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Abstract

Genetic markers, particularly Y-chromosome short tandem
repeats (Y-STRs), play a critical role in forensic investiga-
tions. Since Y-STRs are inherited strictly along the pater-
nal line, it can help differentiate male lineages. However, its
forensic value depends heavily on the availability of reference
profiles in population databases. When no corresponding en-
try exists, a generated Y-STR profile cannot be used for direct
identification. Acknowledging this gap, this study aims to in-
vestigate the possible features critical in developing machine
learning framework for predicting Y-chromosome Single Nu-
cleotide Polymorphism (Y-SNP) haplogroups from standard
Y-STR profiles. Prediction of haplogroups provides informa-
tion on paternal lineage ancestry, enabling the generation of
intelligence leads useful for police investigations. Through
comprehensive evaluation of multiple supervised classifiers
on a dataset of 4,064 Y-STR profiles, the optimized XGBoost
(Extreme Gradient Boosting) classifier was selected for its
superior raw predictive power, achieving the highest overall
accuracy of 96.98% and a Macro F1-score of 0.9810. Crit-
ically, the framework employs stratified sampling and class
weighting to ensure fairness across demographically under-
represented ancestral groups Evaluation of the model incor-
porates stratified sampling and class weighting to mitigate in-
herent demographic data imbalance, ensuring fairness across
minority ancestral groups. Furthermore, the integration of
SHAP (SHapley Additive exPlanations) provides the neces-
sary model interpretability to guide ethical and legal require-
ments for deployment in police investigations, thus advancing
the paradigm of trustworthy AI in law enforcement.

Code — https://github.com/kibindy/LT8 final project/blob/
master/Mapping\%20Forensic\%20Y-
STR\%20to\%20Haplogroups.ipynb

Datasets — https://github.com/cissy123/YHP-Y-
Haplogroup-Predictor-

Introduction
Deoxyribonucleic acid (DNA) fingerprinting or short term
forensic repeat (STR) typing has fundamentally reshaped
the criminal justice system, establishing the gold standard
for human identification in criminal cases (Kayser 2017;
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Ndomondo et al. 2025). Being cost-effective, Y-STR typ-
ing is currently one of the routine procedures performed in
a forensic laboratory.

Y-STRs are short repeating DNA segments on the Y chro-
mosome that are inherited strictly along the paternal line,
providing high variability for individual discrimination but
possessing limited ancestral information due to their high
mutation rate (Rolf et al. 2001; Ndomondo et al. 2025).
However, its use to resolve cases is highly dependent on
the existence of a reference profile within a DNA database
such as the Combined DNA Index System (CODIS) or
a Y chromosome Haplotype Reference Database (YHRD)
(Ndomondo et al. 2025; Costa et al. 2025). When a profile
from a crime scene fails to produce a match, the evidence
becomes static, often including the case in the unsolved cold
case backlog (National Institute of Justice 2002).

In such cases, another procedure can be performed, the
single nucleotide polymorphism (SNP) array analysis, in
which broader ancestral information can be derived. This
utilizes Y-SNP (Y chromosome SNP) to determine the hap-
logroup to which a sample belongs. Y-SNPs mutate slowly,
defining distinct phylogenetic clades known as haplogroups.
This is strongly correlated to deep human migratory history
and biogeographical ancestry. By understanding these hap-
logroups, law enforcers can generate leads pertaining to a
suspect’s likely continental or regional origin, thereby sig-
nificantly narrowing the initial suspect pool and prioritiz-
ing resources. However, this process is resource-intensive in
terms of cost, time, and sample quantity, leading to its ex-
clusion from initial forensic casework (National Institute of
Justice 2002; Li et al. 2025).

To address these challenges and facilitate lead genera-
tion for law enforcement investigations without relying on
database comparison, our work focuses on classifying DNA
samples using supervised machine learning into 13 hap-
logroups based on their Y-STR profiles, each containing al-
lele scores for 27 Y-STR markers. We also demonstrate how
interpretability analysis through SHapley Additive exPlana-
tions (SHAP) can facilitate transparency and inform policy
decisions, contributing to trustworthy use of artificial intel-
ligence (AI) in law enforcement.



Related Work

Generating Forensic Intelligence from DNA Profiles. The
role of DNA analysis in criminal justice has evolved sig-
nificantly since the initial adoption of Restriction Frag-
ment Length Polymorphism and the subsequent shift to STR
markers. While the primary function remains unique for in-
dividual identification, the lack of matches in a high per-
centage of cases has pushed the field toward forensic lead
generation. This area encompasses techniques such as foren-
sic phenotyping (predicting physical appearance) and in-
ferring biogeographical ancestry (BGA). Early BGA tools
relied heavily on Autosomal SNPs (Kayser 2017), but Y-
chromosome analysis, due to its paternal-lineage specificity,
offers a distinct and powerful investigative tool, particularly
in sexual assault and patrilineal missing person cases. Cur-
rent computational approaches however have limitations.
Y-STR typing requires an established reference databases
with autosearch capabilities while Y-SNP array analysis in-
volves resource-intensive procedures with different labora-
tory equipment and computing capacity (Li et al. 2025;
Ndomondo et al. 2025). Accordingly, we use Y-STR profiles
of individuals to predict the haplogroup to which a profile
belongs to, to facilitate lead generation despite the absence
of a reference database.

Haplogroup Prediction. Prior attempts to predict Y-SNP
haplogroups from Y-STR data originated in population ge-
netics and statistical models. These approaches typically re-
lied on frequency databases, using maximum likelihood or
Bayesian statistics to calculate the probability of a haplotype
belonging to a specific haplogroup (Willuweit and Roewer
2015; Babić Jordamović et al. 2021).

The field has seen a recent shift toward supervised ma-
chine learning to overcome the limitations of statistical mod-
els (Song et al. 2024; Yin et al. 2022; Fan et al. 2023). Song
et al. (2024) have used multiple algorithms such as Ran-
dom Forest, Support Vector Machines, and Neural Networks
to model the non-linear mapping between Y-STRs and Y-
SNPs. These models demonstrate superior predictive accu-
racy and generalization compared to their statistical coun-
terparts. However, a critical gap remains. Much of the exist-
ing machine learning literature prioritizes raw accuracy over
the necessary legal and ethical requirements of interpretabil-
ity, transparency, and fairness. Without explicit methodolog-
ical interventions to address demographic imbalance and
the ”black box” nature of deep learning or ensemble meth-
ods, these highly accurate tools cannot be held accountable
once integrated into the justice system (Mittelstadt 2019).
Apart from developing machine learning models, we per-
form model interpretability analysis on the best performing
model to enhance explainability of model results.

Method

We first describe the dataset we use to demonstrate how
we can use machine learning and interpretability analysis in
lead generation. We then elaborate on the approaches used
in model training and evaluation.

Dataset
We use the Y Haplogroup Predictor (YHP) dataset from the
study of Song et al. (2024), which contains 4,064 unique
samples, each characterized by 27 Y-STR markers and their
corresponding confirmed Y-SNP haplogroup assignments.
Each Y-STR profile contains 27 Y-STR markers. Each Y-
STR marker represents a distinct Y-STR locus genotyped by
Yfiler Plus kit represented by the allele score (i.e., the num-
ber of repeats of a short DNA sequence in the locus ). The
allele scores vary per individual; hence, the distributions of
the allele scores likewise vary as shown in Figure 1. We use
these variations in the Y-STR profile to predict which of the
13 major Y-SNP haplogroup present in the dataset a sample
belongs to.

In terms of major haplogroup assignment, we note im-
balance in the distribution of samples (see Figure 2), which
is typical of most available forensic population data. Spe-
cific haplogroups, such as Haplogroup O (predominant in
East Asian populations), constitute a large majority, while
Haplogroups G, H, or L represent minimal fractions of the
dataset. With this imbalance, a model trained naively can be
expected to achieve high overall accuracy by defaulting to
the majority class, which may lead to high rates of misclas-
sification for minority ancestral groups. In the justice setting,
partiality would be unacceptable as it would result in an un-
equal opportunity for lead generation based on a suspect’s
lineage.

Model Training and Evaluation
We describe here the models experimented on, the evalua-
tion metrics we monitored and the cross-validation process
implemented to select the best model for predicting hap-
logroup assignment from Y-STR profiles.

Models. Several machine learning models for classifi-
cation were trained and evaluated. These include Extreme
Gradient Boosting (XGBoost), K-Nearest Neighbors (kNN),
Decision Tree, Support Vector Machine (SVM), Random
Forest, Gaussian Naive Bayes, Linear Discriminant Analy-
sis (LDA) and Elastic Net.

Evaluation Metrics. Considering the class imbalance of
the haplogroup assignment, macro-F1 score as the primary
evaluation metric while we also report and monitor accuracy
and precision scores. The macro-F1 score is the unweighted
average of the F1 scores for each of the 13 classes, ensur-
ing that the performance of the smallest minority class car-
ries the same weight as the largest majority class. Achieving
a high macro-F1 score would be the primary ethical con-
sideration, confirming that the model’s predictive reliability
is consistent and equitable across all ancestral demograph-
ics, aligning directly with the principles of trustworthy AI in
public safety (O’Neil, 2016).

Model Selection. We performed hyperparameter tuning
using stratified cross-validation (CV) strategy with k = 5
to select the best performing model with its corresponding
optimal hyperparameters. We split the dataset of 4,064 sam-
ples into a training-validation set (75%) and a holdout set
(n=1,016 or 25%) using stratified sampling. This critical step
ensured that the proportional representation of all 13 hap-



Figure 1: Distribution of the Y-STR Allele Scores Across the Genetic Markers. Most Y-STR markers show clear, unimodal
distributions with tight clustering around common allele values (e.g., DYS576, DYS449), indicating strong population-level
consistency. A few markers exhibit broader or multi-modal patterns (e.g., DYS389II, DYS456), suggesting higher variability
and greater discriminatory power.

logroups was maintained in both the training and testing par-
titions, preventing the model from encountering unseen mi-
nority classes during final evaluation. Stratified CV ensures
that each fold maintains the original class distribution, pro-
viding a far more stable and reliable estimate of a model’s
true performance compared to standard CV, which is highly
vulnerable to imbalanced data.

Model Interpretability Analysis
We use SHAP (SHapley ADditive exPlanations) on our best
performing machine learning model to enable law enforcers
gain insights into the Y-STR markers that influence the clas-
sification of the sample into a certain haplogroup. This en-
hances the transparency and trustworthiness of the predic-
tion process. Results of this could likewise inform policy
decisions.

Results and Discussion
We show that we can classify DNA samples into their re-
spective haplogroups using machine learning, and utilize

model interpretability analyses to inform decisions on how
the predicted classification should be used and demonstrate
increased transparency in using machine learning models.

Model Performance and Robustness
As shown in Table 1, the XGBoost model achieved the high-
est performance metrics, justifying its selection as a con-
siderable model for forensic intelligence generation. The
model achieved an overall accuracy of 97%. More signif-
icantly, the macro-F1 score of 0.91 confirms the success
of the fairness interventions, demonstrating strong perfor-
mance even in the most resource-scarce classes (e.g., F1
scores for Haplogroups G and L were substantially higher
than non-weighted models). Poor performance of the Elas-
tic Net model can be attributed to the highly non-linear
nature of relationship between Y-STR markers and Y-SNP
haplogroups. Y-STR data constitutes natural evolutionary
nuances such as homoplasy, locus interactions, and other
threshold effects inherent in genetic data. As a result, the
model would default majority classes under severe class im-



Figure 2: Distribution of Major Haplogroups. The plot shows a highly imbalanced distribution, with haplogroup O contribut-
ing the vast majority of samples, while all other haplogroups are sparsely represented. This imbalance means models trained on
these data may become biased toward haplogroup O and struggle to learn meaningful patterns for minority haplogroups.

Machine Learning Model Accuracy
XGBoost 0.9698

Random Forest 0.9679
SVM 0.9623
kNN 0.9616
LDA 0.9438

Gaussian NB 0.9351
Decision Tree 0.9342

Elastic Net 0.2029

Table 1: Machine Learning Model Performance. XG-
Boost achieved the strongest performance among all models,
reaching an overall accuracy of 0.97. However, despite this
high accuracy, variability in macro-level metrics indicates
that minority haplogroups remain more difficult to classify,
reflecting the effects of dataset imbalance.

balance, leading to very low predictive performance despite
regularization.

The key weaknesses of the model were exposed in the
classification of minority classes, demonstrating the diffi-
culty of classifying rare genetic profiles. Table 3 below
summarizes the detailed per-haplogroup performance on the
holdout set.

The disparity between rare haplogroups (e.g., the perfect
performance of F, G, and H versus the low recall of L and
I) is attributed to interactions within the class inherent to the
nature of the data. Haplogroups like F, G, and H, despite
being minority classes in the dataset, likely possess highly
distinct Y-STR signatures that do not overlap with major-
ity groups (like O or R). This ’genetic distance’ allows the
model to draw clear decision boundaries even with limited
data. Conversely, Haplogroup L exhibits low recall (0.20)

Haplogroup Accuracy Precision Recall F1-Score
O 0.97 0.97 0.99 0.98
C 0.99 0.97 0.96 0.96
R 1.00 1.00 1.00 1.00
D 0.99 0.97 0.94 0.96
N 0.99 0.97 0.94 0.96
Q 0.99 0.91 0.91 0.91
J 0.99 1.00 0.96 0.98
F 1.00 1.00 1.00 1.00
L 0.99 1.00 0.20 0.33
G 1.00 1.00 1.00 1.00
H 1.00 1.00 1.00 1.00
I 0.99 1.00 0.67 0.80

Table 2: Performance of Best-Performing Model per
Haplogroup. Summary of the model’s consistent high per-
formance across most haplogroups, with F1-scores near or
equal to 1.00 for the majority classes. Conversely, perfor-
mance drops sharply for haplogroups with extremely low
sample counts highlighting the direct impact of class imbal-
ance on minority-lineage predictability.



because its Y-STR profiles may closely resemble those of
a majority class. When the model encounters a profile that
could be either ’Common Group O’ or ’Rare Group L,’ it de-
faults to the majority class to minimize overall loss, leading
to high precision but poor recall.

The per-class accuracy is the overall accuracy of the
model when treating that specific class as the positive class,
and all other classes as the negative class. This metric is im-
portant because it shows the model is generally excellent at
distinguishing a specific haplogroup from all others.

The decision to maximize Weighted F1 (0.9810) and Ac-
curacy is an intentional operational choice based on the eth-
ical requirements of the justice system. In qualifying inves-
tigative leads or forensic intelligence, the error profile would
ultimately influence the fate of a human being. To contextu-
alize these metrics in the justice system, a false Positive, or
an incorrect prediction that falsely associates a crime scene
profile with a specific haplogroup translates to wrongly ac-
cusing an innocent individual just because he belongs to the
group of interest. On the other hand, failure to correctly clas-
sify a profile in the case of a false negative could ultimately
result in acquitting the guilty and/or losing the only inves-
tigative lead that could drive the case entirely.

The Need for Legal Transparency
The core tenet of Western law is the Blackstone Ratio, which
holds that it is ”better that ten guilty persons escape than
that one innocent party suffer.” Our model’s objective is to
satisfy this ratio by aggressively minimizing False Positives.
The high Weighted F1 Score confirms the model’s reliability
on the most common haplogroups thereby avoiding spurious
leads and satisfying the mandate to protect the innocent.

In the justice system, the output of any computational
model must be transparent, hence ”black box” algorithms
are functionally inadmissible due to the fundamental con-
cerns on accountability and the right to confrontation (Mit-
telstadt 2019). The ability to audit the model’s decision-
making process is mandatory for maintaining judicial trust
and public acceptance (Lundberg and Lee 2017). To meet
this requirement, SHAP (SHapley Additive exPlanations)
analysis were implemented on the validated Random Forest
model.

SHAP values provide both a global overview of feature
influence and a local, per-prediction explanation. This tech-
nique quantifies the contribution of each of the 27 Y-STR
markers to the final haplogroup prediction.

Figure 4 shows a summary of the global SHAP values of
the genetic loci used in predicting the haplogroup. This re-
vealed that Y-STR markers such as DYS392, DYS481 and
DYS635 were the most influential in the model’s overall
classification logic. This means that these are the markers
that had the largest overall impact, or highest average ab-
solute SHAP value, on the model’s predictions across the
entire dataset, giving them the most weight when deciding
on the haplogroup.

Furthermore, analyzing markers with intermediate global
importance, such as DYS392, DYS481, and DYS635, re-
veals that while they may not be the primary discriminators,

Figure 3: Summary of Mean SHAP Values per Y-STR
marker. For the most important marker is DYS392, almost
doubled compared to the next marker, DYS481. This high-
lights the magnitude of dataset imbalance. In the justice set-
ting, interpreting such important predictors could qualify the
credibility of an investigative lead.

they possess crucial power for distinguishing specific hap-
logroups. DYS392 and DYS481 often exhibit allele length
variance that strongly correlates with minor clades, and
DYS635 is known for its high heterozygosity. ((Willuweit
and Roewer 2015)).

Generating a local SHAP plot for every novel Y-STR
crime scene profile could describe the exact positive and
negative contribution of each of the 27 markers to the pre-
dicted haplogroup. This output would allow a forensic ex-
pert to articulate the basis of the investigative lead which
can be operationalized through an addendum through the Y-
STR DNA profile. The ability to articulate that the model
predicted that a certain STR profile belonged to a specific
haplogroup because the allele length for the loci was this
score could strongly push the probability away from another
Haplogroup. This level of documented transparency is crit-
ical for internal audits, external review, and maintaining ju-
dicial and public trust in an AI-driven forensic intelligence
framework.

Conclusion
The current operational challenges in forensic investigations
necessitate a strategic shift toward AI-driven intelligence
generation. This research successfully develops a machine



learning framework that accurately maps Y-STR profiles to
ancestral haplogroups, achieving high reliability (97% ac-
curacy). Most significantly, the methodology is engineered
to consider specific interventions for fairness (class weight-
ing to protect minority groups) and accountability (SHAP
analysis for total transparency). By adhering to the princi-
ples of trustworthy AI, this framework not only provides law
enforcement with a powerful, demographically sensitive in-
vestigative tool but also offers a model for responsible AI
integration across the broader public safety and justice do-
main.

Limitations and Future Work
The present model was implemented using the YHP dataset,
which has a primary geographical representation (Song et al.
2024). This introduces a necessary caution regarding geo-
graphical bias; the model may perform suboptimally when
presented with data from populations that are genetically
distant from the training set.

Future deployment of the model must include rigorous re-
training and validation using local reference data for any
new geopolitical region to prevent systemic bias in inves-
tigative lead generation. Furthermore, clear legal and policy
frameworks must be established to define the ethical bound-
aries for the use and retention of haplogroup information
generated, ensuring it remains strictly an investigative lead
and not a piece of individualizing evidence.

Predicting major haplogroups could provide a substantial
investigative lead, especially for populations of diverse eth-
nicity groups such as the Philippines. However, the pursuit
to finer resolution prediction will always be desired. The
model can be extended to predict sub-clades (more granu-
lar haplogroups), which would further narrow the suspect
pool. This technical advancement necessitates incorporating
a larger feature set that includes highly discriminating Y-
SNP markers.

A critical limitation in high-stakes environments is the
lack of explicit uncertainty of quantification. The current
model provides a point of prediction and a probability score,
but future work must integrate rigorous uncertainty mea-
sures possibly through Bayesian machine learning or Con-
formal Prediction to provide a statistically sound confidence
interval alongside the haplogroup prediction. This would be
critical for investigators to appropriately weigh the eviden-
tiary value of the generative lead in their overall strategy.
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