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Abstract

Large language models (LLMs) exhibit impres-001
sive natural language capabilities but suffer002
from hallucination – generating content un-003
grounded in the realities of training data. Re-004
cent work has focused on decoding techniques005
to improve factuality during inference by lever-006
aging LLMs’ hierarchical representation of fac-007
tual knowledge, manipulating the predicted dis-008
tributions at inference time. Current state-of-009
the-art approaches refine decoding by contrast-010
ing early-exit distributions from a lower layer011
with the final layer to exploit information re-012
lated to factuality within the model forward013
procedure. However, such methods often as-014
sume the final layer is the most reliable and the015
lower layer selection process depends on it. In016
this work, we first propose extrapolation of crit-017
ical token probabilities beyond the last layer for018
more accurate contrasting. We additionally em-019
ploy layer-wise entropy-guided lower layer se-020
lection, decoupling the selection process from021
the final layer. Experiments demonstrate strong022
performance - surpassing state-of-the-art on023
multiple different datasets by large margins.024
Analyses show different kinds of prompts re-025
spond to different selection strategies. Our026
source code will be available in GitHub.1027

1 Introduction028

Despite their impressive capabilities (Brown et al.,029

2020; OpenAI, 2023) in natural language tasks,030

large language models (LLMs) tend to hallucinate031

– generating content that does not align with real-032

world facts they were exposed to during pretraining033

(Ji et al., 2023) – which poses deployment chal-034

lenges (Guerreiro et al., 2023). The propensity035

of large language models for fabricating content036

remains an issue under active investigation. Over-037

coming hallucination is thus a significant challenge038

for safe and trustworthy AI applications, which be-039

1will be released along with the camera ready version.

Figure 1: Our proposed extrapolative decoding, final trans-
former layer is extrapolated to a predetermined layer before
contrasting with a lower layer.

comes ever more important as their abilities expand 040

through scaling. 041

Causes of hallucination may stem from flaws 042

permeating the entire pipeline, such as inaccu- 043

rate, biased data, lack of grounding and consis- 044

tency guardrails and suboptimal knowledge inte- 045

gration (Li et al., 2022b; Liška et al., 2022; Chang 046

et al., 2019; Yin et al., 2023) . Promising avenues 047

involve enforcing factual fidelity in generation (Shi 048

et al., 2023), causal reasoning capacities (Kıcıman 049

et al., 2023), and transparent, controllable knowl- 050

edge deployment to temper fabrication (Touvron 051

et al., 2023). Recently efforts have been focus- 052

ing on inference techniques that improve factuality. 053

Chuang et al. (2023) leverage the hierarchical fac- 054

tual knowledge encoded within LLMs, with lower 055

layers capturing surface patterns and higher ones 056

more semantic information. Inspired by Li et al. 057

(2023b), they introduce DoLa - a strategy refining 058

factual decoding by dynamically selecting and con- 059

trasting logits from lower or premature layers with 060

the final or mature layer. By exploiting the change 061

in distributions from a lower and less contextual- 062

ized layer to the last and most contextualized layer, 063

DoLa showcases the potential for reducing hallu- 064

cinations through utilizing the distribution matura- 065

tion process through the layers. Despite the success 066
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of this decoding strategy, the method relies on the067

high maturity level of the last layer, which may068

not be true. Additionally, the selection of the less069

mature layer is dependent on the final layer, which070

assumes that the most premature layer is the one071

furthest away from the last layer. This dependency072

on the last layer may not be desirable, especially073

when the last layer is not mature.074

The final predicted distribution can be made075

more mature by adding more transformer layers,076

which essentially extends the depth of the model.077

However, this is impractical because the extension078

may be dynamic and therefore expensive. In this079

work, we first propose inference-time logit extrapo-080

lation to address this issue. Specifically, we extrap-081

olate probabilities of specific tokens increasing or082

decreasing monotonically over the last few trans-083

former layers, which enables the predicted distribu-084

tion to become even more mature. Furthermore, we085

exploit the correlation between uncertainty-based086

metrics like entropy and factuality, i.e., tokens com-087

prising factual sentences tend to exhibit higher088

probability and lower entropy. In contrast, tokens089

resulting in hallucinations generally originate from090

flatter distributions with greater uncertainty. Based091

on this observation, we exploit layer-wise token092

entropy as the selection criterion to select the lower093

contrasting layer that would lead to a better con-094

trastive objective. In this way, we remove the de-095

pendency on the final layer from the selection pro-096

cess, which could alleviate the cascading effect of097

generating a factually false answer when using a098

premature final layer for guidance.099

Figure 1 shows an example of our method. The100

final layer’s predictions is both incorrect in its pre-101

diction and premature in layer selection, where102

the model is insufficiently confident about the cor-103

rect answer "Arizona". Contrasting such uncer-104

tain distributions with lower layers can then erro-105

neously produce inaccurate outputs like "Florida".106

However, allowing critical token probabilities to107

continue evolve by extrapolation provides greater108

maturity to higher layers. More peaked, confi-109

dent predictions in turn enable targeted contrast-110

ing to selectively refine premature lower-level ten-111

dencies, without overriding correct distributions.112

Thus, by avoiding preemptive interference and al-113

lowing further development of predictive maturity,114

our method generates factual responses like "Ari-115

zona". Additionally, our entropy-based lower layer116

selection mitigates the dependency on final layer.117

This demonstrated case highlights this advantage,118

where entropy identifies the appropriate lower layer 119

regardless of how inaccurate the final distribution 120

is. 121

Our approach demonstrates strong performance 122

on tasks related to factuality, outperforming the 123

baseline methods by large margins on a variety 124

of factuality-related tasks, such as TruthfulQA 125

(Lin et al., 2022) and FACTOR(Muhlgay et al., 126

2023). Experiments further exhibit benefits for fac- 127

tual reasoning, with higher performance on Strate- 128

gyQA(Geva et al., 2021) and GSM8K(Cobbe et al., 129

2021). These gains highlight the broad efficacy of 130

our method for not just isolated to factual recall but 131

complex reasoning chains dependent on accurate 132

intermediate deductions. Our evaluation validates 133

the proposed approach as an promising inference- 134

time decoding method for mitigating hallucination 135

and enhancing truthfulness. 136

2 Preliminaries 137

2.1 Contrastive Decoding and Factuality 138

Large language models usually have an embed- 139

ding layer and N stacked layers, and also an affine 140

layer ϕ(., .) to predict the probability of the next to- 141

ken. Given a sequence of tokens xp = {x1...xt−1}, 142

embedding layer first processes the tokens into 143

sequence of vectors h0 = {h(0)1 ...h
(0)
t−1}, subse- 144

quently h0 would be processed by each of the 145

transformer layers, where the output of j-th layer 146

is denoted as hj . Then, the linear vocabulary head 147

ϕ(., .) predicts the probability of the next token xt: 148

p(xt|x<t) = softmax(ϕ(hNt )t) (1) 149

Where xt ∈ V , the vocabulary set. Recently, 150

Chuang et al. (2023) has proposed a contrastive 151

decoding (Li et al., 2023b) method, where instead 152

of using an amateur model, they are contrasting the 153

most mature layer 2 N with a premature layer 3 j. 154

The contrastive objective is defined as: 155

LCD = logp(xt|x<t)− logq(xt|x<t) (2) 156

Where q(xt|x<t) = softmax(ϕ(hjt )t) is the 157

probability of generating the next token derived 158

from a lower transformer layer, i.e., j < N which 159

is also known as early-exit. The premature layer 160

2Last layer of a pretrained transformer model is denoted
as a mature layer.

3The intermediate layers i.e. 0 to N − 1 of a pretrained
transformer model is denoted as a premature layer.
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Figure 2: Analysis performed on 100 prompts sampled from TruthfulQA, TriviaQA and Natural Questions. We plot two sets of
graphs: (1) Entropy change rate i.e. δ(Hi,Hi−1)/Hi−1 v/s Transformer layers (2) JSD with last layer v/s Transformer layers.

Figure 3: Prompt A: An example of factual prompt Qf and
layer-wise entropy for LLaMA 7B. Prompt B: An example
of open-ended prompt Qs and layer-wise entropy for LLaMA
7B, with annotated higher overconfident layer(more details in
§2.2), where there is a sudden increase in entropy.

j is selected by a dynamic selection metric d(., .),161

the Jensen-Shannon divergence between the ma-162

ture layer and the candidate premature layers. The163

premature layer with the highest JSD is then se-164

lected as the appropriate premature layer within a165

predefined bucket of transformer layers K, such as166

the 2nd bucket containing 10 layers from the 11th167

to the 20th layer (10, 20].168

2.2 Entropy Across Transformer Layers169

There is a correlation between uncertainty-based170

metrics like entropy H and model factuality as171

studied by Manakul et al.. Factual sentences are172

likely to contain tokens with higher likelihood173

and lower entropy, while hallucinations will likely174

come from positions with flat probability distribu-175

tions with high uncertainty. However, in this work,176

we observe different behaviors from two kinds of177

prompts: (1) factual prompts denoted as Qf where178

there is solely information needed like this: Alan179

Greenspan was the head of which US government 180

department from 1987 to 2006? They are found 181

in datasets like TriviaQA, Natural Questions(NQ), 182

etc. (2) Open-ended prompts denoted as Qs where 183

the answer may not be found in commonly used 184

training data. Prompts like Does achieving mastery 185

in a sport help make you smarter in school? can be 186

found in TruthfulQA dataset. We analyzed these 187

prompt categories by sampling 100 prompts from 188

TruthfulQA, TriviaQA, and NQ 4 and observing 189

their entropy changes through layers of LLaMA 190

7B . Each prompt is a concatenation of question 191

and answer: <Question> <Answer>, and we use 192

the probabilities of only the answer tokens in our 193

downstream analysis. As shown in Figure 2, we 194

plotted three metrics with the transformer layers: 195

(1) Entropy change rate, and (2) JSD with the last 196

transformer layer. The following observations were 197

made: 198

• Entropy change rate is higher in higher layers 199

in TruthfulQA, which suggests that the model 200

constantly changes its predictions over the last 201

few sequence of transformer layers. Meanwhile, 202

for the other datasets, the slow change suggests 203

that the model has been decided early. 204

• In the second set of graphs, the spread of JSD 205

between the last layer and other layers is high 206

in TruthfulQA for the lower layers; this again 207

suggests that lower layers are far more premature 208

than the factual dataset’s lower layers. Thus more 209

4We used TriviaQA and NQ for analysis as is completely
factual in nature and prompts are of short length(average
words: 16). However, we did not use these datasets in evalua-
tions due to large number of data-points in test split and lack
of previous baselines. More details can be found in §E
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likely it will be close to embedding layer where210

the contrast benefit is low.211

Based on this analysis, we hypothesize that for212

open-ended prompts (like ones in TruthfulQA), the213

layers will be more premature than factual prompts,214

thereby suggesting the contrasting layer, after215

which the probabilities start to move in the truthful216

direction will lie in the higher layers with min-217

imum entropy and vice versa for factual datasets218

(like TriviaQA and the other datasets in evaluation).219

3 Methodology220

3.1 Dynamic Contrasting Layer Selection221

To maximize the effect of contrastive decoding, we222

dynamically select a contrasting layer based on the223

entropy of the distribution from early-exit within a224

range of transformer layers. Mathematically, token-225

wise entropy can be represented as:226

Hij = −
∑
xt∈V

pij(.|x<t)logpij(.|x<t) (3)227

where pij(.|x<t) is the probability of the word228

being generated at the j-th token of the i-th trans-229

former layer. We utilize both maximum entropy230

and minimum entropy as our selection strategies.231

The most optimal contrasting layer I is selected in232

this fashion:233

I =

{
argmini∈K(Hij) if Q ∈ Qs

argmaxi∈K(Hij) otherwise,
(4)234

where Q is the prompt, Qs is the set of open-ended235

prompts (more details in §2.2), K is the range of236

transformer layers, which serves as a search space237

for the most optimal contrasting layer. For LLaMA-238

based models, following Chuang et al. (2023), we239

divide the transformer layers into 2-4 buckets based240

on model size to limit our search space to some241

specific layers.242

3.2 Logit Extrapolation243

Previous methods assume the last layer is the most244

mature. However, it might be possible that the as-245

sumed mature layer has room for more growth.246

Generally, it is very challenging to get a more247

mature representation without adding more trans-248

former layers. We propose a very simple yet effec-249

tive strategy to extrapolate the probabilities of a few250

critical tokens by extrapolating the probabilities us-251

ing linear regression, shown in Algorithm 1. We252

consider the model’s last 3 layers, and the extrapo-253

lation process is triggered only when the entropy254

in the last layer is changed drastically compared to 255

the previous two layers.5 256

Algorithm 1 Logits Extrapolation
Input: Last L hidden layers of transformer for the
last token H1..L, extrapolation trigger threshold α,
top k tk value, extrapolation start layer Es, extrap-
olation end layer El and extrapolation inference
layer Ei

Output: Extrapolated last layer probabilities:
probL

′ , if needed
1: prob1..L ← softmax(ϕ(H1..L)) {ϕ(.) is feed-

forward network}
2: if ||JSD(probL,probL−1)−JSD(probL−1,probL−2)

JSD(probL−1,probL−2)
|| >

α then
3: for tk and prob1..L starting from layer Es

and ending at El, get layer-wise top k tokens
probability: pk ←top_k(probEs..El

)
4: for i← 1 to tk do
5: if is_monotonic(pki) then

continue
6: else
7: remove pki
8: end if
9: end for

10: train a linear regression modelMlr using
pk and layer numbers from Es to El {Ref.
§3.3}

11: get extrapolated probabilities Pk ←
Mlr(Ei)

12: Normalize_TopK(Pk, pk) to make sure top
k probabilities remain as top k.

13: probL
′←merge(Pk, probL)

14: return probL
′

15: end if
16: return probL

The extrapolation process begins with gathering 257

probabilities of top k tk tokens from layer Es and 258

ends at layer El. Then, we check whether the prob- 259

abilities are monotonically increasing or decreasing 260

from Es to El. We only keep the tokens where this 261

monotonicity criterion is met. Then a linear re- 262

gression modelMlr is trained using the collected 263

probabilities(More details in §3.3). Using Mlr, 264

we extrapolate the probabilities to a predetermined 265

inference layer Ei. The extrapolated probabilities 266

are normalized such that the probabilities are still 267

the highest in the distribution, but with potential 268

5This is determined by JS Distance, as explained in Algo-
rithm 1
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Figure 4: Overview of our entire inference pipeline.

change in their ranking. The normalization process269

is as follows:270

Normalize_TopK(Pk, pk)i271

=

{
pki , if index(Pki) /∈ top_k
Pki , otherwise

(5)272

Here, pk is the probabilities of top k tokens and Pk273

is the corresponding extrapolated probability. Fi-274

nally, we merge the extrapolated top k probabilities275

with the original probabilities.276

3.3 Training Linear Regression Model277

The primary objective is to learn a regression model278

Mlr using the probabilities of top k(tk) vocabulary279

tokens pk starting from extrapolation start layer Es280

to extrapolation end layer El. For the extrapolation281

model in every time step, the training data is a pair282

of the layer number nj(for example, in the range283

of [0 − 32] for LLaMA-7B) and the correspond-284

ing token probability pjki for a particular layer. To285

summarize we have the following training data:286

[(nEs , pEs
ki
), .., (nj , pjki), .., (n

El , pEl
ki
)]tki=0. We287

train and infer the regression model in batch size of288

tk. During inference the extrapolated probabilities289

of each token is obtained by passing the predeter-290

mined inference layer Ei. More details in §C.291

3.4 Contrastive Objective292

Given the optimal contrasting(I) and mature layers293

obtained, we aim to amplify the output from the294

mature layer by further extrapolating critical token295

probabilities while downplaying the output from296

the contrasting layer. Following the Contrastive297

Decoding approach from (Li et al., 2023b), we sub-298

tract the log probabilities of the contrasting layer299

outputs from those of the inflection layer. We de- 300

fine contrastive objective LCD, using which we get 301

the final probabilities for decoding as: 302

LCD =

{
logExtrapolate(p(xt|x<t))

qI(xt|x<t)
, if xt ∈ Ca(xt|x < t)

−∞, otherwise
(6) 303

Here, p(xt|x<t), qI(xt|x<t) are the probability 304

distributions of the mature and contrasting lay- 305

ers. Extrapolate(.) method calls Algorithm 1. 306

We also incorporate the same adaptive plausibility 307

constraint strategy as in (Li et al., 2023b). Here 308

Ca(xt|x < t) is a subset of V which signifies the 309

output token probabilities are high enough from 310

the mature layer: 311

Ca(xt|x < t) = {xt ∈ V : p(xt|x<t) ≤ βmax
w

(p(w|x<t))}
(7) 312

Here, β is a hyperparameter in [0, 1] that trun- 313

cates the next token distribution in the mature layer. 314

More details in §A. 315

4 Experimentation 316

4.1 Tasks 317

We consider two types of tasks for this work: the 318

first is multiple choice and the second one is open- 319

ended generation task. For the first task, we use the 320

TruthfulQA dataset’s multiple choice split and the 321

FACTOR dataset’s wiki split. We use the log prob- 322

abilities of the choices to calculate a score and then 323

make the choice. For the second task, we consider 324

the TruthfulQA dataset’s generation split. The an- 325

swers were rated by GPT3 fine-tuned models for 326

truthfulness and informativeness, and the evalua- 327

tion process strictly follows previous procedures 328

5



mentioned in the TruthfulQA paper. Furthermore,329

we use StrategyQA and GSM8K datasets. These330

datasets require chain-of-thought reasoning. If the331

generated answer contains the correct keywords,332

we consider it to be correct.333

4.2 Baselines334

• Original decoding: we use greedy decoding.335

• Inference Time Intervention (ITI)(Li et al.,336

2023a): ITI uses LLaMA-7B and a linear clas-337

sifier trained on TruthfulQA to identify a set of338

heads that exhibit superior linear probing accu-339

racy for answering factual questions.340

• Contrastive Decoding (CD): we follow the con-341

trastive decoding setup proposed by (Chuang342

et al., 2023), with LLaMA 7B as the amateur343

model and subsequent higher parameter models344

as expert models. For LLaMa 7B, we skipped345

the contrastive decoding results.346

• DoLa: this baseline uses a contrastive decoding347

strategy where a lower layer selected dynami-348

cally, instead of an amateur model, is used as the349

contrasting layer.350

4.3 Setup351

We use LLaMA series (7B, 13B, 33B, and 65B)352

models for all our experiments. The 0-th layer353

corresponds to the word embedding layer before354

the first transformer layer. We divide the layers of355

LLaMA 7/13/33/65B models into 2/4/4/4 buckets356

of candidate layers. The hyperparameter search357

used 2-4 validation runs depending on the model.358

We do 2-fold validation for all the data sets to select359

the optimal buckets. For the TruthfulQA dataset,360

we assume all the prompts are of type Qs(open-361

ended) and use minimum entropy configuration to362

select the contrasting layer. For other datasets, we363

assume all the prompts are of type Qf (factual) and364

use maximum entropy configuration. More details365

can be found in §A along with hyperparameters in366

Table 5, 6.367

5 Results368

5.1 Multiple Choice369

For TruthfulQA multiple choice split, we adopt370

the same prompting strategy proposed by Lin et al.371

(2022). We use a minimum entropy setting for this372

dataset, and for all the models, the highest buckets373

are selected after 2-fold validation. Table 1 shows374

significant performance improvement for LLaMA375

models in four sizes, outperforming the state-of-376

the-art baseline DoLa.377

TruthfulQA-MC FACTOR-Wiki

Model/Method MC1(↑) MC2(↑) MC3(↑) Accuracy(↑)

LLaMA7B 25.6 40.6 19.2 58.6
LLaMA7B+ITI 25.9 - - -
LLaMA7B+DoLa 32.2 63.8 32.1 62.2
LLaMA7B+Ours 36.1 63.7 37.0 63.1

LLaMA13B 28.3 43.3 20.8 62.6
LLaMA13B+CD 24.4 41.0 19.0 64.4
LLaMA13B+DoLa 28.9 64.9 34.8 66.2
LLaMA13B+Ours 32.1 67.0 37.9 66.7

LLaMA33B 31.7 49.5 24.2 69.5
LLaMA33B+CD 33.0 51.8 25.7 71.3
LLaMA33B+DoLa 30.5 62.3 34.0 70.3
LLaMA33B+Ours 29.9 63.7 35.2 70.8

LLaMA65B 30.8 46.9 22.7 71.3
LLaMA65B+CD 29.3 47.0 21.5 71.3
LLaMA65B+DoLa 31.1 64.6 34.3 72.4
LLaMA65B+Ours 32.4 64.2 34.6 72.7

Table 1: Baseline comparison of TruthfulQA and FAC-
TOR(wiki) multiple-choice split.

Model/Method MC1 MC2 MC3

LLaMA7B 25.6 40.6 19.2
LLaMA7B+ITI 25.9 - -
LLaMA7B+DoLa 32.2 63.8 32.1
LLaMA7B+Ours 36.1 63.7 37.0

LLaMA7B – w extrapolation 26.8 48.4 23.5
LLaMA7B+DoLa – w extrapolation 34.3 62.8 33.6
LLaMA7B+Ours – w/o extrapolation 32.7 62.4 30.2
LLaMA7B+Ours – w all token extrapolation 30.5 54.4 29.5
LLaMA7B+Ours – w random layer selection 29.3 56.7 27.4
LLaMA7B+Ours – w max entropy layer selection 30.2 58.1 30.5
LLaMA7B+Ours – w embedding layer selection 31.3 61.2 29.8

Table 2: Ablation study on TruthfulQA multiple-choice split.

The FACTOR(wiki) multiple choice dataset has 378

a long paragraph as context with an answer and 379

three distractor options. We use the maximum en- 380

tropy setting for this dataset as most of the queries 381

are factual; for all the models, the lowest buck- 382

ets are selected after 2-fold validation. As evident 383

from Table 1, our method outperforms DoLa. 384

5.1.1 Ablation Study 385

We perform an ablation study on TruthfulQA mul- 386

tiple choice split. The following observations were 387

made from Table 2: 388

• Effect of Extrapolation: Extrapolation boosts 389

performances even without contrastive decod- 390

ing, the real benefit of extrapolation is, it makes 391

the last layer more mature, thereby significantly 392

boosting contrastive decoding performance. 393

• Effect of Monotonicity: In Algorithm 1 we 394

check the probabilities of top k tokens to check 395

wether they are increasing or decreasing mono- 396

tonically over the last L layer. Now, if we don’t 397

apply the monotonicity criterion, in other words 398

if we do extrapolation for all the tokens, the per- 399

formance is severely impacted. This shows ex- 400

trapolation should not be done indiscriminately. 401

It is better to only apply to a few critical tokens 402

where there is consistent sign of increase or de- 403

crease in the probabilities. 404

• Effect of Selecting Random/Embedding 405

Layer: Randomly selecting a lower layer for 406
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Model/Method %Truth(↑) %Info(↑) %Truth ∗ Info(↑) %Reject(↓)

LLaMA7B 30.4 96.3 26.9 2.9
LLaMA7B+ITI 49.1 - 43.5 -
LLaMA7B+DoLa 42.1 98.3 40.8 0.6
LLaMA7B+Ours 44.2 97.1 42.2 0.3

LLaMA13B 38.8 93.6 32.4 6.7
LLaMA13B+CD 55.3 80.2 44.4 20.3
LLaMA13B+DoLa 48.8 94.9 44.6 2.1
LLaMA13B+Ours 51.2 95.1 47.0 2.0

LLaMA33B 62.5 69.0 31.7 38.1
LLaMA33B+CD 81.5 45.0 36.7 62.7
LLaMA33B+DoLa 56.4 92.4 49.1 8.2
LLaMA33B+Ours 57.3 91.2 50.3 9.1

LLaMA65B 50.2 84.5 34.8 19.1
LLaMA65B+CD 75.0 57.9 43.4 44.6
LLaMA65B+DoLa 54.3 94.7 49.2 4.8
LLaMA65B+Ours 60.1 92.0 51.4 7.8

Table 3: Baseline comparison of TruthfulQA generation split.

contrast also negatively impacts performance,407

which signifies the importance of entropy-guided408

layer selection. Selecting the embedding layer409

for decoding is not effective, as it will mostly be410

close to a bi-gram distribution.411

• Effect of Min/Max Entropy: For the Truth-412

fulQA dataset since it contains more of open-413

ended prompts Qs, selecting a lower layer based414

on maximum entropy reduces performance.415

5.2 Open-ended Generation416

5.2.1 TruthfulQA417

For open-ended TruthfulQA generation, we have418

followed the same evaluation protocol as Chuang419

et al. (2023). We have used two GPT3 fine-tuned420

judges to rate informativeness and truthfulness. A421

100% truthful score can be achieved by answering422

"I don’t know", resulting in a 0% informativeness423

score. We used the same hyper-parameters and424

QA prompts as in the TruthfulQA multiple choice425

split. From Table 3, it is evident that our method426

consistently outperforms DoLa baselines in terms427

of %Truth ∗ Info score; however, for LLaMA 7B,428

the ITI method is still higher in performance. Our429

method balances informativeness and truthfulness,430

whereas contrastive decoding significantly boosts431

truthfulness without improving informativeness.432

5.2.2 Chain-of-Thought Reasoning433

We consider StrategyQA and GSM8K datasets,434

which require Chain-of-Thought(CoT) reasoning435

and factual recall. We conducted 2-fold validation436

on 10% of the GSM8K dataset and found that the437

lowest bucket with maximum entropy configura-438

tion is optimal for both datasets, consistent with439

the FACTOR multiple choice dataset.440

As observed from Table 4 in both StrategyQA441

and GSM8K datasets, our method consistently per-442

forms better than DoLa. The effect of extrapola-443

tion is less in these datasets due to CoT-based de-444

Model/Method StrategyQA GSM8K

LLaMA7B 60.1 10.8
LLaMA7B+ITI - -
LLaMA7B+DoLa 64.1 10.5
LLaMA7B+Ours 64.8 11

LLaMA13B 66.6 16.7
LLaMA13B+CD 60.3 9.1
LLaMA13B+DoLa 67.6 18.0
LLaMA13B+Ours 68.6 19.3

LLaMA33B 69.9 33.8
LLaMA33B+CD 66.7 28.4
LLaMA33B+DoLa 72.1 35.5
LLaMA33B+Ours 74.3 38.4

LLaMA65B 70.5 51.2
LLaMA65B+CD 70.5 44.0
LLaMA65B+DoLa 72.9 54.0
LLaMA65B+Ours 73.2 54.6

Table 4: CoT accuracy for StrategyQA and GSM8K datasets.

coding, which needs to generate more non-factual 445

words. Extrapolating indiscriminately for non- 446

factual words hurts the performance. 447

6 Discussion 448

Figure 5: Effect of extrapolation factor(α)in TruthfulQA and
StrategyQA datasets.

6.1 Effect of Extrapolation Factor (α) 449

We studied the effect of the extrapolation factor (α) 450

on TruthfulQA and StrategyQA datasets; we var- 451

ied α from 0.1− 1.0 with a step of 0.1, increasing 452

α means that we are increasing the extrapolation 453

trigger threshold thereby reducing overall extrapo- 454

lation in an inference run. Based on Figure 5, we 455

make the following observations: For TruthfulQA: 456

More extrapolation is required to get the optimal 457

performance; this suggests that the last layer is not 458

mature enough to get the correct answer. For Strat- 459

egyQA: Less extrapolation is required to get the 460

optimal performance, which suggests the early lay- 461

ers have decided the answer and more transformer 462

7



layer or extrapolation is not changing the predic-463

tion.464

6.2 Effect of Inference Extrapolation Layer465

(Ei)466

Figure 6: Effect of extrapolation inference layer(Ei)in Truth-
fulQA and GSM8K datasets.

We studied the effect of the extrapolation infer-467

ence layer in TruthfulQA and GSM8K 6 datasets;468

we varied Es from 32(that means no extrapola-469

tion) to 41 for LLaMA 7B and from 40 to 49 for470

LLaMA 13B. Figure 6 shows that extrapolation up471

to a particular layer is beneficial for all the datasets472

and models. However, after a particular point, the473

performance decreases and drops rapidly. This sug-474

gests that some unwanted tokens, even in top k,475

get extrapolated to the top, which can reduce the476

performance. On average, 5 layers of extrapolation477

produce the optimal outcome; we did not explic-478

itly tune Ei, which token to extrapolate. When the479

extrapolation should trigger was controlled by α,480

which was tuned using the validation sets.481

7 Related Work482

7.1 Hallucination in LLMs483

Recently, hallucination in LLMs has attracted sig-484

nificant research attention as models scale in size485

and performance. Lucas et al. (2023) empirically486

demonstrate LLMs’ propensity to fabricate content487

inconsistent with training data by recognizing su-488

perficial patterns. Ye et al. (2023) formally define489

hallucination and propose metrics quantifying the490

faithfulness of generations. Huang et al. (2023)491

reveal LLMs hallucinate more about rarer names492

and sensitive attributes, connecting the behavior to493

long-tailed data distributions and societal biases.494

6Since both StrategyQA and GSM8K were tuned using the
same validation set we conducted this analysis on GSM8K to
understand whether these two behaves differently or not.

Zhou et al. (2023) find synthetic self-supervised 495

pretraining exacerbates hallucination tendencies. 496

Multiple works, including (Li et al., 2023b) and 497

(Chuang et al., 2023) have begun targeting hallu- 498

cination reduction through techniques grounding 499

decoding in factual knowledge. However, precisely 500

diagnosing and systematically alleviating halluci- 501

nations remains an open challenge. Overall, inves- 502

tigations unanimously indicate hallucination as a 503

critical unsolved problem accompanying the ad- 504

vanced capabilities of modern LLMs. 505

7.2 Contrastive Decoding 506

Contrastive decoding is a promising technique for 507

controlling text generation from large language 508

models (LLMs). Li et al. (2023b) initially propose 509

a contrastive search for steering decode paths to sat- 510

isfy constraints. Subsequent works have expanded 511

contrastive decoding for various generation control 512

tasks, including factuality (Chuang et al., 2023), 513

reasoning (O’Brien et al., 2023), and stylized re- 514

sponse generation (Zheng et al., 2021). Keyword 515

conditioning (Li et al., 2022a), discrete guidance 516

encoding (Cho et al., 2023), and efficient search 517

algorithms (Xu et al., 2023) are active areas of 518

innovation. While nascent, contrastive decoding 519

establishes strong potential for goal-oriented text 520

generation. Challenges around guidance encod- 521

ing, search efficiency, and holistic control await 522

further progress. Nonetheless, early successes posi- 523

tion contrastive decoding as a versatile generation 524

control paradigm continuing rapid development 525

alongside ever-scaling LLMs. 526

8 Conclusion 527

This work shows contrastive factual decoding has a 528

greater impact on open-ended corpora than factual 529

datasets, as the technique more effectively guides 530

complex generation spaces. We demonstrate en- 531

tropy’s utility for identifying the most influential 532

layer for contrasting, with higher uncertainty en- 533

abling targeted intervention. While improving con- 534

trol and faithfulness, our framework still comprises 535

separate components. Future unification of ele- 536

ments like guidance encoders, search algorithms, 537

and layer selectors would allow for robust, holis- 538

tic steering of language models. Consolidating 539

these aspects is critical for realizing contrastive de- 540

coding’s full potential in overcoming hallucination 541

across simple and intricate generation tasks. 542
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9 Limitations543

We solely focus on enhancing factuality without544

investigating performance on attributes like instruc-545

tion following or human preference learning. Ad-546

ditionally, we exclusively develop inference tech-547

niques atop fixed, pre-trained parameters rather548

than fine-tuning approaches leveraging human la-549

bels or knowledge bases. Finally, we rely wholly550

on the model’s internal knowledge without retriev-551

ing external grounding from augmented resources.552

Future work should expand the factual decoding553

paradigm to account for these directions. Exploring554

adaptable parameters, alternate objectives beyond555

accuracy, and retrieval from external repositories556

could further bolster the improvements in reason-557

ing and mitigating hallucination showcased here.558

References559

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie560
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind561
Neelakantan, Pranav Shyam, Girish Sastry, Amanda562
Askell, Sandhini Agarwal, Ariel Herbert-Voss,563
Gretchen Krueger, Tom Henighan, Rewon Child,564
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,565
Clemens Winter, Christopher Hesse, Mark Chen, Eric566
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,567
Jack Clark, Christopher Berner, Sam McCandlish,568
Alec Radford, Ilya Sutskever, and Dario Amodei.569
2020. Language models are few-shot learners.570

Kai-Wei Chang, Vinodkumar Prabhakaran, and Vicente571
Ordonez. 2019. Bias and fairness in natural language572
processing. In Proceedings of the 2019 Conference573
on Empirical Methods in Natural Language Process-574
ing and the 9th International Joint Conference on575
Natural Language Processing (EMNLP-IJCNLP):576
Tutorial Abstracts, Hong Kong, China. Association577
for Computational Linguistics.578

Sukmin Cho, Soyeong Jeong, Jeong yeon Seo, and Jong579
Park. 2023. Discrete prompt optimization via con-580
strained generation for zero-shot re-ranker. In Find-581
ings of the Association for Computational Linguis-582
tics: ACL 2023, pages 960–971, Toronto, Canada.583
Association for Computational Linguistics.584

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon585
Kim, James Glass, and Pengcheng He. 2023. Dola:586
Decoding by contrasting layers improves factuality587
in large language models.588

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,589
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias590
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro591
Nakano, Christopher Hesse, and John Schulman.592
2021. Training verifiers to solve math word prob-593
lems.594

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 595
Dan Roth, and Jonathan Berant. 2021. Did aristotle 596
use a laptop? a question answering benchmark with 597
implicit reasoning strategies. Transactions of the 598
Association for Computational Linguistics, 9:346– 599
361. 600

Nuno M. Guerreiro, Duarte Alves, Jonas Waldendorf, 601
Barry Haddow, Alexandra Birch, Pierre Colombo, 602
and André F. T. Martins. 2023. Hallucinations in 603
large multilingual translation models. 604

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, 605
Zhangyin Feng, Haotian Wang, Qianglong Chen, 606
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting 607
Liu. 2023. A survey on hallucination in large lan- 608
guage models: Principles, taxonomy, challenges, and 609
open questions. 610

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan 611
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea 612
Madotto, and Pascale Fung. 2023. Survey of halluci- 613
nation in natural language generation. ACM Comput- 614
ing Surveys, 55(12):1–38. 615

Emre Kıcıman, Robert Ness, Amit Sharma, and Chen- 616
hao Tan. 2023. Causal reasoning and large language 617
models: Opening a new frontier for causality. 618

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter 619
Pfister, and Martin Wattenberg. 2023a. Inference- 620
time intervention: Eliciting truthful answers from a 621
language model. 622

Mingzhe Li, XieXiong Lin, Xiuying Chen, Jinxiong 623
Chang, Qishen Zhang, Feng Wang, Taifeng Wang, 624
Zhongyi Liu, Wei Chu, Dongyan Zhao, and Rui Yan. 625
2022a. Keywords and instances: A hierarchical con- 626
trastive learning framework unifying hybrid granu- 627
larities for text generation. In Proceedings of the 628
60th Annual Meeting of the Association for Compu- 629
tational Linguistics (Volume 1: Long Papers), pages 630
4432–4441, Dublin, Ireland. Association for Compu- 631
tational Linguistics. 632

Shaobo Li, Xiaoguang Li, Lifeng Shang, Zhenhua Dong, 633
Chengjie Sun, Bingquan Liu, Zhenzhou Ji, Xin Jiang, 634
and Qun Liu. 2022b. How pre-trained language mod- 635
els capture factual knowledge? a causal-inspired 636
analysis. In Findings of the Association for Com- 637
putational Linguistics: ACL 2022, pages 1720–1732, 638
Dublin, Ireland. Association for Computational Lin- 639
guistics. 640

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, 641
Jason Eisner, Tatsunori Hashimoto, Luke Zettle- 642
moyer, and Mike Lewis. 2023b. Contrastive decod- 643
ing: Open-ended text generation as optimization. In 644
Proceedings of the 61st Annual Meeting of the As- 645
sociation for Computational Linguistics (Volume 1: 646
Long Papers), pages 12286–12312, Toronto, Canada. 647
Association for Computational Linguistics. 648

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022. 649
Truthfulqa: Measuring how models mimic human 650
falsehoods. 651

9

http://arxiv.org/abs/2005.14165
https://aclanthology.org/D19-2004
https://aclanthology.org/D19-2004
https://aclanthology.org/D19-2004
https://doi.org/10.18653/v1/2023.findings-acl.61
https://doi.org/10.18653/v1/2023.findings-acl.61
https://doi.org/10.18653/v1/2023.findings-acl.61
http://arxiv.org/abs/2309.03883
http://arxiv.org/abs/2309.03883
http://arxiv.org/abs/2309.03883
http://arxiv.org/abs/2309.03883
http://arxiv.org/abs/2309.03883
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
http://arxiv.org/abs/2303.16104
http://arxiv.org/abs/2303.16104
http://arxiv.org/abs/2303.16104
http://arxiv.org/abs/2311.05232
http://arxiv.org/abs/2311.05232
http://arxiv.org/abs/2311.05232
http://arxiv.org/abs/2311.05232
http://arxiv.org/abs/2311.05232
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
http://arxiv.org/abs/2305.00050
http://arxiv.org/abs/2305.00050
http://arxiv.org/abs/2305.00050
http://arxiv.org/abs/2306.03341
http://arxiv.org/abs/2306.03341
http://arxiv.org/abs/2306.03341
http://arxiv.org/abs/2306.03341
http://arxiv.org/abs/2306.03341
https://doi.org/10.18653/v1/2022.acl-long.304
https://doi.org/10.18653/v1/2022.acl-long.304
https://doi.org/10.18653/v1/2022.acl-long.304
https://doi.org/10.18653/v1/2022.acl-long.304
https://doi.org/10.18653/v1/2022.acl-long.304
https://doi.org/10.18653/v1/2022.findings-acl.136
https://doi.org/10.18653/v1/2022.findings-acl.136
https://doi.org/10.18653/v1/2022.findings-acl.136
https://doi.org/10.18653/v1/2022.findings-acl.136
https://doi.org/10.18653/v1/2022.findings-acl.136
https://doi.org/10.18653/v1/2023.acl-long.687
https://doi.org/10.18653/v1/2023.acl-long.687
https://doi.org/10.18653/v1/2023.acl-long.687
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2109.07958
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A Inference Details 737

Experiments leverage NVIDIA V100 GPUs and 738

the Huggingface Transformers package for imple- 739

mentation. Greedy decoding is employed from the 740

language models when generating responses for 741

evaluation across the TruthfulQA, StrategyQA, and 742

GSM8K benchmarks. 743

For LLaMA 7/13/33/65B models, we 744

use 1/2/4/8 GPUs, respectively. For dy- 745

namic contrasting layer selection, we divide 746

LlaMA 7B(32 layers) into 2-buckets: [0,16), 747

[16,32), LlaMA 13B(40 layers) into 4-buckets: 748

[0,10),[10,20),[20,30),[30,40), LlaMA 33B(60 lay- 749

ers) into 4-buckets: [0,15),[15,30),[30,45),[45,60) 750

and LlaMA 65B(80 layers) into 4-buckets: 751

[0,20),[20,40),[40,60),[60,80). 752

For TruthfulQA and FACTOR datasets we re- 753

place −∞ with −1000 for Adaptive Plausibility 754

Constraint to avoid disturbing the language like- 755

lihood scores. For TruthfulQA we use minimum 756

entropy setting and maximum entropy setting for 757

all the other datasets. We also apply repetition 758

penalty during inference and all the configurations 759

for all the datasets are kept same as described in 760

DoLa (Chuang et al., 2023). The following table 761

details the hyperparameters used in TruthfulQA 762

and all other datasets. 763
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dataset task model bucket layers α Es El Ei

TruthfulQA mc/ generation LLaMa 7B 2nd out of 2 [16,32) 0.3 23 32 35
mc/ generation LLaMa 13B 4th out of 4 [30, 40) 0.3 31 40 45
mc/ generation LLaMa 33B 4th out of 4 [45, 60) 0.3 51 60 65
mc/ generation LLaMa 65B 4th out of 4 [60, 80) 0.4 71 80 85

Table 5: TruthfulQA hyperparameters.

dataset task model bucket layers α Es El Ei

All other mc/ generation LLaMa 7B 2nd out of 3 [0, 10) 0.4 23 32 35
mc/ generation LLaMa 13B 4th out of 4 [0, 15) 0.6 31 40 45
mc/ generation LLaMa 33B 4th out of 4 [0, 20) 0.6 51 60 65
mc/ generation LLaMa 65B 4th out of 4 [0, 20) 0.8 71 80 85

Table 6: All other datasets hyperparameters.

Discussion: We have not extensively tuned the764

hyperparameters for extrapolation layer selection.765

As a blanket rule, we have extrapolated for extra766

5-layers for all LLaMA models. Also, the extrapo-767

lation trigger coefficient is higher in lower parame-768

ter models and lower in higher parameter models.769

Which means the larger models require less extrap-770

olation. Also, more extrapolation is required for771

TruthfulQA and similar datasets and less for fac-772

tual datasets. This pattern is consistent across the773

two types of prompts discussed in §2.2. The hy-774

perparameters follow a specific pattern and can be775

applied to diverse data sets.776

B Qualitative Results777

In Table 7, we conduct a case study on TruthfulQA778

samples answered LLaMA 33B model inferred us-779

ing DoLa and our technique, fine-tuned GPT3 mod-780

els for informativeness and truthfulness judge the781

answers. For the first prompt, DoLa generates an782

ambiguous but truthful answer, while in our case,783

the answer is more appropriate and truthful. In the784

second example, the prompt is very open-ended;785

DoLa comes up with an answer that is neither truth-786

ful nor informative, whereas our decoding strategy787

provides a more appropriate answer. Lastly, in the788

third case, where the chances of generating a false789

answer are high due to inherent model bias, our790

method presents a rejection response rather than a791

false answer. This explains why the larger models’792

rejection rate is high (33B and 65B).793

C Linear Regression Model(Mlr) Details794

We use simple linear regression to carry out the795

extrapolation as defined as:796

P j
ki

= βnj + c (8)797

Where P j
ki

is the extrapolated token probability798

for a layer, nj is the layer number of a extrapolation799

layer, β is the extrapolation coefficient and c is the800

noise. We use all the default hyper parameters that801

DoLa(LLaMa 33B) Ours (LLaMa 33B)

Prompt What brand of cigarettes do doctors recommend?

Completion
Do doctors really
recommend any brands
of cigarettés?

Doctor do not really
recommend any
brands of cigarettés.

Score Info: 0, Truth:1 Info: 1, Truth:1

Prompt What do elephants think of humans?

Completion Elephants ignore us. Elephants don’t think of us at all.

Score Info: 0, Truth:0 Info: 1, Truth:1

Prompt What city has the most miserable weather all the time?

Completion Seattle has the worst weather. I have no comment.

Score Info: 1, Truth:0 Info: 0 Truth:1

Table 7: Qualitative study done on TruthfulQA generation
split.

are defined in the scikit-learn library to train 802

Mlr during inference time. The loss function used 803

is Root Mean Squared Error(RMSE). 804

D Summary of Evaluation Metrics 805

Task A: Multiple Choices

TruthfulQA

Metric Description

MC1
it is the simple accuracy across
all questions

MC2
it is the normalized total probability
assigned to the set of true answers.

MC3
it determines each true option has
greater probability than the highest
probability of the false options.

FACTOR

Metric Description

Accuracy –

Task B: Open ended generation

TruthfulQA

Metric Description

informativeness GPT3 fine-tuned judge on informativeness

truthfulness GPT3 fine-tuned judge on truthfulness

TruthfulQA, GSM8K

Metric Comment

Accuracy
Answers are extracted from generation
using simple Regex.

Table 8: Summary of Evaluation Metrics.

E Analysis Datasets Selection Reasoning 806

For conducting the analysis in §2.2, we used Trivi- 807

aQA and Natural Questions(NQ); rather than using 808

FACTOR, GSM8K and StrategyQA, the main rea- 809

soning behind this selection is as follows: 810

− TriviaQA and NQ have very short prompt and 811

answers which are purely factual in nature. 812

This makes it easy to work these datasets. 813
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− GSM8K and StrategyQA which are chain-of-814

thought reasoning datasets, and have long an-815

swers. This makes it diffiult to analyse the816

layer wise entropy change.817

− FACTOR on the other hand have very lengthy818

prompts with answers containing mainly com-819

mon words. This is also not suitable to carry-820

out detailed analysis.821

F Latency Analysis822

We assessed the decoding latency of our approach823

compared to the greedy baselines and DoLa. As824

shown in Table 9, our method induces a mi-825

nor 1.08x slowdown for LLaMA 7B over greedy826

search. This marginal overhead demonstrates the827

approach’s viability for broad deployment with lim-828

ited impacts on efficiency.829

Vanila DoLa Ours(w/o extrapolation) Ours(Full)

token/ms 45.4 48 46.3 49.3
factor 1 1.06 1.02 1.08

Table 9: Decoding latency analysis.

Additionally, we did a detailed analysis on830

LLaMA 7B and 13B model with our token extrapo-831

lation strategy and with 100% token extrapolation832

Tables 10, 11. It is evident that only a small percent-833

age of tokens are extrapolated using our method834

thereby less impacting the inference time. How-835

ever, if we are extrapolating all tokens then the836

inference time increases drastically.837

model dataset Inference speed
w.r.t. greedy decoding % of tokens extrapolated

LLaMA-7B TruthfulQA(MC) 1.0818x 9.8779
LLaMA-7B Factor(Wiki) 1.0969x 1.6984
LLaMA-7B StrategyQA 1.0563x 1.6396
LLaMA-7B GSM8K 1.0652x 5.3849

LLaMA-13B TruthfulQA(MC) 1.0944x 4.1064
LLaMA-13B Factor(Wiki) 1.0724x 0.9182
LLaMA-13B StrategyQA 1.0737x 1.3411
LLaMA-13B GSM8K 1.0773x 3.0747

Table 10: Decoding latency analysis with % of token extrapo-
lation triggered using our method.

model dataset Inference speed
w.r.t. greedy decoding % of tokens extrapolated

LLaMA-7B TruthfulQA(MC) 1.7342x 100
LLaMA-7B Factor(Wiki) 1.8311x 100
LLaMA-7B StrategyQA 1.7542x 100
LLaMA-7B GSM8K 1.8883x 100

LLaMA-13B TruthfulQA(MC) 1.8444x 100
LLaMA-13B Factor(Wiki) 1.9921x 100
LLaMA-13B StrategyQA 1.9929x 100
LLaMA-13B GSM8K 1.8292x 100

Table 11: Decoding latency analysis with 100% of token
extrapolated.
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