrelevant visual input. In
contrast, even in the presence of strong language priors, the model still benefits from image content
in Dyp. It is also worth noting that there is a reverse trend before VIP for Qwen2.5-VL-7B,
indicating representation distance before VIP is not associated with the actual meaningful visual
integration during decoding. These findings are consistent with our previous results and further sup-
port the effectiveness of our proposed separation framework. Nonetheless, to ensure better control
over data attributes such as format and context length, and to reveal clearer trends, we continue to
use the agreement-based separation strategy in the main text.

Table 7: Dataset statistics. M stands for multiple-choice and B stands for binary-choice (Yes/No).
Qwen?2.5-VL-7B is used as an example here.

Statistics MME MMBench MMStar MMMU VLind-Bench ViLP
Question Type B M M M B M
|D| 2374 4377 1500 805 418 300
[Dyr] 546 2782 1057 446 144 177
|Dr| 1828 1595 443 359 274 123
|Dvr|/|Dr| 0.30 1.74 2.39 1.24 0.53 1.44

Metrics. All TVI values reported in our experiments are computed based on empirically de-
termined Visual Integration Points (VIPs) specific to each model. The following VIPs are
used: Qwen2.5-VL-7B (18), InternVL3-8B (16), Gemma-3-4B (20), Gemma-3-12B (26),
Gemma-3-27B (35), LLaVA-v1.5-7B (9), Eagle2.5-8B (15), Llama—-3.2-11B-Vision
(12), LLaVA-NeXT-Vicuna-7B (12), LLaVA-OV-Qwen2-7B (15) and SmolVLM (15)°. We
also provide an automatic method for estimating VIP in Appendix B.2 for potential practical usage.
Representation distances are computed using the hidden states corresponding to the last generated
token. The metrics introduced in §4 are computed as follows:

1
LH

L H
Visual Attention = Z Z o™ Output Divergence = d(Z%,, Zk ) (10)
I=1 h=1

81t should be noted that these manually selected VIPs are not necessarily optimal; however, they already
achieve strong and robust effectiveness and are sufficient for analytical purpose. The truly optimal VIP is likely
to lie in their vicinity.
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Table 8: Summary of evaluated models and their architectural specifications.

Model Fusion # Layers Hidden Size
Qwen2.5-VL-7B/32B/72B MLP 28/64/80 3584/5120/8192
Gemma-3-4B/12B/27B Q-Former 34/48/62 2560/3840/5376
InternvVL3-8B MLP 28 3584
LLaVA-v1.5-7B MLP 32 4096
Eagle2.5-8B MLP 28 3584
Llama-3.2-11B-Vision X-Attention 40 4096
LLaVA-NeXT-Vicuna-7B MLP 32 4096
LLaVA-OV-Qwen2-7B MLP 28 3584
SmolVLM MLP 24 2048
InstructBLIP-Vicuna-7B Q-Former 32 4096

InstructBLIP-Vicuna-7B on MMBench InstructBLIP-Vicuna-7B on MMMU

0.10 —— Dr (Avg TVI=0.046) —~ Dr (Avg TVI=0.041)
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Layer Layer
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]
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A
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,,,,,,,,,,,,,,, Layer

Figure 11: Extended experiments across models of varying scales and fusion architectures.

where o(""") denotes the total attention from the final generated token to all preceding visual tokens
in head h at layer [, and Z” represents the hidden state at the final layer.

D FULL RESULTS OF THE MAIN EXPERIMENT

We provide the complete experimental results on 9 LVLMs and 6 datasets in Figure 6, 7, 8. Across
all models and datasets, a consistent existence of the VIP can be observed. However, for some
models, such as SmolVLM, the divergence between Dy 1 and Dr is less pronounced, likely due to
the model’s limited capacity and thus less promising visual integration.

Additional architectures & scales. We further validate our findings on models with diverse ar-
chitectural designs, including L1ama-3.2-11B-Vision with cross-attention—based multimodal
fusion and InstructionBLIP-Vicuna-7B with a Q-Former-style fusion mechanism, as well
as on larger-scale models such as Qwen?2 .5-VL-32B and Qwen?2.5-VL-72B. As shown in Fig-
ure 11, the results consistently corroborate our conclusions across both architectural variants and
model scales. Comprehensive statistics for all evaluated models are provided in Table 8.

E FURTHER ANALYSIS

Analysis on the limitations of attention-based and output-based LP analysis. First, for
attention-based methods, we argue that a higher visual attention weight does not necessarily im-
ply better visual grounding. As shown in Figure 12, under weak language priors, the model is able
to correctly attend to the key areas that are semantically related to the given instruction. However,
under strong language priors, we observe a pathological attention pattern in which the model’s atten-
tion becomes abnormally concentrated in a limited region of the image. We refer to this phenomenon
as an attention sink. In such cases, although the aggregated visual attention weight appears high, it
does not reflect meaningful visual processing. Instead, the model is effectively bypassing genuine
visual understanding by fixating on irrelevant or static regions, thereby undermining the utility of
attention-based metrics as reliable indicators of visual integration.
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Figure 12: Visualization of visual attention maps under weak and strong language priors.
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Figure 13: Layer-wise representation distances in latent space vs. output space. We apply the
logit-lens to project hidden states at each layer into the output space. In (a), distances are computed
over the entire output vector, while in (b), they are restricted to the top-k token positions correspond-
ing to candidate answer options.

To better understand why output-based representations are less effective in capturing language prior
behavior, we visualize how representation distances vary across the latent and output spaces. As
shown in Figure 13, the projection from the latent space to the output token space tends to obscure
semantic distinctions that are otherwise indicative of the model’s underlying behavior—such as
whether it is performing effective visual grounding or defaulting to language priors. This observation
aligns with our earlier argument: surface-level outputs alone may not faithfully reflect the internal
decision-making process of LVLMs. Instead, meaningful behavioral signals often reside in the
deeper latent representations, emphasizing the importance of analyzing internal dynamics rather
than relying solely on output-level comparisons.

Ablation on aggregation strategies for TVI calculation. In our main experiments, we adopt a
simple aggregation strategy for computing TVI by averaging the representation distances across all
post-VIP layers. To assess whether more sophisticated aggregation may improve the metric, we
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additionally experiment with a standard-deviation-based weighted TVI, defined as:

L
1
TVI(l*7.T), FQ) = ﬁ*-‘,—l Z [Ul . d(Z\l/iS, Zlilind)}? (1 1)
l=l*

where o; denotes the standard devia-

tion of representation distances at layer . Taple 9: Comparison of aggregation methods for
This weighting scheme emphasizes lay-  computing TVI.

ers whose distance distributions exhibit
higher Variat?ility, ie., layer§ that are more  \y el Aggregation VLind _ ViLP
sample-specific and potentially more in-

formative, while down-weighting contri- Qwen2.5-VL-7B  Simple Average  0.7155  0.6335
butions that may arise from less discrim- Qwen2.5-VL-7B  Std Reweighting 0.7164 0.6348
inative layers. As shown in Table 9, Internvn3-8B  Simple Average 0.6727 0.5709
this reweighting provides a slight improve- InternvVL3-8B Std Reweighting  0.6739  0.5723
ment in effectiveness over the simple aver-
aging strategy across both VLind and ViLP. However, the gains are modest and come at the cost of
additional computation. These findings suggest that our original simple averaging approach already
serves as a strong and robust summary statistic, while the weighted variant may offer incremental
refinement in specialized scenarios.

Analysis on instruction-level

perturbation. To Strengthen Qwen2.5-VL-7B on ViLP Qwen2.5-VL-7B on VLind-Bench
our study of the confrasting o TREEWEANL| . | Chuwwems| e
chain-of-embedding, we compare e e Tt e SN / T _J \ /
embedding chains produced by  %e: Pt AN a e Vi A
image-text inputs versus image- Sz N

only inputs (Figure 14 (a)). As " e e
expected, the two curves exhibit rever tever

only neghglble differences’ hkely . Qwen2.5-VL-7B on VLind-Bench Qwen2.5-VL-7B on ViLP

due to the limited semantic con- 010, = Vi <amiric o (g TIZ0.075) | O e |
tent of image-only inputs. This — °* /3{:37 \/\ VAN \'\_ o

phenomenon can be attributed to " ... / = = W

two main factors: (1) The hidden o2 | R

states from image-only inputs ) ¢ 5 w5 % o= N I B

do not reveal anything about

the model’s answer prediction, Figure 14: Impacts of instruction-level perturbation. (a)
considering  that .the Instructions  Representation distances obtained by contrasting chain-of-
are not even provided. The result- embedding sequences produced with and without textual in-

ing representations thus are not  gycrions. (b) TVI scores under instructions with different
directly comparable in the same gyjeg

behavioral space. (2) Most current

LVLMs are not trained to handle

image-only inputs for question answering, which makes the model’s behavior on image-only inputs
unpredictable. Nonetheless, even under these constraints, we still observe that the revised TVI,
which now specifically captures the contribution of textual content to the decoding process, is
marginally higher for vision-independent samples than for vision-dependent ones. This further
corroborates the robustness of our analysis framework and the consistency of our conclusions.

To further isolate the influence of the textual component in multimodal inputs, we investigate how
different instruction styles affect model behavior. Specifically, we contrast misleading instructions
(those originating from VLind-Bench or ViLP that elicit strong LP) with generic, vision-centric
prompts such as “Describe the image in detail.” As results in Figure 14 (b) show, TVI under these
vision-centric instructions is significantly higher than under misleading ones. This confirms that
TVl is sensitive to the model’s bias toward language priors under different instruction regimes.

Analysis on VIP & TVI across different training stages. To better understand how VIP and
TVI evolve during model training, we analyze checkpoints from multiple stages of LLaVA-v1.5
visual instruction tuning. As shown in Figure 15 and Figure 16, our evaluation reveals two key
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Figure 15: Evaluation results across different stages of LLaVA-v1.5’s visual instruction tuning.
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Figure 16: Average TVI on ViLP across different stages of visual instruction tuning.

observations. First, the VIP position remains remarkably stable across training stages (around the
12th layer). This suggests that the mechanism governing where visual information is integrated
is largely established during pretraining and persists throughout subsequent finetuning. In other
words, VIP appears to reflect an intrinsic architectural property rather than a behavior shaped by
instruction tuning. Second, TVI exhibits a clear upward trend as training progresses, indicating that
the degree to which the model effectively incorporates visual information improves gradually during
instruction tuning. These findings align with our previous conclusion that VIP is a model-specific
property as well as our expectation that visual instruction tuning incrementally enhances the model’s
multimodal fusion capability.

Analysis on when TVI fails. Althrough TVI shows strong correlation with answer correctness
as shown in Table 3, there are still some non-neglectable portion on failure cases that TVI can not
properly predict the model’s answer quality. Conceptually, TVI is designed to capture the degree of
effective visual integration during decoding. While higher TVI generally implies that the generated
answer is more grounded in visual input and thus more likely to be correct, there are natural regimes
where this relationship weakens, for example: (1) Some questions are not strongly visually demand-
ing; the model can answer them correctly with relatively little visual integration. In such cases, the
answer may be correct even when TVI is small, leading to “false negatives” from TVTI’s perspective.
(2) For very challenging visual questions (e.g., fine-grained recognition, subtle spatial reasoning, or
interpreting small/occluded objects) the model may still fail even after substantial effort to integrate
visual information (high TVI). This yields “false positives” in terms of TVI-correctness alignment.
These factors introduce inherent noise into any evaluation based on TVI vs. correctness.

To further characterize these patterns, we visualize the TVI distribution for VILP samples that
Qwen2.5-VL-7B answers correctly and perform a focused analysis on those with unexpectedly low
TVI. As shown in Figure 17, while the majority of correctly answered samples exhibit relatively
high TVI, a small subset attains low TVI despite being answered correctly. Upon inspection, many
of these cases can indeed be solved without relying on visual input, either due to knowledge leakage
or lucky guessing. This suggests that such questions are intrinsically less visually demanding, and
the low TVI observed in these cases does not constitute a failure of the metric but instead reflects
the fundamental properties of the task itself.
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Figure 17: Visualization of TVI distribution and case studies on TVI failure cases.

F DETAILS ON THEORETICAL ANALYSIS AND PROOFS

F.1 JUSTIFICATION AND INTERPRETATION ON REPRESENTATION DIVERGENCE

We first show that our empirical estimate for the difference in the expected representation distances
(Eq. 3) can be viewed as a two-sample test statistic with asymptotic normality in Lemma F.1.

Lemma F.1. Ler X = (X, X;) € X be a random variable sampled from Pyr or Pr, and denote
Dyr ~ Pyr and Dy ~ Pr as empirical distributions with N and M i.i.d. samples, respectively.
Given a stack of LVLM layers f; : X — Z from Fy and a distance metric d : Z x Z — R
with a finite second moment, the difference in the expected representation distance estimates Dy (-, -)
between Dyr and Dr is a two-sample test statistic with asymptotic normality, that is,

approx 0'2 2
D(Dyv, Fy) — Dy(Dr, Fy) "~ N(ur— pvr, M + N ) as N,M — oo, (12)

where pyr = Dy(Pyr, Fy), pr = Di(Pr, Fy) and U‘%T = Varp, [d(fi( Xy, Xt), fi(X4))] < oo,
0% = Varp,[d(fi( Xy, Xyt), f1(Xy))] < oco.

Proof. Let Zyr and Jt be the index sets of N and M i.i.d. samples from Pyt and Pr, respectively.
If samples from Pyt and Pr are independent, with finite second moments, we have,

Di(Dyr, Fo) — Di(Dr, Fyp)
Yien, i@y, o), ile)]  Tjeqldfilad,2)), fila])]

_ 5 - i (13)
0% ol
~ N (pr — pvr, M + ]\\}T) (by Central Limit Theorem as N, M — o)

Note that, even though the samples from Pyt and Pr are not independent, the asymptotic normality
still holds by considering covariance terms between the two distributions. O

Now, in Lemma F.2, we provide a new interpretation of our representation distance measure between
CoE by casting the distance measurement as a density estimation problem.

Lemma F.2. Ler X = (X, X;) € X be a random variable sampled from Pyr or Pr, and f; : X —
Z be a stack of LVLM layers. For Pr, define a density estimator pr(Z') := N'(Z*; f,(X¢),I). Given
a squared l distance d(Zy, Zo) = || Z1—Z5||3, the representation distance d( f,(X,, X;), fi(Xy))
is the negative log-likelihood estimate of Z' from Pr, denoted as pr(Z'), up to an additive constant.
That is,

d(fi( X, X0), fi(Xy)) 2 —log pr(Z") + log C, (14)

_dz . . . . . .
where C'= (27)~ 2 is a normalizing constant for the d,-dimensional unit-variance Gaussian.
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Proof. 1t is easy to check,

pr(Z') = N(Z"; Zjpa: 1) (15)
R Zl _ Zl» 2
pT(Zl) =C. exp(— H 2b11nd)||2) (16)
Zl _ Zl~ 2
IOgﬁT(Zl) zlogC’— H 2blmd”2 (17)
log pr(Z') =log C — d(Z', ZL.4) (18)
where Zpiing = f1(X4). O

In other words, the distance between the original representation Z! = fl(Xv, X3) and the blind one
Zblmd fi (Xt) can be expressed as a probability density estimate of Z! given N (+; Z, blmd, I), which
has a mean Z[, , with the isotropic variance, as our estimator. On top of this new framing, i.e.,
distance measurement as a density estimation problem, we further provide an information-theoretic
interpretation of the difference in expected representation distance in Theorem F.3.

Theorem F.3 (Restatement of Theorem 5.1). Let X = (X, X;) € X be a random variable from
Pyr or Pr, and fl X — Z be a layer stack from an LVLM Fy. For Pr, define a density estimator
f)T(Zl) = N(Z% f1(Xy), I), and denote pyr(Z') (resp. pT(Zl)) as the populatzon distribution on

= filX )derlvedfrom Pyr (resp. Pr). Then, given d( Zl,ZQ L1 Z1 — Z»||3, the difference
in the expected representation distances between Pyr and Pr, i.e., Dl€ Pvr, Fy) — Di(Pr, Fy), can
be expressed as follows,

KL(pve(2')|[pr(2")) = KL(pr(2")][p2(2")) + H, (19)
where H is a constant H (pyr(Z')) — H (pr(Z")), and KL(:||-) denotes the KL divergence.

Proof.
D;(Pvr, Fp) — Di(Pr, Fy)
= Epy, [d(fi(Xv, Xp), /i(X2))] — Ep[d(fi(Xo, X¢), fi(X2))] (20)
= Epyy(z1)[—log pr(Z") +log C] — E,,, (z1) [~ log pr(Z') + log C] 1)
=By (2= 10g pr(Z")] = By, 21y [~ log pr(Z")] (22)
= H(pvr(2").pr(2") = H(pr(Z"), pr(2")) (23)

= [KL(pyr(Z)|Ipr(Z2") + H (pvr(ZY))] — [KL(pr(ZY)|[5r(ZY)]) + H(pr(2Y))] @4

where H(-) and H(-,-) denote entropy and cross-entropy, respectively. Here, Eq. 21 holds by
Lemma F.2, and the remaining equality is trivial by the definitions of d() and information theoretic
measures. O

This simple theorem gives us a new interpretation on the measure of representation divergence,
D;(Pyr, Fy) — D;(Pr, Fy): the amount of expected excess surprisal when we assume that the
sample representation follows blind representation-centered normal distribution compared to the
true population distribution Py, compensated by estimation quality KL (pr(Z")||pr(Z")).

F.2 NOTATIONS AND PROBLEM SETUP FOR THEOREM F.6

We recast the problem of measuring the representation distance d(Zyis, Zoiina) as a binary classi-
fication task, where we want to classify the sample (Zyis, Zpiina) into 1 if it originates from the
distribution Pyt while O for the samples from Pr.

To be specific, let X, Z, and Y denote input, LVLM representation, and output, respectively. We
have a multimodal input query X = (X, X;) € X, a stack of LVLM layers f; : X — Z, and a
distance metric d : Z x Z — [0, 1]. With that, we define a hypothesis h = d(f1(X,, X¢), fi(X¢)) :
X — [0,1] as a real value function to measure the relative likelihood that the input X is sampled
from Py rather than Pr, and we also define the labeling function h* : X — {0,1} that maps
the input into its ground-truth membership, i.e., 1 if it’s from Pyt and 0 if it’s from Pr. Then,
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we formulate an expected error (a.k.a. risk) of a hypothesis h w.r.t. the labeling function h* on a
distribution P as follows: ep(h, h*) := Ex.p[|h(X) — h*(X)]].

Besides, in Def. F4, we introduce a measure of discrepancy between two distributions, -
divergence, which has been widely adopted in domain adaptation literature (Ben-David et al., 2006;
2010; Ganin et al., 2016; Zhao et al., 2018), and also VLM fine-tuning regimes (Oh et al., 2024).

Definition F.4 (#-divergence, (Ben-David et al., 2006; 2010)). Let P and P’ be probability distri-
butions on the input domain X, and H be a hypothesis class for X. Denote Ay, := {h=1(1)|h € H}
as a collection of subsets of X that are the support of some hypotheses in H. Then, the distance
between P and P’ based on H is defined as follows:

dy(P,P') =2 sup [Pp[A] - Pp/[A]l. (25)
AcAy

Now, we are ready to present the proof for Proposition 5.2 in the next subsection.

F.3 PROOF FOR THEOREM F.6

Theorem F.5 (Restatement of Theorem 5.2). Let X = (X,, X:) € X be a random variable of
a multimodal input query. Given a stack of LVLM layers f; : X — Z and a distance metric
d: Zx Z — [0,1], define a hypothesis h = d(fi(Xy, X1), fi(Xs)) :+ X — [0,1] and a set of
these hypotheses H that has a pseudo-dimension c. Then, for D;(Py, Fy) := Exp, [R(X)] with
any Pyr, Pr, and Py := PvitPr  and the empirical distributions Dyr ~ Pyr and Dy ~ Pr of N
samples for each, we have the following bounds w.p. at least 1 — § for 0 < § < 1,

. 1 -

i) 1 —Dy(Dr, Fp) — §df,q(7)vn Dr) — Os < Dy(Pvr, Fp), (26)
1 1 ~ 1 1 -

i) 3~ Edﬁ(Dvn Dr) — Os < Dy(Pu, Fy) < 3 + Zdﬁ(DW, Dr) + Os 7

where H := {Ihx)y—n (x)>t - ho B € H,0 <t < 1} and Oy = O(\/%(log% + clog %))
Proof. Note the lemma below that provides a connection between the difference in the expected
errors across two distributions and their distributional discrepancy.

Lemma F.6 (Zhao ct al. (2018)). For h,h' € H := {h : X — [0,1]} assume that H has a finite
pseudo dimension d. For any distribution P and P’ over X,

lep(h,h') —epi(h, k)] < sdgm (P, P'), (28)

DN =

where H := {H|h(z)7h’(z)|>t : h,h/ eH,0<t <L 1}.

See Lemma 1 of Zhao et al. (2018) for the proof. We start our derivation of Proposition 5.2 from the
ineq. F.6 as below,

1

§dﬁ(7DVT77’T) > lepyr (b, B*) — epy(h, b)) (29)
= ||Dy(Pyr, Fy) — 1| — |Dy(Pr, Fy) — 0|| (30)
= |1 — Dy(Pyr, Fy) — Dy(Pr, Fy)| (31
> |1 —Dy(Pyr, Fy)| — |Di(Pr, Fo)| (32)
=1—Dy(Pvr, Fs) — Di(Pr, Fy), (33)

where the first equality holds by definition, the first inequality holds by the reverse triangular in-
equality, and the second and fourth equality hold given 0 < D;(P,, Fy) < 1.

In the meantime, for the empirical distributions Dyt ~ Pyt and Dr ~ Pr of N samples for each,
given 0 < ¢ < 1, we have the following approximation error bounds with probability at least 1 — §
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for any h € H (See Lemma 5 and Lemma 6 of Zhao et al. (2018)),

1 1 N
e (1) < £, (1) + Oy %08+ + clog ) 34
1 1 N
ds; (Pvr, Pr) < dg(Dyr, Dr) + O(\/N(log 3 + clog ?))7 (35)

where Pdim(H) = c.
Then, by plugging the above inequality (Ineq. 35) into the Ineq. 31, we have,

1 1 1 N
1-— idg('D\/T,’DT) — (’)(\/N(log g + Clog ?)) < DI(PVT; FO) + DZ(PTa FO); (36)

1 1 1

where we derive the first statement of Proposition F.5 from the Ineq. 36, and the second statement
of that by combining both Ineq. 36 and Ineq. 37, that complete the proof.

N
+ clog ?)) > Dy(Pyr, Fy) + Di(Pr, Fy),  (37)

O

G IMPACT STATEMENT

Language prior represents a pathological behavioral pattern in LVLMs, where the model overly
relies on its linguistic knowledge and fails to properly ground its predictions in the visual input.
This phenomenon underlies critical issues such as hallucination, modality misalignment, and failure
cases in vision-centric reasoning. It also suggests that current LVLMs may not be operating in the
modality-aware manner we expect—even when their outputs appear plausible (as the result of the
vanilla next-token-prediction training paradigm). One of the main challenges in mitigating language
prior lies in its vague and subjective nature: there exists no clear definition or quantitative measure of
“language prior” in a dataset or task. Consequently, efforts to balance visual and textual information
during training or fine-tuning often rely on heuristics or manual annotations.

Our work sheds light on this issue by proposing a formal framework to characterize and quantify
the language prior through the model’s own behavior. This makes the problem not only more visible
but also more measurable. If the degree of language prior can be reliably estimated from within
the model, we can begin to incorporate this signal directly into training objectives or inference
strategies in a principled way. In this way, our framework provides a principled foundation for
deeper understanding and offers practical tools for improving real-world multimodal systems.

In addition to the ultimate goal, i.e., understanding and quantifying LP of LVLM, our novel method,
contrastive chain-of-embeddings, on the path to pursue that goal can also create a rich inspira-
tion for a line of works on layer-wise representation analysis (Skean et al., 2025), layer-specific
adaptive training approach for LVLMs (Bachu et al., 2025; Oh et al., 2025b), and inclusive Al
applications with unbiased multimodal alignment (Kim et al., 2025) or representation-centric multi-
linguality (Jung et al., 2024; Schut et al., 2025), which ultimately contribute to building a trustworthy
multimodal Al system for everyone.

H DISCLOSURE OF LLM USAGE

Some portions of this paper were polished and refined with the assistance of LLM tools (e.g., Chat-
GPT) to improve clarity, fluency, and consistency in writing. We also harnessed a coding agent (e.g.,
Cursor) to write some simple utility functions after double-checking. All technical content, experi-
mental results, and analytical conclusions were independently developed by the authors without the
use of LLMs.

I ETHICS STATEMENT

This work conducts empirical and analytical studies on the internal behavior of LVLMs, with the
goal of understanding and quantifying their reliance on language priors and the extent of visual
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information integration during inference. To pursue high standards of scientific excellence, we pro-
pose a formal framework with clear definitions of all used terms and conduct validation at scale,
e.g., 60 combinations of models and datasets, and we further provide theoretical analyses on our
framework. Our study does not involve any human subjects, personally identifiable information,
or sensitive data. All experiments are conducted using publicly available models and benchmark
datasets that are widely adopted in the multimodal learning community. Our proposed metrics and
analyses are intended for research and diagnostic purposes. By providing tools to diagnose when
LVLMs rely on text versus vision, we aim to support more accountable model development and
contribute positively to the responsible advancement of Al. We encourage future work to further
validate these findings under more diverse real-world conditions.

J REPRODUCIBILITY STATEMENT

All of the models and datasets we used in this work are publicly available. To further ensure the
reproducibility of our findings, we provide comprehensive descriptions of all experimental settings,
including dataset preprocessing, model configurations, metric definitions, and evaluation protocols,
in Section 4 and Appendix C. Our framework does not require model re-training or fine-tuning,
and all evaluations are conducted in a zero-shot setting using publicly available model checkpoints,
which minimizes computational and hardware requirements. We release the complete codebase for
our analysis framework, including tools for data preparation, TVI computation, and visualization, at
the following repository: €).
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